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A B S T R A C T   

Nucleic acids therapeutics provide a selective and promising alternative to traditional treatments for multiple 
genetic diseases. A major obstacle is the development of safe and efficient delivery systems. Here, we report the 
synthesis of the new cationic gemini amphiphile 1,3-bis[(4-oleyl-1-pyridinio)methyl]benzene dibromide 
(DOPY). Its transfection efficiency was evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs), a 
nucleic acid tool for gene silencing and gene repair developed in our laboratory. The interaction of DOPY with 
PPRHs was confirmed by gel retardation assays, and it forms complexes of 155 nm. We also demonstrated the 
prominent internalization of PPRHs using DOPY compared to other chemical vehicles in SH-SY5Y, PC-3 and 
DF42 cells. Regarding gene silencing, a specific PPRH against the survivin gene delivered with DOPY decreased 
survivin protein levels and cell viability more effectively than with N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-tri-
methylammonium methylsulfate (DOTAP) in both SH-SY5Y and PC-3 cells. We also validated the applicability of 
DOPY in gene repair approaches by correcting a point mutation in the endogenous locus of the dhfr gene in DF42 
cells using repair-PPRHs. All these results indicate both an efficient entry and release of PPRHs at the intra-
cellular level. Therefore, DOPY can be considered as a new lipid-based vehicle for the delivery of therapeutic 
oligonucleotides.   

1. Introduction 

The use of nucleic acids therapeutics has emerged as a promising 
gene therapy approach to modulate any gene of interest for the treat-
ment of multiple diseases such as cancer [1,2] neurological [3-6], car-
diovascular [7,8] or hematological [9,10] disorders, among others. The 
advances in this field have eventually led to the approval by the Food 
and Drug administration (FDA) of several nucleic acid tools [11], 
including antisense oligonucleotides (ASOs) [12-18], small interfering 
RNAs (siRNAs) [19-21], aptamers [22] or the very recent mRNA vac-
cines against COVID-19 [23,24]. 

Despite the great efforts made during the last decades, the 

development of safe, efficient and tissue-specific delivery systems still 
remains as one of the major limitations of gene therapies. In general, 
delivery vectors can be classified into viral, physical or chemical systems 
[25]. On the one hand, although viral vectors exhibit high transduction 
efficiencies, they can generate mutations in the DNA or undesired 
immunogenic responses. Moreover, the laborious production and the 
restriction on the transgene size also represent some of the limitations of 
viral vectors [26]. On the other hand, physical systems, which perturb 
the cell membrane to enforce the entry of nucleic acids into the cell, are 
safer but present lower efficiency than viral vectors and they are difficult 
to implement for internal organs [27]. Finally, chemical systems (e.g., 
calcium phosphate, lipoplexes or polyplexes) are safer than viral vectors, 
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easier to produce and susceptible to modifications to enhance targeting 
specificity. However, some of these chemical alternatives present low 
levels of internalization or some toxicity [28-30]. 

During the last decade, our laboratory of Biochemistry and Molec-
ular biology has developed a new nucleic acid tool called PolyPurine 
Reverse Hoogsteen hairpins (PPRHs) [31,32]. PPRHs are non-modified 
DNA hairpins, whose structure is formed by two antiparallel poly-
purine mirror repeat domains linked by a five-thymidine loop (5T) and 
bound intramolecularly by Hoogsteen bonds. PPRHs are designed to 
hybridize to a specific polypyrimidine sequence in the dsDNA by Wat-
son–Crick bonds, thus producing a triplex structure. This conformation 
displaces the fourth strand of the complex and leads to the inhibition of 
the target gene. The ability of PPRHs as gene silencing tools has been 
validated in a wide range of target genes involved in cancer progression 
both in vitro [33-42] and in vivo [35]. Furthermore, PPRHs have also 
demonstrated their potential to correct point mutations in the gDNA. 
The design of these PPRHs, called repair-PPRHs, consist of a polypurine 
hairpin that bears at its 5′-end an extension sequence homologous to the 
sequence to be repaired but containing the wild-type nucleotide instead 
of the mutated one [43,44]. Repair-PPRHs were able to correct at the 
endogenous level two collections of Chinese Hamster Ovary (CHO) cell 
lines bearing different mutations in either the dihydrofolate reductase 
(dhfr) [45] or adenine phosphoribosyltransferase (aprt) [46] loci. 

As in other gene therapy methods, internalization of PPRHs is vital to 
obtain the desired effect. Regarding in vitro gene silencing approaches, 
we have routinely been delivering PPRHs in various cancer cell lines 
[35,36] using the N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethy-
lammonium methylsulfate (DOTAP) cationic liposome, which is 
commercially available [47,48]. However, the delivery of PPRHs in 
hard-to-transfect SH-SY5Y neuroblastoma cells was unsuccessful. 

More than a decade ago our Organic Chemistry group created a new 
family of cationic gemini surfactants. The dicationic amphiphiles are 
formed by two cationic heterocycles -either imidazolium [49], pyr-
idinium [50] or bipyridinium rings [51] linked by a 1,3-dimethylene-
phenylene spacer, where the cationic rings incorporate long alkyl 
chains of different lengths and functionality, their properties being 
driven by their specific structural composition. Over the years we have 
reported the ability of this class of amphiphiles to behave as ionic liquid 
crystals [52], their self-assembly into micelles as anion nanocarriers 
[53], as well as their use for the synthesis and stabilization of gold 
nanoparticles for drug delivery [54,55]. The bis cationic amphiphiles 
self-assemble to form nanostructured supramolecular hydrogels [56] for 
the topical treatment of Psoriasis and delivery in skin diseases [57,58] 
able to act as enhancers of skin permeation [59]. Both cationic amphi-
philic incorporating nanoparticles [60] and hydrogels [61] have proven 
to be efficient deliverers of photosensitizers and their selective photo-
toxicity in cancer cells makes them promising nanomaterials for tar-
geted photodynamic therapy [62]. 

