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Abstract

Background and Purpose: Multiple system atrophy(MSA) is a rare adult-onset

synucleinopathy that can be divided in two subtypes depending on whether the

prevalence of its symptoms is more parkinsonian or cerebellar (MSA-P and MSA-C,

respectively). The aim of this work is to investigate the structural MRI changes able to

discriminateMSA phenotypes.

Methods:The sample includes31MSApatients (15MSA-Cand16MSA-P) and39healthy

controls. Participants underwent a comprehensive motor and neuropsychological bat-

tery. MRI data were acquired with a 3T scanner (MAGNETOM Trio, Siemens, Germany).

FreeSurfer was used to obtain volumetric and cortical thickness measures. A Support

Vector Machine (SVM) algorithm was used to assess the classification between patients’

group using cortical and subcortical structural data.

Results: After correction for multiple comparisons, MSA-C patients had greater atrophy

thanMSA-P in the left cerebellum, whereasMSA-P showed reduced volume bilaterally in

the pallidum and putamen. Using deep graymatter volume ratios andmean cortical thick-

ness as features, the SVM algorithm provided a consistent classification betweenMSA-C

and MSA-P patients (balanced accuracy 74.2%, specificity 75.0%, and sensitivity 73.3%).

The cerebellum, putamen, thalamus, ventral diencephalon, pallidum, and caudate were

the most contributing features to the classification decision (z > 3.28; p < .05 [false dis-

covery rate]).

Conclusions:MSA-C andMSA-P with similar disease severity and duration have a differ-

ential distribution of graymatter atrophy. Although cerebellar atrophy is a clear differen-

tiator between groups, thalamic and basal ganglia structures are also relevant contribu-

tors to distinguishingMSA subtypes.
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INTRODUCTION

Multiple system atrophy (MSA) is a rare adult-onset synucleinopa-

thy characterized by progressive autonomic dysfunction combined

with parkinsonian and cerebellar features.1 It can be divided into

two subtypes depending on whether the initial symptoms were pre-

dominantly parkinsonian or cerebellar (MSA-P and MSA-C, respec-

tively). MSA is neuropathologically characterized by α-synuclein glial

cytoplasmatic inclusions and striatonigral or/and olivopontocerebel-

lar neurodegeneration.2 Although the neuropathological features are

mainly located in subcortical structures, including the pons, the puta-

men, the brainstem, and the cerebellum, involvement of cortical motor

areas in the atrophy process has also been described.3,4

In this context, several abnormalities on conventional MRI, such as

atrophy of the putamen, middle cerebellar peduncle, pons, or cere-

bellum, are included as additional features in the current diagnostic

criteria for MSA.5 In the last decade, there has been an increasing

interest in detecting specificMRI changes able to distinguishMSA sub-

types. Most investigations have focused on structural differences with

healthy controls (HCs) reporting deep graymatter volume loss inMSA-

P6–14 and in MSA-C,8,9,14–17 as well as cortical atrophy.6–8,12,13,16,18

One of the major drawbacks of these previous research is that few

have directly compared MSA-C and MSA-P,8,15,19–22 and only some

included a control group.8,15,20,22 The comparison of MRI parameters

of atrophy between subtypes would provide scientific evidence on

possibleMSA phenotypes.

The recent introduction of machine learning algorithms in MRI

studies has helped to test the importance of specific measures in

discriminating different subtypes of neurodegenerative diseases. In

parkinsonismdisorders, this approachhasbeenapplied todifferentiate

Parkinson’s disease fromatypical parkinsonism.9,20,23−25 Nonetheless,

despite some of these previous neuroimaging works included patients

with both MSA subtypes, only one multicenter study investigated the

structures that better discriminate MSA-C from MSA-P9 using volu-

metricMRImeasures.

In the current case-control study, we aimed to investigate those cor-

tical and subcortical changes able to distinguish MSA subtypes based

on cortical thickness and volumetric MRI data. According to previous

literature, we hypothesized that MSA subtypes will present a differ-

ential topographical distribution of gray matter atrophy with partic-

ular involvement of deep gray matter nuclei. To test this hypothesis,

we studied intergroup differences in cortical and subcortical struc-

tures, and we also introduced gray matter data into a supervised

machine learning algorithm to assess its ability to correctly classify

each patient’s groupmembership.

METHODS

Participants

Thirty-eight MSA patients (17 MSA-C and 21 MSA-P) were

recruited fromMovementDisordersUnit,HospitalClínic deBarcelona.

