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ABSTRACT 22 
 23 
Transforming Growth Factorβ (TGFβ) signalling controls multiple cell fate decisions 24 
during development and tissue homeostasis. Hence, dysregulation of this pathway can 25 
drive several pathologies, including cancer. Here we discuss the influence that TGFβ 26 
exerts on the composition and behavior of different cell populations present in the 27 
tumour immune microenvironment, and the context-dependent functions of this 28 
cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls 29 
inflammatory responses triggered by exposure to the outside milieu in barrier tissues. 30 
Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular 31 
transformation. In contrast, as tumours progress, they leverage TGFβ to drive an 32 
unrestrained wound-healing program in cancer-associated fibroblasts, as well as to 33 
suppress the adaptive and innate immune system. In consonance with this key role in 34 
reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ 35 
inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize 36 
with other immunotherapies—including immune checkpoint blockade—to unleash 37 
robust anti-tumour immune responses in preclinical cancer models. Despite initial 38 
challenges in clinical translation, these findings have sparked the development of 39 
multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are 40 
currently in clinical evaluation.  41 
 42 
 43 
Introduction 44 
 45 
The role of TGFβ signalling during cancer progression is complex, as it can have both 46 
tumour-suppressive and tumour-promoting functions1–4. Virtually all cell types are 47 
responsive to TGFβ, but its role has been particularly well characterized in epithelial 48 
cells. In organs such as skin, colon, breast or pancreas, TGFβ signalling regulates 49 
homeostatic growth, inhibiting cell proliferation and transformation during the early 50 
stages of tumourigenesis (Figure 1). Cancers arising in these tissues can avert the 51 
tumour-suppressive effects of TGFβ by acquiring inactivating mutations in pathway 52 
components. In other cases, tumour cells remain responsive to TGFβ during disease 53 
progression but, in crosstalk with several oncogenic alterations such as KRAS 54 
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mutations, rewire the signalling pathway’s outcome to promote epithelial-to-55 
mesenchymal transition (EMT), dissemination, dormancy, and metastasis (Figure 1). 56 
The context-dependent roles of TGFβ signalling in healthy and tumorigenic epithelial 57 
cells have been reviewed elsewhere2–4.  58 
 59 
Whereas research on TGFβ signalling in cancer has been predominantly tumour cell-60 
centric, the pioneering works on TGFβ signalling in the 1980’s and 1990’s already 61 
addressed the profound effects that this cytokine exerts on the tumour 62 
microenvironment (TME)5.These early studies showed that inoculation of mice with 63 
TGFβ accelerated wound healing by stimulating both the recruitment of immune cells 64 
and the production of multiple extracellular matrix (ECM) components by fibroblasts6–65 
8. These findings were linked to a pivotal role for TGFβ in the differentiation of cancer-66 
associated fibroblasts (CAFs), as well as to the generation of the desmoplastic reaction 67 
that characterizes many prevalent tumour types9, fueling the notion that “tumours are 68 
wounds that do not heal”10. In parallel, TGFβ signalling was discovered to suppress 69 
the function of adaptive and innate immune cells11–14, a mechanism that a decade later 70 
was associated to cancer immune evasion1,15–17.  71 
 72 
We now know that TGFβ controls immune homeostasis in several tissues, and genetic  73 
defects in pathway components are linked to loss of immune tolerance and 74 
autoimmunity18,19. Moreover, in mouse models, exacerbated inflammation associated 75 
with the loss of TGFβ signalling in several immune cell types leads to enhanced cancer 76 
formation (Figure 1). In contrast, as tumours progress the levels of TGFβ increase, 77 
concurrent with marked remodelling of the TME (Figure 1). Combined with the well-78 
documented cancer cell-intrinsic effects of TGFβ on invasion and metastasis2–4, the 79 
net result is a systematic disposition to tumour progression, immune evasion, and 80 
therapy resistance (Figure 1). 81 
 82 
Here we describe how the complex cellular ecosystem of the TME responds to TGFβ 83 
throughout the evolution of the disease. We first summarize the basics of the TGFβ 84 
signal transduction pathway, emphasizing the mechanisms of TGFβ production, 85 
storage and release within the TME. We then review the current knowledge of the role 86 
of TGFβ signalling in immune homeostasis and its link to tumour initiation in pathogen-87 
exposed organs such as the gut. Subsequently, and forming the main focus of this 88 
Review, we discuss how TGFβ signals facilitate malignant tumour growth, 89 
dissemination, and immune evasion by instructing gene programs in different TME cell 90 
types. We conclude with the current translational and clinical efforts to block the TGFβ 91 
signalling pathway, recognizing a promising role of this strategy in immuno-oncology.  92 
 93 
Regulation of TGFβ bioavailability  94 
 95 
The three TGFβ isoforms, TGFβ1, TGFβ2, and TGFβ3, belong to a 33-member family 96 
of structurally related cytokines known as the TGFβ superfamily20,21. These cytokines 97 
share many features, including structurally related receptors and downstream 98 
signalling effectors, yet they often play functionally distinct roles in physiology and 99 
disease20,21 (Box 1). The TGFβ pathway has been extensively investigated, and 100 
several excellent reviews cover its molecular biology2,21,22. As a reference, we 101 
summarize below the essential components and critical regulatory steps (Figure 2). In 102 
essence, TGFβ triggers a classical membrane to nucleus signal transduction pathway 103 
whereby upon binding to type I and type II TGFβ receptors (TGFBRs) at the cell 104 
surface, intracellular SMAD effector proteins translocate into the nucleus and activate 105 
transcriptional programs. The specificity of SMAD DNA binding and transcriptional 106 
regulation is achieved through their interaction with lineage-determining transcription 107 
factors and signal-driven transcription factors2. As a result, TGFβ regulates specific 108 
transcriptional programs depending on the cell type and context, which explains its 109 
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diversity of roles in physiological and pathological processes2. This is particularly 110 
relevant in the TME, where TGFβ can instruct disparate gene programs in each of the 111 
different cell types present. It is also important to note that whereas most TGFβ 112 
responses involve SMAD-driven transcription, several alternative (non-canonical) 113 
pathways can transduce TGFBR signals21,22 (Figure 2).  114 
 115 
Production and storage of latent TGFβ  116 
TGFB1, TGFB2, and TGFB3 genes encode pro-hormones that include a large N-117 
terminal domain called the latency-associated peptide (LAP) and a short C-terminal 118 
domain that corresponds to the mature, bio-active cytokine19. In the Golgi complex, the 119 
TGFβ pro-hormone dimerizes through the formation of disulfide bonds and is 120 
subsequently cleaved by the Furin protease. However, the bioactive and LAP portions 121 
that result from this cleavage remain non-covalently linked (Figure 2). This 122 
conformation, known as latent TGFβ (L-TGFβ), impedes signal transduction because 123 
the LAP domain obstructs binding of the active portion of TGFβ to the receptors23. The 124 
LAP dimer is often crosslinked to latent TGFβ binding proteins (LTBPs), which results 125 
in the formation of the large L-TGFβ complex (LLC)19.  126 
 127 
TGFβ can be found in the plasma of patients with cancer with poor prognosis24–26, 128 
suggesting that it can freely diffuse. However, large L- TGFβ complexes are generally 129 
retained by the ECM through interaction of LTBPs with, or crosslinking to, several 130 
glycoproteins such as Fibrillins27,19 (Figure 2). These act as reservoirs from which the 131 
active cytokine can be released in a tightly regulated manner. The relevance of these 132 
interactions is exemplified by the effect of germline mutations in FBN1 (which encodes 133 
Fibrillin-1), present in patients with Marfan syndrome. These mutations interfere with 134 
the retention of L-TGFβ in the ECM and the resulting elevated levels of TGFβ signalling 135 
cause hypermobile joints, skeletal deformities, and aortic aneurysms28. In particular 136 
cell types, newly synthesized L-TGFβ is not crosslinked to LTBPs but forms disulfide 137 
bonds with leucine-rich repeat-containing protein 32 (LRRC32, also known as 138 
GARP)29,30 or with the related LRRC3331. After Furin cleavage, GARP- or LRRC33-139 
bound L-TGFβ is loaded onto the cell membrane, enabling spatially controlled TGFβ1 140 
release and signalling (Figure 2). GARP tethers L-TGFβ onto the surface of regulatory 141 
T cells (Treg cells), endothelial cells, and platelets29, whereas LRRC33 plays an 142 
equivalent function in macrophages and microglia31.  143 
 144 
Release of active TGFβ in the TME 145 
Like TGFβ production and storage, its release is conducted by a variety of tightly 146 
regulated processes. Active TGFβ can be liberated from latent ECM complexes by 147 
proteolytic cleavage mediated by various serine proteases such as plasmin or 148 
cathepsin D19 and, particularly, by matrix metalloproteinases present in the TME32,33. 149 
The protease thrombin can also cleave GARP on the surface of platelets, releasing 150 
active TGFβ and contributing to tumour immune evasion34. However, mounting 151 
evidence suggests that the main mechanism of TGFβ release from latent deposits 152 
depends on integrin activity. In particular, the αvβ6 and αvβ8 integrins bind to an Arg-153 
Gly-Asp (RGD) motif present in the LAP portion of L-TGFβ1 and L-TGFβ3 with very 154 
high affinity, which may reflect a specialized function of these integrin isoforms in TGFβ 155 
activation rather than cell adhesion or migration35. In this context, αvβ6 integrin 156 
translates tension resulting from actomyosin-mediated cell contraction on the L-TGFβ 157 
molecule, which results in the unfolding of the LAP domain and the release of the 158 
active hormone23,36 (Figure 2). This mechanical process is mainly performed by highly 159 
contractile cells such as cancer cells, myeloid cells, and myofibroblasts, and it is 160 
facilitated by the tethering of L-TGFβ to stiff substrates through LTBPs37–39. In the 161 
context of cell surface-bound TGFβ, GARP operates as a chaperone that orients L-162 
TGFβ for binding to the αvβ8 integrin36. Of note, the cytoplasmatic tail of the αvβ8 does 163 
not interact with the actin cytoskeleton and cannot transmit cell contraction forces onto 164 
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the L-TGFβ molecule. Instead, αvβ8 integrin enforces a change of L-TGFβ 165 
conformation that enables activation of the TGFβ receptors while the ligand is still 166 
bound to GARP40. The pivotal role of αvβ8 integrin in the regulation of TGFβ availability 167 
is further supported by the analyses of mice with conditional deletion of the gene 168 
encoding the β8 subunit in dendritic cells, monocytes and macrophages, all of which 169 
develop loss of TGFβ-mediated immune tolerance and inflammatory pathology in 170 
barrier tissues (reviewed in refs19,41). 171 
  172 
Both GARP- and LTBP-bound TGFβ are main sources of the cytokine in the TME, and 173 
cancer cells leverage integrin activity to regulate its bioavailability. Expression of αvβ6 174 
integrin predicts poor prognosis in colorectal cancer (CRC), and its activity mobilizes 175 
TGFβ, inducing EMT in cell line models42. TGFβ released by tumour cells through αvβ8 176 
integrins also facilitates immune evasion43,44. GARP is upregulated in breast, colon, 177 
and lung cancers, and enforced expression of GARP in breast cancer cells increases 178 
TGFβ bioactivity and blocks anti-tumour responses through Treg cells45. In other 179 
cases, cells of the TME operate as TGFβ suppliers. As mentioned above, platelets 180 
carry L-TGFβ bound to GARP on the cell surface; these are a primary source of TGFβ 181 
in tumours that provoke thrombocytosis46. Conditional GARP deficiency in platelets 182 
decreases levels of TGFβ signalling in the TME, leading to robust immune responses 183 
in mouse models of melanoma and CRC46. In tissue fibrosis, contractile myofibroblasts 184 
use integrins to liberate TGFβ bound to the ECM through LTBPs, resulting in a 185 
paracrine loop that reinforces the fibrotic program47. A wealth of evidence also 186 
suggests that CAFs help release active TGFβ from ECM stores present in the TME 187 
(reviewed in ref48) although formal in vivo proof supporting the relevance of this activity 188 
in tumour models is still lacking. Moreover, the regulatory mechanisms that determine 189 
the location, timing and level of active TGFβ release in the complex TME—a critical 190 
step in the stromal TGFβ cascade—remain poorly understood. Despite these 191 
knowledge gaps, it is becoming increasingly clear that preventing TGFβ mobilization 192 
represents a viable therapeutic option. For example, blocking the release of active 193 
TGFβ from both GARP and LTBPs deposits using antibodies that target either the LAP 194 
domain,49,50 or αvβ6 and αvβ8 integrins43,51–54 facilitates anti-tumour immune responses.  195 