The present work exemplifies the synergy created by the combina-
tion of the expertise of our two groups. Thus, with the aim to develop a 
non-viral vehicle capable of delivering PPRHs in hard-to-transfect cells, 
we designed and synthesized a new liposome formulation called 1,3-bis 
[(4-oleyl-1-pyridinio)methyl]benzene dibromide (DOPY) testing its ca-
pacity to form complexes with PPRH molecules. Due to its gemini 
cationic nature, the assemblies from DOPY are able to interact with 
polyanionic PPRH molecules, with the oleyl moieties aiding their cell 
uptake. In addition, we analyzed the efficiency of DOPY in gene 
silencing approaches by inhibiting the survivin gene in both PC3 and SH- 
SY5Y cancer cells using PPRHs. Finally, we validated DOPY as a trans-
fection agent for gene repair applications by correcting a point mutation 
in the dhfr gene in CHO cells using repair-PPRHs. 

2. Materials and methods 

2.1. Chemicals and instrumentation 

Oleyl alcohol, 4-chloropyridine hydrochloride, sodium hydride 
(NaH), α,α’-dibromo-m-xylene, dimethyl sulfoxide (DMSO), acetonitrile 
and deuterochloroform (CDCl3) were purchased from Sigma-Aldrich. 
Ethyl acetate (AcOEt), hexane, sodium sulfate anhydrous (Na2SO4) 
and silica gel 60 were purchased from Carlo Erba. All chemicals were 
analytical grade and used directly without any further modification. 

Evaporation of solvent was accomplished with a rotatory evaporator. 
Thin-layer chromatography was done on SiO2 (silica gel 60 F254), and 
the spots were located by either an UV light or a 1% KMnO4 solution. 
Flash column chromatography was carried out on SiO2 (silica gel 60, 
230–400 mesh). 

NMR spectra were recorded at 400 MHz (1H) and 100.6 MHz (13C) on 
a Varian Mercury in the Scientific and Technologic Center of the Uni-
versity of Barcelona (CCiT-UB); chemical shifts are reported in δ values, 
in parts per million (ppm) relative to Me4Si (0 ppm) or relative to re-
sidual chloroform (7.26 ppm, 77.00 ppm) as an internal standard. Data 
are reported in the following manner: chemical shift, multiplicity, 
coupling constant (J) in hertz (Hz), integrated intensity. 

The hydrodynamic diameter of the liposomes was determined by 
dynamic light scattering (DLS) at a fixed scattering angle of 90◦ with a 
Zetasizer Nano (Malvern, United Kingdom) at 25 ◦C. To perform this 
measurement, lipoplexes were formed by mixing aqueous solutions of 
DOPY (2.1 uM) and PPRH against survivin (100 nM), mimicking the 
conditions of transfection. Nanoparticles were dissolved in 200 µL water 
and brought to 1 mL for the measurements. Particle size distribution was 
determined by the polydispersity index (PI). The ζ-potential was 
measured by Doppler microelectrophoresis using a Zetasizer Nano 
(Malvern, United Kingdom). For this measurement, the final volume of 
the lipoplexes was 1.2 mL. 

Transmission Electron Microscopy (TEM) images were obtained in 
the CCiTUB. Samples of DOPY, PPRH, and DOPY-PPRH complexes were 
prepared in the same molar proportions used in transfection experi-
ments. Copper grids with carbon coating were irradiated with a UV glow 
discharge during 30 s under vacuum. The grid was placed onto a 5 μL 
drop of the sample for 1 min. The grid was then placed onto a 20 μL drop 
of milli Q water for 1 min to rinse excess sample and then placed onto a 
20 μL drop of a 2% uranyl acetate solution in water for 1 min. Excess 
solution was then removed with filter paper and allowed to dry over-
night in a desiccator at 24 ◦C. Samples were observed in a Tecnai Spirit 
microscope (FEI, The Netherlands) equipped with a LaB6 cathode. Im-
ages were acquired at 120 kV and at room temperature with a 1376 ×
1024-pixel Megaview CCD camera. 

2.2. Preparation of 4-Oleyloxypyridine 

Oleyl alcohol (1.3 mL, 4.09 mmol) was added dropwise to a stirring 
suspension of NaH (115 mg, 4.55 mmol, 95%) in dry DMSO (3 mL). After 
45 min, crude 4-chloropyridine (800 mg, 7.05 mmol) (compound 1, 
Fig. 1A), freshly liberated using KOH (2 N) from its hydrochloride salt, 
was added at once. The stirring was continued overnight at room tem-
perature. Water was added and the mixture was extracted with AcOEt (3 
× 10 mL), The combined organic extracts were dried over Na2SO4, 
filtered and concentrated at reduced pressure. Flash chromatography 
(from 3:2 to 1:1 hexane–EtOAc) afforded 4-oleyloxypyridine (510 mg, 
50%) as a colourless oil. The structure of the 4-oleyloxypyridine (com-
pound 2, Fig. 1A) was characterized and confirmed by 1H NMR and 13C 
NMR spectroscopy (Figure S1). 

1H NMR (400 MHz, CDCl3) δ: 8.39 (d, J = 5.0 Hz, 2H), 6.77 (d, J =
5.0 Hz, 2H), 5.30–5.38 (m, 2H), 3.98 (t, J = 6.6 Hz, 2H), 1.93–2.04 (m, 
4H), 1.78 (quint, J = 6.6 Hz, 2H, H-6), 1.40–1.47 (m, 2H), 1.20–1.37 (m, 
20H),0.87 (t, J = 7.0 Hz, 3H). 

13C NMR (100.6 MHz, CDCl3) δ: 165.1, 150.9, 129.98, 129.7, 110.2, 
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67.9, 31.9, 29.7, 29.7, 29.5, 29.4, 29.3, 29.27, 29.2, 28.9, 27.2, 27.1 
25.90, 22.7, 14.1. 

