

Title: Hierarchical Portfolio Optimization

Author: Francisco De Lio Pérego

Advisor: José Antonio González Alaustré

Department: Statistics and Operations Research (UPC)

Academic year: 2020-2021

Degree in Statistics

Acknowledgements

It is not often that one finds himself in a position to express his gratitude like this. To
begin with I find myself with the disposition to embarrass myself a little and express
my gratefulness not to anyone nor anything specific. One has to be grateful for the
whole if he is to be grateful for any of its parts. So I shall be grateful to the root of all
joy and beauty and suffering. Not because of anything, but in spite of anything. One
who is at peace with the inner workings of the world needs no permission nor excuse
to reap its sweetest fruits, and that’s something to strive for.

On a more concrete and less theatrical note, I want to thank José Antonio González
Alaustré for allowing me to go where I felt the wind blew and for his patience and
consistent dedication as well as support across the 4 months during which this project
was carried out. It has been a pleasure to have him as an advisor. I recognize this
thesis not only as my work but as the work of all the people and circumstances in my
life as well. I want to express all the gratitude to my lovely family and friends, as well
as to the research community for enlightening my path through this project.

Lastly, to anyone who will be reading this thesis whether for curiosity, obligation or
preferably both. Thank you.

ii

Abstract

The field of Portfolio Optimization has historically had a very hard time as the
Mathematical Models at its availability are based on certain assumptions one can
not afford to make in the financial markets, making naive approaches all-too entic-
ing. In this project we have introduced the assumption that the different stocks in
the financial markets have a hierarchical structure and have allowed ourselves to be
inspired by it to build portfolios through a Machine Learning approach. We have
employed the Hierarchical Risk Parity algorithm and tested minor variations relat-
ing to the dissimilarity measure it makes use of. The tests were conducted with
historical daily closing price data from 2014 to 2020 for 440 stocks in the S&P 500
index. Results suggest most of the tested Hierarchical Risk Parity variants are ro-
bust and can compete with the Equal Weights Portfolio. We mainly encourage the
use of two dissimilarity measures, the standard one, a correlation based metric and
Dynamic Time Warping. The former is suggested to the pessimistic investor while
the latter to the hopeful yet conservative investor. To optimistic investors with
a high risk tolerance the recommendation would be to use the traditional Equal
Weights portfolio among the asset allocation methods considered in this project.

Keywords: Portfolio Optimization, Clustering, Time Series Analysis, Markowitz’s
Model, Hierarchical Risk Parity, Dissimilarity Measures, S&P 500.

iii

Contents

List of Figures vi

List of Tables vii

1 Introduction viii

2 Theoretical Framework ix

2.1 Times Series and their Characteristics ix

2.1.1 Stochastic Process Representation x

2.2 Unsupervised Learning . xi

2.2.1 Clustering . xi

2.2.2 Dimensionality Reduction . xiii

2.3 Times Series Clustering . xv

2.4 Portfolio Optimization . xvi

2.4.1 Markowitz’s Model . xvi

2.4.2 Major Criticisms of Mean-Variance
Optimization . xviii

2.4.3 Alternatives to Classical
Mean-Variance Portfolios . xviii

2.4.4 Performance Measures . xx

3 Methodology xxii

3.1 The Stock Market and its Hierarchy . xxii

3.2 Hierarchical Risk Parity . xxiii

3.2.1 Tree Clustering . xxiv

3.2.2 Quasidiagonalization . xxiv

3.2.3 Recursive Bisection . xxv

iv

CONTENTS v

3.3 Alternative Dissimilarity Measures . xxvi

3.3.1 Feature-based Metric . xxvii

3.3.2 Dynamic Time Warping . xxviii

3.3.3 The Constant Residual Eigenvalue Method xxix

3.3.4 Mutual Information . xxxi

4 An Empirical Study with the S&P 500 xxxiii

4.1 Dataset Used . xxxiii

4.2 The Experiment . xxxiv

4.3 Results . xxxv

5 Conclusions xli

6 Bibliography xliii

7 Additional Tables + Code xlvi

7.1 Extra Tables . xlvi

7.2 Python: Data Retrieval + Preprocessing xlvi

7.3 R: Computing Dissimilarity Matrices xlvii

7.4 Python: Computing Portfolios + Performance lii

7.5 R: Final Analysis . lviii

List of Figures

2.1 Demonstration of the clustering algorithms in Python’s Scikit-learn. . . xii

2.2 Dendograms built through the discussed linkages, from Elements of Sta-
tistical Learning . xiii

2.3 Simulated portfolios in terms of their risk and returns. The orange
region conforms the efficient frontier . xvii

3.1 Before and After Quasidiagonalization xxv

3.2 Comparison between Euclidean Distance and Dynamic Time Warping. xxix

3.3 Fitting the Marcenko–Pastur PDF on a noisy correlation matrix, from
Machine Learning for Asset Managers. xxx

3.4 Diagram representing the relationship between information-theoretic
quantities . xxxii

4.1 Command used to pull the data from Wikipedia and the Yahoo Finance
servers . xxxiv

4.2 Yearly Cumulative Sum of Returns per Method xxxvi

4.3 Yearly Cumulative Sum of Risk Measures per Method xxxvii

4.4 Years 1 and 2 of testing . xxxviii

4.5 Years 3 and 4 of testing . xxxix

4.6 Years 5 and 6 of testing . xxxix

vi

List of Tables

4.1 Mean Performance by Portfolio Construction Method, and Standard
Error . xxxv

4.2 Returns by Portfolio Construction Method, and Year xxxviii

4.3 Kendall Correlations . xl

7.1 Volatility by Portfolio Construction Method, and Year xlvi

7.2 CVaR at 0.05 by Portfolio Construction Method, and Year xlvi

vii

Chapter 1

Introduction

If a statistician had a nightmare it would be comprised of intricate random processes,
fat-tailed distributions, unforeseeable paradigm-shifting events, highly chaotic non-
linear relationships and an inability to reproduce experimental conditions. Just like
the financial markets.

Statistics as a discipline generally relies on being able to simplify very complex empir-
ical phenomena through naive yet clever probabilistic assumptions in order to make
inferences or predictions. In the context of the financial markets the probabilistic as-
sumptions one can realistically afford to make about the underlying phenomena are
generally not simple nor practical, specially when building portfolios. Portfolios be-
ing collections of financial investments that can be formed by a variety of financial
instruments. For the sake of this project we will limit the scope of portfolios to that
of securities known as stocks and we will not allow the practice of shorting, essentially
trying to benefit from stocks going down in price.

In the past 40 years several asset allocation methodologies have been proposed in
the literature, but due to estimation and computational complications even the most
well thought off methods struggle to perform better than naive methods, such as the
equal weights portfolio. So far the seeds provided by the theory struggle to grow and
flourish on the soils of reality. Here we will explore recent developments in portfolio
optimization inspired by the field of Unsupervised Learning that work under the,
credible and widely discussed in the literature, assumption that the stock returns
follow a hierarchical relationship such that the topology of the stock market can not
be meaningfully represented as as complete graph. We will apply some variations to
the proposed method in order to relax its implicit assumptions and hopefully enhance
its capabilities and make it more robust.

In the following thesis we will discuss modern portfolio theory and its pitfalls. We will
explore alternatives that improve upon it, taking from fields ranging from Random
Matrix Theory to Information Theory. The primary objective will be to explore Clus-
tering, more specifically Hierarchical Clustering, as an alternative to allocate assets
among a universe of stocks and see how it stacks up to more traditional methods in
terms of realized risk and returns. For that we will conduct an empirical study using
the daily returns of 440 stocks in the S&P 500 index from 2014 to 2021.

viii

Chapter 2

Theoretical Framework

2.1 Times Series and their Characteristics

Time Series are a very special type of data which arises from experimental condi-
tions where phenomena are observed at different points in time. As opposed to cross-
sectional data, it has the very interesting property of being structured sequentially,
with the implication that the order of the observations carries important information.
The language of that structure, furthermore, can be viewed from two alternative, com-
plementary, lenses; the time domain and the frequency domain. However, despite this
additional information Times Series data provides, it can be a particularly tricky type
of data to work with given the experimental conditions are in continuous development
and structural changes in the data are commonplace. Something being a certain way
in the past does not necessarily imply it will continue that way onto the future. Fur-
thermore Time Series data is usually requires filtering to be usable and the temporal
dimension, besides capturing the sequential structure of the data, encompasses a lot of
sources of variation that can not be properly accounted for, which further obfuscates
things.

A time Series yt can be understood in terms of 4 fundamental components: the trend Tt,
the baseline level at which the series is moving; the cyclical Ct, oscillatory movements
around the trend that take place beyond the seasonal period; the seasonal St, which
captures oscillatory movements inside the period of the time series; and the noise
component Et, which represents the random variation in the series that can not be
attributed to the previous 3 components.

yt = f(Tt, Ct, St, Et) (2.1)

The function f describes how the variability of the series evolves over time. For
instance, if two components are linked over addition they will be homocedastic with
respect to time, whereas if they are linked by multiplication those two components will
be heterocedastic. In practice however it can be hard to discern between the trend
and the cyclical component so they are usually regarded jointly as the trend-cyclical
component TCt.

ix

x CHAPTER 2. THEORETICAL FRAMEWORK

2.1.1 Stochastic Process Representation

Let (Ω,F , P) be a probability space and (S,Σ) a measurable space. A stochastic
process [1] is a collection of random variables {X(t), t ∈ I} that takes values in S
and is indexed by time, represented by a given set I which can either be continuous or
discrete. Time Series are usually modeled under the assumption of following discrete-
time stochastic processes. A Time Series is to a a Stochastic Process what a coin toss
is to a Bernoulli random variable.

