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Dynamical generation of dark-bright solitons through the domain wall of two immiscible
Bose-Einstein condensates
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We theoretically investigate the one-dimensional dynamics of a dark soliton in a two-component immiscible
mixture of Bose-Einstein condensates with repulsive interactions. We analyze the reflection and transmission of
a soliton when it propagates through the domain wall, and we show that a dark-bright soliton can be dynamically
generated by the interaction of the dark soliton with the domain wall, outside the regime of parameters where
stationary solutions are known to exist. The dynamics of this dark-bright soliton is harmoniclike, with a
numerical frequency that is in good agreement with the predictions of a semianalytical model.
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I. INTRODUCTION

Solitons are localized, nondispersive excitations that can
transport energy and momentum in a nonlinear medium [1].
They are topological states that propagate keeping their shape
unaltered, as a result of the competition between dispersion
and the nonlinearity of the system.

The experimental flexibility and high level of control of
Bose-Einstein condensates (BECs), such as dimensionality
and strength of the interatomic interactions, have led this sys-
tem to be an excellent playground for the study of matter-wave
solitons and topological excitations [2–4]. Solitonic states in
BECs can be investigated within a mean-field description, by
means of the Gross-Pitaevskii (GP) equation. It incorporates a
nonlinear term that takes into account the interatomic interac-
tion. Depending on the sign of the latter, two types of matter
waves can be found in a single BEC: dark or bright solitons,
for repulsive and attractive interactions, respectively.

Multicomponent condensates with different intra- and in-
terspecies interactions offer the possibility to investigate new
families of solitonic states in different regimes, in which
the two components are miscible or immiscible [5–8]. Such
two-component BECs can be experimentally produced from
two different hyperfine states of the same atomic species, for
instance 87Rb [9–11], or from two different atomic species
[12]. Depending on the ratio between the interaction con-
stants, new solitonic configurations have been experimentally
realized, for instance, dark-dark solitons [13], or dark-bright
solitons [10,14,15]. The latter structure is especially appealing
because the bright component, with a repulsive intraspecies
interaction, can exist because the density depletion of the dark
component plays the role of an effective confining potential.
The dark soliton in one component hosts the atoms of the
bright one, as in vortex-bright soliton configurations. The
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latter are topological states formed by vortices with massive
cores [16–18], one component supports a quantized vortex,
and the other fills the core.

Dark-bright (DB) solitons are exact solutions in the
two-component one-dimensional (1D) Manakov limit, where
all the interaction constants are equal (see Ref. [19] and
references therein). For the general case (i.e., non-Manakov),
explicit analytic solutions for DB solitons have been obtained
in Ref. [20] for a restricted range of the interactions; there
it has also been shown that other solutions (e.g., DB soli-
ton trains) can still be found numerically even beyond those
limits. Many other features of DB solitary waves have been
investigated in the literature, for example, the dynamics of a
DB soliton in a harmonic trap, whose oscillation frequency is
smaller than the one of a dark soliton in a single component
(owing to the presence of the massive core of the bright filling
component that slows down the oscillation) [10,14,21], DB
soliton trains generated by the counterflow of two components
[15], the controlled creation of DB soliton trains [22], the for-
mation of DB solitons upon quenching a particle imbalanced
two-component condensate [8], the collision between a dark
and a DB soliton [10], as well as scattering of a DB soliton by
an impurity [23,24].

In this paper we shall consider an immiscible two-
component system, whose equilibrium state is characterized
by the phase separation of the two components, each in a
different domain. The interface region between the two com-
ponents is the so-called domain wall. The propagation of
an imprinted dark soliton in two immiscible BECs has been
previously investigated in 2001 by Öhberg and Santos [25,26],
and more recently in Ref. [27], for a fixed set of the param-
eters. A similar analysis has been discussed in Ref. [28] for
a vortex dipole motion in a two-dimensional phase-separated
two-component condensate. The aim of this paper is to in-
vestigate comprehensively the reflection and transmission of
nonlinear matter waves in two immiscible BECs. In particular
we want to study the effect of the domain wall in a wide
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range of interaction parameters in the immiscibility regime.
We consider general interaction coefficients, motivated by the
tunability of the scattering lengths by means of Feshbach
resonances. Since the shape and features of a domain wall de-
pend on the interparticle interactions, one can expect different
dynamical behaviors when the moving soliton encounters the
domain wall. We show that a DB soliton can be dynamically
generated after the reflection and transmission of a dark soli-
ton through a domain wall of two immiscible condensates. We
have found that these DB solitons are dynamically generated
in a region of interaction parameters where static solutions of
this type cannot be obtained [20].