 196 
TGFβ deficiency, inflammation, and cancer  197 
 198 
TGFβ signalling regulates peripheral tolerance in adulthood. Deletion of Tgfbr2 in 199 
CD4+ and CD8+ T cells after thymocyte selection has occurred does not cause overt 200 
alterations in immune homeostasis55,56. Yet, these conditional mutant mice show 201 
enhanced T cell receptor (TCR) activity and immune responses to weak antigens in 202 
peripheral T cells55,56. The key role of TGFβ in regulating the immunological balance is 203 
particularly evident in the gastrointestinal tract, which requires both tolerance for 204 
commensal bacteria and food-borne antigens, and vigilance against pathogens57. In 205 
the latter case, inflammatory responses can be vital, yet need to be tightly regulated 206 
to prevent tissue damage. Colonic tumours can be induced by the treatment with the 207 
carcinogen AOM and the detergent DSS, which cause mucosal damage, disruption of 208 
the barrier function, and both inflammatory and regenerative signalling; these tumours 209 
are delayed by transgenic overexpression of TGFβ1 in T cells58. Conversely, the 210 
expression of a truncated form of TGFBR2 that acts as a dominant-negative receptor 211 
accelerates tumourigenesis58. This study showed that TGFβ signalling negatively 212 
regulates the production of pro-inflammatory cytokine interleukin 6 (IL-6) by lamina 213 
propria-resident CD4+ T cells. IL-6 signals to colonic epithelial cells and promotes their 214 
survival and proliferation in an inflamed environment, eventually resulting in 215 
dysplasia58. Similarly, deletion of Smad4 in mouse T cells also elevates the production 216 
of several pro-inflammatory cytokines by T cells, including IL-6 and IL-11, and 217 
predisposes mice to spontaneous epithelial neoplasia throughout the gastrointestinal 218 
tract59,60.  219 
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In addition to its role in suppressing T cell responses, TGFβ signalling in stromal cells 220 
also contributes to limiting chronic epithelial inflammation. Mice with fibroblast-specific 221 
Tgfbr2 knockout develop prostatic intraepithelial neoplasia and invasive squamous cell 222 
carcinomas in the forestomach61. It was initially proposed that Tgfbr2 deficiency 223 
causes the production of hepatocyte growth factor (HGF) by fibroblasts, which acts as 224 
a mitogen for adjacent mucosa cells61. However, an alternative mechanism linking 225 
TGFβ signalling deficiency in fibroblasts and formation of epithelial neoplasia was later 226 
identified. It was found that tissues surrounding Tgfbr2-null fibroblasts are inflamed 227 
and show signs of DNA damage—possibly caused by reactive oxygen species and 228 
nitrogen radicals that occur during persistent inflammation. Indeed, the forestomach 229 
mucosa exhibits loss of genomic regions encoding the tumour suppressor genes 230 
Cdkn2b and Cdkn2a62. Moreover, this phenotype is delayed by treatment with anti-231 
inflammatory drugs and aggravated by Helicobacter pylori infection62. Overall, these 232 
observations imply that during barrier tissue homeostasis, TGFβ signalling in both T 233 
cells and fibroblasts is necessary to control inflammatory responses triggered by 234 
exposure to harmful antigens (Figure 1). The lack of TGFβ results in exacerbated 235 
inflammation, leading to tissue damage and cellular transformation.  236 
 237 
Innate immune evasion by TGFβ 238 
 239 
During advanced stages of cancer, TGFβ plays a central role in the coordination of 240 
immune evasion (Figure 1). In addition to fighting infectious diseases, the innate 241 
immune system possesses mechanisms to identify transformed cells. This is partly 242 
based on molecular recognition patterns. These danger- or pathogen-associated 243 
molecular patterns (DAMPs or PAMPs, respectively) include many molecules that are 244 
released from damaged or dying cells, and activate inflammatory responses in a 245 
number of stromal cell types63. These processes occur in cancer and, in principle, can 246 
alert the immune system64. As discussed below, TGFβ signalling broadly attenuates 247 
this vigilance, generally skewing innate immunity towards tolerance or dysfunction 248 
(Figure 3).  249 
 250 
Macrophages and monocytes  251 
Macrophages are abundant and highly plastic, phagocytic cells that can polarize into 252 
phenotypes that range across the inflammatory–anti-inflammatory spectrum, 253 
sometimes referred to as M1–M2, respectively65. During early stages, M1-like 254 
macrophages can promote tumourigenesis66, whereas factors including TGFβ tend to 255 
induce M2-like states in more mature TMEs. Furthermore, TGFβ may help attract 256 

circulating monocytes to the tumour67, where this cytokine inhibits interferon- (IFN)-257 
mediated expression of inducible nitric oxide synthase (iNOS)68, and stimulates 258 
arginase activity69. Tumour-associated macrophages (TAMs) commonly suppress 259 

immune responses70, involving both the expression and activation of TGFβ via v8 260 
integrin71 (Figure 3a).  261 
 262 
Genetic experiments in mice revealed that TGFβ signalling in myeloid cells, which 263 
includes macrophages and monocytes, can promote tumour growth72, progression73, 264 
and metastasis74. More recently, TGFβ was linked to increase programmed death-265 
ligand 1 (PDL1) expression on lung adenocarcinoma-associated macrophages75, 266 
which is consistent with our own finding of myeloid PDL1 involvement in a TGFβ-267 
mediated immune evasion mechanism in CRC liver metastasis76. Furthermore, TGFβ1 268 
induces the expression of microRNA (miRNA) 494 in myeloid-derived suppressor cells 269 
(MDSCs), mediating their accumulation in the TME and exacerbating their 270 
immunosuppressive functions77. In fact, TGFβ-induced miRNAs with effects on 271 
immunosuppression in cancer have been observed in multiple immune cell types78. 272 