2.3. Preparation of DOPY 

α,α’-Dibromo-m-xylene (166 mg, 0.61 mmol) was added to a solution 

of 4-oleyloxypyridine (423 mg, 1.22 mmol) in acetonitrile (7 mL), and 
the mixture was heated at reflux for 24 h. After cooling at room tem-
perature, the suspension was filtered off, and the resulting gum was 
washed with acetonitrile affording 1,3-bis(4-oleyloxy-1-pyridinio-
methyl)benzene dibromide (DOPY) (400 mg, 69%, MW 956 g/mol), as 
a sticky yellowish solid (Fig. 1A). The structure of DOPY (Figure S2) was 

Fig. 1. DOPY synthesis and binding properties. (A) Schematic representation of the synthesis of 1,3-bis(4-olelyl-1-pyridiniomethyl)benzene dibromide (DOPY). 
Compounds 1 and 2 correspond to free pyridine and its oleyl ether, respectively. (B) Gel retardation assay with increasing amounts of DOPY, which binds to 150 ng of 
FAM-HpsPr-C and generates DOPY/PPRH complexes. C) TEM images of PPRH (left), DOPY (center), and DOPY-PPRH lipoplexes (right). D) Size distribution by half- 
open intervals of DOPY vesicles (left) (n = 109) and DOPY-PPRH lipoplexes (right) (n = 57) as observed by TEM. 
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characterized and confirmed by 1H NMR and 13C NMR spectroscopy. 
1H NMR (400 MHz, CDCl3) δ 9.77 (d, J = 7 Hz, 4H), 8.36 (s, 1H), 7.69 

(d, J = 8 Hz, 2H), 7.35 (d, J = 7 Hz, 4H), 7.00 (t, J = 8 Hz, 1H), 5.94 (s, 
4H), 5.39–5.30 (m, 4H), 4.21 (t, J = 6 Hz, 4H), 2.05–1.94 (m, 8H), 1.84 
(quint, J = 7 Hz, 4H), 1.47–1.39 (m, 4H), 1.38–1.22 (m, 40H), 0.87 (t, J 
= 7 Hz, 6H). 

13C NMR (100.6 MHz, CDCl3) δ: 170.0, 146.3, 134.5, 130.7, 129.9, 
129.6, 129.3, 113.8, 71.2, 60.9, 32.2, 31.5, 29.4, 29.3, 29.2, 29.1, 29.0, 
28.9, 28.8, 28.7, 28.1, 26.8, 26.7, 26.7, 25.3, 22.3. 

2.4. Design and usage of PPRHs 

For gene silencing experiments, a PPRH directed against the survivin 
promoter previously validated in our laboratory was selected [35,63]. 
The polypurine stretches that conform the hairpin structure of the PPRH 
were found using the Triplex-forming Oligonucleotide Target Sequence 
Search software (http://utw10685.utweb.utexas.edu/tfo/ MD Anderson 
cancer center, The University of Texas) [64]. BLAST analyses were 
performed to confirm the specificity of the designed PPRH. As negative 
control, we used a hairpin with intramolecular Watson–Crick bonds 
instead of Hoogsteen bonds (HpWC), thus preventing triplex formation 
with the target DNA. 

Regarding the gene repair approach, repair-PPRHs were designed by 
attaching an extension sequence (repair domain) at the 5′-end of the 
PPRH. This repair domain is homologous to the mutation site but con-
taining the corrected nucleotide instead. As negative control, a scram-
bled repair-PPRH was used. This negative repair-PPRH contained the 
specific repair domain to correct the mutation but a scrambled poly-
purine hairpin core, which cannot bind to the polypyrimidine target 
sequence near the mutation in the dsDNA. 

All hairpins were synthesized as non-modified oligodeoxynucleo-
tides by Merck (Haverhill, United Kingdom), resuspended in sterile Tris- 

EDTA buffer (1 mM EDTA and 10 mM Tris, pH 8.0) (Merck, Madrid, 
Spain) and stored at − 20 ◦C until use. All the sequences of the hairpins 
used in this study are shown in Table 1. 

2.5. Agarose gel retardation assay 

Binding reactions were conducted in a final volume of 10 μL con-
taining 150 ng of FAM-HpsPr-C PPRH, increasing amounts of DOPY and 
H2O mQ. After 20 min of incubation at room temperature, binding re-
actions were electrophoresed in 0.8% agarose gels. Gels were visualized 
on a Gel DocTM EZ (Bio-Rad Laboratories, Inc, Spain). 

2.6. Cell culture 

For gene silencing experiments, SH-SY5Y neuroblastoma and PC-3 
prostate cancer cells, obtained from the cell bank resources from Uni-
versity of Barcelona, were grown in Ham’s F12 medium supplemented 
with 10% fetal bovine serum (GIBCO, Invitrogen, Barcelona, Spain) and 
incubated at 37 ◦C in a humidified 5% CO2 atmosphere. Subculture was 
performed using 0.05% Trypsin (Merck, Madrid, Spain). 

For gene correction experiments, the DF42 Chinese Hamster Ovary 
(CHO) mutant cell line was used. This cell line contained a single-point 
mutation in the endogenous dhfr gene bearing a G > T substitution in 
c.541 (exon 6), thus generating a premature STOP codon and a 
nonfunctional DHFR enzyme. The DF42 cell line was obtained using a 
variety of mutagens in UA21 cells [65], which is a CHO cell line hemi-
zygous for the dhfr gene [66]. Cells were grown as stated previously. 

2.7. Transfection of PPRHs 

Regarding gene silencing experiments, cells were plated in 6-well 
dishes one day before transfection in F12 medium. Transfection 

Table 1 
Oligodeoxynucleotides used in this study.  

Name and sequence of the PPRHs used for gel retardation and cellular uptake assays (FAM-HpsPr-C), gene silencing experiments (HpsPr-C and the negative control 
HpWC) and gene repair approaches (HpE6rep-L and the negative control HpE6rep-L-Sc). The corrected nucleotide in the repair-PPRHs is represented in bold and 
underlined. The abbreviations used for the nomenclature of the PPRHs are: Hp, hairpin; Pr, promoter; s, survivin; -C, Coding-PPRH; -WC, Watson:Crick; E6, exon 6; rep, 
repair- PPRH; Sc, scramble. 
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consisted in mixing the corresponding amount of the transfection agent 
with the PPRH in serum-free medium up to 200 μL. After 20 min of 
incubation at room temperature, the mixture was added to the cells in a 
final volume of 1 mL (full medium). Transfection agents used were the 
newly synthesized compound DOPY or the commercially available 
cationic liposome DOTAP (Biontex, Germany). 