MSA variants were diagnosed by an experienced movement disorder

specialist, and phenotype was assigned depending on predominant

motor symptom at disease onset following clinical consensus crite-

ria.5 Forty HCs were recruited from patients’ spouses or friends who

volunteered to participate in the study.

Exclusion criteria consisted of (1) pathological MRI findings other

thanmild whitematter (WM) hyperintensities, (2)MRImovement arti-

facts, and (3) significant neurological, systemic, or psychiatric comor-

bidity in the HC group.

Six MSA patients were excluded for excessive movement. OneMSA

patientwas excluded forMRI artifacts. OneHCwas excluded for abun-

dant WM hyperintensities. The final sample therefore consisted of 39

HC and 31MSA patients (15MSA-C and 16MSA-P).

Disease severity was evaluated using the Unified Multiple System

Atrophy Rating Scale (UMSARS) forMSA patients.

The study was approved by the Ethics Committee of the Uni-

versity of Barcelona and the Hospital Clinic (IRB00003099 and

HCB/2015/0798, respectively). All participants provided written

informed consent to participate after full explanation of the proce-

dures involved.

Clinical and neuropsychological assessment

Participantswere evaluatedwith a comprehensive neuropsychological

battery. Attention and working memory domains were assessed with

the Trail Making Test (TMT, parts A and B) (in seconds), Digit Span

Forward and Backward, the Stroop Color-Word Test, and the Sym-

bol Digits Modalities Test (SDMT)—Oral version. Executive functions

were evaluated with phonemic (words beginning with the letter “p” in

1 minute) and semantic (animals in 1 minute) fluencies. Language was

evaluated by the total number of correct responses in the short version

of the Boston Naming Test (BNT). For memory domain, we used the

Rey’s Auditory Verbal Learning Test (RAVLT).We recorded total learn-

ing recall (sum of correct responses from trial I to trial V) and delayed

recall (total recall after 20 minutes). Visuospatial and visuoperceptual

(VS/VP) domains were assessed with Benton’s Judgement of Line Ori-

entation (BJLO), Visual FormDiscrimination (VFD), and Facial Recogni-

tion tests.26

Neuropsychiatric symptomatology was measured by means of the

Neuropsychiatric Inventory (NPI),27 the Beck Depression Inventory II

(BDI),28 and the Starkstein’s Apathy Scale (AS).29

MRI acquisition and preprocessing

MRI data were acquired with a 3T scanner (MAGNETOM Trio,

Siemens, Germany). The scanning protocol included high-resolution 3-

dimensional T1-weighted images acquired in the sagittal plane (repeti-

tion time [TR] = 2300 ms, echo time [TE] = 2.98 ms, inversion time =

900 ms, 240 slices, field of view = 256 mm; 1 mm isotropic voxel) and

an axial fluid-attenuated inversion recovery sequence (TR = 9000 ms,

TE= 96ms).



DIFFERENTIATION OF MSA SUBTYPES BY MRI 3

Structural MRI preprocessing was performed using the auto-

mated FreeSurfer software (version 5.1; available at: https://surfer.

nmr.mgh.harvard.edu/). Independent steps were performed: removal

of nonbrain tissue, automated Talairach transformation, inten-

sity normalization,30 tessellation of the gray matter/white matter

boundary, automated topology correction,31 and accurate surface

deformation to optimally place the gray matter/white matter and

gray matter/cerebrospinal fluid boundaries.32 The output of each

step (registration, skull stripping, segmentation, and cortical surface

reconstruction) was visually inspected to guarantee correct and

accurate preprocessing.

Automated subcortical segmentation performed with FreeSurfer

was used to obtain deep gray matter nuclei volumetry. Estimated Total

Intracranial Volume (eTIV) was obtained to correct volumetric data for

interindividual differences in brain sizes.

Machine learning classification

Machine learning analysis was performed using NeuroMiner software,

version 1.05 (http://proniapredictors.eu/neurominer/index.). To differ-

entiate between classes, supervised classification using a linear Sup-

port Vector Machine (SVM) was performed within a repeated nested

cross-validation (CV) framework. In both inner andouterCVs, a 10-fold

CVcyclewas applied.Wecarried out a repeatednestedCVat theouter

CV cycle by randomly permuting the participants within their groups

(10 permutations) and repeating the CV cycle for each of these per-

mutations.Deep graymatter structures, namely, the brainstem, accum-

bens, amygdala, caudate, cerebellum, hippocampus, pallidum, putamen,

thalamus, and ventral diencephalon volumes, were divided by the cor-

responding eTIV. Volume ratios and mean cortical thickness, a total of

11 variables per subject,were used as features. To remove age and gen-

der effects, partial correlationswere regressed out, and a scale feature

wise (from 0 to 1) was applied to the data matrix. The optimization of

theCparameter associatedwith the SVMwas carried out using a range

of six parameters: 0.001, 0.01, 0.1, 1, 10, and 100.