This paper is organized as follows. In Sec. II, we intro-
duce the system and the theoretical framework, based on the
mean-field GP theory. In Sec. III, we present the numerical re-
sults obtained by solving the two-coupled time-dependent GP
equations by varying the interspecies interaction within the
immiscibility regime, for fixed intraspecies interactions. We
analyze the reflection or transmission of the initially imprinted
dark soliton. We show that the interaction of the moving dark
soliton with the domain wall generates a DB soliton for a wide
range of intraspecies interactions in the immiscibility regime.
In Sec. IV, we study the DB soliton dynamics and provide
a semianalytical expression for its harmonic frequency that
is in good agreement with the numerical one. To sum up,
we present our conclusions and perspectives for future work
in Sec. V.

II. THE SYSTEM

We consider a two-component Bose-Einstein condensate,
confined in a highly elongated harmonic potential. The lon-
gitudinal (ωx) and transversal (ω⊥) frequencies are such
that ωx � ω⊥. In the mean-field regime, the system can be
accurately described by the following 1D two-coupled GP
equations in dimensionless units,

i
∂ψi

∂t
=

[
−1

2

∂2

∂x2
+ 1

2
x2 + gii|ψi|2 + g12|ψ j |2

]
ψi, (1)

where ψi(x, t ) (i = 1, 2) denote the mean-field wave functions
of the two components, normalized to one. We have used the
longitudinal trap length, ax = √

h̄/(mωx ), as the unit length,
h̄ωx as the unit energy, and tx = 1/ωx as the unit time. The
effective 1D dimensionless coupling constants are

gii = 2N
ω⊥
ωx

ai

ax
, g12 = 2N

ω⊥
ωx

a12

ax
, (2)

with ai and a12 the intraspecies and interspecies scattering
lengths, respectively, and N the number of atoms for each
component, which we assume to be the same. Here, for the
sake of conceptual clarity, we also assume that the intraspecies
interaction is the same for both components, a ≡ a1 = a2,
and therefore g ≡ g11 = g22. Moreover, we consider repul-
sive interactions, such that the immiscibility condition [5,6]
a12 >

√
a1a2 is fulfilled: g12 > g > 0.

Owing to the above conditions, the system is prepared with
the component 1 on the left (L) side of the trap, and the
other component (2) at its right (R). In the following, we may
indicate the two components equivalently as i = 1, 2 or L/R.
Initially, the domain wall lies at the trap center (x = 0). We

will see below that its exact shape and position is affected by
the value of g12/g, as well as by the presence and dynamics of
a moving soliton. One should bear in mind that despite the im-
miscibility condition, a minority fraction of the 1-component
coexists also on the right side of the trap, and vice versa for
the 2-component. This small overlap of the two components
in the tiny region around the domain wall is indeed crucial for
the dynamical generation of DB solitons, as we will discuss
later on.

As the initial state, we consider a dark soliton imprinted
at rest in the right component (i = 2), and located at x0. The
system can be described by the following ansatz [1,29],

ψ1(x) = ψ
gs
1 (x),

ψ2(x) = ψ
gs
2 (x) tanh

(
x − x0√

2 ξ

)
, (3)

where ψ
gs
1 (x) and ψ

gs
2 (x) are the ground-state solutions of the

two components of the immiscible mixture in the elongated
trap, ξ = 1/

√
2μ0 is the (dimensionless) healing length, and

μ0 is the (dimensionless) chemical potential of the uniform
single-component condensate with density n0 ≡ |ψgs

2 (x0)|2.
Numerically, the initial state is prepared by letting the trial
wave function (3) evolve in imaginary time [30].