For gene correction experiments, DF42 cells (300,000) were plated 
in 100-mm plates the day before transfection. Transfections were per-
formed using either calcium phosphate, DOTAP or DOPY. Calcium 
phosphate transfections were carried out using the original method 
[67], and similarly to our previous works [43,45,46]. DOTAP trans-
fections were performed by mixing 12 µg of DOTAP with 10 µg of repair- 
PPRH in serum-free medium up to 600 µL. After 20 min of incubation, 
DOTAP/repair-PPRH complexes were added to cells in a final volume of 
6 mL (full medium) (Final concentration of DOTAP 2.6 µM). DOPY 
transfections were performed by mixing 12 µg of DOPY with 10 µg of 
repair-PPRH in serum-free medium up to 600 µL. After 20 min of in-
cubation, DOPY/repair-PPRH complexes were added to cells in a final 
volume of 6 mL (full medium) (Final concentration of DOPY 2.1 µM). In 
all types of transfections, cells were incubated during 48 h with repair- 
PPRHs before selection. 

2.8. Cellular uptake 

SH-SY5Y cells (60,000), PC-3 cells (60,000) or DF42 cells (300,000) 
were plated the day before transfection. Transfections were carried out 
as stated previously in the transfection section of M&M, but in this case 
using FAM-HpsPr-C PPRH. After 24 h of incubation, cell images for each 
condition were taken using a ZOE Fluorescent Cell Imager (Bio-Rad 
Laboratories, Inc, Spain). Then, cells were trypsinized and collected, 
centrifuged at 800g at 4 ◦C for 5 min and washed once in PBS. The pellet 
was resuspended in 500 μL of PBS and Propidium Iodide was added to a 
final concentration of 5 µg/mL (Merck, Madrid, Spain). Flow cytometry 
analyses were performed in a Gallios flow cytometer (Beckman Coulter, 
Inc, Spain). 

To study the internalization mechanism of DOPY, SH-SY5Y and PC-3 
cells (120,000) were plated in 6-well dishes in F12 medium. After 24 h, 
cells were preincubated with 75 μM of the clathrin-dependent endocy-
tosis inhibitor Dynasore [68], 185 μM of the caveolin-mediated endo-
cytosis inhibitor Genistein [69], or 33 μM of the micropinocytosis 
inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) [70], all from Merck, 
Madrid, Spain, for 60 min at 37 ◦C. Then, transfection mixes containing 
FAM-HpsPr-C were added to cells for 4 h and processed for flow 
cytometry analyses as described above in this section. 

2.9. MTT assay 

Cells (10,000) were plated in 6-well dishes in F12 medium. Five (PC- 
3 cells) or four (SH-SY5Y cells) days after transfection, 0.63 mM of 3- 
(4,5- dimetilthyazol-2-yl)-2,5-dipheniltetrazolium bromide and 100 μM 
sodium succinate (both from Merck, Madrid, Spain) were added to the 
culture medium and incubated for 2.5 h at 37 ◦C. After incubation, 
culture medium was removed and the lysis solution (0.57% of acetic 
acid and 10% of sodium dodecyl sulfate (SDS) in dimethyl sulfoxide) 
(Merck, Madrid, Spain) was added. Absorbance was measured at 560 nm 
in a Modulus Microplate spectrophotometer (Turner BioSystems, 
Madrid, Spain). Cell viability results were expressed as the percentage of 
cell survival relative to the controls. 

2.10. Western blot analyses 

Total protein extracts from PC-3 and SH-SY5Y cells (30,000) were 
obtained 24 h after transfection using 100 μL of RIPA buffer (1% Igepal, 
0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, 1 
mM PMSF, 10 mM NaF and 50 mM Tris-HCl, pH 8.0) supplemented with 
Protease inhibitor cocktail (P8340) (all from Merck, Madrid, Spain). 

Extracts were incubated 5 min at 4 ◦C and cell debris was removed by 
centrifugation (16,300g at 4 ◦C for 10 min). 

In the case of DF42 protein extracts, cells were harvested by trypsi-
nization and treated with Lysis buffer (0.5 M NaCl, 1.5 mM MgCl2, 1 mM 
EDTA, 10% glycerol, 1% Triton X-100, 50 mM HEPES, pH 7.2), sup-
plemented with Protease Inhibitor Mixture (P8340) (all from Merck, 
Madrid, Spain). Whole-protein extracts were maintained at 4 ◦C for 1 h 
with vortexing every 15 min. Cell debris was removed by centrifugation 
(16,300g for 10 min). 

Protein concentrations were determined using a Bio-Rad protein 
assay based on the Bradford method and using bovine serum albumin as 
a standard. Whole-protein extracts (100 µg) were electrophoresed in 
15% or 12% SDS-polyacrylamide gels for survivin or DHFR detection, 
respectively, and transferred to Immobilon-P polyvinylidene difluoride 
membranes (Merck, Madrid, Spain) using a semidry electroblotting 
system. Blocking was performed using a 5% skim milk solution. Then, 
membranes were probed with the primary antibody against survivin (5 
µg/mL; AF886, Bio-Techne R&D Systems, S.L.U. Madrid, Spain), DHFR 
(1:250 dilution; Pocono Rabbit Farm & Lab, Canadensis, PA, USA) or 
α-Tubulin (1:100 dilution; CP06, Merck, Darmstadt, Germany. Second-
ary horseradish peroxidase-conjugated antibodies were anti-rabbit 
(1:2000 dilution; P0399, Dako, Denmark) for primary antibodies 
against survivin and DHFR, and anti-mouse (1:2500 dilution; sc-516102, 
Santa Cruz Biotechnology, Heidelberg, Germany) for α-tubulin detec-
tion. Chemiluminescence was detected with the ImageQuant LAS 4000 
mini (GE Healthcare, Barcelona, Spain). Quantification was performed 
using the ImageQuant 5.2 software. 

2.11. Selection of repaired cells 

DHFR selection was applied to transfected cells after 48 h of incu-
bation with the repair-PPRH. Selection was performed using RPMI 1640 
selective medium (Gibco) lacking glycine, hypoxanthine and thymidine 
(-GHT medium), which are the final products of DHFR activity, and 
containing 7% dialyzed FBS (Gibco). Each experimental condition was 
performed in triplicate, and a minimum of three colonies were analyzed 
for each condition. 