The reliability of the predictive pattern elements was evaluated

using cross-validation ratio (CVR) mapping. Also, the significance of

predictive features used by the neuroimaging model was assessed by

means of sign-based consistency mapping. This mapping allows know-

ing the contribution of the features to the classification decision. Neu-

roMiner has implemented the approach proposed by Gómez-Verdejo

et al.,33 which is based on wrapper-based feature selection strategies.

NeuroMiner uses the normal cumulative distribution function to pick

the right-tailed p-value corresponding to the respective z-score of the

variable importance of each feature (details in ref. 34).

Statistical analyses

Group differences were conducted in demographic, neuropsychologi-

cal, clinical, and volumetric variables using IBM SPSS Statistics 25.0.0

(2017; IBM Corp, Armonk, NY) by analysis of variance (ANOVA),

covariance (ANCOVA) followed by post hoc tests, or Kruskal-Wallis

HandMann-WhitneyU tests as appropriate. Falsediscovery rate (FDR)

was used for multiple comparison correction. Differences in categori-

cal measures were analyzed by Pearson’s chi-squared.

Intergroup cortical thickness comparisons were performed using

a vertex-by-vertex general linear model. The model included cortical

thickness as a dependent factor and group as an independent factor.

All results were corrected for multiple comparisons using a precached

cluster-wise Monte Carlo simulation with 10,000 iterations. Reported

cortical regions reached a two-tailed corrected significance level of

p< .05.

Regarding themachine learning classification, the total accuracy (A)

andbalanced accuracy (BA) are provided. BAaccounts for equalweight

to the accuracies obtained on each class. Additionally, sensitivity and

specificity of the SVM classification as well as the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve are addi-

tionally reported.

The reliability of the predictive pattern elements was estimated

using CVR, and sign-based consistency mappings. To determine the

significance of the predictive signatures of the features, z-scores and

p-values were derived using permutation analysis; 100 permutations

were set. Theobtainedp-valueswere correctedusingFDR, and the cor-

rected significance threshold was defined at α= .05.

RESULTS

Sociodemographic and clinical characteristics

Table 1 summarizes the sociodemographic and clinical characteristics

of participants. We found no significant differences between groups in

age and sex.Differences in years of education did not survive aftermul-

tiple comparison corrections.

MSA subtypes were comparable regarding years of disease evolu-

tion, severity, and disease stage measured by the UMSARS and Hoehn

and Yahr scales. However, MSA-P had higher levels of levodopa equiv-

alent daily dose. Regarding neuropsychiatric scales, groups differed in

the NPI, BDI, and AS. Post hoc analysis showed differences between

HC and bothMSA subtypes for BDI and AS scales.

Neuropsychological results

Table 2 describes neuropsychological results by group. Among those

measures surviving FDR multiple comparison correction (p ≤ .017),

both MSA subtypes had significant differences compared with HC in

StroopWord, StroopColor, StroopWordandColor, TMTA,TMTB,TMT

B-A phonemic and semantic fluency, RAVLT total learning and recall,

BJLO, and SDMT. Only the MSA-P significantly differed from HC in

MMSE, Digit Span Backward, and VFD. Comparing MSA phenotypes,

MSA-P had greater impairment thanMSA-C in BNT.

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
http://proniapredictors.eu/neurominer/index
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TABLE 1 Clinical and sociodemographic measures

HC (n= 39) MSA-C (n= 15) MSA-P (n= 16) Test stat/p-value

Age (year) 61.7 (11.5) 61.0 (7.0) 60.9 (9.8) 0.170/.919

Years of education 13.1 (4.2) 11.4 (4.1) 10.0 (3.5) 6.297/.043

Sex (male/female) 17/22 10/5 9/7 2.503/.286

H&Y (1:2:3:4:5) – 0:4:7:3:1 0:4:4:6:2 2.121/.548

UMSARS – 41.7 (13.8) 53.3 (19.2) 161.5/.101

LEDD – 287.0 (395.0) 735.3 (321.2) 201.5/.001*

Years of disease evolution – 4.1 (2.2) 5.2 (2.9) 146/.318

NPI 7.1 (10.4) 14.0 (13.2) 11.6 (9.6) 6.240/.044

BDI 7.1 (8.2) 15.4 (8.0) 19.4 (11.8) 20.246/<.001*1,2

AS 8.5 (5.4) 19.5 (7.1) 18.9 (7.7) 26.068/<.001*1,2

Note: Subjects are grouped according to Multiple System Atrophy diagnoses subtype. Data are presented as mean and standard deviation or frequencies.

