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The dependences of various nanoindentation parameters, such as depth of penetration
d, indentation diametera, deformation zone radiusR, and heighth of hills piled up
around indents, on applied load were investigated for the initial (unrecovered) stage of
indentation of the (100) cleavage faces of MgO crystals by square pyramidal Si tips
for loads up to 10mN using atomic force microscopy. The experimental data are
analyzed using theories of elastic and plastic deformation. The results revealed that
(i) a, R,andh linearly increase withd; (ii) the development of indentation size and
deformation zone and the formation of hills are two different processes; (iii) the load
dependence of nanohardness shows the normal indentation size effect (i.e., the
hardness increases with a decrease in load); and (iv) there is an absence of plastic
deformation involving the formation of slip lines around the indentations. It is found
that Johnson’s cavity model of elastic–plastic boundary satisfactorily explains the
experimental data. The formation of hills around indentations is also consistent with a
new model (i.e., indentation crater model) based on the concept of piling up of
material of indentation cavity as hills.

I. INTRODUCTION

Indentation hardness testing is frequently used to as-
sess the mechanical properties of crystalline and non-
crystalline substances. However, despite numerous
studies devoted to the understanding of the physical na-
ture of hardness, there are several phenomena associated
with indentation hardness and deformation occurring be-
neath and around indents that are poorly understood.
Among the most widely discussed and controversial top-
ics in the area of indentation hardness are (i) the depend-
ence of microhardness on applied load, a phenomenon
known as indentation size effect (ISE),1–12(ii) the nature
of deformation beneath and around indentations,1,11,13–19

and (iii) the mechanism responsible for the appearance of
hills piled up around indents.17,19 The earlier investiga-
tions dealt with microindentation, but recently papers
have also been devoted to the study of nanoindentation
deformations,3,10,17,19,20comparison of deformation in
small volumes with continuum plastic and Hertzian elas-
tic theories,17,19and phase transitions15,16,20,21and twin-
ning induced by indentation deformation.11 Moreover,

with an increase in load or indentation size both a de-
crease9,10,20,22,23and an increase in microhardness5–8,11,12

have been reported. These dependences are known as
normal and inverse ISE, respectively.

The present paper describes an atomic force micros-
copy (AFM) study of (i) the interdependence of various
nanoindentation parameters such as depth of penetration,
indentation diameter, deformation zone size, and height
of hills piled up around indents; (ii) the dependence of
nanoindentation parameters on applied load; and (iii) the
analysis of the experimental results using existing theo-
ries of deformation. The nanoindentation experiments
were performed on the (100) cleavage faces of MgO
crystals for loads up to 10mN, and the indentation
parameters were obtained from AFM images recorded
immediately after deformation.

II. EXPERIMENTAL AND ANALYSIS PROCEDURE

MgO single-crystal samples were obtained by cleaving
along (100) planes of starting crystals (AERE, Harwell,
United Kingdom, from a batch used many years ago for
etching and surface damage studies24,25). The crystals
were kept in a desiccator for a few hours to allow them
to stabilize their cleavage planes prior to indentation ex-
periments andin situ observations by AFM.
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Nanoindentation as well asin situ AFM observations
were carried out at room temperature with relative hu-
midity of 23%, using a commercial Nanoscope III manu-
factured by Digital Instruments, Santa Barbara, CA. The
same AFM tips were used as indenters as well as surface
probes, which enabled the selection of relatively large
flat regions free of cleavage steps for indentation experi-
ments and to followin situ the appearance and evolution
of each indentation individually. Indents were imaged
within 5–10 s after being made, with a “time resolution”
of about 30 s between successive images. The AFM was
operated in contact mode using silicon microfabricated
tips (Nanoprobes, Wetzlar-Blankenfeld, Germany).