Definition 1 The autocovariance of a random process is defined, in the general case,
as

γ(t1, t2) := Cov(X(t1), X(t2)) = E[X(t1)− µt1 , X(t2)− µt2] t1, t2 ∈ I (2.2)

Definition 2 A discrete-time stochastic process {Xt, t ∈ Z+} is stationary in a weak
sense if it has the following properties

1. E[Xt] = µX ∈ R,∀t ∈ Z+

2. E[|Xt|2] <∞, ∀t ∈ Z+

3. γ(t1, t2) = γ(|t2 − t1|, 0) given t1, t2 ∈ Z+

A stationary process in the weak sense will then have constant expected value and a
finite second moment for all points in time, and lastly an autocovariance that does not
depend on time per say but on the difference between the time points , also known as
lag and denoted by h.

Weak stationarity is a very desirable assumption to be able to afford for Time Series.
It ensures the structure of the series does not meaningfully change over time, which
allows us to make good estimations and predictions.

(probably add partial correlation+ change definition + lemma in acf h)

Definition 3 The autocovariance function of a weakly-stationary discrete-time stochas-
tic process {Xt, t ∈ Z+} is defined only in terms of the lag

γ(h) = Cov[Xt+h, Xt] = E[(Xt+h − µX)(Xt − µX)] (2.3)

Definition 4 The spectral density function of a weakly-stationary discrete-time stochas-
tic process {Xt, t ∈ Z+} is defined as

f(ω) =
∞∑

h=−∞

γ(h)e−2πiωh |ω| ≤ 1/2 (2.4)

Note that given weak stationarity the spectral density is the inverse Discrete Fourier
Transform of the autocorrelation function. The unicity property of the Fourier Trans-
form leads us to the following relationship

γ(h) =

∫
|ω|≤1/2

f(ω)e2πiωhdω h ∈ Z (2.5)

2.2. UNSUPERVISED LEARNING xi

This goes to show that the autocorrelation function and the spectral density carry the
same information. While the autocorrelation function describes the stochastic process’
sequential structure in terms of lags in the time domain the spectral density does so
via frequencies in the frequency domain.

2.2 Unsupervised Learning

Unsupervised Learning is a branch of Statistical/Machine Learning where techniques
are employed to infer the characteristics of the data without making use of reference
variables to be modeled in terms of predictors. In the case of Unsupervised Learning
the interest is on, given a set of N observations from random probability-vector X
with a joint probability density Pr(X), modeling the properties of this density without
the help of a supervisor providing correct answers and an incentive to decrease some
measure of error in the form of a loss function.

2.2.1 Clustering

Clustering [2], also known as segmentation, is a form of Unsupervised Learning that
has a variety of goals relating to grouping collections of objects in terms of a predefined
notion of similarity. Similar objects should be placed in the same group, or cluster,
while dissimilar objects should be placed apart. The clustering process, some say,
is more of an art than a science as there is a strong subjective component to it.
Selecting a good dissimilarity measure is not straightforward and neither is finding
the most appropriate number of clusters to consider. Furthermore, different types
of algorithms will have different philosophies with respect to how to understand the
notion of ’cluster’, so their approaches will vary significantly. The ideal way to segment
a given dataset will vary depending on the research question at hand.

The clustering algorithms most commonly applied to structured data could be cate-
gorized in the following way [3, 4]:

1. Centroid Based Clustering: Each cluster is defined on the basis of a central
vector, or centroid. The main preoccupation of this type of algorithms is finding a
predefined number of points in space such that observations near to those points
will be assigned to their cluster in a way that minimizes intra-cluster variation.
Algorithms of this type include k-means, its many variants, Spectral Clustering
and Affinity Propagation.

2. Hierarchical Clustering: This family of methods does not look for a specific
partition to segment the dataset but provide an extensive hierarchy of clusters
suggesting a big set of different partitions. After inspecting the resulting hierar-
chy, a partition is chosen out of the set of proposed partitions. Some examples
include divisive clustering, agglomerative clustering and their many variants,
Ward or BIRCH being some of them.

3. Density-based Clustering: In this approach to clustering, clusters are under-
stood as high density areas, separated by low density areas that are considered
noise. It is pioneered by algorithms like DBSCAN, OPTICS and MeanShift.

xii CHAPTER 2. THEORETICAL FRAMEWORK

4. Model-based Clustering: Being the type of clustering more statistical in na-
ture, it constructs clusters according to what distribution might have generated
each observation. Each specific cluster will be assumed to come from a different
distribution. The most important of model-based approaches is the Gaussian
Mixture Model which given a set correlation structure and number of clusters
converges to a solution through the EM algorithm.

Figure 2.1: Demonstration of the clustering algorithms in Python’s Scikit-learn.

Agglomerative Clustering

Agglomerative clustering [2] is central to this project and takes a bottom-up approach
to hierarchical clustering, which does not require to pre-specify the number of clusters
to construct. Each observation starts as an independent cluster, clusters are then
merged two by two by minimizing pairwise inter-cluster distance, in a greedy fashion,
until all observations are in the same cluster.

Given a set S = {1...N} corresponding to the observations to cluster there will be a
fixed number of N − 1 iterations. Suppose a dissimilarity matrix D whose elements
dij are the pairwise distances between observations i, j ∈ S × S. Now let G and H be
two disjoint clusters formed by observations in S, agglomerative clustering defines an
inter-cluster distance measure called linkage. The most commonly used linkages are
the Single Linkage (SL)

dSL(G,H) = mini,j dij i ∈ G, j ∈ H

which represents the minimum pairwise distance between elements of the two clusters;
the complete linkage (CL)

dCL(G,H) = maxi,j dij i ∈ G, j ∈ H

2.2. UNSUPERVISED LEARNING xiii

which is the maximum pairwise distance between elements of the different clusters;
and the average linkage (AL)

dAL(G,H) = 1
|G||H|

∑
i∈G
∑

j∈H dij i ∈ G, j ∈ H

the average of all pairwise distances between all the elements of the different clusters.

The algorithm will then start with N distinct clusters and merge iteratively the clusters
that minimize the linkage function until only one cluster is left. This process can be
conveniently visualized via dendograms, graphs that show what clusters merge at each
individual iteration and, at the perpendicular axis, the value of the linkage function
at the point of each merger. The dendogram can be a good tool to guide the choice
of the number of clusters, as the greater the linkage function at a merger, the greater
the difference between the clusters.

Single linkage will have a tendency to combine, at low thresholds, observations linked
by a series of close immediate observations and result in diametrically large clusters,
a property that generally is not attractive. Complete linkage represents the opposite
extreme, it will construct compact clusters with small diameters, but it will not be
unusual for particular observations to be much further apart from their respective
clusters than from some other one, a surely undesirable property. Average linkage
presents a compromise between single and complete linkages, and presents a more
measured approach. It results in relatively compact clusters that are relatively far
apart, but it still comes with its drawbacks, the main one being non-invariance with
respect to monotonic scaling transformations.

Figure 2.2: Dendograms built through the discussed linkages, from Elements of Sta-
tistical Learning

2.2.2 Dimensionality Reduction

Dimensionality reduction techniques are also a form of Unsupervised Learning. The
focus is on transforming data from a high-dimensional space to a lower-dimensional

xiv CHAPTER 2. THEORETICAL FRAMEWORK

representation that preserves meaningful properties of the original data. It is very
useful for feature engineering, visualization of high-dimensional data and general infor-
mation compression that removes redundancy and improves the signal-to-noise ratio.
The more popular approaches include Factor Analysis in its many variants, Manifold
Learning Techniques like Kernel-PCA or Isomap and Artificial Neural Networks such
as Autoencoders.

Principal Component Analysis

Principal Component Analysis, more commonly referred to as PCA, is by far the
most well known Dimensionality Reduction technique. Consider a set of observations
{xn} where n = {1, ..., N} and each observation xn is a variable of dimensionality
D. PCA’s goal is usually finding an orthogonal linear projection of the data to a
space of dimension M ≤ D while maximizing the variance or information in that
lower dimensional representation. We will now consider a projection to a space where
M = 1 and a D dimensional unit vector u1 [5]. Given a covariance matrix S we want
to find the directions u1 associated to the D variables such that the quadratic form
representing the variance of the D variables considered jointly is maximized. With the
restriction that the vector u1 has to be unitary.

max
u1

ut1Su1

s.t. ut1u1

(2.6)

This problem is solved in via its dual formulation in a straightforward way

max
u1,λ1

L(u1, λ1) = ut1Su1 + λ1(1− ut1u1) (2.7)

By setting the gradient of u1 equal to 0 we find that there is a stationary point when
u1 and λ1 are respectively an eigenvector and its associated eigenvalue of S

Su1 = λ1u1 (2.8)

From this it follows that ut1Su1 = λ1. The variance in the direction u1 will then be
equal to its eigenvalue and so the eigenvector we are specifically looking for will be
associated to the biggest eigenvalue.

S is a real symmetric matrix and its eigenvalues will always be orthogonal. In the
general case where we wish to project to a general dimension M ≤ D the u2, ..., um
principal components can simply be defined in terms of the M − 1 eigenvectors with
the largest eigenvalues other than u1. However the principal components other than
u1 can be chosen arbitrarily such that u1, ..., um provide an orthogonal basis.

One of the most attractive attributes of PCA is that one can tell how much information
from the original data each one of the new latent variables represents. The proportion

2.3. TIMES SERIES CLUSTERING xv

of the information in the original data, measured in terms variance, contained alongside
the direction ui where ui ∈ {1, ..., D} is given by the following expression

λi∑D
k=1 λk

(2.9)

2.3 Times Series Clustering

Time Series and Clustering are, on a practical level, some of the least tractable areas
in Statistics. In their intersection lies Time Series Clustering, a research area which
combines both the mathematical richness and practical complications in both of its
progenitors. Additional challenges posited to Time Series Clustering by the nature of
the problems it tends to tackle are high dimensionality, very high feature correlation
and concerningly low signal to noise ratios.