2.12. Gene correction frequency 

After 14 days of selection in -GHT medium, surviving cell colonies 
were fixed in 6% formaldehyde, stained with crystal violet (both from 
Merck, Madrid, Spain) and manually counted. Gene correction fre-
quency values were calculated as the ratio between the number of sur-
viving colonies and the total number of cells initially plated. 

2.13. DNA sequencing 

Total genomic DNA was isolated from either DF42 mutant or DF42 
repaired cells using the Wizard genomic DNA purification kit (Promega, 
Madrid, Spain) following the manufacturer’s recommendations. PCRs 
were carried out to amplify the target site using OneTaq polymerase 
(New England Biolabs, Ipswich, MA, USA) following the PCR cycling 
conditions recommended by the manufacturer. Primer sequences were 
5′-GTCATGTGTCTTCAATGGGTG-3′ and 5′-TCTAAAGCCAACA-
CAAGTCCC-3′. PCR-amplified products (227 bp) were run in 5% poly-
acrylamide gel electrophoresis, purified and sequenced by Macrogen 
(Amsterdam, the Netherlands). 

2.14. DHFR activity assay 

The method is based on the incorporation of radioactive deoxyur-
idine into cellular DNA. This depends on the reductive methylation of 
deoxyuridylate to thymidylate by tetrahydrofolate, which is generated 
by DHFR from folate supplied in the medium. Therefore, incorporation 
of radioactive dTTP into DNA relies on DHFR activity, and it can be 
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detected by DNA isolation [71]. 
Mutant or repaired DF42 cells (1 × 105) were seeded in 6-well plates 

in 1 mL of selective medium (-GHT). Next day, 2 µCi of 6-[3H] deoxy-
uridine (18.9 Ci/mmol, Hartmann Analytic, Germany) were added for 
24 h. Cells were lysed in 100 µL of 0.1% SDS. The lysate was placed onto 
31ET chromatography paper (Whatman) and dried at room tempera-
ture. Finally, papers were washed three times for 30 min in constant 

agitation with 66% cold ethanol containing 250 mM NaCl, dried, and 
counted in a scintillation counter. 

2.15. Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6 
(GraphPad Software, CA, USA). Data are represented as the mean ± SEM 

Fig. 2. Cellular uptake of PPRHs for gene silencing applications. Fluorescence microscopy images of PC-3 (A) and SH-SY5Y (D) cells were taken 24 h after 
transfection with 100 nM of FAM-HpsPr-C using either DOTAP (10 µM) or DOPY (2.1 µM). Then, the percentage of fluorescent cells (B and E) and the mean 
fluorescence (C and F) for each cell line were determined by flow cytometry. Error bars represent the standard error of the mean of three experiments. Statistical 
significance was calculated using one-way ANOVA with Dunnett’s multiple comparisons test for the percentage fluorescent cells or Unpaired T test for the mean 
fluorescence (**p < 0.01, ***p < 0.001, **** p < 0.0001). Abbreviations: CNT, control; DT, DOTAP; DP, DOPY. 
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of at least three independent experiments. The levels of statistical sig-
nificance were denoted as follows: p < 0.05 (*), p < 0.01 (**), p < 0.001 
(***) or p < 0.0001 (****). 

3. Results 

3.1. DOPY/PPRH complexes characterization 

First, the ability of DOPY to interact with FAM-HpsPr-C PPRH was 
assessed by gel retardation assays. Incubation of increasing amounts of 
DOPY with 150 ng of the PPRH resulted in a progressive disappearance 
of the band corresponding to the PPRH signal compared to the PPRH 
alone (Fig. 1B), thus demonstrating the formation of DOPY/PPRH 
complexes. Then, we analyzed the size of DOPY/PPRH complexes, 
which show an hydrodynamic diameter of 155 nm, with a dispersion 
index of 0.25 (Figure S3A), as analyzed by DLS, a value significantly 
increased respect the DOPY vesicles (ca. 100 nm) upon complexation. 
Furthermore, the Z-potential of DOPY/PPRH complexes 67.53 ± 1.08 
mV (Figure S3B), is not significantly different from that of DOPY vesicles 
(ca. 57 mV), in accordance with the cationic nature of the lipoplexes, 
and indicates the excellent stability of the lipoplexes. 

Transmission Electron Microscopy (TEM) was used to study the 
morphology of the materials. As shown in Fig. 1C, the FAM-HpsPr-C 
PPRH molecules intertwine forming fibrillar structures, whereas DOPY 
forms vesicles of 52.4 ± 18.2 nm in diameter (Fig. 1D). In contrast, when 
DOPY vesicles come in contact with PPRH, the fibers of PPRH are 
completely covered by DOPY as a consequence of their strong interac-
tion, leading to a combined morphology. Most of the lipoplexes formed 
are less than 133 nm in diameter (Fig. 1D), which is also in accordance 
with the hydrodynamic diameters observed in aqueous colloidal 
dispersion. 

3.2. Transfection efficiency for gene silencing 

Once verified the capacity of DOPY to interact with PPRHs, we 
compared the cellular uptake of FAM-HpsPr-C PPRH (100 nM) when 
cells were transfected using either DOPY or the validated transfection 
agent DOTAP, which is widely used in our laboratory for gene silencing 
approaches, and thus useful for comparison purposes in the different 
assays. Cells were transfected using either 2.1 µM of DOPY or 10 µM of 
DOTAP (standard conditions used for PPRH transfection in gene 
silencing approaches: molar ratio of 1:100 PPRH/DOTAP). The per-
centage of fluorescent cells and their mean fluorescence intensity were 
determined 24 h after transfection using flow cytometry. The cellular 
uptake was analyzed in PC-3 cells, in which we had previous experience 
transfecting PPRHs using DOTAP, and in SH-SY5Y cells, which are 
difficult to transfect using DOTAP in standardized conditions. According 
to our previous results using HpsPr-C PPRH [35], high percentages of 
fluorescent PC-3 cells were observed when using DOTAP (94%) (Fig. 2A 
and B). Similar values of fluorescent cell percentages were obtained 
when using DOPY (93%) (Fig. 2B). However, the mean values were 2- 
fold higher in DOPY transfections than those of DOTAP (Fig. 2C). In 
the case of hard-to-transfect SH-SY5Y cells, the percentages of fluores-
cent cells were 87% using DOTAP and 71% using DOPY (Fig. 2D and E), 
but the fluorescence mean was 4.3 times higher in DOPY transfections 
than that of DOTAP transfections (Fig. 2F). Fluorescence microscopy cell 
images acquired just before flow cytometer analyses were in accordance 
with the results described in this section (Fig. 2A and D). 