The cleaved samples were mounted in the nanoscope
head in such a manner that the indents were always
scanned in the [100] direction. Indentations were made in
regions selected from 15 × 15mm areas. The regions
for indentations were chosen with the criteria that there
were relatively smooth large areas of the cleaved surface,
free of visible cleavage steps, as observed optically. In
such areas large flat strips with cleavage steps running
approximately along the [010] direction could easily be
located as reference for indentation. This procedure for
mounting the sample was adopted in view of the fact that
the hardness of MgO crystals is anisotropic.13,26

In contrast to tapping mode in which a constant test
load cannot be applied uninterruptedly, penetration of a
tip into a specimen surface in the contact mode is well
suited for indentation hardness studies because experi-
mental parameters like test load, indentation time, and
indenter penetration rate can be specified. Moreover, the
resolution of surface features is better in the contact
mode. According to the specifications provided by the
manufacturer, the Si tips were square pyramidal in shape
and had spring constants of 20–100 N/m, resonance fre-
quencies of 200 – 400 kHz, tip radii of 5–10 nm, wedge
inclination angles of 18° (side) and 25° (front), and a
cantilever length of 125mm. Conventional silicon nitride
contact AFM tips were found to be unsuccessful in in-
denting the MgO cleavages due to either their low spring
constant values (up to 0.6 N/m) or their large tip apex
radius (between 20 and 40 nm).

Each indentation experiment entailed the making of an
indent and subsequentin situobservation of its evolution.
Depending on the initial size of the indent and the type of
information expected, the observation lasted for dura-
tions from several minutes to several hours. A number of
different tips of various resonance frequencies and spring
constants were used. Therefore, before each indentation
experiment by a particular tip, indentation parameters
(i.e., cantilever force constant and penetration depth)
were calibrated.

In order to make an indentation and to follow subse-
quent real-time evolution, an image of the surface was
first acquired at the minimum force setpoint. During im-

aging, the lateral scanning was then stopped at a selected
position on the surface and the feedback control discon-
nected. The tip was then driven into the selected position
on the surface of the sample at a particular rate by the
piezoelectric driver, thus allowing it to indent the surface
for a particular dwell time. Immediately after the act of
indentation, the imaging conditions were restored.

A threshold force was found to be necessary to make
an indent. Since in our experiments several different tips
were used for acquiring images and making indents, the
threshold load was determined before every indentation
experiment. Tips which gave threshold pressures (calcu-
lated from applied loadP and nominal tip radiusRtip 4
10 nm) exceeding 3 GPa were not used. In these cases it
was believed that the tip radius was much larger than that
given in manufacturer’s tip specifications. The values of
force pulsesP corresponding to each indentation were
calculated by multiplying the approach distanceX given
by piezoelectric and the tip spring constantK calculated
from its vibration frequencyf. The spring constantK for
a tip was calculated from the relation27 K 4 0.24mcv0

2,
where the cantilever massmc, estimated from manufac-
turer’s tip specifications, is equal to 3.38 × 10−11 kg and
the resonance frequencyv0 4 2pf. Indentations were
made with a constant penetration rate of 10mm/s and a
dwell time of 1 s at peak load.

For some tips the threshold load was also determined
for two successive indentations to check whether a par-
ticular tip had undergone deformation. The values of load
thresholds for successive indentation were found to re-
main essentially unchanged, suggesting that the tips are
not deformed by indentation.

In the present work, only the first indents scanned
immediately after indentation were considered for analy-
sis. Although some “recovery” could have occurred dur-
ing the 5–10 s elapsed between the act of indentation and
the imaging, this time delay is negligible in comparison
with the time delay occurring inex situexperiments in-
volving transfer of specimens, indented separately by a
nanoindenter17 or a microindenter,11 for AFM examina-
tion. Therefore, in contrast to the latter case in which a
large recovery of indents, as noted from their flat bot-
toms, already occurs during the time of transfer, our pro-
cedure ensures the examination of essentially unrecovered
indents. It is worth noting that our procedure is very
similar to that recently followed by Lilleoddenet al.19

The indentation impressions were circular at low pres-
sures of up to about 5 GPa, but they tended to acquire a
somewhat asymmetric four-sided shape at higher loads.
The asymmetry became pronounced when indentations
were made on poorly mounted samples in which a
sample drift usually occurred during indentation and im-
aging. Typical examples of indents produced at two dif-
ferent loads are illustrated in Fig. 1. As seen from this
figure, an indent has a region of protruded material
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around it and the size of this region increases with the
applied load. Moreover, one can clearly see parallel el-
ementary cleavage steps of height 0.29 nm, but no slip
lines are discerned around the indentations.

Nanoindentation deformation data were obtained from
the recorded images of indents. For an indent corre-
sponding to a particular load, the penetration depthd of
the indent, its diametera, the radiusR of deformation
zone, and the heighth of pile up around it were meas-
ured. Figure 2 shows the profile and the three-dimen-

sional view of an indent made with an indentation load of
1.78mN. The various parameters considered for analysis
are schematically illustrated in Fig. 3. Each parameter
was measured twice at the deepest level of theindent,
keeping the tracer parallel to thex and y directions.