In Time Series Clustering [6], the baseline algorithms are usually borrowed from clus-
tering, while the dissimilarity measures employed are inspired by Time Series Analysis
and its sibling, Signal Processing. Model-based approaches are much more varied and
are usually based on derivatives of ARIMA and Hidden Markov Models (refs would be
cool*). The euclidean distance, by far the most popular dissimilarity measure when it
comes to regular clustering problems, is not considered viable where observations are
Time Series, which makes k-means lose its favor when compared to k-medioids and
Ward’s linkage lose its appeal. Dissimilarities based on Fourier and Wavelet analy-
sis are popular given the connection between weakly stationary Time Series and the
frequency domain.

An interesting and very popular clustering paradigm that emerges is the shape-based
approach which intends to find Time Series, or Signals, that behave similarly irre-
spective of their phase component. It measures the relationship between two Time
Series without consideration to the time of occurrence of patterns, but the patterns
themselves. Dissimilarity in time is a special case of dissimilarity in shape. Dynamic
Time Warping is at the core of shape-based clustering, and is very celebrated dissim-
ilarity measure as it is based on a very meaningful conception of similarity that is
very much appropriate to Time Series, and is robust to random fluctuations in peri-
odicity in a way that other dissimilarities are not. Another clustering approach that
is perhaps not unique to Time Series Clustering, but is the most notable inside its
scope is feature based clustering, where objects are clustered in terms of dissimilarities
constructed through a variety of statistics that attempt to represent their fundamental
characteristics in a more compact way.

More standard time domain dissimilarities, based on autocovariances and cross-covariances,
have of course found success in Time Series Clustering and by courtesy of the field
of econometrics, granger causality and transfer entropy have naturally also found suc-
cessful application to measuring association between Time Series.

xvi CHAPTER 2. THEORETICAL FRAMEWORK

2.4 Portfolio Optimization

2.4.1 Markowitz’s Model

Before Markowitz’s contributions [7] assets were analyzed individually in order to con-
struct a portfolio and the relationship between risk and returns was not well under-
stood. Markowitz proposed that to model the market properly we should not consider
the assets independently but we should do so holistically, accounting for how assets
interplay with each other. He also showed that diversification is generally very useful
when it comes to finding optimal portfolios and formalized volatility as the standard
deviation of returns.

Let us define

1. Pt,i is the price of stock i at time t.

2. Rt,i are the returns of stock i at time t, defined as
Pt,i−Pt−1,i

Pt−1,i

3. µ is the vector of expected returns where µi = E(R∗i)

4. Σ is defined as E
[
(R− µ)⊗ (R− µ)

]
, the covariance matrix of the stocks.

5. w are the weights of the portfolio where wi is the proportion of the capital in
the portfolio to be trusted to stock i.

6. N is the number of stocks in the portfolio.

Under the assumption that investors want to find the perfect compromise between
minimizing risk and maximizing return Markowitz posed the mean-variance optimiza-
tion problem with the purpose of finding the minimum variance portfolio for a set
profitability, r :

min
w

wtΣw

s.t. wtµ = r

wt1N = 1

w ≥ 0

(2.10)

This restricted optimization problem is easily solved on its dual formulation by solving
for the associated Lagrangian, where the lagrange multipliers λ1, λ2 ≥ 0

L(w, λ1, λ2) = wtΣw + λ1(wtµ− r) + λ2(wt1N − 1) (2.11)

Taking the partial derivatives of L and setting them equal to 0 leads us to the following
system of equations, represented in matrix form

2.4. PORTFOLIO OPTIMIZATION xvii

2Σ µ 1N
µt 0 0
1tN 0 0


︸ ︷︷ ︸

Φ

wλ1

λ2

 ≈
 0
r

1N


︸ ︷︷ ︸

y

(2.12)

Which has the following solution, that is guaranteed to be a minimum given the objec-
tive function is a convex quadratic form as per the symmetry and positive semidefinit-
ness of Σ

w∗λ∗1
λ∗2

 = Φ−1y (2.13)

Those portfolios that have the minimum risk for a particular return are known as
efficient portfolios. In the cartesian space formed by the volatilities and returns, the
respective volatilities and returns of the efficient portfolios form what’s known as the
efficient frontier, which is a good representation of the relationship between the return
of a portfolio and its volatility.

Figure 2.3: Simulated portfolios in terms of their risk and returns. The orange region
conforms the efficient frontier

xviii CHAPTER 2. THEORETICAL FRAMEWORK

2.4.2 Major Criticisms of Mean-Variance
Optimization

Markowitz’s model could seem at glance like it would have been the silver bullet to solve
the problem of asset allocation entirely. Turns out it consistently overpromises and
therefore underdelivers with respect to both returns and risk. Markowitz’s theory rests
on many modelling assumptions one simply can not afford to make about the financial
markets and, furthermore, the numerical computation of the weights is generally poorly
conditioned [8].

The most problematic presupposition is that the universe of stocks we are considering
in the optimization problem is completely determined by its mean vector as well as its
covariances, which implies that stocks’ returns can be represented as time invariant
and stationary stochastic processes formed by sequences of identical independently dis-
tributed random variables. Of course that’s very restrictive and reductionist. Stocks’
returns are often not stochastically independent nor stationary, and their relationships
are beyond the scope of linearity. Most importantly they suffer from many structural
breaks, they are not ergodic time series, the statistical properties of the returns can not
easily be deduced. The estimation of expected returns as well as risk and covariances
will thus not represent the underlying market processes but in a very reductionist
sense and will have a lot of noise associated, which is specially unfortunate given in
the financial markets the signal to noise ratio is already notoriously low. The main
limitation from the computational front is that quadratic programming algorithms
we’ll rely on to get the solution of the optimization problem require the numerical
inversion of the covariance matrix of the returns, Σ. This matrix will generally have
a very big conditioning number with the implication that inverting it will come at a
cost of non-trivial calculation errors which will add to the already present estimation
errors.

Because of the aforementioned complications not only will the portfolios constructed
via this model will underperform out of sample but the assigned weights will be very
sensitive to the estimation of the expected returns. Small changes in their estimation
will oftentimes result in drastically different portfolios, which is a very undesirable
property, particularly given the significant errors that are made when estimating the
expected values. The mean-variance portfolio will also fail to diversify, as it will reserve
the non-zero weights to a minority of the stocks considered.

2.4.3 Alternatives to Classical
Mean-Variance Portfolios

Some interesting alternatives to Markowitz’s model include the Black-Litterman model
[9], founded in bayesian statistics it allows for the merging of both investor insights
and market knowledge and the data used to fit the model. The Black-Litterman model
has been applied with success and the prior information added to the model makes the
outputed weights much more robust than those of classic mean-variance approaches.
We will not explore this method further as we lack the financial domain knowledge to
select meaningful bayesian priors.

Random Matrix Theoretic results [10] have been applied in order to denoise the co-

2.4. PORTFOLIO OPTIMIZATION xix

variance matrix [11]. They’ve been shown to be very effective at reducing the noise in
the estimations of Σ via singling out the eigenvalues of the correlations matrix which
represent noise to be taken out. As one would expect, using the denoised estimations
of the covariance matrix to build portfolios improves their out of sample performance
[12].

A Volatility Allocation approach became popular in the light that using the expected
returns in order to construct portfolios resulted in very unstable weights and severe
under-performance. This approach consists on dropping the expected returns from
the analysis altogether and focusing on the estimated volatility alone when it comes to
allocating the assets. Empirical evidence has been found to suggest that the efficient
frontier as shown by mean-variance optimization does not generalize that well out of
sample and that building a minimum variance portfolio unrestricted by returns will
generally give substantially greater returns than the efficient frontier would suggest.

On the famous ”Cluster analysis for portfolio optimization” [11] the authors, inspired
by Econophysics, used a correlation based metric distance to represent the dissimilar-
ity of stocks and applied hierarchical clustering procedure in order to find a filtered
correlation matrix. Several papers have noted the hierarchical structure of stocks.
They found applying Markowitz’s model with their filtered correlation matrix, via
average linkage, significantly improved results of the constructed portfolios. Lately
there’s been a resurgement of the interest in clustering based asset allocation algo-
rithms, particularly ones that work within the assumption of a hierarchical structure
on the financial markets [13, 14].

Formulating the Volatility Allocation Problem

The problem can be stated as follows:

min
w

wtΣw

s.t. wt1N = 1

w ≥ 0

(2.14)

This optimization problem [15] can very easily be solved in the same vein as mean-
variance optimization, via the dual formulation. The solution, which is guaranteed to
be a minima, is the following:

w∗ =
Σ−11N

1tNΣ−11N
(2.15)

1. For a covariance matrix Σ with all equal entries the solution to the problem will
be w∗ = 1N/N , known as the equal weights, or naive, portfolio.

xx CHAPTER 2. THEORETICAL FRAMEWORK

2. For a diagonal covariance matrix Σ with heterogeneous variances the optimal

portfolio will be the inverse-variance portfolio as w∗i =
1/σ2

i∑N
n=1 1/σ2

n
. This will be

important later on.

3. For a covariance matrix Σ with heterogeneous variances and covariances we will
call the solution the minimum variance portfolio.

It’s important to stress the relevance of these portfolios. Despite their simplicity and
their disregard of the expected returns they produce stable weights, do a good job at
diversifying and are surprisingly hard to beat. Specially in the case of the naive portfo-
lio, which routinely outperforms mean-variance optimization [16]. As discussed earlier
their place in the efficient frontier has been observed to be in practice significantly
higher than Markowitz’s model predicts when it comes to their returns.