We also analyzed the mechanisms involved in the internalization of 
DOPY/PPRH complexes by transfecting cells with FAM-HpsPr-C either 
in the presence or the absence of different endocytic pathways inhibitors 
(Fig. 3) [68-70]. After 4 h of transfection, DOPY/PPRH complexes 
internalization was significatively reduced with either the clathrin- 
dependent endocytosis inhibitor Dynasore (75 μM) or the caveolin- 
mediated endocytosis inhibitor Genistein (185 μM), in both PC-3 and 
SH-SY5Y cells. The treatment with Dynasore presented a decrease of 

51% and 35% of fluorescent cells, in PC-3 and SH-SY5Y respectively, in 
comparison with untreated cells (Fig. 3A and C). Furthermore, the 
fluorescence mean values were reduced by 24.5 and 3.4-fold in PC-3 and 
SH-SY5Y cells, respectively, relative to untreated cells (Fig. 3B and D). In 
the case of Genistein treatment, the decrease of fluorescent cells was of 
23% in PC-3 and 21% in SH-SY5Y (Fig. 3A and C), and the fluorescence 
mean values were reduced by 20-fold and 2.7-fold in PC-3 and SH-SY5Y 
cells, respectively (Fig. 3B and D). No significant decrease was observed 
in neither the percentage of fluorescent cells nor the fluorescent mean in 
neither of the two cell lines treated with the micropinocytosis inhibitor 
EIPA (33 μM) (Fig. 3). These results indicate that both the clathrin- 
mediated endocytosis and the caveolin-mediated endocytosis are 
involved in DOPY/PPRH complexes internalization. Fluorescence mi-
croscopy cell images are shown in Figure S4. 

3.3. Cell viability assays 

Previous work in our laboratory demonstrated that the inhibition of 
the antiapoptotic gene survivin using PPRHs led to a decrease in prostate 
cancer cell survival both in vitro and in vivo [33,35]. Therefore, we used 
PC-3 cells as a positive control since we had evidence of the effectiveness 
of transfecting the HpsPr-C PPRH using DOTAP in this type of cells [35]. 
In this work, we searched for a non-toxic amount of DOPY for each cell 
line. The optimum concentration in PC-3 cells was ranging from 0.52 
− 1.05 µM (Fig. 4A), whereas SH-SY5Y cells could be incubated with 
higher doses of DOPY (1.05–2.1 µM) (Fig. 4B). Then, 100 nM of HpsPr-C 
PPRH was transfected using either DOTAP or DOPY to compare the ef-
fect on cell viability caused by the PPRH. PC-3 cells transfected with 
DOTAP/HpsPr-C complexes showed a decrease in cell viability of 90% 
(Fig. 4A). Similarly, cells transfected using 0.52 µM and 1.05 µM of 
DOPY showed a reduction in cell viability of 97% and 99%, respectively 
(Fig. 4A). 

However, in the case of SH-SY5Y cells, incubations with DOTAP/ 
HpsPr-C complexes at standard conditions did not reduce cell 
viability, whereas cells treated with DOPY/HpsPr-C complexes showed a 
decrease in cell viability of 36% and 84% using 1.05 µM and 2.1 µM of 
DOPY, respectively (Fig. 4B). Transfections with the negative control 
hairpin (HpWC) did not produce any effect on cell viability in PC-3 and 
SH-SY5Y cells (Fig. 4A and B). 

3.4. Survivin protein analyses 

To confirm that the detrimental effect on cell viability was caused by 
a specific decrease of survivin expression triggered by 100 nM of HpsPr-C 
PPRH, we analyzed survivin protein levels in both PC-3 and SH-SY5Y 
cells. After 24 h of incubation, PC-3 cells transfected using either 
DOTAP (10 µM) or DOPY (1,05 µM) presented a 75% reduction on 
survivin protein levels (Fig. 5A). In contrast, SH-SY5Y cells transfected 
with DOTAP (10 µM) did not show a significant decrease in protein 
expression (Fig. 5B), while cells transfected using DOPY (2.1 µM) 
showed a decrease of 85% on survivin protein levels. 

3.5. Transfection efficiency for gene repair 

One of the goals of this work was to demonstrate the versatility of 
transfection of DOPY. For that reason, we also used DOPY for gene 
correction applications. In this regard, repair-PPRHs were delivered into 
the DF42 CHO mutant cell line to correct a point mutation in the 
endogenous locus of the dhfr gene. The HpE6rep-L repair-PPRH was 
designed to correct the c.541 G > T mutation in this gene (Table 1). 
HpE6rep-L consisted in (i) a 23 nt polypurine core complementary to its 
polypyrimidine target sequence located 9 nt downstream from the mu-
tation, and (ii) a 45 nt repair domain homologous to the mutation region 
but containing the desired nucleotide (G) instead of the mutation (T). 

First, the delivery of PPRHs into DF42 cells was assessed by fluo-
rescence microscopy (Fig. 6A) and flow cytometry (Fig. 6B and C) using 

E. Aubets et al.                                                                                                                                                                                                                                  



European Journal of Pharmaceutics and Biopharmaceutics 165 (2021) 279–292

286

Fig. 3. Study of the endocytic pathways involved in DOPY/PPRH complexes internalization. PC-3 and SH-SY5Y cells were incubated for 1 h with 75 μM of 
Dynasore, 185 μM Genistein, or 33 μM EIPA and subsequently transfected with 100 nM of the FAM-HpsPr-C PPRH using 2.1 µM of DOPY. After 4 h of incubation, the 
percentage of fluorescent cells (A and C) and the mean fluorescence (B and D) for each cell line were determined by flow cytometry. Error bars represent the standard 
error of the mean of three experiments. Statistical significance was calculated using one-way ANOVA with Tukey’s multiple comparisons test for the percentage 
fluorescent cells and the mean fluorescence (*p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001). Abbreviations: CNT, control; DP, DOPY; DYN, Dynasore; GEN, 
Genistein; EIPA, 5-(N-ethyl-N-isopropyl)amiloride; ns, not statistically significant. 
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FAM-HpsPr-C PPRH. The efficiency of transfection of DOPY in DF42 
cells was compared to that of calcium phosphate or DOTAP, since both 
methodologies are standardly used in our laboratory for the delivery of 
repair-PPRHs. Both DOTAP and DOPY transfections were able to deliver 
PPRHs to more than 80% of the total cell population, whereas calcium 
phosphate transfections only achieved 50% of transfection efficiency 
(Fig. 6B). However, mean fluorescence values showed that the highest 

internalization was obtained using DOPY (Fig. 6C). It is worth noting 
that calcium phosphate transfections presented lower internalization 
values than those of DOPY, but higher than those of DOTAP (Fig. 6C). 
Fluorescence microscopy cell images acquired just before flow cytom-
eter analyses were in accordance with the results described in this sec-
tion (Fig. 6A). 