The shape and size of features observed from AFM
measurements are always convoluted with the shape of
the probe. In the present case it may be believed that the
convolution effect does not affecth and thatR anda are
measured accurately because their dimensions are much
larger than the tip radiusRtip. One may suspect that the
measuredd values may have systematic errors. However,
according to our estimates these measuredd values are
not altered by more than 5% due to the convolution ef-
fect. The linear dependences ofR, a,andh on d in the
entire range lends support to this inference.

FIG. 1. Typical examples of indents produced at two different loads:
(a) 1.12mN, (b) 2.22mN. It may be noted that an indent has a region
of protruded material around it. With reference to vertical elementary
cleavage steps of height 0.29 nm it may be seen that no slip traces are
produced around the indentation. In the upper part of (b) the large gray
area on the cleavage surface shows material “spilt out” from the in-
dentation hill. The height of the layer of this spilt out material is also
0.29 nm.

FIG. 2. Profile of an indent made at a load of 1.78mN: (a) indentation
profile showing measurements of indentation depth (dark markers),
indent diameter (gray markers), and hill height around indents (white
markers); (b) image of indent. Note that a hill is not usually symmetri-
cally developed around the indent, as seen from (b).
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For data analysis, an arithmetic average was taken for
measured depthd while geometric averages were taken
for a, R,andh. In the latter case, especially fora andR,
arithmetic averages, which were essentially not much
different from the geometric averages, could also have
been used. However, in view of large differences in the
height of hills around the indents alongx andy directions
(hy/hx up to 7) at high loads, it was thought that perhaps
it would be more reasonable to use geometric averages in
the analysis of the data.

III. RELATIONSHIP BETWEEN PENETRATION
DEPTH AND OTHER INDENTATION
PARAMETERS

The relationships between the measured indenter pen-
etration depthd, the indentation diametera, the defor-
mation zone radiusR, and the average heighth of

indentation hills are shown in Fig. 4. It is obvious from
the figure that these relations may be expressed by the
equation

y 4 y0 + kd 4 k(d0 + d) 4 kd* , (1)

wherek is the ratio ofy to d for y > y0, d0 is the threshold
value of d beyond which the linear relationships are
valid, andd* 4 d0 + d is the corrected indentation depth.
It was also found thath linearly increases witha for a >
a0. The values of different parameters are given in
Table I.

As seen from Table I, the values ofd0 obtained from
R(d) and a(d) plots are 26.6 and 26.3 nm, while that
obtained from theh(d) plot is practically zero. Using the
value of a0 and the correspondingd0, one obtains the
value of the semiapical angleb 4 tan−1 (a0/2d0) 4 36°
± 3°. This value of the angleb is somewhat higher than
that given in the catalog of tips. A higher value ofb from
the indents and the observation of thresholdd0 are due to
elastic recovery of the indent as load is released.

It is interesting to note that the ratioR0/r0 (also the
ratio R/r) of the radius of deformation zones to that of
indents is 3.3 (i.e.,R/a 4 1.67). This value is comparable
with the ratio of size of dislocated region and diagonal of
Vickers indenter in the range of microindentations into
the (100) face of Fe–3% Si.17 However, in contrast to
indentation deformation involving dislocations in Fe–3%
Si, no slip lines indicating the generation of dislocations
on the surface surrounding indents were observed.

The above results reveal that, althougha, R, and h
linearly increase withd, there are two different processes
involved during indentation. The first is associated with
the development of indentation size and deformation
zone, while the second is associated with the formation
of hills which occurs as soon as the thresholdd0 is at-
tained. Moreover, from theR(d) and a(d) relations, it
may be seen that the deformation zone sets in (i.e.,R ù 0)
when a ù −5.4 nm. Thisa value probably originates
from measurement errors.

It is interesting to note that, although the elastic modu-
lus E of Si is lower than that of MgO, Si tips produce
indentation imprints on the (100) face of MgO. From a
consideration of the values of the elastic moduli [E(Si) 4
166 GPa andE(MgO) 4 286 GPa28] it is expected that
Si tips undergo plastic deformation which will lead to an
increase in the tip radius during successive indentations.
In our experiments no such changes in the radius of a tip

FIG. 3. Schematic illustration of various parameters considered for
analysis and definition of elastic and plastic zones. In the range of load
used during indentation of MgO here, no evidence of plastic defor-
mation, as deduced from lack of slip traces around the indents, was
found. Therefore, in view of the lack of more information about the
plastic zone, the term deformation zone has also been used in the text.