2.4.4 Performance Measures

There are many criteria one could employ when measuring how good a portfolio is.
Before Markowitz the main and only criteria considered where the predicted returns.
There was not a formal notion of risk nor an appreciation for what a diversified port-
folio could do. Markowitz’s criteria, as we know, was to set level of risk one could
reasonably afford and construct a portfolio that would give you the most bang for
your risk. Besides the returns r′w or the volatility as Markowitz defined it, w′Σw, the
performance measures that have been more influential historically are arguably the
Sharpe Ratio, the Value-at-Risk and the Conditional Value-at-Risk.

Sharpe Ratio

William Sharpe [17] suggested a more general metric to evaluate the performance of
a portfolio, which simultaneously takes into account the overall returns of a portfolio
and its variability, assuming normally distributed identical and independent returns
and accounting for a risk-free rate of interest.

Sφ =
rφ − rf
σφ

(2.16)

where φ represents the portfolio being evaluated, rφ and σφ its overall return and
standard deviation respectively and rf is the best rate of return achievable through
an investment with no perceived risk. The Sharpe Ratio is motivated by the implicit
assumption that Sφ ∼ N(0, 1), which is usually not reasonable.

Value-at-Risk

More often referred to as VaR, it was motivated by the desire for a performance measure
that was non-necessarily-parametric, did not depend on the return and so could be
employed to evaluate portfolios a priori under volatility allocation approaches, and
took into account only the scariest part of the variance, the draw-down variance,
that of the far left tail of the distribution of the portfolio’s daily returns. Given a
distribution of the daily portfolio overall return X, its quantile function F−1

X and a
level α ∈ (0, 1), VaR is generally defined as

2.4. PORTFOLIO OPTIMIZATION xxi

V aRα(X) = F−1
X (α) (2.17)

and represents the value for the daily portfolio returns in the quantile α. V aRα(X)
will then be the expected minimum loss given a portfolio active for (1−α) ∗ 100 days.
However, the VaR is often discouraged is it is not a coherent risk measure [18].

Conditional Value-at-Risk

Better known as Expected Shortfall, or just CVaR, was developed as a response to
VaR not having all the mathematical properties appealing in a risk measure and not
taking accounting for the losses once the V aRα(X) is breached, when the portfolio is
at its worst, precisely when a down-ward risk measure is most crucial. It is defined as

ESα(X) = E[X|X ≤ V aRα(X)] (2.18)

and represents the expected loss below the quantile α.

Chapter 3

Methodology

3.1 The Stock Market and its Hierarchy

Financial Markets are well defined complex systems that we can only hope to model
through the theory of stochastic processes. The stock market can be understood as a
Multivariate Time Series, however that multivariate structure is very hard to exploit.
As we have established stock returns are particularly pathological among Time Series
data, which already stands out for being hard to treat. Stock returns’ fluctuations
are very hard to model individually via either parametric, non-parametric or semi-
parametric approaches. One would think our understanding of the Stock Market
would benefit from the additional information provided by a Multivariate Time Series
approach, one would probably be right, however, modeling the underlying dynamics
between the different stocks in way that would make such approach useful is a very hard
problem because of the insurmountable noise that is immanent to the stock market.
Consideration should then be paid to inferring the topological structure of any given
big set of stocks, which is to say, how would the connections between the stocks be
represented on a graph. One thing is to be sure, the way in which the stock market is
interconnected ought generally not to be represented as a complete graph because of 2
reasons, the former being the main one; first of all it is unrealistic, fluctuations in stocks
from completely unrelated industries will not be directly influencing each other but
through connections with other stocks; second of all a complete graph representation
is very complex and ill-conditioned to analysis, there is too many moving parts as to
extract from it any meaningful understanding or stable predictions.

Rosario Mantegna [19] hypothesized the stocks are structured hierarchically, and that
looking at that structure could be helpful when modeling the financial markets. The
study employs a correlation based metric, designed to represent the pairwise influence
between stocks, and given 443 stocks in the S&P index built an associated distance
matrix. Subsequently, a Minimum Spanning Tree is computed on the graph whose
adjacency matrix is the calculated distance matrix. The result is a parsimonious hier-
archical tree that represents the ability of stocks to interact with each other, directly or
indirectly. The paper found the resulting tree found a meaningful economic taxonomy
such that the stocks where usually grouped in branches of the tree alongside stocks
from companies in the same industry.

xxii

3.2. HIERARCHICAL RISK PARITY xxiii

3.2 Hierarchical Risk Parity

Hierarchical Risk Parity (HRP) is an heuristic algorithm, proposed by Marcos López
de Prado [13], that intends to build portfolios in a way that sidesteps the main prob-
lems tormenting Modern Portfolio Theory. Inspired by the hypothesized hierarchical
structure of the financial markets, and based on Hierarchical Clustering, it makes the
simplifying assumption that the direct pairwise relationships between different stocks
are not all existent such that not all stocks are interchangeable, and the connections
between most stocks are indirect and dependent on a chain of other stocks to relate
them. That imposed structure has the implications that similar stocks will compete
only among each other and whatever estimation errors we have, those errors won’t
propagate in a chaotic fashion and the weights of our portfolio will be more stable.
Small changes in the input will not correspond to large changes in the output, in
contrast with mean-variance optimization, where weights are left to vary freely in un-
intended and unintuitive ways. The stability of the weights is further improved by the
dispensation of the returns when it comes to building the portfolio. As discussed ear-
lier, optimization solvers produce solutions that are extremely sensitive to the inputted
estimation of the future returns. That is unacceptable given the fact that predicting
future returns is a very hard problem and is bound to be done with a very sizeable
out-of-sample error, which means the in-sample solution to the portfolio weights is
bound to be drastically different to the out-of-sample solution, the optimum that we
are actually interested in.

Another major advantage of Hierarchical Risk Parity is the fact that it does not re-
quire the inversion of a covariance matrix Σ, specially given covariance matrix of sets
of stocks are usually very badly conditioned and are not necessarily normal. That
leads to substantial numerical errors that increase fast alongside the number of stocks
considered for the portfolio. It is very unfortunate that with multicollinear stocks the
need for diversification increases, as does the condition number of the covariance ma-
trix increases. When portfolio optimization is most critical, non-linear optimization
algorithms will give the more unstable, and sub-optimal solutions.

There’s been many attempts to use Clustering in order to build well-performing port-
folios. Many of those approaches require to find a sensible partition according to which
segmenting the stocks. It is not uncommon to find an underwhelming optimal number
of clusters according to Shilouette or intra-variance criterias that would not be too
useful in this kind of application. HRP allows us to consider not just a fix number of
clusters but the whole set of its subclusters.

Some other important points are that HRP does not fail to diversify, unlike Markowitz’s
model, which tends to concentrate the entirety of the invested capital in a small num-
ber of the candidate stocks, and that the algorithm is not limited in its scope to
working with covariances as the codependence measures between stocks but can easily
be tweaked to work with much more general relationships that could capture in more
useful ways what it means for two stocks to be dissimilar in the context of portfolio
optimization.

The HRP algorithm has three distinct steps, tree clustering, quasi-diagonalization and
recursive bisection which we will detail next.

xxiv CHAPTER 3. METHODOLOGY

3.2.1 Tree Clustering

Consider a multivariate time series comprised of the returns of N stocks for a number
of T points in time, with a matrix representation of RT×N and a covariance matrix Σ.

We compute P =
(
diag(Σ)

)− 1
2 Σ
(
diag(Σ)

)− 1
2 , the correlation matrix, with elements

ρij.

We define a distance measure d : (R∗i, R∗j)→ R ∈ [0, 1] where i, j ⊂M , the cartesian

product of the set of stocks, {1, ..., N}. dij = d(R∗i, R∗j) :=
√

1
2
(1− ρij). The distance

d will measure the similarity of 2 stocks in terms of correlations. Stocks will be
the closer together the stronger their linear relationship is, assuming it is positive,
while they will be further apart the stronger their linear relationship is, assuming it is
negative. The choice of d implies the philosophy that stocks are similar if they tend
to move in the same direction, and dissimilar if they tend to move in the opposite
direction which is one way of looking at it.

Next we define the distance matrix D, constituted by the distances dij as elements, and
we apply the euclidean distance between all pairs of its column vectors. More formally
we define a new distance measure d̃ : (D∗i, D∗j)→ R ∈ [0,

√
N] where i, j ⊂M . Then

we will get a new distance matrix D̃ formed by the elements d̃ij = d̃(D∗i, D∗j) :=√∑N
n=1(dni − dnj)2. This new distance of distances measures dissimilarity in terms of

how 2 stocks move with respect to the universe of stocks considered. Two stocks are
more similar the more similar their relationships are with the universe of stocks. We
will proceed to apply the hierarchical clustering algorithm with single linkage over the
distance matrix D̃. We will find clusters of stocks not on the basis of how similarly
stocks move with each other, in terms of direction, but how similarly they move with
respect to the market as a whole.

3.2.2 Quasidiagonalization

Better known as matrix seriation, this step aims to rearrange the indexes of the stocks
in the covariance matrix Σ in a way that it will become closer to a diagonal matrix,
and so the largest covariances will lie along the diagonal. This is achieved through the
resulting tree from the previously used hierarchical clustering procedure. We traverse
the tree from top to bottom. Each time 2 branches merge we find a partition for 2
sets of indexes, S1 and S2, of sizes n1 and n2 respectively. We assign the n1 indexes
in subset S1 to the left and the n2 in the subset S2 to the right of an array of length
n1 + n2. The 2 subsets are locked in position to the specific positions of the orderings
array of length N that are being contested by the two sub-clusters depending on the
sub-clusters before them. We do this recursively for each branch until there is no
subsets left to traverse.