Fig. 4. Effect of HpsPr-C on cell viability in PC-3 and SH-SY5Y cells. Effect on cell viability in PC-3 (A) and SH-SY5Y (B) upon transfection of 100 nM the HpsPr-C 
PPRH or the negative control hairpin (HpWC) using DOTAP (DT) or DOPY (DP). The concentrations for each transfection agent are indicated in the figure. Error bars 
represent the standard error of the mean of three experiments. Statistical significance was calculated using one-way ANOVA with Dunnett’s multiple comparisons test 
(**** p < 0.0001). 

Fig. 5. Comparison of the effect of HpsPr-C on survivin protein levels using either DOTAP or DOPY as transfection agent. PC-3 (A) and SH-SY5Y (B) cells 
were transfected with 100 nM of the HpsPr-C PPRH using either DOTAP (10 µM) or DOPY (1.05 µM for PC-3 cells and 2.1 µM for SH-SY5Y cells) and incubated for 24 
h. Representative images of Western blots (left) and quantification of survivin protein levels relative to the control (right) are shown. Tubulin protein levels were used 
to normalize the results. Error bars represent the standard error of the mean of three experiments. Statistical significance was calculated using one-way ANOVA with 
Dunnett’s multiple comparisons test (**p < 0.01, ***p < 0.001). Abbreviations: CNT, control; DT, DOTAP; DP, DOPY. 
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3.6. Gene correction frequency 

After 48 h of incubation with repair-PPRHs, selective medium 
(-GHT) was applied during 14 days. At this point, cell colonies were 
stained and counted to determine gene repair frequencies for each 
transfection method. In these experimental conditions, no cell colonies 
were obtained when transfecting using DOTAP (Fig. 7A). However, 

calcium phosphate transfections generated a 0.2% of corrected cells, 
while DOPY transfections led to repair frequencies of 0.4%, which 
represented a 2-fold increase compared to calcium phosphate fre-
quencies (Fig. 7B). 

Fig. 6. Cellular uptake of PPRHs for gene 
repair applications. (A) DF42 cells were 
transfected with 10 µg of FAM-HpsPr-C (112 
nM) using DOTAP (2.6 µM), calcium phos-
phate or DOPY (2.1 µM) and visualized under 
a fluorescence microscope after 24 h of in-
cubation. Then, cells were harvested and 
analyzed by flow cytometry to determine the 
(B) percentage of DF42 fluorescent cells and 
(C) the mean fluorescence. Error bars repre-
sent the standard error of the mean of three 
experiments. Statistical significance was 
calculated using Unpaired T test comparing 
the effect of the different transfection agents 
(*p < 0.05, **p < 0.01, **** p < 0.0001). 
Abbreviations: CNT, control; DT, DOTAP; 
CP, calcium phosphate; DP, DOPY.   
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3.7. Characterization of dhfr repaired clones 

After selection, a representative number of cell colonies from each 
transfection condition were expanded individually and analyzed at the 
DNA level to confirm the correction of the mutation. As shown in 
Fig. 7C, both calcium phosphate and DOPY transfections of the 
HpE6rep-L repair-PPRH were able to correct the c.541 G > T mutation at 
the genomic level in DF42 cells, thus restoring the wild-type sequence of 
the dhfr gene. 

In addition, we corroborated that the restoration of the wild type dhfr 
sequence in the DNA of the repaired clones led to the production of 
DHFR protein. Western blot assays showed the presence of DHFR protein 
in all the analyzed clones derived from both calcium phosphate and 
DOPY transfections (Fig. 7D). DHFR protein was also present in the wild- 
type UA21 cell line, used as positive control (Fig. 7D). 

Finally, we demonstrated the functionality of the DHFR protein by 
determining its enzymatic activity. All the repaired clones derived from 
both calcium phosphate and DOPY transfections showed a similar 
enzymatic activity, which represented a 50-fold increase compared to 
that of mutant DF42 cells (Fig. 7E). 

4. Discussion 

In this work, we describe DOPY as a new gemini cationic liposome- 
based formulation for PPRH delivery and evaluate its transfection effi-
ciency for both gene silencing and gene repair applications. We chose 
PPRH delivery since these molecules represent an economical biotech-
nological tool with advantages compared to other therapeutic oligonu-
cleotides [31,32]. PPRHs are more stable than siRNAs due to its clamp 
structure composed of deoxynucleotides instead of ribonucleotides [72]. 

Fig. 7. Gene correction frequency and characterization of DF42 repaired clones. (A) Representative image of the number of DF42 repaired colonies obtained 
after transfection with 10 µg of the HpE6rep-L repair-PPRH (55 nM) using DOTAP (2.6 µM), calcium phosphate or DOPY (2.1 µM). After selection, surviving cell 
colonies were fixed and stained with crystal violet. (B) Gene correction frequency values were calculated as the ratio between the number of DF42 surviving colonies 
and the total number of cells initially plated. (C) DNA sequences from DF42 mutant and DF42 repaired cells after treatment with the HpE6rep-L repair-PPRH using 
calcium phosphate or DOPY are shown. Red and green arrows indicate the mutated and corrected nucleotide, respectively. (D) Western blotting of DHFR protein in 
DF42 mutant cells and DF42 repaired clones. Tubulin protein was used as endogenous control. (E) DHFR enzymatic activity was determined in DF42 mutant cells and 
DF42 repaired clones. UA21 parental cells were used as positive control. Error bars represent the standard error of the mean of three experiments. Statistical sig-
nificance was calculated using Unpaired T test in (B) and ordinary one-way ANOVA in (E). (**p < 0.01, **** p < 0.0001). Abbreviations: CNT, control; DT, DOTAP; 
CP, calcium phosphate; DP, DOPY. 
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Furthermore, PPRHs are effective at lower concentrations than ASOs 
[33] and they bind with higher affinity to the target dsDNA than Triplex- 
Forming Oligonucleotides (TFOs) [37]. In terms of safety, PPRHs have 
demonstrated their lack of immunogenicity [72], nephrotoxicity and 
hepatotoxicity in vitro [63]. Moreover, pharmacogenomic studies 
demonstrated the specificity of PPRHs and the absence of off-target ef-
fects [63]. 