FIG. 4. Dependence of indentation diametera, radiusR of deforma-
tion zone, and average heighth of indentation hills on the depth of
penetrationd. Note positive values of intercepts fora(d) and R(d)
plots.

TABLE I. Values ofy0, k, andd0 of Eq. (1).

Dependence
Threshold

parameter (nm)
Slopek
(nm−1) d0 (nm)

Correlation
coefficient

a(d) a0 4 43.36 1.46 29.68 0.9292
R(d) R0 4 72.60 3.51 26.34 0.9725
h(d) h0 4 0.066 0.071 0.93 0.8368
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were recognized from the load threshold checked before
and after indentation. To explain this observation wecon-
sider the reduced tip–crystal elastic modulus, given by

1

E*
=

~1 − nm
2!

Em
+

~1 − ni
2!

Ei
, (2)

whereE denotes the elastic modulus,n is Poisson’s ratio,
and the subscripts m and i denote the material and the
indenter, respectively. Using the values ofE(Si) and
E(MgO) given above and takingnm 4 ni 4 0.3, one
obtainsE* 4 115 GPa. This reducedE* is lower than the
values of bothE(Si) andE(MgO). This suggests that the
ability of indentation of a tip of elastic modulusE lower
than that of the crystal is determined by the reduced
tip–crystal elastic modulusE*.

IV. LOAD DEPENDENCE OF PENETRATION
DEPTH AND OTHER PARAMETERS

A. Load versus a2, R2, and d *2 relations

For rigid plastic materials, Tabor29,30 gives a relation
between indentation loadP and indentation diametera
for a conical or pyramidal indenter in the form

P 4 HMpa2/4 4 0.785HMa2 , (3)

whereHM is the Mayer hardness of the material. In Eq.
3 it is assumed thatH ≈ 3Y,whereY is the yield stress of
the material. On the other hand, for an elastic material
subjected to conical punching Sneddon gives the
relation4,30

P =
2E*d*2

p~1 − n2!
tan b = 0.506E*d*2 = 0.237E*a2 , (4)

wheren is Poisson’s ratio,b is the semiapical angle of
the cone,E* is the reduced elastic modulus of the system,
and a/d* 4 a/(d + d0) 4 1.461 (see Table I). In this
equation we have substituted the values ofb 4 36°
andn 4 0.3.

According to Johnson’s cavity model,17,19,31the rela-
tion between applied loadP and deformation zone radius
R is given by

P 4 2pY R2/3 4 2.1Y R2 , (5)

where Y is the yield point of the material under
investigation.

Figure 5 shows the plots ofP againsta2 andR2, while
the different parameters calculated from the above equa-
tions are given in Table II. It may be seen from the figure
that, as expected from the three relations Eqs. (3)–(5),P
is linearly related witha2 andR2.

Table II shows that the Meyer hardnessHM obtained
from Tabor’s relation is lower by a factor of 10–20 than
the literature value,5,13,26 which lies between 4 and
8 GPa. The value ofE* predicted by Sneddon’s model
for an elastic material is lower than the reduced value by
a factor of 80. However, the value of the yield pointY 4
55 MPa obtained from Johnson’s cavity model is close to
the value of 80 MPa reported in the literature.32 From
these results of the analysis it may be concluded that
Tabor’s model for perfect rigid plastic solids and Sned-
don’s model for perfect elastic materials do not explain
the nanoindentation data on MgO crystals and that
Johnson’s cavity model reasonably well describes the
experimentalP(R) data.

It is interesting to note that, despite the fact that Ta-
bor’s and Sneddon’s models are not valid, the values of
a0 andd0 given in Table II are in very good agreement
with those deduced from the plots of Fig. 1 (see Table I).
However, although Johnson’s cavity model reasonably
describes the experimentalP(R) data, the value ofR0 is
about2⁄3 of the value obtained from theR(d) plot (see
Fig. 1 and Table I). Moreover, from the experimental
P(R) data Johnson’s cavity model gives the value of yield
stressY which is lower than the experimental value by a
factor of about 1.5. These discrepancies may arise due to
two reasons: (i) the outer boundary of indentation hills,
from which R values were measured, probably does not
represent the exact boundary of the deformed zone
around an indenter and is lower by a factor of about 1.5,
and (ii) assuming that Johnson’s cavity model correctly
predicts the yield stressY, the literatureY value is higher
than the true value by a factor of 1.45.