 273 
Granulocytes  274 
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Of all types of granulocytes, neutrophils have been studied most in the context of 275 
cancer, although intratumoural eosinophils have also been identified to produce 276 
TGFβ79. Neutrophils are highly prevalent and upon infection are one of the first cell 277 
types to be recruited to eliminate pathogens and raise acute inflammation80. Given the 278 
overlap of some of the DAMPs and PAMPs involved in infection and oncogenic 279 
transformation, neutrophils can be recruited to, recognize and eliminate cancer cells81. 280 
However, increased numbers of infiltrating as well as circulating neutrophils have been 281 
associated with a worse prognosis for most cancer patients81, indicating these cells 282 
commonly fail their role in immunosurveillance. Accordingly, neutrophils have been 283 
ascribed tumour-supportive functions, mediated by exposure to signals in the TME81–284 
83. Indeed, tumour-associated neutrophils (TANs) can adopt a markedly pro-tumoural 285 
polarization, sometimes called N2, mediated by TGFβ signalling84 (Figure 3b). 286 
Blockade of this pathway in mice induced the influx of proinflammatory, cytotoxic N1-287 
like neutrophils, impinging on tumour growth84,85. Moreover, a recent study with a 288 
mouse model for poor prognosis serrated CRC found that liver metastasis was driven 289 
by NOTCH1 through TGFβ2-mediated recruitment of neutrophils86.  290 
 291 
Natural Killer cells 292 
Natural killer cells (NK cells) play a role in immunosurveillance87,88. The cytotoxic 293 
powers of NK cells are not indiscriminate, and are controlled by an array of cell surface 294 
receptors and regulatory pathways, by which NK cells can adapt to their environment89. 295 
This intricate regulatory balance can be exploited by the TME, leading to NK cell 296 
exhaustion, desensitization or exclusion.  297 
 298 
Stromal TGFβ can increase the expression levels of inhibitory cues on cancer cells 299 
such as non-classical major histocompatibility complex (MHC) molecules and 300 
immunological checkpoint molecules90–93. Furthermore, TGFβ plays multiple roles in 301 
shaping NK cell anergy: it inhibits TBET (also known as TBX21), a transcription factor 302 

that drives IFN expression94,95, it regulates activating96,97 or inhibitory98 surface 303 
receptors, and it represses NK cell metabolism and effector function99,100 (Figure 3b). 304 
Additionally, TGFβ constrains CD16-mediated antibody-dependent cellular cytotoxicity 305 
(ADCC) by NK cells101. Apart from as a soluble ligand, membrane-bound TGFβ on 306 
MDSCs102, Treg cells103, or on exosomes104,105 can also abrogate NK cell function. NK 307 
cells can be grouped among a growing family of innate lymphoid cells (ILCs), which 308 
functionally and phenotypically mirror several T cell subtypes, except for their antigen 309 
specificity106. Interestingly, TGFβ can convert NK cells into type 1 ILCs that, especially 310 
under the control of the immunosuppressive cytokine, fail to control local tumour 311 
progression107–109 (Figure 3b). Furthermore, TGFβ was reported to change the 312 
phenotype of type 2 ILC cells into an IL-17-producing type 3 ILC phenotype110, 313 
analogous to a shift in response from a T helper 2 (TH2)- type response to a TH17- 314 
type response. 315 
 316 
TGFβ and adaptive cancer immunity  317 
 318 
The functions of TGFβ signalling in reducing pro-tumourigenic inflammation during 319 
early stage cancer are deflected into creating a permissive TME during disease 320 
progression. Below, we describe how tumours that have co-opted a TGFβ-rich, anti-321 
inflammatory TME evade antitumor T cell responses (Figure 3c-e). 322 
 323 
Suppression of DC function 324 
One of the critical roles in orchestrating immunity is antigen presentation: dendritic 325 
cells (DCs) are professional antigen presenting cells, known for their ability to mature 326 
in inflammatory conditions and phagocytose tumour cells. They can then migrate to 327 
lymphoid structures and present tumour antigens on the two types of major 328 
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histocompatibility complex (MHC), interacting with both CD8+ cytotoxic T lymphocytes 329 
(CTLs) and CD4+ T-helper (Th) cells111.  330 
 331 
Active TGFβ can avert immature myeloid cells from DC differentiation, a process 332 
driven by the SMAD-regulated transcription factor ID1112. In the case of monocytes, 333 
this process may additionally involve an autocrine TGFβ-mediated feedback loop113 334 
(Figure 3c). After DC differentiation, immature DCs promote tolerance and mediate the 335 
generation of Treg cells during homeostasis114,115. Elevated TGFβ can impede DC 336 
maturation and lower the expression levels of MHC molecules and inflammatory 337 
cytokines, reducing the ability of DCs to activate T cells116,117. This regulatory function 338 
of TGFβ is critical in preventing auto-immunity118, but can limit immunity in the TME. 339 
Furthermore, tumour-associated DCs produce TGFβ1 that primes the differentiation of 340 

Treg cells119,120. In addition, DCs express v8 integrin, which enables the release of 341 

active TGFβ from the ECM. In mice, DCs lacking v8 integrin fail to induce Treg cells 342 
and cause autoimmunity121–123. 343 
  344 
DC migration is another critical function in steering immunity, and TGFβ has been 345 
reported to restrict DC chemotaxis by regulating chemokine receptor expression124,125 346 
(Figure 3c). In in vivo cancer models, DC trafficking to lymph nodes was reduced by 347 
TGFβ1126, and blockade of TGFβ signalling improved the antitumor efficacy of DC 348 
vaccines127. Finally, a recent study found that TGFβ can also inhibit the function of 349 
plasmacytoid DCs (pDCs), which includes secretion of type-I IFN and activating NK 350 
cells128,129. This corroborates findings in breast and head and neck cancer, where 351 

TGFβ played a role in suppressing pDC-derived IFN and IFN130,131. 352 
 353 
Regulation of TCR signalling 354 
TCRs can recognize a large variety of epitopes, including tumour neoantigens, cancer 355 
germline antigens, and viral oncoproteins, bound to MHC at the surface of antigen-356 
presenting cells. The strength of the TCR–MHC-bound antigen interaction determines 357 
whether or not the downstream signal is sufficiently robust to activate the T cell. In vitro 358 
experiments showed that the earliest biochemical events detectable upon TCR 359 
triggering, such as tyrosine phosphorylation and calcium ion influx, are suppressed by 360 
TGFβ signalling132. Indeed, Tgfbr1 deficient mouse T cells can be activated by weaker 361 
TCR stimuli compared to their wild-type counterparts133. These observations are 362 
further supported by the finding that CD4+ T cells isolated from conditional Tgfbr2 363 
mutant mice display accelerated calcium influx and TCR activation upon suboptimal 364 
stimulation55,56. Indeed, blockade of proximal TCR signalling by TGFβ has been 365 
observed in cancer134,135 and genetic inhibition of the TGFβ pathway in CD8+ T cells 366 
potentiates antitumor adaptive immune responses by lowering the TCR activation 367 
threshold136 (Figure 3c).  368 
 369 
Th cell proliferation and differentiation  370 
CD4+ T cells are able to redirect their differentiation program in response to different 371 
threats and acquire distinct functions to combat specific pathogens. Extracellular 372 
signals from the environment control this process. Amongst them, TGFβ signalling 373 
exerts a powerful influence in the polarization of the four major CD4+ T cell subsets; it 374 
prevents Th1 and Th2 differentiation while promoting Th17 and Treg cell programs. 375 
This role is also evident in the TME and represents an important mechanism of immune 376 
evasion (Figure 3d).  377 
 378 
Th1 cells  379 

Th1 cells are mainly characterized by the production of IFN and tumour necrosis 380 
factor (TNF), and are primarily responsible for activating and regulating phagocytic and 381 
cytotoxic responses against pathogens and tumour cells. The abundance of CD4+ Th1 382 
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cells in the TME predicts good prognosis and productive immunotherapy responses 383 
against cancer137. TGFβ impedes the differentiation of naive T cells towards the Th1 384 
subsets138. Mechanistically, TGFβ operates during the antigen priming phase via 385 
SMAD2 and SMAD3 signalling to inhibit the expression of TBET and STAT4, the two 386 
master transcription factors of the Th1 gene program139–141. TGFβ also suppresses the 387 
levels of the transcription factor MYC and upregulates the cell-cycle inhibitors CDKN1A 388 
and CDKN1B (ref142,143), thus promoting cytostasis and apoptosis in CD4+ T cells. 389 
Accordingly, mice deficient for TGFβ signalling in T cells exhibit exacerbated Th1 390 
responses55,56,144–146. In cancer, TGFβ restrains immune responses by antagonizing 391 
Th1 differentiation, as shown by genetic or pharmacological inhibition of TGFβ 392 
signalling in multiple tumour types, including CRC76, prostate cancer147, and 393 
melanoma148.  394 
 395 
Th2 cells 396 
Th2 cells produce IL-4, IL-5, IL-10, and IL-13, and mediate humoral responses to 397 
pathogens. TGFβ signalling also suppresses Th2 differentiation138. The mechanism 398 
proposed involves blockade of the Th2 lineage transcription factor GATA3 by the TGFβ 399 
transcriptional target SOX4149. Although the role of Th2 immunity in cancer is still 400 
debated, the TME of several tumour types, including subsets of CRC, squamous lung 401 
cancer, and luminal A breast cancer, exhibit upregulation of Th2 gene signatures137. 402 
Early works showed that combined blockade of IL-10 and TGFβ signalling in tumour-403 
bearing mice elicited Th2 responses15. Further evidence of TGFβ-mediated 404 
suppression of Th2 immunity in tumours came from analysis of the MMTV-PyMT 405 
breast cancer mouse model. In this strain, genetic or pharmacological blockade of 406 
TGFBR2 in CD4+ cells (but not in CD8+ cells) promotes a  Th2 response that depends 407 
on IL-4, and that results in blood vessel reorganization in the TME leading to tumour 408 
hypoxia and death150,151.  409 
 410 
Th17 cells 411 
Th17 cells constitute a proinflammatory CD4+ T cell subset that is characterized by 412 
the production of IL-17A and IL-22 cytokines. The Th17 response is adept at fighting 413 
extracellular pathogens and fungi, and has been associated with tumour-promoting 414 
inflammation and autoimmune diseases152. TGFβ, together with the proinflammatory 415 
cytokine IL-6, fosters Th17 cell fate by elevating the levels of orphan nuclear receptor 416 
RORγt153, a key Th17 differentiation regulator. In addition, RORγt interacts with 417 
SMAD2 to drive the Th17 differentiation program in mice154. Several studies have 418 
demonstrated the Th17-polarizing nature of a TGFβ-rich TME. For example, in human 419 
melanoma cell-bearing immunodeficient mice that were immune reconstituted, 420 
pharmacological blockade of TGFβ signalling using a bifunctional TGFβ ligand trap 421 
and cytotoxic T-lymphocyte associated protein 4 (CTLA4) antibody antagonizes Th17 422 