Asterisk (*) refers to significant results surviving false discovery ratemultiple comparison correction (p≤ .001).

Post hoc Differences betweenHC andMSA-C1; HC andMSA-P2;MSA-C andMSA-P3.

Abbreviations: AS, Starkstein’sApathy Scale; BDI, BeckDepression Inventory II;HC, healthy controls;H&Y,HoehnandYahr scale; LEDD, levodopaequivalent

daily dose (in mg); MSA-C, multiple system atrophy cerebellar type patient group; MSA-P, multiple system atrophy parkinsonian type patient group; NPI,

Neuropsychiatric Inventory; n, number of subjects; UMSARS, UnitedMultiple SystemAtrophy Rating Scale.

TABLE 2 Neuropsychological results

HC (n= 36) MSA-C (n= 15) MSA-P (n= 16) Test stat/p-valuea

MMSE 29.25 (0.97) 28.6 (1.9) 27.4 (2.4) 10.848/.004*2

Digit Span Forward 5.39 (1.1) 4.7 (0.9) 4.8 (0.8) 5.691/.058

Digit Span Backward 4.0 (0.86) 3.7 (0.8) 3.2 (0.7) 10.945/.004*2

StroopW 92.5 (18.1) 63.7 (22.0) 57.9 (17.6) 23.879/<.001*1,2

Stroop C 62.9 (11.7) 44.5 (14.7) 42.2 (14.5) 21.614/<.001*1,2

StroopWC 35.1 (9.8) 26.4 (10.9) 27.3 (9.6) 8.135/.017*1,2

TMTA 44.4 (14.8) 73.6 (26.8) 110.4 (59.9) 23.248/<.001*1,2

TMTB 114.4 (65.4) 222.1 (99.8) 317.0 (252.2) 18.506/<.001*1,2

TMTB-A 69.7 (54.9) 148.5 (85.2) 224.5 (222.4) 15.571/<.001*1,2

Phonemic fluency 14.4 (5.2) 10.6 (4.1) 10.3 (4.3) 9.920/.007*1,2

Semantic fluency 19.8 (5.2) 16.0 (5.1) 13.6 (4.3) 14.853/.001*1,2

BNT 13.6 (1.1) 13.4 (1.1) 12.4 (1.3) 8.640/.013*2,3

RAVLT Total 45.6 (7.1) 30.7 (9.5) 36.5 (9.2) 23.525/<.001*1,2

RAVLT Recall 9.2 (2.3) 6.5 (3.0) 6.6 (3.0) 11.590/.003*1,2

BJLO 24.9 (4.2) 21.9 (4.1) 18.3 (5.4) 16.849/<.001*1,2

VFD 30.0 (2.0) 27.9 (3.6) 26.6 (2.7) 15.861/<.001*2

FRT 23.4 (4.3) 21.5 (3.1) 21.1 (3.1) 5.200/.074

SDMT 48.4 (10.7) 31.3 (11.9) 28.5 (16.2) 22.999/<.001*1,2

Note: Subjects are grouped according toMultiple SystemAtrophy diagnoses subtype.Data are presented as neuropsychological performance raw scoremean

and standard deviation. Asterisk (*) refers to significant results surviving false discovery ratemultiple comparison correction (pa ≤ .017). Post hoc differences

betweenHC andMSA-C1; HC andMSA-P2; MSA-C andMSA-P3.

Abbreviations: BJLO, Benton’s Judgment of Line Orientation test; BNT, Boston Naming Test; FRT, Facial Recognition test short form; HC, healthy controls;

MMSE, Mini-mental state examination; MSA-C, multiple system atrophy cerebellar type patient group; MSA-P, multiple system atrophy parkinsonian type

patient group; n, number of subjects; RAVLT, Rey’s Auditory Verbal Learning Test; RAVLT Recall, total recall after 20 min; RAVLT Total, sum of correct

responses from trial I to trial V; SDMT, Symbol Digits Modalities Test—Oral version; Stroop C, Stroop Color; Stroop W, Stroop Word; Stroop WC, Stroop