B. Hertzian theory of elastic contacts

Following Tabor29,30and Hammond and Armstrong,33

the relation between hardness stresssH 4 P/(pa2/4) and

FIG. 5. Plots of the dependence ofP on a2 andR2, according to Eqs.
(3)–(5): curve a, Tabor’s and Sneddon’s models; curve R, Johnson’s
cavity model.
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hardness straina/2Rtip, according to the classical Hertzian
theory, may be given by

sH =
4

3p
E* ~a/2Rtip! , (6)

where the reduced elastic modulusE* is given by Eq. (2).
Figure 6(a) shows the experimental data of the

dependence ofsH on a/2Rtip and the predicted depend-
ence according to Eq. (6) for two values ofE*/1000 4
115 MPa andE*/100 4 1.15 GPa. It may be seen from
the figure that the experimentalsH values lie between the
two curves withE* values which are lower by a factor of
102–103. Moreover, in contrast to a predicted linear in-
crease insH with a/2Rtip by Eq. (6), the experimentalsH

values steadily decrease with an increasea/2Rtip.
According to the Hertzian theory for perfect elastic

contacts with a spherical tip of radiusRtip, the relation
between loadP and penetration depthd* below the yield
point is given by31

P = 4⁄3 E*Rtip
1/2del

3/2 , (7)

where del 4 d* is the penetration depth for a perfect
elastic contact.

Figure 6(b) shows the plot of the dependence ofP on
del

3/2. The figure shows that the data are well described
by relation (7). The slope of the plot is 4.86 N/m3/2 which
givesE* 4 36,450 GPa for the tip radiusRtip 4 10 nm.
This value is higher than the actual value ofE* 4
115 GPa by a factor of 320.

Thus, it may be concluded that the Hertzian theory
does not explain the experimental results satisfactorily
and that there is a large disgreement in the estimated
values ofE*.

C. Indentation size effect

From Fig. 6(a) it may be seen that nanohardnessH 4
sH decreases with an increase in indentation sizea (or
indentation depthd* and loadP). In order to explain this
type of load dependence of microhardness, several ap-
proaches have been used in the literature: Hays and Ken-
dall’s approach involving a threshold load to induce
plastic deformation,34 the elastic/plastic deformation re-
spond (EPD) model of Bullet al.,5 the proportional
specimen resistance (PSR) model of Li and Bradt,6–8 the
geometrical scaling model of Ma and Clarke,11 and the

strain gradient plasticity model.11,35,36 Most of these
models involve plastic deformation during indentation.
The geometrical scaling and the proportional specimen
resistance models are essentially the same. In these mod-
els the indenter edges determine the load dependence of
hardness, and nothing is implied about the presence or
generation of dislocations in the specimen during the
penetration of an indenter into its surface. The strain
gradient plasticity theory is for plastically deforming ma-
terials and is based on the presence of dislocations.

Analysis of experimental data for silver showed11 that
the strain gradient plasticity theory and the geometrical
scaling model give similar fits of the data. Similarly,
analysis of experimental data on PbS, BaFCl, and
ZnSnAs2 revealed10 that the EPD and the PSR models
give similar fits. Thus, it may be concluded that the EPD,
PSR, geometrical scaling model, and strain gradient
theory essentially give similar results and that the pres-
ence of dislocations or the occurrence of slip and the
motion of dislocations along slip bands is not essential
for these models to describe the load dependence of
hardness.

In view of the fact that slip traces were not observed on
the (100) face of MgO, we analyzed our data for the size
dependence ofsH by following the general equation of
models which do not involve the generation or presence
of dislocations. This equation is of the following form:6–8,11

P/a2 4 A1 + B1/a , (8)

where the first termA1 denotes the load-independent part
of hardness while the second termB1/a represents the
load-dependent hardness andA1 andB1 are material con-
stants. For a spherical indenter,sH0 4 4A1/p is the load-
independent hardness. Figure 7 illustrates the plot of
sH 4 4P/pa2 against 1/a, which yieldssH0 4 294 MPa.
In comparison with the reported microhardness, this
value is very low.