III. NUMERICAL RESULTS

In order to perform the numerical calculations, we fix the
dimensionless intraspecies interaction to g = 3 × 103, which
guarantees a sufficiently strong repulsion between the two
components. It could be realized, for instance, with a 87Rb
BEC confined in a tight transverse harmonic trap with fre-
quencies ωx = 2π × 1.5 Hz, ω⊥ = 2π × 150 Hz [11], N =
2.5 × 104 atoms in each component, and intraspecies s-wave
scattering length a � 100a0, with a0 being the Bohr ra-
dius. We remark that these values only represent a generic
order of magnitude: The general phenomena discussed in
the rest of the paper are expected to hold for different pa-
rameter regimes, provided that the two components are in
the immiscible regime and that the trap can be considered
quasi-one-dimensional. To illustrate the different possible sce-
narios, in the following we investigate the soliton dynamics
for different values of the interspecies interaction with g12/g ∈
(1, 4], in the immiscibility regime. Initially, we imprint the
soliton at x0 = 6, without loss of generality. Then, we let it
evolve freely, according to Eq. (1). The dark soliton acquires
an initial velocity given by the local density gradient around
x0, which is a consequence of the harmonic confinement. The
soliton moves towards the domain wall following the same
trajectory as in the absence of the other component [31,32],
whose presence becomes important only from the domain
wall on. This is clearly shown in Fig. 1 where we plot, for
different values of g12/g, the evolution of the density obtained
from the numerical solution of Eq. (1). The trajectory of the
soliton, defined by the location of the density depletion as a
function of time, is represented by the black curve which is
sinusoidal-like in pieces (see below).

Figure 1 shows that before reaching the domain wall, rep-
resented by the horizontal line at x = 0, the soliton trajectory
obtained from the numerical solution overlaps the harmonic

043312-2



DYNAMICAL GENERATION OF DARK-BRIGHT SOLITONS … PHYSICAL REVIEW A 104, 043312 (2021)
x

−10

−5

0

0

0.02

0.04

0.06

0.08
L g12/g = 1.01

0

5

10
R

x

−10

−5

0

L g12/g = 2

0

5

10 0

0.02

0.04

0.06

0.08

R

x

−10

−5

0

L g12/g = 3

0

5

10
R

x

−10

−5

0

L g12/g = 4

t

0

5

10
0 2 4 6 8 10

R

FIG. 1. Evolution of the soliton density obtained from the nu-
merical solution of the GPE (1). From top to bottom: g12/g = 1.01,
2, 3, and 4. The point-dashed yellow line represents the oscillation
of a dark soliton in a single component, with frequency ω0 = 1/

√
2

[1,31]. Straight lines represent phonon trajectories traveling at the
speed of sound (only those generated at the first encounter with the
domain wall are highlighted in red—see text). The dotted vertical
line corresponds to t = 4.2 considered in Fig. 2.

point-dashed yellow line. The latter one, with frequency ω0 =
1/

√
2, corresponds to an unperturbed dark soliton moving in

a single harmonically confined one-dimensional (1D) BEC
[1,31]. When the dark soliton encounters the domain wall, we
obtain two distinctive behaviors depending on the interparticle
strength ratio g12/g, as shown in the top and bottom panels of
Fig. 1. These scenarios comprise transmission and reflection,
respectively. They are in agreement with the ones described
in Refs. [25–27], obtained for a fixed set of values of the
interactions and different values of the initial position (i.e.,
initial velocity) of the imprinted dark soliton.

To illustrate these two different situations, we plot in Fig. 2
the density profiles at t = 4.2, which correspond to snapshots
after the first collision of the dark soliton with the domain
wall. The panels correspond to the same values of g12/g as
in Fig. 1. The initial density profile with the imprinted dark
soliton at x0 = 6 in the right component is also depicted as
a dashed yellow line. The top panels of Fig. 2 show the
transmission of the soliton from the right to the left component
through the domain wall. When g12/g � 1 the dark soliton is
just transferred to the other component. Interestingly, when
the interparticle strength slightly increases, 1.5 � g12/g � 2
(top right panel), the transmitted soliton drags atoms of the
right component forming a DB soliton.