Similar investments will be placed together while dissimilar ones will be placed apart.

3.2. HIERARCHICAL RISK PARITY xxv

(a) Original Correlation Metric Distance Matrix (b) Seriated Correlation Metric Distance Matrix

Figure 3.1: Before and After Quasidiagonalization

3.2.3 Recursive Bisection

The core and final step of Hierarchical Risk Parity takes advantage of hierarchical
tree from step 1 and the seriated covariance matrix in step 2 to allocate the portfolio
weights. We will traverse the dendogram with a top-down approach and assign the
weights as if it were recursively at every split. The algorithm proceeds as follows:

1. The procedure is initialized.

(a) all the weights are set to 1, w = 1N

(b) we set a list of items: L = {L0} where L0 = {1, ..., N}

2. If |Li| = 1,∀Li ∈ L, then STOP.

3. For each Li ∈ L such that |Li| > 1:

(a) Bisect Li into two subsets of equal cardinality where L
(1)
i ∪ L

(2)
i = Li.

The subsets correspond to the clusters originated from the bisection.

i. Define the provisionary weights for the subset Lji , with an associated

covariance matrix Σ
(j)
i

w̃
(j)
i =

diag[Σ
(j)
i]−1

trace
(
diag[Σ

(j)
i]−1

) (3.1)

Here we exploit the fact that for a diagonal covariance matrix, the
inverse-variance portfolios are optimal. It makes sense to use inverse-
volatility allocation for this subset since we are dealing with a quasi-
diagonal covariance matrix.

xxvi CHAPTER 3. METHODOLOGY

ii. Define the variance of each cluster L
(j)
i , j = 1, 2, as

Ṽ
(j)
i ≡ (w̃

(j)
i)tΣ

(j)
i w̃

(j)
i (3.2)

(b) Compute the weighting factor

αi = 1− Ṽ
(j)
i

Ṽ
(j)
i + Ṽ

(j)
i

(3.3)

Which represents the weight that the cluster L
(1)
i would be assigned, as a

whole, while competing against cluster L
(2)
i under the inverse-variance allo-

cation paradigm.

4. Update the weights of the stocks in subsets 1 and 2 respectively

wk = α1 ∗ wk, ∀k ∈ L(1)
i (3.4)

ws = α2 ∗ ws = (1− α1) ∗ ws, ∀s ∈ L(2)
i (3.5)

5. Return to Step 2.

At the end of the process, marked by ’stop’ at step 2, we are left with a vector w
containing the weights associated to any given stock.

3.3 Alternative Dissimilarity Measures

During the Tree Clustering stage in the Hierarchical Risk Parity algorithm two dis-
similarities are used. First a correlation-based metric. Then a distance of distances
based on that first dissimilarity. Variations of HRP can be made via changing that
first dissimilarity. Here we will present alternative dissimilarities we will integrate into
HRP with the intent of improving its performance. Each of the four suggested dis-
similarities has distinct virtue that makes it stand out. The feature-based metric, for
instance, intends to take advantage of the information the series of returns carry in an
indirect way, through its fundamental characteristics. Dynamic Time Warping, mean-
while, is a shape based dissimilarity and should be able to detect similarities between
series despite them being out of phase or having a random variations in periodicity. As
we know the covariance matrix of the returns are very noisy, the Constant Residual
Eigenvalue method is used to build a correlation-based metric based on a denoised
correlation matrix. Lastly, the main selling point of the mutual information-based
metric is that it should allow HRP to be sensitive to non-linear relationships.

3.3. ALTERNATIVE DISSIMILARITY MEASURES xxvii

3.3.1 Feature-based Metric

As discussed, feature-based approaches to clustering occupy a specially relevant place
in the realm of Time Series Clustering given the inherent high dimensionality of time
series data. The idea is representing the series via several of their fundamental char-
acteristics via the so called features, which are essentially statistics in the sense that
they are functions of the sampled time series. Some examples of features that can be
extracted from a time series are the mean, the variance and the number of structural
breaks. Many of those characteristics might be providing the same information, just
in different ways.

Summarizing time series in terms of features can be thought of very loosely as a
way of dimensionality reduction or information compression. However the resulting
features will not be independent from each other and many will be conveying the same
information. The information compression the feature based approach makes is intra-
series, and not inter-series, in contrast it with dimensionality reduction techniques
such as PCA, kernel PCA or Autoencoder Neural Networks.

In the particular feature-based measure we will employ, in order to give the same weight
to all the distinct information conveyed by the initial characteristics extracted from the
series, their information will be compressed via Principal Component Analysis, and we
will engineer a new orthogonal set of features, thus not leaving place for redundancy.

Given N stocks, a time period T , a number of features K and a multivariate time series
of the stock’s returns RT×N we compute the feature matrix FN×K whose elements fij
will represent the value associated to the j-th feature for the return series associated
to the i-th stock.

Suppose a time index t ∈ {1, ..., n} and a time series yt = TCt + St + Et, with an
additive integration scheme such that it is weakly-stationary; where TCt, St and Et
are, respectively, the trend-cyclical, seasonal and noise components. To end with the
notation, γ(k) is the autocorrelation at lag k and f̂(λ) the estimated normalized spec-
tral density. The features employed [20] are numerous and varied, here they are briefly
presented:

Trend = 1 − V ar(Et)
V ar(Xt−St)

. Indicates how strong is the trend-cyclical component
in the series.

Spike = 1− V ar(Et)(n−1)−(Et−Ēt)2

n−2
. Mesures the ”spikiness” of time series data.

Linearity = β∗1 and Curvature = β∗2 , where they are the non-intercept param-
eters that give solution to the linear model Tt = β∗0 + β∗1t + β∗2t

2 through the
Ordinary Least Squares approach.

xACF1 = γ(1). Value taken by the first lag.

xACF10 =
∑10

k=1 γ(k)2. Sum of squares of the autocorrelations for the 10 first
lags.

Spectral Entropy = −
∫ π
−π f̂(λ) log(f̂(λ))dλ. Measures how hard a time series

is to forecast. Takes values between 0 and 1. Higher values correspond to lower

xxviii CHAPTER 3. METHODOLOGY

signal to noise ratios.

Stability and Lumpiness These features are based on non-overlapping win-
dows. Stability is the variance of the means of those windows, while Lumpiness
is defined as the variance of their variances.

After calculating the feature matrix F with the R package ’tsfeatures’ [21] we perform
PCA not to reduce dimensionality but in order to separate the underlying information
in the original features in orthogonal components such that we avoid redundancy in
the information carried by the original features when doing the clustering. Then we
calculate the pairwise euclidean distance between the PCA’s projections’ observations,
which are associated to stocks, and get our sought after dissimilarity matrix. As we
do not standardize the projections before calculating the euclidean distance matrix
the weight of any principal component in the clustering will be proportional to the
variability associated with that component. The more information a dimension carries
about the original features the more voice it will have.

3.3.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is one of the most popular algorithms to measure sim-
ilarity between temporal sequences which may vary in either speed, phase, or both.
Being at the core of shape based clustering it considers dissimilarity in terms of oc-
currence patterns irrespective of their time. It allowed for significant contributions in
speech recognition and robotics, before being adopted by statisticians for Time Series
Analysis [22].

Algorithm 1: Basic Dynamic Time Warping

Result: Mnm

Initialize with x and y, vectors of lengths n and m respectively;
Set a two-dimensional array Mn×m with entries := ∞ ;
M00:= 0;
for i:= 0 to n do

for j:= 0 to m do
cost:= |xi − yj|;
Mij:= cost+min(Mi−1,j,Mi,j−1,Mi−1,j−1);

end for

end for

To this procedure is usually added a time window constraint such that only nearby
time points can be matched [23]. The biggest drawbacks of Dynamic Time Warping
are its sensitivity to noise and its computational complexity of O(n2/ log log(n)).

3.3. ALTERNATIVE DISSIMILARITY MEASURES xxix

Figure 3.2: Comparison between Euclidean Distance and Dynamic Time Warping.

The dissimilarity matrix was obtained through the R package ’TSclust’ [24].

3.3.3 The Constant Residual Eigenvalue Method

Random Matrix Theory, originally developed in the context of nuclear physics, has
found widespread application in mathematical finance as studying the properties of
random matrices has proven really useful when it comes to discerning the signal from
the noise in the relationships among a universe of assets.

Suppose a correlation matrix P of the returns of N assets across a time period of
length T , and assume those returns are centered, scaled, stochastically independent
and identically distributed. A special case of the Marcenko-Pastur Theorem [10] states
that the eigenvalues λ of P, as N → ∞ and T → ∞ in a fixed ratio Q = T

N
≥ 1,

asymptotically converge to the following spectral probability density

ρ(λ) = 1λ∈[λ−,λ+]
T

2πλ

√
(λmax − λ)(λ− λmin) (3.6)

Where λmin = (1−
√

1/Q)2 and λmax = (1 +
√

1/Q)2.

Every eigenvalue λi, i ∈ {1, 2, ..., N}, such that ρ(λi) > 0, or alternatively λmax > λi >
λmin, will be consistent with white noise and thus will likely represent uninformative
random fluctuations, which we will of course not be interested in.

In order to denoise a correlation matrix [15] we will set a constant value to all the
eigenvalues that seem to provide no information, or that have non-zero spectral density.
We will update the eigenvalues associated with white noise to their average value in
order to reduce their influence while preserving the trace of the correlation matrix.

xxx CHAPTER 3. METHODOLOGY

Figure 3.3: Fitting the Marcenko–Pastur PDF on a noisy correlation matrix, from
Machine Learning for Asset Managers.