differentiation, and fosters the generation of IFN--expressing CD4+ T cells148. In a 423 
mouse model of serrated CRC, treatment with a TGFBR1 inhibitor diminished the 424 
number of infiltrating Th17 cells155. In mice with prostate cancer bone metastasis, 425 
TGFβ is released from the bone matrix as a result of osteolysis. This TGFβ-rich TME 426 
skews newly primed CD4+ T cells towards a Th17 program instead of the Th1 lineage, 427 
preventing effective anti-tumour responses by anti-CTLA4 plus anti-programmed cell 428 
death protein 1 (PD1) treatment147. In this model, TGFβ blockade restores Th1 429 
polarization in bone metastasis, potentiating the effects of immune checkpoint inhibitor 430 
(ICI) therapy147.  431 
 432 
Treg cells 433 
Treg cells present in healthy tissues maintain immune homeostasis by inhibiting the 434 
function of effector T cells. TGFβ drives the expression of FOXP3156,157, the master 435 
transcription factor of the Treg cell program. Mechanistically, SMADs, in combination 436 
with the NFAT transcription factor, bind to a distal enhancer in the FOXP3 gene  driving 437 
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its expression141,158. The acquisition of the Treg cell phenotype is, however, 438 

counterbalanced by Th1 and Th2 polarizing cytokines such as IFN- and IL-4159. In 439 
addition, low TGFβ concentrations synergize with IL-6 to promote Th17 instead of Treg 440 
differentiation160. In turn, Th17 cells can transdifferentiate into Treg cells by the action 441 
of TGFβ and the aryl hydrocarbon receptor (AHR) during the inflammation resolution 442 
phase161.  443 
 444 
The TGFβ-rich TME can promote CD4+ T cell polarization to a Treg cell phenotype as 445 
a mechanism to enforce tumour antigen tolerance, as seen in pancreatic cancer 446 
models162. Indeed, FOXP3 gene expression correlates with TGFB1 mRNA levels in  447 
patient cohorts of several tumour types148. Furthermore, pharmacological inhibition of 448 
TGFβ signalling results in decreased Treg cell numbers in the TME of tumour 449 
models148,163. However, the relative contribution of these effects to the outcome of anti-450 
TGFβ therapy remains to be established. For example, conditional deletion of Tgfbr1 451 
in Treg cells does not influence CRC growth or radiation response in syngeneic tumour 452 
cell implantation in mice, whereas Tgfbr1 deficiency in CD8+ T cells results in potent 453 
antitumor immune responses, implying a minor role for TGFβ-induced Treg cell 454 
polarization in this model136.  455 
 456 
Treg cells produce and carry GARP-bound L-TGFβ1 at the cell surface, which can be 457 
activated by αvβ8 integrins. However, the relevance of this mechanism is 458 
controversial, as TGFβ1 knockout Treg cells can still enforce tolerance164,165. 459 
Consistent with this finding, in a mouse model of prostate cancer, CD4+ T cell- but not 460 
Treg cell-specific ablation of Tgfb1 enhanced immune responses against the 461 
tumour166. On the other hand, activated Treg cells upregulate integrin αvβ8 expression, 462 
and integrin β8-deficient Treg cells cannot suppress active T cell-mediated 463 
inflammation in an experimental model of colitis167. As discussed above, antibodies 464 
that target β8 integrin prevent TGFβ mobilization from latent deposits and potentiate 465 
antitumor cytotoxic T cell responses43. Similarly, antibodies that prevent TGFβ release 466 
by targeting GARP inhibit the immunosuppressive capacity of Treg cells in a graft 467 
versus host disease model168. Anti-GARP antibodies also promote tumour immunity 468 
and synergize with ICI therapy45,168,169. However, it remains to be proven that these 469 
effects occur due to inhibition of active TGFβ derived from Treg cells, as multiple other 470 
cell types—including platelets—carry GARP–L-TGFβ1 on their cell surface45,46. 471 
Indeed, deletion of Garp  in Treg cells does not trigger overt immune responses against 472 
tumour cells in mice170.  473 
 474 
Inhibition of CTL activity  475 
CTLs are central players in adaptive immune responses and play a critical role in anti-476 
tumour immunity. They release cytolytic granules in response to binding specific 477 
antigen peptides presented on MHC class I by target cancer cells. Conditional deletion 478 
of Tgfbr2 in T cells exacerbates the effector phenotype of CD8+ T cells, which 479 

encompasses increased production of granzyme B and IFN55,56. A pioneering study 480 
demonstrated that transgenic mice that express a truncated, defective TGFBR2 in 481 
CD4+ and CD8+ T cells mount potent immune responses against tumour cells, 482 
characterized by expansion of tumour-specific CD8+ cells17. Furthermore, CD8+ T cell-483 
specific Tgfbr1 knockout mice reject tumour cells efficiently, whereas Tgfbr1 deficiency 484 
in Treg cells or macrophages does not modify the anti-tumour immune response136. 485 
Immunotherapy based on the adoptive transfer of autologous tumour-reactive CTLs is 486 
improved if transferred T cells are rendered insensitive to TGFβ by expressing a 487 
dominant-negative TGFBR2171–173.  488 
 489 
Taken together, these observations imply that in several tumour types, the immuno-490 
suppressive function of TGFβ is exerted, to a large extent, by direct inhibition of CD8+ 491 
T cell function (Figure 3e). Besides lowering the TCR activation threshold (discussed 492 
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above), TGFβ suppresses CTL activity through several mechanisms. First, TGFβ 493 
downregulates transcription of genes encoding critical elements of the lytic machinery 494 