0.02

0.04

0.06

0.08
g12/g = 1.01 g12/g = 2

0.02

0.04

0.06

0.08

-20 -10 0 10 20

g12/g = 3

-20 -10 0 10 20

g12/g = 4

n
(x

)
n
(x

)

x x

FIG. 2. Density snapshots at t = 4.2 (corresponding to the dotted
vertical lines in Fig. 1) for different values g12/g. The solid green
(magenta) line corresponds to the density of the right (left) compo-
nent. The dashed yellow line represents the initial configuration of
the right component, with the dark soliton imprinted at x0 = 6. Inset:
Closeup plot of the region around the dark-bright soliton. The tiny
density depletion at x � −20 in the bottom panels corresponds to
the phonon.

By exploring different interparticle strength values, we
have seen that the number of dragged atoms inside the dark
soliton (the bright component) increases with g12/g. This de-
pendence will be discussed later on (see also Fig. 5). Since
the effective mass of the moving “object” increases when it
is filled with atoms of the bright component, a DB soliton
slows down with respect to a single dark soliton. Hence, this
produces a decrease of the slope of the soliton trajectory as
shown in Fig. 1 (see top panels).

Increasing further the interparticle repulsion (g12/g � 2.5),
the domain wall becomes sharper and behaves as an impene-
trable wall. After the collision, the dark soliton does not have
enough energy to be transferred, but it drags some atoms of the
other component in the domain wall and it is reflected back in
the initial component as a DB soliton. The bottom panels of
Fig. 2 show the density snapshots of the reflected DB soli-
tonic state. Despite the two components slightly overlapping
in the domain wall, due to the large interparticle repulsion,
the density depletion of the reflected soliton generates an
attractive effective potential that drags some atoms of the left
component.

Remarkably, these DB solitons are dynamically generated
outside the regime of parameters where explicit analytical
solutions are known to exist, namely for g12 > max(g11, g22)
[2,20]. They are dynamically created by the interaction of the
moving dark soliton with the domain wall, and they have not
been previously observed for the range of parameters used
in Refs. [25,26]. In Ref. [27] it was reported that the dark
soliton can carry some atoms of the other component for some
parameter values, but this fact was not analyzed further.

We have also checked that the same dynamical behaviors
appear regardless of the initial position of the soliton, which
only affects the values of g12/g characterizing the differ-
ent dynamical regimes. For example, for x0 = 2, instead of
x0 = 6, the transition between the transmission and reflection
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FIG. 3. Evolution of the center of the soliton as a function of
time, for a dark soliton initially imprinted at x0 = 6. The thin red line
corresponds to the unperturbed trajectory of a single-component dark
soliton confined in a harmonic trap.

regimes occurs at smaller values of the interparticle strength
(g12/g � 1.14) because of the lower soliton velocity.

Shallow density depletions (light gray straight lines) that
appear and propagate after the soliton is transferred or re-
flected at the domain wall are also evident in Fig. 1. They
correspond to the emission of phonons traveling at the speed
of sound, c = √

gn0 [33]. We have marked the first phonon
trajectories as dashed red lines. The density modulation cor-
responding to the phonon excitation appears clearly close to
the left boundary in the density profiles of the bottom panels
of Fig. 2. When the phonon excitation reaches the condensate
boundary it is reflected back towards the center of the system.
Oblique gray lines indicate phonon excitations that propagate
in each component from left to right (negative slope) and from
right to left (positive slope). It is worth noting that the soliton
speed (line slope) is slower than the speed of sound (phonon
speed). Remarkably, the phonon emission produces an accel-
eration of the soliton [25,26], that becomes more effective
as the soliton hits a harder domain wall, as it can be seen
by comparing the panels for g12/g = 3 and 4 in Fig. 1 (see
also Fig. 3).

After the first interaction with the domain wall, the soliton
travels towards the boundary of the system backwards to the
interface, slowing down its velocity. As in a harmonic motion,
the DB soliton stops and then travels back towards the domain
wall. This is clearly shown in the harmoniclike soliton trajec-
tories in Fig. 1.