Let K be a correlation matrix and WΛW−1 its spectral decomposition, and let Λ̃ be
the updated diagonal matrix with the denoised eigenvalues

K̃ = WΛ̃W−1 (3.7)

K̃ will then be a denoised pseudo-correlation matrix, which we can scale in the follow-
ing way such that its diagonal consists of ones in order to become a valid correlation
matrix

Ψ = K̃
[
(diag[K̃])

1
2 ⊗ (diag[K̃])

1
2

]−1
(3.8)

Using the clean correlation matrix Ψ we will establish a dissimilarity matrix just like
we did with the raw, unprocessed correlation metric in the Hierarchical Risk Parity
algorithm as presented by López de Prado. The elements of this new distance matrix,

let’s call it A, will be defined as aij :=
√

1
2
(1− ψij), where ψij are the elements of Ψ.

3.3. ALTERNATIVE DISSIMILARITY MEASURES xxxi

3.3.4 Mutual Information

In 1945 Claude Shannon published his groundbreaking paper ”A mathematical theory
of communication” [25], which signified an paradigm shift in humanity’s understanding
of information, and as a standalone gave birth to a whole new scientific discipline,
Information Theory. Prior to Shannon’s insights information was seen as a vague, ill-
defined, almost metaphysical concept. Shannon showed information is a well-defined,
and above all, measurable quantity.

Shannon knew that a measure of information should necessarily have the properties
of continuity, symmetry, additivity and its maximal value should be found for equally
probable outcomes. He proved there is only one such measure that possesses those
4 properties, which we now know as Entropy. Given a discrete random variable X
with x1, ..., xm possible outcomes and probability mass function p, entropy, measured
in bits, is defined as

H(X) =
m∑
i=1

p(xi) log2

1

p(xi)
= −E[log2 p(x)] (3.9)

which is to be interpreted as the bits of information that X provides on average.
Another more intuitive way to understand it is as the average surprise resulting from
materializations of the random variable. The more uniform the probabilities of the
different outcomes the less predictable and the more surprising or informative a random
variable is, and the greater Entropy it has. On the other hand, the least homogeneous
the probabilities associated to the different outcomes the more predictable they are
and the lower the entropy. Deterministic phenomena for instance can be seen as a
degenerate case of probabilistic phenomena where all the probability collapses on one
outcome, in this case the entropy would be the minimum possible, 0. Deterministic
phenomena is completely predictable and does not provide any information inherently.

Entropy is extended to multivariate or conditional random variables very straightfor-
wardly. One should simply consider their associated probability mass function instead
of the marginal one. Given two random variables X and Y , H(X, Y), the average
surprise when observing the two variables is known as their joint entropy and H(X|Y)
as their conditional entropy, which in this instance constitutes the average surprise on
X after observing Y .

The mutual information [26] is a non-linear association measure that represents the
information a collection of random variables provide of each other and given random
vector (X, Y) is defined as

I(X, Y) = E
[

log2

p(x, y)

p(x)p(y)

]
= H(X) +H(Y)−H(X, Y) (3.10)

so it can be interpreted as the reduction in the surprise when they are considered
jointly as opposed to independently, which is the information they carry about each
other.

xxxii CHAPTER 3. METHODOLOGY

Figure 3.4: Diagram representing the relationship between information-theoretic quan-
tities

Using mutual information as a dissimillarity measure is equivalent to using the Kullback-
Leibler divergence between the joint and the marginal distributions.

I(X, Y) = DKL

(
p(X, Y)||p(X)p(Y)

)
(3.11)

We construct our dissimilarity matrix with the mutual information-based metric dis-
tance measure that was suggested by Kraskov et al. in the paper ”Hierarchical Clus-
tering Based on Mutual Information” [27].

D′(X, Y) := 1− I(X, Y)

max{H(X), H(Y)}
(3.12)

The estimation of the mutual information was done through the second k-Nearest-
Neighbors based estimator proposed on the seminal paper by Kraskov [28] via the R
package ’rmi’ [29]. Individual entropies were estimated using the Chao-Shen estimator
[30] via the R package ’entropy’ [31].

Chapter 4

An Empirical Study with the S&P
500

The purpose of this chapter is to test the performance of Hierarchical Risk Parity
(implementation by Gautier Marti [32]) and compare it to that of more traditional
methods. Furthermore we aim to test the performance of HRP conditional on a variety
of distance measures, each with different merits, that would seem suitable for the
job. We would like to expand on the work done by Illya Barziy and Marcin Chlebus
[33], about how different co-dependence measures affect Hierarchical Risk Parity’s
performance. Better performance when working with a specific dissimilarity would
be mildly suggestive of it being more apt when it comes to inferring the topological
structure in the stock market, as of course it would be reductive to pretend one could
get any definitive understanding of the structure of the financial markets in terms
of how useful it is for making some sort of predictions. This is, however, an very
interesting opportunity given one can not easily evaluate the performance of clustering
procedures on the basis of the objectives they were carried out in mind with. Here our
clustering has an specific, well-defined purpose, and more importantly its performance
can be measured in the sense that it improves the construction of the portfolios.

4.1 Dataset Used

The dataset used in the analysis consists of the daily adjusted closing prices for the
stocks of 440 companies in the Standard and Poor’s index. More commonly known
as S&P 500, it features 500 of the largest public companies in the United States.
The stock prices collected are from the first of January of 2014 all the way to 31st of
December of 2020. The stocks prices are converted to stock returns, forming a total
of 1762 observations. The data was retrieved from Yahoo Finance and the Wikipedia
S&P 500 page via the following Python command:

xxxiii

xxxiv CHAPTER 4. AN EMPIRICAL STUDY WITH THE S&P 500

Figure 4.1: Command used to pull the data from Wikipedia and the Yahoo Finance
servers

We were able to retrieve 479 stocks. The missing stocks did not belong to the S&P
for the 7-year period studied, so they were discarded, while being mindful of the risk
of introducing some generalization of survivorship bias which we expect will not be
of much significance given the large pool of stocks used. Out of the retrieved stocks
440 were randomly selected according to uniform probability as to accommodate for
a balanced study, of the characteristics we will detail next, without introducing any
new bias.

4.2 The Experiment

The trial we will conduct has as its objective to see what performance we can expect
in practice for a given portfolio, while accounting for its method of construction and
assuming a naive investor. One that is not savvy in terms of what stocks will work best
together in a portfolio and, effectively, chooses stocks to invest at random. The asset
allocation methods we will compare will be Hierarchical Risk Parity and its variants
employing dissimilarities including Dynamic Time Warping, Mutual Information, the
proposed feature-based approach and the Constant Residual Eigenvalue method. We
will furthermore see how this Hierarchical methods fair against the infamously hard
to beat Uniform Weighting Portfolio. Portfolio optimization procedures are performed
on historical, or in-sample, data. According to the assumption that the in-sample
qualities of the portfolio should be similar to the out-of-sample portfolios, predictions
are made about the behavior of the portfolios out-of-sample. Those predictions will
be in this case in terms of the expected returns and risk. In-sample performance is
not of practical interest so we will focus on out-of-sample performance.

The trial is structured according to the train-test paradigm. The training set for each
given portfolio will be of one year, same as the testing set. For each portfolio the test

4.3. RESULTS xxxv

set will be constituted by the observations associated to the subsequent year to which
the portfolio was trained. For each year 11 portfolios will be trained per method,
with non-overlapping, randomly sampled sets of 40 stocks. Each year the 11 sets of
stocks used to construct the portfolios will be generated anew such that we control
for variability in the quality of the sets of stocks on which the portfolios are trained
across time. Maintaining constant the sets of stocks would introduce bias as the luck
we get in the construction of the 11 sets of stocks would have too great of an impact
on the study. How well specific groups of stocks work together in a portfolio is not
a factor of interest right now. The sets of stocks will vary yearly but not across the
different methods employ to construct the portfolio as that would add variability that
we should like to spare.

We chose to select 11 sets of non-overlapping stocks each year as opposed to a Monte-
carlo approach that sampled and indefinite number of randomly sampled overlapping
sets of stocks, so that every stock is equally represented on the analysis and we do not
add uninteresting variability associated to unequal representation. The bias associated
to the limited non-overlapping sets of stocks should not be worrying given those sets
vary across the years.

We have historical data for 7 years through which we will be able to calculate in-
sample portfolios from 2014 to 2019 to be tested out-of sample. We can not take full
advantage of the historical returns from 2020 because the in-sample portfolios from
that year could not be tested out-of-sample.

To summarize, we will compute the weights for 11 sets of stocks per method, per year
that has an out-of-sample reference. Given we are applying 6 methods and have 6 years
for out-of-sample testing we will be computing 11× 6× 6 = 396 distinct portfolios.

4.3 Results

The out-of-sample performance of the portfolios across the entirety of the testing
period can be summarized via the following table. It features the estimator for each
performance metric with its average intra-year standard error, right beside, within
brackets. Using the regular standard error would be misleading given it does not
account in any way for the development of stock returns across the years and we are
not interested in the inter-year effects as a whole. The Conditional Value-at-Risk is
calculated for α = 0.05.