such as granzyme A, granzyme B, perforin, Fas ligand, and IFN by directly repressing 495 
their promoters174. Also proliferation is inhibited through TGFβ-mediated silencing of 496 
Myc and Jun gene expression175. SMADs drive these effects in complex with the 497 
transcription factors ATF1174 and FOXP1175. Observations in melanoma mouse models 498 
and in T cell isolated from melanoma patients also indicate that the genes encoding 499 
the transcription factors TBET and EOMES, two enforcers of the CD8+ effector 500 
program176,177, are downregulated by TGFβ178,179. Another mechanism involves the 501 
inhibition of CD8+ T cell migration to tumour beds by TGFβ-mediated silencing of the 502 
gene encoding C-X-C chemokine receptor 3 (CXCR3), a receptor for the 503 
chemoattractant C-X-C motif chemokine 10 (CXCL10)136.  504 
 505 
Promoting CD8+ TRM cells  506 
Besides suppressing the cytotoxic effector program of CTLs, TGFβ signalling can also 507 
stimulate their conversion to a tissue-resident memory T cell (TRM cell) phenotype 508 
(Figure 3e). CD8+ TRM cells are important mediators of adaptive immunity in peripheral 509 
tissues and provide long-lived protection against re-infection. TGFβ downregulates 510 
TBET and EOMES transcription factors during the maturation of TRM cells, initiating a 511 
departure from the Th1 program180. In addition, TGFβ signalling promotes TRM cell 512 
residence in epithelial tissues such as skin, intestine, or lungs by increasing the levels 513 
of αE (also known as CD103) and β7 integrin subunits in TRM cells, which interact with 514 
the epithelial adhesion molecule E-cadherin181–185. In mice, the induction of lung CD8+ 515 
TRM cells by TGFβ does not require SMAD4, suggesting that this subset is specified 516 
by non-canonical signalling186. It has been observed that TGFβ increases the 517 
abundance of CD8+CD103+ T cells in the TME187,188. These findings are at odds with 518 
the immunosuppressive role of TGFβ in the TME, as the presence of CD8+ TRM cells 519 
in tumours is associated with anti-tumour immune responses and predicts good 520 
prognosis187–191. However, it has also been described that in mice, TGFβ induces a 521 
tolerogenic CD8+CD103+ cell subset that expresses immune suppressive molecules 522 
such as CTLA4 and IL-10 and helps tumours evade immunity49.  523 
 524 
 525 
TGFβ-activated CAFs and immune evasion  526 
 527 
In healthy tissues, fibroblasts remain largely quiescent but become activated in the 528 
event of tissue damage to help wound healing by depositing ECM and contracting the 529 
wound. The role of TGFβ in these processes has been extensively investigated39,192,193. 530 
In cancer, persistent inflammation and other signals sustain continuous fibroblast 531 
activation and exacerbate TGFβ production, resulting in a permanent and pathogenic 532 
wound-healing program (Figure 3). Furthermore, CAF generation is also affected by 533 
cancer-derived exosomes, carrying nucleic acids (including mRNAs, miRNAs, or other 534 
non-coding RNAs)194 or proteins such as surface-bound TGFβ1. The latter was shown 535 
to induce tumour-promoting CAFs in vitro in a distinct manner from soluble TGFβ1195. 536 
Solid tumours recruit fibroblasts without exception, but the microenvironment of some 537 
subtypes is particularly CAF-rich, exhibiting widespread TGFβ signalling in stromal 538 
cells and prominent ECM deposition. This phenomenon has been associated with poor 539 
prognosis and lack of immunotherapy responses in multiple studies (Box 2).  540 
 541 
The mechanisms behind the role of TGFβ-activated CAFs in immune evasion remain, 542 
however, partially understood. TGFβ produced by CAFs, either through direct 543 
secretion or by release from latent deposits stored in the ECM, can directly suppress 544 
tumour immunity through signalling in cells of the innate and adaptive immune system. 545 
Evidence also suggests that the composition, extent of crosslinking, and stiffness of 546 
the ECM, all of which are the consequence of the fibrogenic program controlled by 547 
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TGFβ, regulate T cell infiltration in tumours196–200. In addition, TGFβ signalling 548 
stimulates the production of a plethora of cytokines and growth factors by 549 
fibroblasts9,201, including IL-6202, leukemia inhibitory factor (LIF)203,204, CXCL12205, and 550 
prostaglandin E2 (PGE2)206–208, which impact the immune environment and contribute 551 
to immune evasion. Of note, these molecules are not only produced by CAFs but also 552 
by other TME cell types or even by cancer cells and, therefore, the relative contribution 553 
of CAFs to their expression varies from tumour to tumour depending on the TME 554 
composition.  555 
 556 
TGFβ-inhibition-based immunotherapies 557 
 558 
In light of the determining effect of TGFβ signalling in the TME on cancer progression, 559 
immune evasion and therapy resistance, a wide range of therapeutic modalities have 560 
been developed. These include TGFβ mRNA-directed agents, ligand traps, antibodies, 561 
fusion proteins, and small molecule kinase inhibitors against TGFBRs (Table 1). 562 
However, progress to bring these drugs to the clinic has faced important challenges. 563 
There are three main reasons for hesitation; first, TGFβ is a tumour suppressor for 564 
early neoplastic lesions. Indeed, a common side effect observed in patients treated 565 
with the anti-TGFβ-blocking antibody fresolimumab is the development of 566 
acanthomas, a type of benign neoplastic skin lesion that regresses after treatment 567 
cessation209. Second, genetic loss-of-function studies in mice caution for the possibility 568 
of serious inflammatory disease in gastrointestinal tissues caused by global TGFβ 569 
inhibition58–61. Third, and more critical, animal studies with small molecule TGFBR1-570 
inhibitors such as AZ12601011 and AZ12799734210 and pan-TGFβ antibodies have 571 
confirmed a risk for overt cardiovascular toxicity characterized by heart valve 572 
thickening, hemorrhage, inflammation, and endothelial and stromal hyperplasia211–213 573 
(Box 1). Mice with Tgfbr2 deficiency in postnatal smooth muscle cells develop similar 574 
cardiovascular pathology implying that the deleterious effects triggered by TGFβ 575 
inhibitors are to a large extent due to alterations in vascular smooth muscle cells214,215.  576 
 577 
Selected for its relatively safe toxicology profile212, the TGFBR1 kinase inhibitor 578 
galunisertib entered clinical investigation more than a decade ago. In phase I trials, an 579 
intermittent dosing schedule was found to be well-tolerated, demonstrating a 580 
therapeutic window216–218. Since then, many other clinical trials have assessed 581 
galunisertib alone or in combination with other chemotherapies with manageable 582 
safety (Reviewed in references 219–221). However, this drug achieved only modest 583 
responses in phase II trials, including as monotherapy for patients with refractory 584 
hepatocellular carcinoma 222 (Table 2). The reasons are unclear but may partly be due 585 
to suboptimal patient stratification and insufficient inhibitory potency of this molecule 586 
at the intermittent dosing strategy used. New TGFBR1 inhibitors more potent and 587 
specific than galunisertib have been developed and are currently being tested in 588 
patients (Table 3).  589 
 590 
Beside small molecule TGFBR1 inhibitors, other early agents were a phosphorothioate 591 
antisense oligodeoxynucleotide specific for TGFB2 mRNA (trabedersen223); a vaccine 592 
derived from an irradiated and TGFB2-antisense transfected non-small cell lung 593 
cancer cell line (belagenpumatucel-L224,225); and a monoclonal antibody against all 3 594 
TGFβ ligands (fresolimumab). Clinical development of trabedersen has slowed down, 595 
but second-generation antisense molecules targeting either TGFB1, TGFB2 or TGFB3 596 
are still in development226,227. At present, of these first-generation agents only 597 
galunisertib and fresolumumab remain in active trials; however, they have not shown 598 
sufficient clinical activity and, as we discuss herein, several second generation TGFβ 599 
pathway inhibitors have already reached clinical trials. 600 
 601 
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Despite the complexity and risks of clinically targeting the TGFβ pathway, an enduring 602 
interest is demonstrated by the long list of recent agents and active trials (Tables 1, 3).  603 
A number of these strategies target one or two specific TGFβ isoforms, in an attempt 604 
to avoid toxicity issues seen with pan-inhibitory antibodies used in the past (Box 1). 605 
Pre-clinical evidence suggests that individual TGFβ ligands may be safe to target50,228 606 
and—in combination with ICIs—could be sufficient in some cancer types50,229.  607 
 608 
Other ligand sequestering approaches have been taken using TGFBR2 ectodomain 609 
fusion proteins, engineered into bi-specific drugs. Of these, the most advanced is 610 
bintrafusp alfa (also known as M7824) that has an ecto-TGFBR2-derived ligand trap 611 
fused to a human monoclonal antibody against PDL1230. This agent, as well as the 612 
similar molecule SHR-1701, is currently being evaluated in the clinic231. Similarly, a 613 
ligand trap fused to anti-CD73 (GS-1423) has entered clinical trials (Table 2), and a 614 
ligand trap fused to an antibody targeting the immune checkpoint molecule CTLA4 has 615 
shown promising results in preclinical studies148. Furthermore, the above-mentioned 616 
preclinical CD4+ Th-cell-specific TGFBR2 blockade strategy also involves a fusion 617 
protein, consisting of the TGFBR2 ectodomain attached to ibalizumab—a non-618 
immunosuppressive CD4 antibody that was previously used to block HIV 619 
infection150,232. 620 
 621 
Most ongoing strategies to block TGFβ signalling involve combination therapies, either 622 
together with standard-of-care agents or, increasingly, with immunotherapeutic 623 
regimens such as ICIs (Table 3 and Box 2). The latter is supported by a growing 624 
number of promising results in preclinical studies, pointing to synergistic 625 
immunomodulatory actions of TGFβ blockade76,148,155,229,230,233–237. The prevailing 626 
rationale is that TGFβ pathway inhibition can overcome immunosuppressive signalling 627 
in the TME, facilitate T cell tumour infiltration and cytotoxicity, among a number of other 628 
relevant factors that are, unsurprisingly, implicated in failure of ICIs. Indeed, several 629 
studies have found elevated TGFβ programs in ICI-nonresponding 630 
cancers50,76,229,236,238–244 (Box 2).  631 
 632 
Furthermore, TGFβ is increasingly recognized as a key immunosuppressor that can 633 
diminish tumour infiltration and efficacy of adoptive immune cell transfer therapy, 634 
especially for solid cancers. In that field, chimeric antigen receptor (CAR) T cell 635 
approaches are actively investigated245. There have been a number of approaches to 636 
make CAR T cell products resistant to TGFβ. These include the overexpression of a 637 
dominant-negative TGFBR2246 or of a constitutively active AKT247, or using 638 
CRISPR/Cas9 to knock out the endogenous TGFBR2248. Alternatively, the 639 
lymphocyte-inhibitory TGFβ ligand has been rewired into a stimulatory signal via a 640 
chimeric switch receptor249. One approach combined the extracellular ligand-binding 641 

parts of TGFBR1 and 2 with intracellular IL-12R1 and IL-12R2 signalling domains, 642 
expressed on a CAR T cell250. A second study used a pooled CRISPR knockin screen 643 
to evaluate a panel of transgenes, among them an engineered TGFBR2–4-1BB switch 644 
receptor251. Furthermore, a TGFβ-CAR has been reported that switches T cells from 645 
immunosuppressed to proliferating, Th1 cytokine-producing T cells that can activate 646 
neighbouring CTLs252,253. In these studies, the transferred CAR T cells show both a 647 
better activity and fitness over TGFβ pathway wild-type CAR T cells. Together, these 648 
developments demonstrate a broad investment in combining immunotherapeutic 649 
strategies with targeted TGFβ inhibition.  650 
 651 
Parallel efforts to induce tumoural T cell infiltration and subsequent immunotherapeutic 652 
efficacy led to the auspicious combination of ICIs with radiotherapy254,255. Interestingly, 653 
TGFβ plays a key role in limiting the effect of in situ vaccination, a key therapeutic 654 
benefit of radiation, advancing the rationale for a triple combination of an ICI, 655 
radiotherapy and TGFβ blockade in a preclinical breast cancer model256. Similarly, 656 
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such a strategy was reported for mouse models of CRC and melanoma257. 657 
Furthermore, a feasibility trial of the combination of fresolimumab with focal irradiation 658 
in patients with metastatic breast cancer was successful258 (Table 2). A similar clinical 659 
trial is ongoing for early-stage non-small cell lung cancer (Table 3). Other potential 660 
TGFβ inhibition-based combinatorial immunotherapies may include oncolytic 661 
viruses259, NK cell therapy260, DC vaccination127,261, vaccine-based approaches such 662 
as gemogenovatucel-T262 or blockade of monocyte recruitment263.  663 
 664 
Discussion and Future perspectives 665 