The hardness stresses involved during the nanoinden-
tation of the (100) face of MgO lie between 300 and
900 MPa. These stresses are higher by a factor of 4–12
than the reported yield pointY32 and are lower by a factor
of 10–25 than the reported microhardness of MgO crys-
tals.5,13,26This means that our nanoindentation stresses
lie between stresses involved in inducing plastic defor-
mation and producing microindentations accompanied
by plastic deformation (slip lines). However, since we
did not observe slip traces due to the generation of dis-

TABLE II. Values of intercept, slope, threshold, and estimated values of stress parameters.

Dependence
Intercept

(mN)
Slope
(MPa)

Threshold
parameter (nm)

Correlation
coefficient

Estimated stress
parameter (MPa)

P(a2) 0.491 330.55 a0 4 38.54 0.9659 HM 4 420
P(R2) 0.267 115.27 R0 4 48.16 0.9150 Y4 55
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locations, it may be concluded that the generation of
dislocations is not essential for the observation of ISE
during nanoindentation. The large discrepancy between
nano- and microhardness is due to the assumption that
the ratio of hardnessH to yield stressY is 3 [for example,
in Tabor’s model for rigid plastic solids; Eq. (3)]. For
most crystals H/Y ≈ 35.30,37There is one more difference
between hardnesses determined from nano- and micro-
indentations. Ourin situexamination of nanoindentations
revealed that they are recovered after sufficiently long
periods of time and the recovery time depends on the
value of the initially applied indentation load.38 In con-
trast to this, microindentation always produces perma-
nent deformation (plastic deformation and cracks) and
strictly follows the definition of hardness.

It is usually found that, in Meyer’s law (i.e.,HM 4
A0a

n, whereA0 is a material constant), the exponentn < 2
andn > 2 for normal and reverse ISE, respectively. In the
case of normal ISE, the value ofn < 2 has been sug-

gested3,39,40to be associated with work-hardening char-
acteristics of the material where generation, mobility,
and multiplications of dislocations are involved. A pos-
sible cause for the increase in hardness at whichn Þ 2 is
a decreasing size of the dislocation source.3 Apart from
the elastic stage in which Hooke’s law holds (i.e., ratio of
stress to strain is equal to Young’s modulusE), the
stress–strain behavior of plastic crystals shows at least
four stages with differing work-hardening coefficients
u.41 The hardening coefficients in stages I and II are
constant and are associated with easy glide and multiple
slip, respectively. However, in stages III and IV the hard-
ening coefficients decrease with increasing strain. These
latter stages of decreasing work hardening involve cross
slip and redistribution of defects (dislocations and point
defects) produced during deformation into configurations
with lower energy (polygonization and annihilation of
dislocations).

Here we are not concerned with the strain-independent
hardening coefficients of stages I and II. However, we
consider the strain-dependent hardening coefficients of
stages III and IV, because there appears a similarity be-
tween stages III and IV of stress–strain curves and the
dependence of hardness stress on hardness strain. Fol-
lowing Gil Sevillano,41 the dependence of coefficient
u 4 sH/(a/2Rtip) on hardness stresssH may be given by

u 4 u0(1 − sH/sHs) , (9)

whereu0 corresponds to the hardening coefficient at zero
stress andsHs is a saturation stress.

Figure 8 shows the plot of the dependence ofu on sH.
From the plot one obtainsu0 4 −147.7 MPa andsHs 4
260.4 MPa. In contrast to positive values ofu0 observed
in stress–strain curves where strain hardening takes
place, in the present caseu0 is negative. The negative
value of u0 means that softening occurs during normal
ISE. The value ofsH0 is comparable with the value of
load-independent hardnesssH ata → ` (see Fig. 7). One

FIG. 6. Verification of Hertzian theory from plots of the dependence
of (a) hardness stresssH 4 P/(pa2/4) on hardness straina/2Rtip [Eq.
(6)] and (b) loadP on d3/2 [Eq. (7)]. In (b) the point indicated by the
+ symbol was not taken into consideration during analysis.