In order to discuss the second collision with the domain
wall, we show in Fig. 3 the time evolution of the soliton center
x0(t ) for different values of the interspecies interaction. As
a reference, we also plot as a solid red line the unperturbed
trajectory of a single-component dark soliton confined in a 1D
harmonic trap. Close to the Manakov limit, where the intra-
and interspecies interactions are equal (here g12/g = 1.01),
the dark soliton transmits from one component to the other
through the domain wall. After the first and second colli-
sion, the soliton trajectory in both components follows the
harmonic trajectory with frequency ω0 � 1/

√
2, as discussed

before. The presence of the domain wall only produces a small
perturbation of the trajectory of the transmitted dark soliton in
the new component.
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-0.5 0 0.5

t = 7.6

n
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g12/g = 1.90
g12/g = 1.91

n
(x

)
n
(x

)
x

FIG. 4. The DB soliton travels from the left component towards
the domain wall. Snapshots of the density profile close to the domain
wall, for g12/g = 1.90 (1.91) depicted with yellow, light (blue, dark)
lines. Solid (dashed) lines correspond to the left (right) component.
Snapshots correspond to t = 7.3, 7.5, and 7.6. The DB soliton is
reflected (transmitted) for g12/g = 1.90 (1.91). Arrows indicate the
moving direction of the dark soliton. Notice that the position of the
domain wall, initially located at the center of the harmonic trap,
slightly moves depending on the soliton position. Density is in ar-
bitrary units.

In general, the soliton dynamics after the second collision
with the domain wall follows the same behavior as after the
previous collision. Namely, first the DB soliton produces an
emission of phonons when it interacts with the domain wall,
as well as some perturbations; afterwards it is transferred or
reflected. However, there are some particular cases where the
perturbations generated in the domain wall substantially alter
the subsequent dynamics: The soliton is transferred instead of
being reflected as in the first collision (or vice versa). See,
for example, the trajectory for g12/g = 4 in Fig. 3: In the
first collision the soliton is reflected, whereas in the second
one it is transmitted to the other component. We have verified
that this behavior cannot be explained in terms of the critical
velocity argument proposed in Refs. [25,26], and this suggests
that the density deformations that take place in the domain
wall may also play an important role. In order to take a closer
look at this point, in Fig. 4 we show a zoom of the density
profile around the domain wall at different times, around
t � 7.5, for two close values of the interaction: g12/g = 1.90
(yellow, light lines) and g12/g = 1.91 (blue, dark lines). The
solid lines correspond to the left component, whereas the right
component is represented by dashed lines. One can see that
when the soliton interacts with the domain wall the latter in-
duces a back action onto the soliton, modifying its subsequent
dynamics: The soliton is reflected for g12/g = 1.90, whereas
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FIG. 5. Oscillation frequency of the DB soliton transmitted in
the left component, obtained from the numerical solution of the GP
equation (red points), as a function of the interspecies interaction
strength g12/g. The horizontal dashed line represents the unperturbed
result ω0 = 1/

√
2. The dashed-dotted line corresponds to the analyt-

ical prediction of Eq. (6). Inset: Rescaled number of atoms NB in the
bright soliton (blue points), as a function of the interparticle strength
g12/g. The red dashed line represents a fit of the data, of the form
α(g12/g)β with α � 3.8 × 10−3 and β � 3.3.

it is transferred to the other component for g12/g = 1.91.
We remark that the former case represents an exception to
the behavior observed in the range 1.5 � g12/g � 2. Notice
that in neither case one can observe any appreciable phonon
production. Finally, we mention that, in certain conditions, the
domain wall can trap the soliton for some time before it is
either transmitted or reflected. This behavior is similar to that
discussed in Ref. [26]. The above observations suggest that
the interaction of the soliton with the domain wall deserves a
more thorough analysis. This will be left for a future study.

IV. DYNAMICS OF THE DARK-BRIGHT SOLITON

As we have anticipated in the previous section, once the
DB soliton has been formed at the domain wall, it starts
performing a harmonic oscillation in the left component until
it gets back to the domain wall. Indeed, we have verified that
the trajectory of the DB soliton core can be fitted very accu-
rately with a sinusoidal function. Its characteristic frequency
is shown in Fig. 5.