Word Color; TMTA, Trail Making Test part A; TMTB, Trail Making Test part B; TMTB-A, TMTBminus TMTA; VFD, Visual FormDiscrimination.
aKruskal-WallisH test followed byMann-WhitneyU test.
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TABLE 3 Measures of global atrophy

HC (n= 39) MSA-C (n= 15) MSA-P (n= 16) Test stat/p-value

Cortical GM volume, mm3 447,609.5 (36,850.2) 423,858.3 (34,871.6) 421,251.2 (49,019.3) 7.708/0.001*1,2

Subcortical GM volume, mm3 172,946.5 (16,584.2) 141,098.0 (17,630.7) 148,136.6 (21,880.3) 29.083/<0.001*1,2

Lateral ventricles, mm3 10,454.6 (5443.2) 13,571.5 (10,841.3) 16,089.0 (6638.7) 4.569/0.014*2

Mean cortical thickness, mm 2.52 (0.1) 2.45 (0.1) 2.45 (0.1) 4.646/0.003*1,2

Note: Subjects are grouped according toMultiple System Atrophy diagnoses subtype. Data are presented as volumetric or cortical thickness measures mean

and standard deviation. In volumetric analyses, estimatedTotal Intracranial Volumewas introduced as a covariate. Asterisk (*) refers to significant results sur-

viving false discovery ratemultiple comparison correction (p≤ .014). Post hoc differences betweenHC andMSA-C1; HC andMSA-P2; MSA-C andMSA-P3.

Abbreviations:GM, graymatter;HC, healthy controls;MSA-C,multiple systematrophy cerebellar typepatient group;MSA-P,multiple systematrophyparkin-

sonian type patient group n, number of subjects.

TABLE 4 Differences between healthy controls andmultiple system atrophy patients in cortical thickness

MNI305 space

Cluster size (mm2) X Y Z
Cluster-wise p
value Cluster anatomical annotation

HC>MSA-C

LH clusters

1 7505.8 –40.8 3.2 21.7 <.001 Precentral

2 2689.9 –44.4 –64.2 –2.0 <.001 Inferior temporal

3 1769.0 –8.5 –14.1 39.0 .022 Posterior cingulate

RH clusters

1 2126.4 34.6 15.0 24.4 .005 Caudal middle frontal

HC>MSA-P

LH clusters

1 4099.41 –51.5 1.6 4.9 <.001 Precentral

2 2704.97 –49.1 –43.5 1.3 <.001 Banks of superior temporal sulcus

3 1778.48 –18.0 –60.3 21.6 .024 Precuneus

RH clusters

1 2988.74 12.4 16.0 39.7 <.001 Superior frontal

2 2444.76 51.1 –10.4 24.6 .001 Postcentral

3 2116.04 45.8 –4.5 14.6 .005 Postcentral

4 1696.26 42.6 10.8 –37.7 .021 Middle temporal

Note: Significant contrasts showing cortical thickness differences between groups. Results after family-wise error correction with Monte Carlo simulation

and threshold at p≤ 0.05.
Abbreviations: HC, healthy controls; LH, left hemisphere; MSA-C, multiple system atrophy cerebellar type patient group; MSA-P, multiple system atrophy

parkinsonian type patient group; RH, right hemisphere.

Measures of global atrophy and cortical thickness

Both MSA subtypes showed significant reduction in volumetric mea-

sures of cortical and subcortical gray matter, as well as reduced mean

cortical thickness compared to HC (Table 3).

Maps of cortical thickness comparisons showed that MSA-C

group had cortical atrophy compared to HC in a cluster extending

from the lateral orbitofrontal, to the pars triangularis and oper-

cularis, the precentral, and the caudal middle frontal; in a second

cluster including the inferior and middle temporal; in a cluster

involving the left posterior cingulate and superior frontal; and in

the right caudal middle frontal (corrected p ≤ .05) (Figure 1 and

Table 4).

As for MSA-P, they had larger atrophy than HC in a cluster located

in the left precentral and postcentral; in a cluster involving regions

from the left superior temporal sulcus and inferior parietal gyrus; in

the left precuneus; in the right middle temporal gyrus; in a cluster

extending from the right superior frontal to the posterior cingulate and

precuneus; and in a cluster including regions from the right precentral,

postcentral, and middle temporal gyri (corrected p ≤ 0.05) (Figure 1

and Table 4). We did not find differences in measures of global atrophy

and cortical thickness betweenMSA-C andMSA-P.
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F IGURE 1 Differences between healthy controls andmultiple system atrophy subtypes in cortical thickness. Significant clusters are
highlighted in warm colors.
HC, healthy controls; MSA-C, multiple system atrophy cerebellar type patient group;MSA-P, multiple system atrophy parkinsonian type patient
group.
Results after family-wise error correction withMonte Carlo simulation and threshold at p≤ .05. Graphics program: Freeview from FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide) and edited withMicrosoft PowerPoint®