TGFβ is a powerful cytokine capable of dominating the behaviour of most cells present 666 
in the TME. Generally, TGFβ enforces immune tolerance, suppresses inflammation, 667 
and regulates wound healing during homeostasis. These mechanisms are often co-668 
opted during tumour evolution to evade the immune system. However, as we have 669 
described herein, the effect of TGFβ signalling can differ substantially depending on 670 
the tumour type, organ affected, and disease stage. Beyond the findings that genetic 671 
or pharmacological TGFβ blockade triggers potent anti-tumour responses in several 672 
pre-clinical model systems, it is becoming increasingly clear that the type and extent 673 
of this response are largely context-dependent and the sum of disparate processes. 674 
Therefore, how TGFβ remodels different cancer ecosystems remains an important 675 
question for the coming years: which cell types are essential in each context, and how 676 
are distinct responses coordinated in space and time? It is also worth bearing in mind 677 
that our current understanding of the roles of TGFβ in cancer emerges from decades 678 
of studies of this cytokine in tissue development and organ homeostasis. Yet, chronic 679 
or elevated TGFβ signalling may affect the TME beyond the range of functions 680 
identified in homeostatic conditions. Research on all these topics is key to identifying 681 
which tumour types or subtypes can benefit from TGFβ inhibitory therapies, 682 
interpreting the results of upcoming clinical trials, and optimizing the use of TGFβ 683 
inhibitors in combination with other therapeutic modalities. These efforts should include 684 
the application of TGFβ-related predictive biomarkers, such as the fibroblast TGFβ 685 
response gene signature (F-TBRS, Box 2). In our view, progress in translational 686 
research also demands a shift from the simplistic subcutaneous tumours commonly 687 
used in immunological studies to cancer models that more faithfully reproduce key 688 
aspects of TGFβ signalling in human disease.  689 
 690 
Despite the impressive effects of TGFβ inhibitory therapies in pre-clinical cancer 691 
models, the benefits of this therapy have not yet been translated to patients. Research 692 
in mouse models has revealed a strong synergism between TGFβ pathway inhibitors 693 
and ICIs. To date, combinatorial TGFβ blockade and ICI strategies have not yet been 694 
extensively tested in patients, in part due to the scarcity of TGFβ inhibitors in advanced 695 
clinical stages. As this situation is rapidly changing (Table 3), the field eagerly 696 
anticipates the results of these studies, keenly aware of the pending safety concerns. 697 
In this regard, a better understanding of the biological basis for the cardiovascular 698 
toxicities shown by many TGFβ inhibitors is crucial for their systematic implementation 699 
in the clinical setting. Are the TGFβ isoforms that are important in shaping the TME 700 
the same as those that regulate the cardiovascular system? What is the relative 701 
contribution of canonical versus non-canonical signalling in the cardiovascular defects 702 
triggered by TGFβ inhibition? New strategies, including TGFβ isoform-specific blocking 703 
antibodies—some of which already under clinical investigation—antibodies capable of 704 
inhibiting the TGFβ pathway in specific TME cell types, and tumour-specific delivery of 705 
TGFβ inhibitors may also help reduce side-effects. In addition, novel small molecule 706 
TGFBR1 inhibitors are advancing with apparently manageable toxicity. Finally, a 707 
growing group of agents aim at preventing TGFβ activation. Although our knowledge 708 
of this area is relatively limited, TME-specific upstream mechanisms have an 709 
unmistakable therapeutic potential. 710 
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 711 
As the number of possible combinations of (immuno) therapies grow exponentially, 712 
one inevitable challenge of near-future clinical practice concerns the choice for the 713 
best suited targets and therapies on a per-patient level. This requires a much better 714 
understanding of the most relevant tumour-specific mechanisms in the TME, and their 715 
relation to the individual immunological status264. For the moment, relevant questions 716 
that have already emerged for trials that involve TGFβ blockade include patient 717 
stratification or selection, treatment duration, and therapy resistance. It is thus 718 
imperative that we keep unraveling the complex biology of TGFβ signalling in the TME.  719 
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GLOSSARY 1839 
 1840 
danger- or pathogen-associated molecular patterns  1841 
Molecules, molecular motifs or epitopes that are upregulated or exposed in the 1842 
presence of pathogens, or on damaged or dying cells. Specialized receptors on 1843 
innate immune cells recognize these signals and trigger an inflammatory response. 1844 
 1845 
tumour-associated macrophages 1846 
a heterogeneous population in the TME originating from tissue-resident 1847 
macrophages or monocytes 1848 
 1849 
Granulocytes  1850 
(also known as polymorphonuclear cells) – a group of myeloid cell comprising 1851 
neutrophils, basophils, eosinophils, and mast cells  1852 
 1853 
natural killer cells  1854 
innate cytotoxic immune cells that can kill tumour cells (or pathogen-infected cells) 1855 
without any priming or prior sensitization 1856 
 1857 
antibody-dependent cellular cytotoxicity  1858 
cell killing by virtue of target cell-specific antibodies and effector cells, such as NK 1859 
cells, that express antibody receptors. 1860 
 1861 
myeloid-derived suppressor cells  1862 
a heterogeneous group of myeloid immune cells that are characterized by their 1863 
immunosuppressive functions. They can accumulate in cancer or infections, impinge 1864 
on the function of other immune cells, and are often poorly differentiated or 1865 
immature. 1866 
 1867 
innate lymphoid cells 1868 
cells from the lymphoid lineage with innate immune functions, regulating other 1869 
immune cells and producing signalling molecules. These lymphocytes without a T 1870 
cell receptor are functionally analogous to helper T cells (Th1, Th2 and Th17) and 1871 
are classified accordingly (type 1, 2 and 3, respectively). 1872 
 1873 
dendritic cells  1874 
innate immune cells that respond to DAMPs and PAMPs, induce inflammation, and 1875 
can stimulate NK cells in the TME. 1876 
 1877 
plasmacytoid dendritic cells 1878 
a subset of DCs that are mostly found in circulation, lymph nodes, and the spleen. 1879 
They have important roles in antiviral immunity, immune regulation, and are 1880 
implicated in certain immune disorders.   1881 
 1882 
desmoplastic reaction  1883 
the growth of fibrous tissue around the tumour 1884 
 1885 
thymocyte positive selection  1886 
in the thymus, T cells whose TCRs bind strongly to MHC complexes and will likely be 1887 
self-reactive, are killed in the process of negative selection 1888 
 1889 
serrated CRC  1890 
a non-classical type of colorectal cancer that derives from an alternative 1891 
carcinogenesis pathway and has a ‘saw-tooth’-like histological appearance. 1892 
 1893 



 37 

MMTV-PyMT breast cancer mouse model  1894 
A mouse model of breast cancer generated by the mammary specific expression of 1895 
polyomavirus middle T antigen driven by a mouse mammary tumour virus (MMTV) 1896 
element. 1897 
  1898 
 1899 
chimeric switch receptor 1900 
fusion proteins that link the binding of (immuno-) inhibitory ligands to the activation of 1901 
intracellular stimulatory signal elements, or vice versa. 1902 
 1903 
in situ vaccination 1904 
the effect of therapeutically elevating the release of tumour-associated antigens, 1905 
combined with innate immune cell activation, which results in (more) effective antigen 1906 
presentation and T or B cell priming. Triggers include immunogenic cell death, 1907 
radiotherapy, or oncolytic viruses. 1908 
 1909 
 1910 
  1911 
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 1912 
Table of contents summary 1913 
 1914 
This review discusses the context-dependent functions of transforming growth factor 1915 
β (TGFβ) on the composition and behavior of different cell populations in the tumour 1916 
immune microenvironment, as well as emerging data that demonstrate that TGFβ 1917 
inhibition can restore cancer immunity. 1918 

1919 
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Table 1. An overview of TGF targeting agents  1920 

Class Strategy Name Target Status Reference 

Small molecule 
inhibitors 

Block receptor 
signalling 

Galunisertib (LY2157299) TGFBR1 Phase I/II 216–218 

Vactosertib (TEW7197) TGFBR1 Phase I/II 265 

LY3200882 TGFBR1 Phase I/II 266 

PF-06952229 TGFBR1 Phase I NA 

TD-1058 TGFBR1 Phase I NA 

YL-13027 TGFBR1 Phase I 267 

AZ12601011, AZ12799734 TGFBR1 Preclinical 210 

GFH-018 TGFBR1 Preclinical 268 

Antibodies Trap ligand(s) Fresolimumab (GC1008) TGFβ1, 2 and 3 Phase II 269 

SAR439459 TGFβ1, 2  and 3 Phase I/II 270 

NIS793 TGFβ1, 2 and 3 Phase II 229,271 

 TβM1 (LY2382770) TGFβ1 Phase I 272 

XPA-42-089 TGFβ1 and 2 Preclinical 235,271 

Prevent ligand 
activation 

SRK-181 Latent TGFβ1 Phase I 50 

ABBV-151 GARP-TGFβ1 Phase I 168 

Anti-LAP Latent TGFβ Preclinical 49 

264RAD Integrin αvβ6 Preclinical 51,52 

Anti-αvβ8 (C6D4) Integrin αvβ8 Preclinical 43 

Anti-αvβ8 (ADWA-11) Integrin αvβ8 Preclinical 53,54 

Receptor blockade IMC-TR1 (LY3022859) TGFBR2 Phase I 273,274 

Engineered 
fusion proteins 

Trap ligands AVID200 TGFβ1 and 3 Phase I 275,276 

sBetaglycan/TGFBR3 TGFβ ligands Preclinical 277 

sTGFBR2-Fc TGFβ ligands Preclinical 278 

Trap ligands and 
checkpoint blockade 

Bintrafusp alfa (M7824) TGFβ ligands and 
PDL1 

Phase II/III 230 

SHR-1701 TGFβ ligands and 
PDL1 

Phase I NA 

GS-1423 TGFβ ligands and 
CD73 

Phase I NA 

anti-CTLA4-TGFBRII TGFβ ligands and 
CTLA4 

Preclinical 148 

Trap ligands and bind 
TH cells 

4T-Trap TGFβ ligands and 
CD4 

Preclinical 150 

    