For g12 > 1.4 the soliton frequency starts to depart from
the unperturbed result ω0 = 1/

√
2 (for a dark soliton alone,

horizontal line), signaling the presence of a significant drag
of atoms in the bright component, which produces a slowing
down of the oscillation. It is important to remark that these DB
solitons are dynamically generated for g12 > max(g11, g22), a
regime of parameters where explicit analytical solutions are
not available [2]. Then, in order to compare the oscillation fre-
quency with an analytical estimate, we assume the following
ansatz with the effect of the bright component being treated as
a perturbation of the dark soliton frequency ω0. In particular,
we use the fact that in the Manakov case, g12 = g = 1, the DB
soliton frequency is given by the following expression [20,21],

ω2
M � 1

2

[
1 − NB/g

4
√

μ + (NB/4g)2

]
, (4)

where NB is the rescaled number of atoms in the bright
soliton (we recall that the total density of each component
is normalized to one)

NB ≡
∫

|ψB(x)|2 dx, (5)

and μ is the chemical potential. Notice also the factor 1/g
rescaling the number of atoms in the bright soliton, which
comes from the fact that in our formulation the densities are
not rescaled by g11 ≡ g as in Ref. [20]. Then, we make a
continuation to g12/g > 1 assuming that the correction to ω2

DB,
which depends on the interaction between the two compo-
nents, has to be proportional to g12, to lowest order. This yields

ω2
DB � 1

2

[
1 − (g12/g)NB

4
√

μ + (NB/4g)2

]
, (6)

where NB also depends on g12. The behavior of NB(g12) can be
estimated by fitting the bright soliton density profile as [20,21]

|ψB(x)|2 = (κ NB/2) sech2[κ (x − x0)], (7)

where κ � √
μ is the bright soliton width, and x0 the position

of the DB soliton. We notice that, once the DB soliton has
been formed, both NB and κ do not show any significant
dependence on time, until the soliton is eventually reabsorbed
at the domain wall. The behavior of NB as a function of g12/g
is shown in the inset of Fig. 5.

This figure shows that for g/g12 � 1.4 the atoms of the
left component start to fill the core of the dark soliton in
the right component due to the interparticle repulsion, and this
produces a slowing down of the oscillation frequency of the
soliton. Combining the above results with Eq. (6) we obtain
the semianalytical estimate for the DB soliton frequency ωDB

shown in Fig. 5 as a dashed line. Remarkably, this simple
ansatz reproduces with great accuracy the frequency ob-
tained from the numerical simulation of the GP equation, for
1 � g12 � 2.3.

V. CONCLUSIONS

In this paper we have investigated the reflection and trans-
mission of a dark soliton through the domain wall of a 1D
immiscible mixture. We have shown that depending on the
interparticle strength, a DB soliton is formed when the ini-
tially imprinted dark soliton moves across the domain wall.
Interestingly, these DB solitons are dynamically generated
outside the regime of parameters where explicit analytical
solutions have been demonstrated to exist. This opens an in-
teresting scenario for producing DB solitons in this dynamical
regime, which should be easily accessible in ultracold-atom
experiments [11,34]. Once the DB soliton is created, it follows
an harmoniclike trajectory. When it encounters the domain
wall, the DB soliton can be reflected or transferred through
it. By assuming that the effect of the bright component can
be treated as a perturbation, we have shown that a semian-
alytical expression for the frequency of the DB soliton can
be obtained by continuation for g12/g � 1 of the Manakov
case discussed in Refs. [16,20]. Indeed, the frequency of the
DB soliton oscillation obtained from the numerical solution
of the GP equation is in good agreement with the predictions
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of the semianalytical model. Nonetheless, a more detailed
investigation of the interaction and back action between the
domain wall and the DB soliton is required in order to shed
light on the “microscopic” mechanisms that take place. This
and other natural extensions of the present work, such as the
effect of the dimensionality of the system, are subjects that
deserve further exploration and they will be presented in a
future work.
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