Deep gray matter nuclei volumetry

Table 5 includes volumetric data by group. Between group analyses

showed significant differences after FDRmultiple comparisons correc-

tion (p ≤ .017) in all the structures except the left thalamus. Post hoc

analyses showed that MSA-P patients had greater volume reduction

in all the significant structures in comparison to HC, whereas MSA-C

showed greater volume reduction in brainstem, left hippocampus, pal-

lidum, putamen, and ventral diencephalon, as well as bilaterally in the

accumbens and cerebellum. MSA-C patients had decreased volume of

the bilateral cerebellumcompared toMSA-P (right cerebellum p= .021

and left cerebellum p ≤ .001). By contrast, MSA-P showed reduced

gray matter volume compared to MSA-C bilaterally in the pallidum

(right pallidum p = .004 and left pallidum p = .006), putamen (right

putamen p ≤ .001 and left putamen p = .002), but also left amygdala

(p= .036).

SVM classification

Performance of the classification provided a balance accuracy of 74.2%

(specificity 75.0%; sensitivity 73.3%). In this case, as the samples were

highly balanced, accuracywas also 74.2%. The corresponding AUCwas

0.75 (95% confidence interval 0.58–0.93). Figure 2 depicts the classifi-

cationmetrics and ROC curve.

For completeness, the predictive pattern elements evaluated using

CVRmapping provided a distinction between those features thatmore

contributed to each class decision (Figure 3A). Also, the significance

of the predictive features was assessed by means of sign-based con-

sistency mapping (Figure 3B). Significant predictors, identified by the

sign-based consistency mapping (z > 3.28; p < .05 for FDR), were the

cerebellum, putamen, thalamus, ventral diencephalon, pallidum, cau-

date, accumbens, and brainstem. The z-scores accounting for the pre-

dictive power of the features are detailed in Table 6.

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
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F IGURE 2 Support VectorMachine (SVM) classification performance. (A) SVM classification perMSA subtypes. (B) Receiver operating
characteristic curve. (C) Sensitivity, specificity, and predictive values. No., Number; MSA-C, multiple system atrophy cerebellar type patient group;
MSA-P, multiple system atrophy parkinsonian type patient group; SVM, Support VectorMachine

F IGURE 3 Predictive signatures underlying themultiple system atrophy cerebellar type patient group versus multiple system atrophy
parkinsonian type patient groupmodel. (A) The cross-validation ratio mapping shows the predictive pattern elements. (B) The sign-based
consistencymapping shows the statistical significance of the predictive features. CV, cross-validation; DC, diencephalon; FDR, false discovery rate;
Cth, cortical thickness
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TABLE 5 Volumetric measures (mm3) of deep graymatter nuclei

HC (n= 39) MSA-C (n= 15) MSA-P (n= 16) Test stat/p-value

Brainstem 21,102.9 (2654.9) 15,631.7 (2892.6) 16,696.8 (3267.3) 32.727/<.001*1,2

L accumbens 539.0 (103.8) 467.9 (131.8) 427.1 (125.3) 6.137/.004*1,2

R accumbens 591.8 (104.8) 513.7 (113.9) 458.6 (122.3) 9.384/<.001*1,2

L amygdala 1641.3 (234.4) 1542.0 (203.6) 1391.4 (225.5) 9.355/<.001*2,3

R amygdala 1678.3 (235.5) 1577.7 (200.9) 1458.9 (239.3) 5.631/.006*2

L caudate 3412.1 (369.5) 3186.9 (370.3) 2952.6 (701.6) 6.539/.003*2

R caudate 3435.4 (412.9) 3309.1 (420.9) 3007.0 (662.2) 5.756/.005*2

L cerebellum 48,651.6 (5659.0) 36,989.2 (6539.4) 42,333.3 (7668.7) 25.391/<.001*1,2,3

R cerebellum 49,889.3 (5701.8) 38,305.4 (7106.7) 43,507.1 (7233.0) 24.178/<.001*1,2,3