Method Mean Returns Mean Volatility Mean CVaR

Correlation Metric 14.49% (0.035) 0.0071 (0.00046) -2.43% (0.0015)
Denoised Correlation Metric 14.34% (0.033) 0.0071 (0.00043) -2.43% (0.0015)

Dynamic Time Warping 14.63% (0.034) 0.0074 (0.00044) -2.50% (0.0015)
Feature-based Metric 14.51% (0.032) 0.0072 (0.00043) -2.46% (0.0015)
Mutual Information 14.52% (0.033) 0.0073 (0.00045) -2.47% (0.0016)
Uniform Portfolio 16.10% (0.034) 0.0084 (0.00048) -2.70% (0.0017)

Table 4.1: Mean Performance by Portfolio Construction Method, and Standard Error

xxxvi CHAPTER 4. AN EMPIRICAL STUDY WITH THE S&P 500

We will have to abstain from making any remarks about the statistical significance of
these differences given the observations of daily returns per portfolio generated is not
well suited to any meaningful statistical analysis because of obvious issues related to
statistical independence and complex heterocedasticity. A meta-analysis that tries to
find statistical differences between the estimators of the performance measures them-
selves is neither feasible according to the main approaches on the Generalized Linear
Modeling framework. All the differences we will discuss will be in terms of financial
significance as is standard in the Portfolio Optimization scientific literature.

When it comes to the returns we can see clear, financially significant, differences. The
equal weights portfolio trumps all with a 16.1% mean returns. Far behind lags the rest
of the pack. At 14.63% returns the Dynamic Time Warping approach excels among
the Hierarchical Risk Parity variants. The following three the methods all perform
very similarly in terms of profitability. The Mutual Information approach seems to
do better among them at 14.52%, but its difference with the feature-based approach
is minimal and still very minor with respect to the base Hierarchical Risk Parity, at
14.49%. Denoising the correlation matrix via the results of Marcenko and Pastur prior
to establishing a correlation based dissimilarity did not turn out well as the approach
struggled in terms of profitability with respect to the rest of portfolio construction
methods at a low 14.34% returns.

Figure 4.2: Yearly Cumulative Sum of Returns per Method

4.3. RESULTS xxxvii

(a) Cumulative Sum of Volatility per Method (b) Cumulative Sum of CVaR per Method

Figure 4.3: Yearly Cumulative Sum of Risk Measures per Method

The association between out-of-sample returns and volatility seems to certainly be
positive. While the HRP variants performed all very similarly on this front, the uniform
weights portfolio had a comparatively high volatility. It being a 15% more than the
next highest, that of the shape-based HRP. The rest of the methods sit around an
average volatility of 0.0072, they behave very similarly in this respect. The higher a
method ranked in terms of returns the higher it ranked in terms of volatility. And the
higher it ranked in terms of returns the higher it ranked in terms of the magnitude
of its Expected Shortfall, or Conditional Value-at-Risk. At the 5% level of draw-
down volatility, along the lines of regular volatility the equal weights portfolio is a
clear outlier. The expected left tail movement under the 5th percentile implies a loss
0f 2.7% in the value of the naive portfolio. Next up is the DTW-based approach
with a CVaR of -2.5%, shortly followed by the Mutual Information and feature-based
methods. The HRP had the lower draw-down volatilities among the correlation based
dissimilarities, at a 2.43% expected 5th percentile loss.

We have represented graphically all of the 396 portfolios according to their profitability
and their volatility through 6 scatterplots. Each scatter plot contains the representa-
tion of the portfolios tested out-of-sample for a given year in terms of their returns
and volatility. We can see as expected the clearest separation among points is found
on whether the portfolios are Equal Weights or they are HRP-adjacent. The behavior
among hierarchical methods seems to be relatively similar between themselves, but
very different to that of the naive portfolio. The most visible trend sustained over
time is that the Equal Weights portfolio almost always will imply greater volatility
and in a way that can be pretty significant. The second thing that comes to mind is
that there are many small groupings of 5 associated colors that correspond all to the
HRP-adjacent portfolios calculated on a same set of stocks. On those various little
clusters we can see there is not a sustained pattern across time, the volatilities seem
to behave along the lines of what could be anticipated by the table 4.1. However
that table does not tell the whole story when it comes to how the returns behave, as

xxxviii CHAPTER 4. AN EMPIRICAL STUDY WITH THE S&P 500

the ranking of the methods with respect to profitability varies notoriously across the
different testing periods.

Method 2015 2016 2017 2018 2019 2020

Correlation Metric 5.69% 16.01% 20.69% -2.34% 27.86% 19.01%
Denoised Correlation Metric 5.59% 15.91% 20.56% -2.81% 27.95% 18.85%

Dynamic Time Warping 5.11% 16.63% 21.23% -3.00% 28.52% 19.26%
Feature-based Metric 5.62% 16.02% 21.30% -2.72% 28.35% 18.48%
Mutual Information 5.32% 16.30% 20.76% -2.34% 28.23% 18.81%
Uniform Portfolio 4.97% 17.55% 22.56% -3.43% 29.73% 24.96%

Overall Mean Returns 5.38% 16.40% 21.18% -2.77% 28.44% 19.89%

Table 4.2: Returns by Portfolio Construction Method, and Year

(a) Out-of-sample Performance 2015 (b) Out-of-sample Performance 2016

Figure 4.4: Years 1 and 2 of testing

On the first year of testing for instance, despite the unfortunate general performance of
the HRP portfolios constructed via correlation-based metrics they seem to have done
consistently better than the Mutual Information and DTW approaches. The standard
HRP algorithm shined above all with a very low volatility and the highest returns
among all. The uniform weights portfolio did very poorly by comparison, it had the
lowest returns and the highest volatilities.

On the second year and the third year of testing we can appreciate the more general
patterns in table 4.1. On 2018, which was a very rough year for the S&P 500, all
the vast majority of the portfolios lost money. The standard correlation-based metric
shines once again, with the highest returns and the lowest volatility. The Mutual
Information dissimilarity excels as well, slightly improving on the crisis management
of the base HRP, it achieved even lower losses at a very similar volatility. Once again
the naive portfolios performed very poorly.

4.3. RESULTS xxxix

(a) Out-of-sample Performance 2017 (b) Out-of-sample Performance 2018

Figure 4.5: Years 3 and 4 of testing

The performance in the year 2019 shares the spirit of table 4.1. The correlation-
based HRPs have lower payback as well as volatility, and the DTW approach and the
Uniform portfolio do best in terms of returns and worse when it comes to volatility.
The equal weights allocation is very profitable, a 1.5% more than the next best, which
we implied is the Dynamic Time Warping based Hierarchical Risk Parity. The other
2 methods are just a compromise between the more risky and profitable ones, and the
more predictable less profitable ones. For the last year, the uniform weights portfolio
simply blew it out of the park. Its average returns were roughly of a 25%. Next
highest method in terms of profitability was the DTW Hierarchical Risk Parity, and
sat lowly by comparison at 19.26% returns. It is worth noting the base HRP was third
in terms of returns, at a very low volatility, and the feature-based approach had the
lowest returns.

(a) Out-of-sample Performance 2019 (b) Out-of-sample Performance 2020

Figure 4.6: Years 5 and 6 of testing

xl CHAPTER 4. AN EMPIRICAL STUDY WITH THE S&P 500

The volatilities of the per year per method are very uninteresting beyond providing
confirmation of the general tendencies already apparent in table 4.1 being consistent
across time. It is the case too when it comes to draw-down volatility as it behaves
very similarly. However, in the case of the returns we can see that their relationship
across the years is more interesting.

Kendall Correlation Mean Returns per year

COR Centered Returns per year -0.733
DCOR Returns per year -0.333
DTW Returns per year 0.200

FEATURES Centered Returns per year -0.200
MI Centered Returns per year -0.600

Unif Centered Returns per year 0.600

Table 4.3: Kendall Correlations

We calculated the Kendall correlations between the Mean Returns per year across all
methods, and the Centered Mean Returns for each specific method. Centered as to
be able to compare the methods at a baseline, as to whether there is variation with
respect to the rest of methods. Here we see what we intuited. There is reasonable
empirical evidence suggesting that for more hostile years in the market the standard
Hierarchical Risk Parity with the default correlation metric, will tend to work better.
Not to such an extent, but he same seems to be true for Mutual Information approach.
Not without the implication, however, that these methods will have a hard time when
the returns to be had are generally high. On the other hand, the celebrated Uniform
weighting portfolios will struggle during hard times, but excel during those that are
more favorable to the investor.

Chapter 5

Conclusions

This work lies on the intersection of Time Series Analysis, Clustering and Portfolio
Optimization. Our intent was to integrate some popular techniques in Time Series
Analysis, Information Theory and Random Matrix Theory within the Hierarchical
Risk Parity algorithm in order to improve its performance, explore the viability of the
aforementioned techniques in the field of Portfolio Optimization and investigate the
value in the hierarchical conception of the financial markets when it comes to asset
allocation.

We tested the performance of 396 distinct portfolios in total, constructed via 6 differ-
ent methodologies across a 6 year period. The methods employed include the standard
Hierarchical Risk Parity algorithm, based on a correlation-based metric and four dif-
ferent variants employing different dissimilarity measures according to which build the
hierarchical tree. One variant employed a metric based on denoised correlations. An-
other one used a shape-based dissimilarity know as Dynamic Time Warping. The third
variant considered employed a distance measure based on Mutual Information, a gen-
eral, non-linear, association measure intimately connected to the Pearson correlation.
The fourth and last variant was inspired by feature-based clustering and resulted on a
dissimilarity matrix that was built on the euclidean distance of the scores of the prin-
cipal components given a matrix that summarized particularly relevant characteristics
of the series of stocks’ returns. Lastly we computed the Uniform Weights portfolios
to serve as a reference for a respected, well-performing method of asset allocation, in
order to compare it to the HRP-adjacent methods studied.

We found that the behavior of the HRP-adjacent methods was relatively similar. Their
volatilities and down-ward volatilities, measured by the standard deviation and the
CVaR with α = 0.05, sustained the same pattern across all the years of testing. The
correlation-based metrics consistently built lower risk portfolios while the Dynamic
Time Warping HRP portfolios tended to have higher risks among the hierarchical
methods. The Mutual Information and feature-based approaches were middle of the
road when it comes to risk. On the other hand the Uniform Weights portfolios were
characterized by risks that are significantly higher than that of any of the Hierarchical
Risk Parity variants.