FIG. 7. Dependence of hardness stresssH 4 4P/pa2 on inverse of
indentation diametera.
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also finds thatsHs 4 1.8 × 10−3G (where the shear
modulusG 4 148 GPa for MgO). Interestingly, the ratio
sHs/G agrees well with the value of approximately 5 ×
10−3 in stage III for face-centered-cubic metals.41

From the above, it may be concluded that the decrease
in nanobardnesssH with increasing indentation sizea is
a result of strain softening process. The observed absence
of slip lines around indentation impressions suggests that
the softening process involves redistribution of point de-
fects produced during deformation.

V. DEPENDENCE OF HILL HEIGHT ON OTHER
INDENTATION PARAMETERS

A. Indentation hills and Johnson’s cavity model

From an atomic force microscopy study, Harveyet al.17

reported that the displacement of material as hills around
indents on a surface may be described by Johnson’s cav-
ity model and Lockett’s model based on the slip-line
theory for rigid plastic materials. These authors found
that Johnson’s cavity model predicts satisfactorily the
profiles of the dependence of magnitudes ofh on distance
r from the indent center. Here we compare the experi-
mental data on the formation of hills around indents on
MgO with the predictions of the cavity model.

The relationship between the displacementh of the
material piled up as a hill, the indentation diametera, and
the deformation zone radiusR is given by17

h~a!

a
=

2p~1 − n!Y

E* SR3

a3 − 1⁄8D , (10)

where we have substituted indentation diametera 4 2r
for the indentation radiusr in the original equation of
Ref. 17 and the combined elastic modulusE* is given by
Eq. (2). In principle, this equation is valid only for
R/a $ 1⁄2 (i.e., whenh(a)/a ù 0).

Substitution of the values ofE* 4 115 GPa (Sec. III.
A), Y 4 80 MPa,32 andn 4 0.3 in Eq. (10) yields

h = 3.06 × 10−3a SR3

a3 − 1⁄8D . (11)

SinceR/a is practically a constant quantity, hill height
h(a) increases linearly witha with a slope 3.06 ×
10−3[(R/a)3 − 1⁄8].

The slope of theh/aplot from the experimental data is
0.078, which gives the ratioR/a 4 2.95. ThisR/a ratio is
higher by a factor of 1.8 than the ratio from the experi-
mental data shown in Fig. 4. This difference suggests that
Johnson’s cavity model relatingh and a in the form of
Eq. (11) overestimatesR (becausea can be measured
with greater accuracy).

B. Indentation crater model

According to this model, the material of the indenta-
tion cavity of volumeVind is forced out from the crystal
to form a uniform elevated rim of volumeVrim around the
cavity. The hill height may be given by (see the Appendix)

h =
2d

3p[~2R/a!2 − 1#
. (12)

SinceR/a as a constant in the present case,h linearly
increases withd. Equation (12) is valid forR/a> 1⁄2 when
h < `. The linear dependence ofh on d may be observed
from Fig. 1.

The slope ofh(d) plot is 2/3p[(2R/a)2 − 1)] 4 0.071
(see Table I), which givesR 4 a. Thus, this model re-
veals that the experimentally measuredR values in our
case are higher by a factor of 1.67. This means that, in
contrast to Johnson’s model [Eq. (11)] which overesti-
matesR, Eq. (12) underestimatesR. This discrepancy is
probably due to higher values ofR and lower values ofh
in Eq. (12) than the values measured from experiments.

VI. CONCLUSIONS

From the present study on the nanoindentation of
(100) face of MgO crystals at loads up to 10mN, the
following conclusions can be drawn:

(1) Indentation diametera, radiusR of plastic zone,
and the heighth of hills piled up around indents linearly
increase with the indentation penetration depthd.As sug-
gested by the two threshold values for the penetration
depth, the indentation involves two different processes.
The first is associated with the development of indenta-
tion size and deformation zone (threshold penetration
d0 4 29.7 nm), while the second is associated with the
formation of hills which appear only whend > d0.

(2) A comparison of various models, considered in
this work to analyze the experimental dependence of de-
formation parametersa, R, and d on indentation load,

FIG. 8. Dependence of hardening coefficientu 4 sH/(a/2Rtip) on
hardness stresssH.
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shows that Johnson’s cavity model of elastic–plastic
boundary explains the experimental data satisfactorily.
Tabor’s model for plastic materials, Sneddon’s model for
perfect elastic materials, classical Hertzian theory, and
Hertzian theory for perfect elastic contacts are not valid
during the nanoindentation of MgO.