L hippocampus 4088.7 (451.2) 3791.5 (387.1) 3600.4 (483.9) 8.773/<.001*1,2

R hippocampus 4189.4 (593.0) 3870.0 (555.7) 3637.4 (829.0) 5.203/.008*2

L pallidum 1658.7 (237.2) 1500.3 (201.8) 1255.7 (307.5) 16.406/<.001*1,2,3

R pallidum 1453.1 (177.3) 1413.3 (197.7) 1196.1 (296.0) 9.240/<.001*2,3

L putamen 5111.0 (582.4) 4615.3 (831.5) 3695.4 (1198.2) 18.288/<.001*1,2,3

R putamen 4779.4 (560.5) 4383.4 (791.4) 3414.0 (1025.9) 21.228/<.001*2,3

L thalamus 6435.2 (631.0) 6274.5 (478.2) 6165.2 (889.4) 1.181/.313

R thalamus 6653.9 (636.4) 6519.6 (677.1) 6107.2 (737.1) 4.324/.017*2

L ventral DC 3894.0 (473.5) 3607.3 (508.8) 3438.4 (494.8) 7.458/.001*1,2

R ventral DC 3741.7 (434.0) 3599.3 (487.5) 3394.2 (497.5) 4.854/.011*2

Note: Subjects are grouped according to Multiple System Atrophy diagnoses subtype. Data are presented as volumetric measures mean and standard devi-

ation. Asterisk (*) refers to significant results surviving false discovery rate multiple comparison correction (p ≤ .017). Post hoc differences between HC and

MSA-C1; HC andMSA-P2;MSA-C andMSA-P3.

Abbreviations:DC, diencephalon;HC, healthy controls; L, left;MSA-C,multiple systematrophycerebellar typepatient group;MSA-P,multiple systematrophy

parkinsonian type patient group; n, number of subjects; R, right.

DISCUSSION

Our results showed that MSA-C and MSA-P patients with similar

disease severity and disease duration have structural differences in

the cerebellum and deep gray matter structures, with no differences

between them in cortical thickness. The SVM classifier demonstrated

that subcortical data contribute to the differentiation between MSA

phenotypes, with the putamen, pallidum, cerebellum, thalamus, ventral

diencephalon, and caudate having the greatest contribution.

As stated in the Introduction, most previous conventional MRI

investigations have mainly been focused on studying subtypes

separately, and only a few have directly compared MSA-C and MSA-

P8,15,19–22 and include a control group for comparison.8,15,20,22 In our

work, when directly comparing subtypes, MSA-C patients had larger

atrophy than MSA-P in the left cerebellum, whereas MSA-P showed

reduced gray matter volume mainly in bilaterally in the pallidum and

putamen, but also in left amygdala. These results are in line with previ-

ous studies reporting the expected atrophy in the cerebellum inMSA-C

compared to MSA-P,8,14,20,24 and volume reduction in the putamen in

MSA-P.20 Our findings, also agree with the presence of classical struc-

tural MRI clinical hallmarks involving the cerebellum and striatum that

showed high specificity but lowormoderate sensitivity to differentiate

MSA from other neurodegenerative disorders such as Parkinson’s

disease or Progressive Supranuclear Palsy.35 Indeed, although not lim-

ited to, postmortem examination consistently found severely affected

striatonigral degeneration and olivopontocerebellar atrophy in ofMSA

patients, reflecting the presence of parkinsonian features and ataxia.1

As for cortical graymatter, it has beenmainly studiedusing voxel-based

approaches.8,15 Only Chang et al. found graymatter cortical atrophy in

MSA-C andMSA-P compared to controls, in the insula and frontal lobe

and in the insula, olfactory lobes, and temporal cortex, respectively.8

Using cortical thickness technique, we found that both MSA subtypes

had cortical thinning compared to age-matched HCs in the precentral,

middle temporal gyri, and posterior cingulate. It is worth noting that

the pattern of cortical thinning observed in the contrast with controls

involved different regions for each subtype. The MSA-C patients had

a reduction in orbitofrontal regions, whereas patients with MSA-P

showed greater thinning in the postcentral and parietal regions.

However, differences between subtypeswere probably subtle because

the direct comparison did not reach significance. The lack of difference

in cortical thickness between MSA phenotypes has been also found

in a previous work that used the same approach.18 Similarly, to our

findings they reported significant cortical thinning in the ventromedial

prefrontal and bilateral ventrolateral prefrontal cortices, in MSA-C

compared to controls, but in their work MSA-P did not differ from

controls. We can speculate that increased cortical degeneration in
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TABLE 6 Scores of the predictive signatures

Feature CV-ratio

Sign-based

consistency

Z-score

Cerebellum –71.38 4.71

Putamen 76.43 4.71

Thalamus 43.81 4.70

Ventral DC 24.10 4.66

Pallidum 75.21 4.65

Caudate 19.69 3.99

Accumbens 15.14 3.88

Brainstem –14.85 3.51

Mean cortical thickness –12.18 3.07

Hippocampus 8.53 2.63

Amygdala 5.31 1.79

Note: Grand mean scaling cross-validation ratio mapping and z-score (false
discovery rate [FDR] correction) from sign-based consistency method

(z> 3.28; p< .05 for FDR).