Peptides Competitive ligand 
binding 

YH14618 TGFβ1 Phase I 279 

Antisense 
oligonucleotides 

Prevent ligand 
expression 

Trabedersen (AP 12009) TGFB2 mRNA Phase I/II/III 223 

ISTH0036 TGFB2 mRNA Phase I 280 

ISTH0047; ISTH1047 TGFB2 mRNA Preclinical 226,227,281 

Cancer vaccines Boost immune 
response 

Belagenpumatucel-L TGFB2-antisense-
modified NSCLCa cells 

Phase III 224,225 

Gemogenovatucel-T  
  

Autologous tumour 
cell vaccine + GM-CSF 

+ FURIN shRNAi 
(reduces TGFB1, -2 

levels) 

Phase II 282 

NA, not available.  1921 
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Table 2. Completed trials targeting TGF in clinical immuno-oncology 1922 

Agent Strategy Cancer type Phase Outcome 
Trial ID and/or 

Reference 

Galunisertib With anti-PD-L1 
(durvalumab)  

Advanced PDAC  I Acceptable safety/tolerability, 
low clinical activity (ORR 3%)  

NCT02734160283 

Fresolimumab With radiation Metastatic BC II Acceptable safety/tolerability, 
low clinical activity but 
favorable immune responses 
were observed 

NCT01401062258 

Bintrafusp alfa Monotherapy Advanced solid 
tumours; NSCLC; 
HNSCC 

I Acceptable safety/tolerability, 
clinical activity: ORR 16%; 18%; 
13% 

NCT02517398284–286 

BTC; ESCC I ORR 20%; 10% NCT02699515287,288 

Belagenpumatucel-
L 

Monotherapy NSCLC II Acceptable safety/tolerability, 
ORR 15% 

NCT01058785224 

  NSCLC III No significant clinical benefit NCT00676507225 

Gemogenovatucel-
T  

Monotherapy ES, NSCLC or HCC I Acceptable safety/tolerability, 
benefit in mOS (ES) 

NCT01061840289,290 

  Melanoma I/II Acceptable safety/tolerability, 
mOS 20 vs 7 months 

NCT01453361291 

 Stage IIIb-IV 
ovarian cancer 

II Well-tolerated maintenance 
therapy, mRFS 11.5 vs 8.4 
months 

NCT02346747262 

 With 
chemotherapy  

ES   II NA NCT02511132 

With anti-PD1 
(pembrolizumab)  

Melanoma   I NA NCT02574533 

With anti-PDL1 
(durvalumab) 

Advanced women’s 
cancers  

II NA NCT02725489 

 1923 
HCC: hepatocellular carcinoma; HNSCC: head and neck squamous cell carcinoma; BTC: biliary tract 1924 

cancer; ESCC: esophageal squamous cell carcinoma; BC: breast cancer; ES: Ewing sarcoma; ORR: 1925 
objective response rate; mOS: median overall survival; mRFS: median recurrence-free survival; NSCLC, 1926 

non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma. NA, not available. 1927 
  1928 
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Table 3. Ongoing trials targeting TGF in clinical immuno-oncology   1929 

Agent Strategy Cancer type Phase Reference 

Galunisertib With radiation Adv. HCC  I NCT02906397 

With anti-PD1 (nivolumab) HCC, NSCLC, Advanced solid 
tumours  
 

I/II NCT02423343 

Vactosertib With anti-PD1 (pembrolizumab) Metastatic CRC or gastric cancer  I/II NCT03724851 

 PDL1+ NSCLC  II NCT04515979 

With anti-PDL1 (durvalumab) Advanced NSCLC  I/II NCT03732274 

 Urothelial carcinoma  II NCT04064190 

Fresolimumab With radiation Early-stage NSCLC  I/II NCT02581787 

SAR439459 Monotherapy and with anti-PDL1 
(cemiplimab) 

Advanced solid tumours  I 

I 

NCT03192345 

NCT04729725 

 With dexamethasone and anti-
CD38 (isatoxumab) 

Relapsed/refractory multiple 
myeloma 

I/II NCT04031872 

NIS793 Monotherapy and with anti-TIM3 
(MBG453) 

Myeloproliferative tumours  I NCT04810611 

 With anti-PD1 (spartalizumab) Advanced solid tumours  I NCT02947165 

 With chemotherapy and anti-PD1 
(spartalizumab) 

Metastatic pancreatic cancer  II NCT04390763 

SRK-181 Monotherapy and with anti-PD1 or 
PDL1 

Advanced solid tumourstumour I NCT04291079 

ABVV-151 Monotherapy and with anti-PD1 
(budigalimab) 

Advanced solid tumours  I NCT03821935 

Bintrafusp alfa Monotherapy Metastatic CRC or advanced 
microsatellite-instable solid 
tumours 

I/II NCT03436563 

  Stage II-III HER2+ breast cancer I NCT03620201 

  Advanced NSCLC III NCT03631706 

  Metastatic second-line BTC II NCT03833661 

  Platinum-refractory cervical cancer II NCT04246489 

  Adv. urothelial cancer I NCT04349280 

  Adv. nasopharyngeal carcinoma II NCT04396886 

  Thymoma and thymic carcinoma II NCT04417660 

  Operable and untreated head and 
neck squamous cell carcinoma 

II NCT04428047 

  Checkpoint inhibitor-naïve and -
refractory urothelial carcinoma 

II NCT04501094 

 Neo-adjuvant First-line resectable NSCLC II NCT04560686 

  Resectable BTC  II NCT04727541 

 With chemotherapy Relapsed small cell lung cancers I/II NCT03554473 

  Metastatic triple-negative breast 
cancer 

I NCT03579472 

  Advanced NSCLC  I/II NCT03840915 

  BTC II/III NCT04066491 

  Advanced NSCLC II NCT04396535 

  HMGA2-expressing triple-
negative breast cancer 

II NCT04489940 

  Advanced gastric cancer  I/II NCT04835896 

 With TKIs Brain metastases I/II NCT04789668 

 With chemotherapy and  Prostate cancer  I/II NCT04633252 

 immunocytokine (IL-12) Advanced solid tumours I/II NCT04708470 
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 With radiation Hormone receptor+, HER2- adv. 
breast cancer 

I NCT03524170 

  Recurrent or second primary 
head and neck squamous cell 
carcinoma 

I/II NCT04220775 

  Advanced intrahepatic 
cholangiocarcinoma 

I NCT04708067 

 With chemo-radiation Unresectable stage III NSCLC II NCT03840902 

  Adv. cervical cancer  I NCT04551950 

  Esophageal SCC  II NCT04481256 
NCT04595149 

 With immunocytokine (IL-12) and 
radiation 

Metastatic non-prostate 
genitourinary malignancies 

I NCT04235777 

  Pancreatic cancer I/II NCT04327986 

  Hormone receptor+, HER2- 
metastatic breast cancer 

I NCT04756505 

 With vaccines 
HPV vaccine  

Human papilloma virus-
associated cancers  

I/II NCT04432597 

CXCR1/2 inhibitor  
CEA/MUC-1 cancer vaccine  

Advanced solid tumours I/II NCT04574583 

Brachyury vaccine Advanced breast cancer I NCT04296942 

SHR-1701 Monotherapy Advanced solid tumours I NCT03710265 
NCT03774979 
NCT04324814 