(3) Nanoindentation hardness of the (100) face of
MgO crystals is lower by a factor of 10–25 than those
during microhardness measurements while its load-
independent nanohardness is 294 MPa. This large dis-
crepancy between nano- and microhardness is due to the
assumption that the ratio of hardnessH to yield stressY
is 3 instead of 35 for many single crystals undergoing
plastic deformation.

(4) Indentation deformation of MgO crystals at low
loads represents a typical example of the load depend-
ence of hardness representing normal indentation size
effect (i.e., hardness increases with a decrease in load)
and is associated with the strain-softening of the material
during indentation. However, in the range of loads used
in the indentation experiments here, no evidence of plas-
tic deformation of MgO crystals was observed.

(5) The experimental data on the interdependence be-
tween the hill heighth, the indentation diametera, and
the deformation zone radiusRare satisfactorily described
by Johnson’s cavity model. A new model based on the
concept of displacement and piling up of indented ma-
terial (indentation crater model) is also found to interpret
the experimental data well. However, Johnson’s cavity
model somewhat overestimates while the indentation
crater model somewhat underestimates the value of the
radius of deformed zone.
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APPENDIX: INDENTATION CRATER MODEL

The main idea of this model is that the material of the
indentation cavity is forced out from the crystal to form
a uniform elevated rim around the cavity (Fig. A1). If the
density of the piled up material in the rim is equal to that
of the crystalline solid, the volumeVrim of the piled rim
is equal to the volumeVind of the indentation cavity.

Since at moderate loads the observed indentation cavi-
ties are conical, we consider the case of conical inden-
tation. If this cavity has a depthd and diametera with
respect to the indented surface, the volumeVind of the
indentation cavity may be given by

Vind 4 (p/12)a2d . (A1)

Let us assume that in cross section the arc-shaped rim has
a base of widthd and a maximum heighth while its
circumference around the cavity at the point of maximum
height isl 4 p(a + d) 4 p(R + a/2). Then the volume
of the rim may be given by (see Fig. A1)

Vrim = ~p/2!lDh cosf

= ~p2/2!Dh~R + a/2! cosf . (A2)

With reference to point A in the circle of Fig. A1, one
obtains

D cosf 4 d 4 R − a/2 . (A3)

Substituting this value ofD cosf in Eq. (A2), one gets

Vrim = ~p2/2!h~R + a/2!~R − a/2!

= ~p2/2!h~R2 − a2/4! . (A4)

Taking Vind 4 Vrim, from Eqs. (A1) and (A4) one may
express the hill (rim) height in the form

h =
2d

3p@~2R/a!2 − 1#
. (A5)

This is a general expression relating hill heighth with
other measureable parameters like indentation depthd,
indentation diametera, and radiusR of the de-
formed zone.

It may be seen that Eq. (A5) is valid forR > a/2 when
h < ` and h decreases with increasingR/a. However,
small values ofh do not affect the values ofR/a appre-

ciably whereas small changes inR/a lead to enormous
changes inh. Immediately after indentation if a hill starts
flowing (spreading) laterally on the indented surface im-
mediately after indentation, it should lead to an increase
in the width of the hill rim (i.e., increase inR) as well as
a decrease in its heighth. In this case the lower experi-
mental h(d) values are expected to give the rightR/a
values. It is also possible that the rim volumeVrim is
higher thanVind by a few percent due to introduction of
point defects in the material displaced from the indent.
This results in an increase in bothh andR. In this case the
higher experimentalh(d) values are expected to giveR/a
values which are higher than those predicted from Eq.
(A5). Thus, according to Eq. (A5), depending on whether
the lateral spreading process or the increase in the vol-
ume of the material displaced by the indenter is predomi-
nant, the dependence of hill heighth on indentation depth
d is expected to giveR/a values which can be higher or
lower than the experimental values.

Usually, the value of 2R/a is approximately a constant
quantity. Consequently, theh(d) dependence is linear.
Similarly, when the ratioa/d is a constant as in the pres-
ent case,h(a) is also linear. However, in time-dependent
processes like indentation creep and indentation recov-
ery, where the dependences ofa (also R) and d on the
time of relaxation after the application of a particular
load are different,h(d) dependence may not be linear. In
such cases it is better to use the general expression (A5).

FIG. A1. Schematic illustration of the indentation crater model. The
material of the indentation cavity is piled up as a circular elevated
arc-shaped rim in cross section. The width of the base of the rim isd,
and the maximum height ish.
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