Abbreviations: Cv, cross validation; DC, diencephalon.

prefrontal cortex seen in both studies could be reflecting the contri-

bution of transneuronal degeneration due to the primary cerebellar

degeneration.

Based on the differential vulnerability of the deep gray matter

nuclei, and the fact that cortical thinning is also present in both MSA

phenotypes, we evaluated their discriminating power. We introduced

all subcortical measures and the cortical mean thickness into a super-

vised machine learning algorithm to assess their ability to correctly

determine each patient’s group membership. Methodological explo-

rations were far from the scope of this work, thus we only applied

one single machine learning approach. SVM was chosen because it

is versatile for a wide range of applications, also when few labeled

observations are available, and provides consistent outcomes. Also, to

take the most of the data, a 10-fold CVR method was used to evaluate

the model performance. CVR rotates the test sample across the whole

dataset and for every test sample, the remaining dataset becomes

the training sample. For each split, the test error is computed after

fitting the model over the corresponding training sample. The test

errors from each split are averaged to obtain the average test error.

In this sense, it provides higher performance than if the hold-out

method were used, splitting the data into train and test for once. SVM

classification provided a consistent classification between MSA-C

and MSA-P patients (balanced accuracy 74.2%, specificity 75.0%, and

sensitivity 73.3%) using deep gray matter volume ratios and mean

cortical thickness as features. The cerebellum, putamen, thalamus,

ventral diencephalon, pallidum, caudate, accumbens, and brainstem

were the most contributing features to the classification, whereas

cortical thickness slightly contributes to the model. Remarkably, the

volume ratio of the cerebellum on the one hand and both pallidum

and putamen on the other were the features that most contributed

to each class decision. This finding gives support to the expected role

of the cerebellum when it comes to discriminating between MSA

subtypes, because cerebellar syndrome is a predominant clinical

feature inMSA-C, but it also gives new evidence of thalamus and basal

ganglia contribution. Furthermore, it is interesting to note that only

patients with MSA-P showed volume reduction in limbic structures in

comparison to controls, and that such structures also contribute to the

classification decision. As far as we know, only one previous work has

used machine learning algorithms to differentiateMSA subtypes using

MRI T1 data. In their multicentric work, Huppertz et al. obtained sim-

ilar accuracy (75%) but lower sensitivity (57%) using both gray matter

and white matter volumes as features.9 Their results also highlight the

contribution of the striatum and the cerebellum in distinguishing MSA

subtypes. On the other hand, accuracy values in our work are lower

than those reported in previous investigations focused on distinguish-

ingMSA patients fromPD,9,20,23–25 whichmay be explained by the fact

that the twoMSA subtypes share neuropathological substrates.

In our study, both MSA subtypes had neuropsychological impair-

ment in mental processing speed, attention, executive functions, and

learning, but in addition MSA-P had impairment in VS/VP and global

cognition in comparison to controls. When directly comparing MSA

phenotypes, MSA-P had greater impairment than MSA-C in nam-

ing. Thus MSA-P had more severe cognitive impairment. Similarly,

Kawai et al. reported that in comparison to controls, MSA-P had

impaired visuospatial functions, verbal fluency, and executive func-

tions, whereas MSA-C only had visuospatial deficits.36 These results

agree with our MRI findings showing increased cortical atrophy com-

paredwith controls inMSA-P.

Themain limitation of this study is the small sample ofMSApatients.

This disease is a rare neurodegenerative disease, and it is important

to highlight the difficulty of recruiting larger samples. However, in our

study all patients underwent the same MRI and neuropsychological

protocol. This avoids the heterogeneity of multicenterMRI studies.

In this work, we found volumetric differences in the cerebellum but

also in the putamen and pallidum between MSA subtypes with similar

disease severity and duration. Gray matter atrophy discriminates with

high accuracy MSA-C and MSA-P patients with special involvement of

deep gray matter nuclei and without significant contribution of corti-

cal thinning. In conclusion, although cerebellar atrophy clearly discrim-

inates between subtypes, other subcortical structures have a relevant

contribution.
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