  Advanced head and neck SCC II NCT04650633 

 With chemotherapy Stage III NSCLC  II NCT04580498 

  Pancreatic cancer I/II NCT04624217 

  Advanced nasopharyngeal 
carcinoma 

I NCT04282070 

 And with anti-VEGF Metastatic CRC II/III NCT04856787 

 With radiation Second-line metastatic NSCLC II NCT04560244 

 With anti-VEGF (BP102) Advanced solid tumours  I/II NCT04856774 

 With TKIs (famitinib) Advanced solid tumours  I/II NCT04679038 

  Advanced NSCLC II NCT04699968 

 With histone methyl-transferase 
inhibitor 

Adv. solid tumours and B cell 
lymphomas 

I/II NCT04407741 

GS-1423 With chemotherapy Adv. solid tumours I NCT03954704 

Gemogenovatucel-
T 

Monotherapy Advanced solid tumours  NCT03842865 

 With chemotherapy  Ewing’s sarcoma  III NCT03495921 

 With anti-PDL1 (atezolizumab) Adv. gynecological cancers  II NCT03073525 

 1930 
 1931 
 1932 
FIGURE LEGENDS 1933 
 1934 
Figure 1. TGFβ functions in healthy tissues and during cancer progression. a. In 1935 
healthy epithelial tissues and during the early stages of tumourigenesis, TGFβ 1936 
signalling regulates homeostatic growth and imposes a cytostatic program to 1937 
premalignant epithelial cells that suppresses tumour progression. In advanced 1938 
cancers, tumour cells rewire the TGFβ pathway to avoid the cytostatic response. TGFβ 1939 
then promotes epithelial-to-mesenchymal transition (EMT). Many prometastatic genes 1940 
are also under the control of TGFβ in late-stage cancer. In some cancer types, tumour 1941 
cells often acquire loss of function mutations in TGFβ pathway components, mainly in 1942 
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SMAD4 and TGFBR2. These tumour cells are blind to the action of the cytokine and 1943 
can expand in a TGFβ-rich TME. Furthermore, during cancer dissemination, TGFβ can 1944 
impose cell cycle arrest to tumour cells, which results in a dormant state, a 1945 
phenomenon associated with metastatic latency, chemotherapy resistance, and 1946 
disease relapse. b. In the immune environment of healthy tissues, particularly in the 1947 
gastrointestinal tract and the skin, TGFβ is necessary to induce tolerance and regulate 1948 
responses to harmful antigens of commensal bacteria. In this context, TGFβ is a potent 1949 
suppressor of inflammation, and its lack triggers an excessive inflammatory response 1950 
that predisposes to tumour formation. TGFβ is also necessary to regulate wound-1951 
healing responses. As cancer progresses, tumours hijack these TGFβ functions to 1952 
promote immune evasion and a continuous wound-healing response.  1953 
 1954 
Figure 2. TGFβ production, release, and signalling. a. Cells deploy different 1955 
mechanisms to release active TGFβ from latent deposits. When the TGFβ molecule is 1956 
either covalently linked to LTBPs and tethered to the ECM, or localized to the cell 1957 
surface-bound to GARP, integrin-transmitted tension generated by cell contraction 1958 
releases active TGFβ. Extracellular proteases can also cleave the LAP domain. b. The 1959 
active TGFβ dimer triggers TGFBR1 and TGFBR2 dimerization. In this ligand-induced 1960 
receptor complex, TGFBR2 phosphorylates TGFBR1, which in turn recognizes and 1961 
phosphorylates SMAD2 and SMAD3 proteins, the cytoplasmatic mediators of TGFβ 1962 
signalling.  Phosphorylated SMAD2 and SMAD3 interact with SMAD4 to form a trimeric 1963 
complex that travels to the nucleus. Dimers of phosphorylated SMAD2 and SMAD3 1964 
together with SMAD4 form complexes with different signal-driven transcription factors 1965 
(SDTFs) and lineage-determining transcription factors (LDTFs) to regulate 1966 
transcription of target genes. Several cofactors (CoFs) are also recruited to these 1967 
transcriptional complexes. The stability of the nuclear SMAD complex is negatively 1968 
controlled by poly (ADP-ribose) polymerase (PARP)-mediated PARylation, which 1969 
causes SMAD dissociation from DNA. c. The main non-canonical TGFβ pathway 1970 
involves TRAF6 and TAK1 signals in combination with SMAD7, and activates 1971 
downstream kinases in the JNK, p38 and NF-κB pathways independently of SMAD-1972 
driven transcription. Other non-canonical pathways that activate mTOR, RHOA or 1973 
KRAS signalling downstream of TGFBR receptors are also detailed.  1974 
  1975 
Figure 3. Regulation of TME cell types by TGFβ in advanced cancer. Schematic 1976 
summary of the effects of TGFβ in innate immunity, where it drives pro-tumourigenic 1977 
cell polarization and impinges on NK cell cytotoxicity (a, b). Adaptive anti-tumour 1978 
immunity is abrogated by TGFβ by DC dysfunction and reduced antigen presentation 1979 
(c), Treg- and Th17-skewed CD4+ T cell polarization (d), and dysfunctional cytotoxic 1980 
CD8+ T cell responses (e). Furthermore, TGFβ is a key regulator of myofibroblast-like 1981 
CAF specification and inhibits the formation of inflammatory CAFs (iCAFs) and 1982 
interferon-licensed CAFs (ilCAFs) (f).  1983 
 1984 
 1985 
BOX 1 – TGFβ isoform-specific functions and therapies.  1986 
 1987 
Despite binding the same receptors, TGFβ1, TGFβ2, and TGFβ3 isoforms exhibit 1988 
distinct expression patterns and their bioavailability is differentially regulated. In 1989 
particular, the TGFβ2 latency-associated peptide (LAP) domain lacks the RGD motif 1990 
present in TGFβ1 and TGFβ3. As a consequence, latent TGFβ2 (L-TGFβ2) is not 1991 
activated by αvβ6 or αvβ8 integrins292, implying the existence of specific mechanisms 1992 
to release this isoform. Indeed, Tgfb1, Tgfb2, and Tgfb3 knockout mice show non-1993 
overlapping developmental defects. Global knockout of the Tgfb1 gene results in 1994 
multifocal inflammatory disease owing to an important role of this isoform in setting 1995 
immune tolerance293,294. Tgfb2 null mice exhibit a range of developmental 1996 
abnormalities including heart, lung, craniofacial, limb, spinal column, eye, inner ear 1997 
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and urogenital defects295. Tgfb3 knockout mice develop cleft-palate296,297. The role of 1998 
each isoform in the adult organism has been less well characterized as most 1999 
pharmacological and genetic approaches used to investigate TGFβ functions during 2000 
tissue homeostasis and disease disrupt signals from all three isoforms. Correlative 2001 
analyses indicate that TGFβ1 shows higher and more widespread upregulation in the 2002 
tumour microenvironment than the other two isoforms and is more robustly associated 2003 
with failure of immune checkpoint inhibitor responses in cancer patients50. In turn, 2004 
TGFβ3 plays specific roles during wound healing and fibrosis298 and is highly 2005 
upregulated in cancer-associated fibroblasts299. A role for TGFβ2 in breast cancer cell 2006 
dormancy has been demonstrated300. In addition, TGFβ2 has been associated with 2007 
neutrophil recruitment in models of metastatic colorectal cancer 86. Of particular 2008 
interest is the finding that adult Tgfb2 haploinsufficient mice phenocopy patients with 2009 
germline loss-of-function mutations in the TGFB2 gene, which develop thoracic aortic 2010 
aneurysm dissections and other cardiovascular abnormalities301. This pathology is 2011 
similar to that observed in preclinical models treated with pan-TGFβ inhibitors50,211–213, 2012 
suggesting that toxicities associated with these drugs are due to TGFβ2 inhibition in 2013 
the cardiovascular system. These findings inspired the development of therapeutic 2014 
antibodies that target specifically the TGFβ1 isoform and that avoid the cardiotoxicity 2015 
associated with pan-TGFβ approaches in experimental models50. TGFβ ligand traps 2016 
able to preferentially block TGFβ1 and TGFβ3 have also been engineered275,276, and 2017 
integrin-targeted strategies are also selective for these two isoforms (Table 1).  2018 
 2019 
 2020 
 2021 
BOX 2. Linking TGFβ signalling in CAFs to immunotherapy responses.  2022 
 2023 
In colorectal cancer (CRC), cancer-associated fibroblast (CAF) abundance and 2024 
elevated expression of fibroblast TGFβ response signature (F-TBRS), which includes 2025 
primarily genes encoding for extracellular matrix (ECM) proteins and cytokines induced 2026 
by TGFβ, predict risk of relapse after therapy and metastasis robustly299,302. It was also 2027 
found that upregulation of a similar F-TBRS identified urothelial cancer patients 2028 
exhibiting poor therapeutic responses to anti-PDL1 therapy in a clinical trial236. ECM-2029 
encoding genes induced by TGFβ also predict lack of responses to immune checkpoint 2030 
inhibitors (ICIs)238. Subsequent studies characterized CAF heterogeneity, and its 2031 
association with response to ICIs 303–306. These studies revealed the existence of two 2032 
major CAF subsets: one exhibits an ECM-producing and contractile (α-smooth muscle 2033 
actin (αSMA+)) phenotype enforced by TGFβ, whereas the other upregulates 2034 
proinflammatory mediators such as IL-6304–306 (Figure 3f). The abundance of the 2035 
fibrogenic TGFβ-activated CAF subset associates with a poor response to anti-PDL1 2036 
therapy in clinical trials and experimental models76,236,304,305. Emerging evidence also 2037 
suggest an essential role for TGFβ signalling in shaping CAF heterogeneity (Figure 2038 
3f). Whereas IL-1 promotes the acquisition of a inflammatory program in CAFs (iCAF) 2039 
of pancreatic cancer, TGFβ suppresses IL-1 receptor expression in this population and 2040 
impedes their specification306. Besides, an IFN-gamma licensed CAF (ilCAF) 2041 
population emerges upon TGFβ blockade in mouse tumour models304 (Figure 3f). This 2042 
subset expresses MHC molecules and other factors involved in antigen processing 2043 
and presentation, implying an immunomodulatory role304.  2044 
 2045 
CRCs, urothelial carcinomas, and possibly other tumour types that exhibit elevated 2046 
levels of TGFβ-driven CAF gene expression program are immune-excluded and 2047 
insensitive to ICI immunotherapy76,236,238,239. Using human-like mouse models of CRC, 2048 
we showed that treatment with a TGFBR1 inhibitor enables T cell infiltration and 2049 
renders metastases susceptible to anti-PDL1 therapy76. Another study demonstrated 2050 
that treatment with a pan-TGFβ antibody prevents T cell exclusion and enhances 2051 
responses to anti-PDL1 treatment in tumour models characterized by TGFβ-activity in 2052 
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CAFs236. The synergism between TGFβ inhibition and ICIs was subsequently 2053 
corroborated in multiple mouse cancer models and experimental 2054 
settings148,155,229,230,233,235,237,304. It however remains unclear to what extent CAFs are 2055 
the culprits of immune evasion and anti-PD1 or anti-PDL1 therapy failure in these 2056 
models.  2057 
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