It is known that cationic lipid-based delivery systems form electro-
static complexes with DNA. This condensation protects DNA from 
nuclease degradation and confers desirable physicochemical properties 
in terms of size and charge to facilitate DNA entry into cells [73]. In 
several chemical vectors, the positive charge is provided by a pyr-
idinium salt [74-76]. Following this approach, in the present work we 
designed DOPY, a gemini amphiphilic bis-pyridinium salt connected 
through a 1,3-xylyl spacer and bearing hydrophobic oleyl moieties on 
the position 4 of the pyridinium rings, to study its ability as DNA carrier. 
In solution, these complexes have ca. 155 nm in diameter, as determined 
by DLS. Accordingly, gel retardation assays demonstrated that DOPY 
can form complexes with PPRHs, thus pairing their negative charges. 
Transmission Electron Microscopy experiments also corroborate this 
interaction and allows the visualization of the fibrillar structures of the 
PPRH molecules covered by DOPY. 

To achieve the desired effect of PPRHs within the cell, a successful 
transfection requires their internalization into the cytoplasm and their 
transportation into the nucleus. Regarding PPRHs internalization, DOPY 
has demonstrated high delivery efficiencies in PC-3, SH-SY5Y and DF42 
cells. Interestingly, the amount of PPRH internalized by DOPY com-
plexes was higher than that of other chemical vehicles routinely used in 
our laboratory such as DOTAP or calcium phosphate. These higher 
values of internalization can explain the superior effects obtained in 
both gene silencing and gene repair approaches using PPRHs compared 
to that of other transfection agents. Additionally, the decrease in DOPY/ 
PPRH cellular uptake after Dynasore or Genistein treatment in both PC-3 
and SH-SY5Y cells suggests that the clathrin-mediated endocytosis and 
the caveolae-dependent endocytosis are involved in the internalization 
of PPRHs mediated by DOPY. 

In gene silencing experiments, we targeted the antiapoptotic gene 
survivin, which has been correlated with different types of cancer such 
as prostate [77], breast [78], gastric [79,80], osteosarcoma [81] or 
neuroblastoma [82,83]. Since we faced difficulties in transfecting neu-
roblastoma SH-SY5Y cells with commercially available agents, we 
transfected the HpsPr-C PPRH directed against survivin in SH-SY5Y cells 
using DOPY. DOPY/HpsPr-C complexes successfully decreased survivin 
protein levels and cell viability in hard-to-transfect SH-SY5Y cells, even 
using nearly 4-fold less amount of DOPY than that of DOTAP. These 
results are in accordance with other studies showing the inhibition of 
SH-SY5Y cell proliferation due to an increase of apoptosis after sup-
pressing survivin expression [84]. In contrast, the transfection of 
DOTAP/HpsPr-C complexes in SH-SY5Y cells did not reduce survivin 
protein levels nor cell viability, which corroborates the greater inter-
nalization capacity of DOPY. In the case of PC-3 cells, our previous 
studies transfecting HpsPr-C using DOTAP showed an effective delivery 
and survivin gene silencing [35]. In this work, we showed a great 
reduction on protein levels and cell viability using 7.75-fold less amount 
of DOPY than that of DOTAP. Therefore, DOPY/PPRH complexes are 
more effective in terms of inhibiting survivin expression and reducing 
cell viability in both SH-SY5Y and PC-3 cells. 

In gene correction experiments, the HpE6rep-L repair-PPRH trans-
fected using DOPY in DF42 mutant cells achieved higher correction 
frequencies than that of DOTAP or calcium phosphate transfection 
agents, which are the chemical vehicles routinely used in our laboratory 
for gene correction strategies [45,46]. The HpE6rep-L repair-PPRH was 
able to specifically correct the c.541 G > T mutation in the endogenous 
locus of the dhfr gene, thus restoring its wild-type sequence. In addition, 
we confirmed that DF42 corrected cells were able to produce a full DHFR 
protein with restored enzymatic activity, thus proving the effectivity of 

DOPY as a transfection agent also in gene repair approaches. 
Overall, the successful cellular uptake, the efficient survivin gene 

silencing and the correction of the dhfr gene are evidence that DOPY 
enables both an efficient entry and release of PPRHs at the intracellular 
level, thus allowing them to exert their action in the target dsDNA. 
Although further studies to demonstrate safety and efficacy of DOPY in 
vitro and in vivo should be performed, the results to date indicate that 
DOPY can be considered as a new gemini cationic lipid-based delivery 
vector suitable for the delivery of therapeutic oligonucleotides. 
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[34] M.C. De Almagro, N. Mencia, V. Noé, C.J. Ciudad, Coding polypurine hairpins 
cause target-induced cell death in breast cancer cells, Hum. Gene Ther. 22 (2011) 
451–463, https://doi.org/10.1089/hum.2010.102. 

[35] L. Rodríguez, X. Villalobos, S. Dakhel, L. Padilla, R. Hervas, J.L. Hernández, C. 
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A. Barrett, D.J. Scurr, Enhanced vitamin C skin permeation from supramolecular 
hydrogels, illustrated using in situ ToF-SIMS 3D chemical profiling, Int. J. Pharm. 
563 (2019) 21–29, https://doi.org/10.1016/j.ijpharm.2019.03.028. 

[60] M.E. Alea-Reyes, J. Soriano, I. Mora-Espí, M. Rodrigues, D.A. Russell, L. Barrios, 
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