More interesting findings are associated to the behavior of the returns across time.

xli

xlii CHAPTER 5. CONCLUSIONS

The general trend is that the Equal Weights Portfolio is by far the most profitable.
The DTW-based portfolios would be the next best by a good margin, followed by
the portfolios constructed in terms of the features and mutual information and those
built through the standard HRP. The portfolios making use of the Constant Residual
Eigenvalue method did very poorly overall in terms of returns when compared to the
rest. However these general returns related trends do not tell the whole story. We
found that in testing periods where the S&P 500 struggled, comparatively, and had
average returns lower than a 7% more or less the default HRP performed the best in
terms of returns with very low risks too. The Mutual Information Portfolios excelled
too during harder times but not to the same extent. The Equal Weights portfolios
despite their overall success had a really rough time when the markets did not run so
smoothly. For years where the expected profits are on the lower side the performance
of these naive portfolios was very bad, on the other hand during easier times its
performance was really good, only contested by Dynamic Time Warping portfolios in
the eyes of the conservative investor.

We have found that all the HRP-adjacent methods but the one employing a metric
constructed over a denoised correlation matrix would be justifiable in application. The
base HRP is an awesome choice for the skeptical investor that has the opinion that
the markets will struggle during the coming year. The feature-based metric and the
mutual information based distance can be used by conservative investors that do not
want risk but want an reasonable level of profitability. The choice on the two would be
based on how skeptical a portfolio manager is about the coming year, if the returns are
expected to be on the higher end the recommendation would be to employ the feature-
based approach while alternatively the information theoretic one would be encouraged.
The obvious choice for the optimistic investor that expects the markets to have a good
year and wants higher returns but still low risk is the Dynamic Time Warping way
while the method of asset allocation of choice for the optimistic investor that has a
high tolerance to risk and chases after very high returns is the Equal Weights portfolio.

It is clear that the hierarchical conception of the financial markets, via the standard
correlation metric, helps us make portfolios that work very well when other heuris-
tic approaches fail. We also found evidence that when stock returns fly high Dynamic
Time Warping and perhaps, more generally, other shape based dissimilarities are help-
ful to build a hierarchy that models the relationships among stocks in a way that helps
us build better risk-adjusted, more robust, competitive portfolios.

Chapter 6

Bibliography

[1] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Apllica-
tions. Springer. Davis CA and Pittsburgh PA, 2010.

[2] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statis-
tical Learning. Springer. Stanford, California, 2008.

[3] Wikipedia, Clustering.

https://en.wikipedia.org/wiki/Clustering

[4] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras & Tensor-
flow. O’Reilly. 2019.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning.. Springer.
2010.

[6] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi and Teh Ying Wah. Time-series clus-
tering – A decade review. Elsevier, Information Systems. 2015.

[7] Harry Markowitz. Portfolio Selection. Journal of Finance. 1952.

[8] Marcos López de Prado Advances in Financial Machine Learning. Wiley. 2016.

[9] Fisher Black and Robert Litterman. Asset Allocation Combining Investor Views
with Market Equilibrium. Journal of Fixed Income. 1992.

[10] V. A. Marcenko and L. A. Pastur. Distribution of eigenvalues for some sets of
random matrices. Mathematic USSR-Sbornik. 1967.

[11] Vincenzo Tola, Fabrizio Lillo, Mauro Gallegati and Rosario N. Mantegna. Cluster
analysis for portfolio optimization. Catania, Italy. Santa Fe, USA. 2005.

[12] Olivier Ledoit. Honey, I Shrunk the Sample Covariance Matrix.. London, 2003.

[13] Marcos López de Prado. Building Diversified Portfolios that Outperform out-of-
sample. 2016.

[14] Thomas Raffinot. Hierarchical Clustering-Based Asset Allocation. Journal of Port-
folio Management. 2018.

xliii

xliv CHAPTER 6. BIBLIOGRAPHY

[15] Marcos López de Prado Machine Learning for Asset Managers. Cambridge Uni-
versity Press. 2020.

[16] Roger Clarke, Harindra de Silva, and Steven Thorley. Minimum-Variance Port-
folios in the U.S. Equity Market. 2006.

[17] Sharpe, W. F. Mutual Fund Performance. Journal of Business. 1966.

[18] P. Artzner, F. Delbaen, J. M. Eber and D. Heath. Coherent Measures of Risk.
Mathematical Finance. 1999.

[19] Rosario N. Mantenga. Hierarchical Structure in Financial Markets. Palermo, Italy,
1998.

[20] Yangzhuoran Yang and Rob J. Hyndman. Introduction to the tsfeatures package.

https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html

2020.

[21] Rob J. Hyndman et al. tsfeatures: Time Series Feature Extraction.

https://cran.r-project.org/web/packages/tsfeatures/index.html

2020.

[22] Donald J. Bemdt and James Clifford. Using Dynamic Time Warping to Find
Patterns in Time Series. New York, USA. 1994.

[23] Wikipedia, Dynamic Time Warping.

https://en.wikipedia.org/wiki/Dynamic_time_warping

[24] Pablo Montero Manso and Jose Vilar Fernández. TSclust: Time Series Clustering
Utilities.

https://cran.r-project.org/web/packages/TSclust/index.html

2020.

[25] Claude Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal. 1948.

[26] James V. Stone. Information Theory: A Tutorial Introduction. Sebtel Press. 2015.

[27] Alexander Kraskov, Harald Stogbauer, Ralph G. Andrzejak, and Peter Grass-
berger. Hierarchical Clustering Based on Mutual Information. 2008.

[28] Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating Mutual
Information. 2004.

[29] Isaac Michaud. rmi: Mutual Information Estimators.

https://cran.r-project.org/web/packages/rmi/index.html

2018.

[30] A. Chao and T.J. Shen. Nonparametric estimation of Shannon’s index of diversity
when there are unseen species in sample. Environ. Ecol. Stat. 2003.

xlv

[31] Jean Hausser and Korbinian Strimmer entropy: Estimation of Entropy, Mutual
Information and Related Quantities.

https://cran.r-project.org/web/packages/entropy/index.html

2021.

[32] Gautier Marti . Hierarchical Risk Parity.

https://gmarti.gitlab.io/qfin/2018/10/02/hierarchical-risk-parity-part-1.html

2018.

[33] Illya Barziy and Marcin Chlebus. HRP performance comparison in portfolio op-
timization under various codependence and distance metrics. Warsaw, Poland.
2020.

Chapter 7

Additional Tables + Code

7.1 Extra Tables

Method 2015 2016 2017 2018 2019 2020

Correlation Metric 0.0065 0.0090 0.0078 0.0040 0.0087 0.0065
Denoised Correlation Metric 0.0065 0.0090 0.0078 0.0040 0.0087 0.0065

Dynamic Time Warping 0.0068 0.0093 0.0081 0.0042 0.0091 0.0069
Feature-based Metric 0.0067 0.0091 0.0080 0.0041 0.0089 0.0067
Mutual Information 0.0066 0.0091 0.0080 0.0041 0.0089 0.0067
Uniform Portfolio 0.0077 0.0098 0.0095 0.0049 0.0102 0.0082

Table 7.1: Volatility by Portfolio Construction Method, and Year

Method 2015 2016 2017 2018 2019 2020

Correlation Metric -0.0202 -0.0199 -0.0088 -0.0236 -0.0162 -0.0572
Denoised Correlation Metric -0.0203 -0.0196 -0.0087 -0.0237 -0.0161 -0.0573

Dynamic Time Warping -0.0206 -0.0208 -0.0088 -0.0243 -0.0173 -0.0584
Feature-based Metric -0.0205 -0.0195 -0.0087 -0.0239 -0.0166 -0.0581
Mutual Information -0.0205 -0.0198 -0.0086 -0.0238 -0.0168 -0.0585
Uniform Portfolio -0.0221 -0.0228 -0.0102 -0.0260 -0.0198 -0.0608

Table 7.2: CVaR at 0.05 by Portfolio Construction Method, and Year

7.2 Python: Data Retrieval + Preprocessing

import pandas_datareader as pdr

import datetime

import pandas as pd

import numpy as np

xlvi

7.3. R: COMPUTING DISSIMILARITY MATRICES xlvii

table=pd.read_html(’https://en.wikipedia.org/wiki/List_of_S%26P_500_companies’)

df0 = table[0]

for i in range(0,df0.shape[0]):

if df0.iloc[i,0]=="BRK.B":

df0.iloc[i,0]="BRK-B"

if df0.iloc[i,0]=="BF.B":

df0.iloc[i,0]="BF-B"

tickers=df0.Symbol

start = datetime.datetime(2014,1,1)

end = datetime.datetime(2020,12,31)

print("The amount of stocks chosen to observe: " + str(len(tickers)))

stock_prices = pdr.DataReader(tickers, ’yahoo’,start,end)

stock_prices = stock_prices["Adj Close"]

stock_prices = data.dropna(axis=1)

stock_returns=stock_prices.copy()

for j in range(0,(stock_returns.shape[1])):

for i in range(stock_returns,(r.shape[0])):

stock_returns.iloc[i,j]=stock_prices.iloc[i,j]/stock_prices.iloc[i-1,j]

#percentual returns

stock_returns=stock_returns[1:]

stock_returns=stock_returns-1

stock_returns.to_csv(’bigrS&P500.csv’)

7.3 R: Computing Dissimilarity Matrices

snp <- read.csv("~/Datasets/bigrS&P500.csv")

snp$Date=as.Date(snp$Date)

K=7 #nbatches

batch=rep(1,length(snp$Date))

batch[snp$Date>=as.Date("2014-01-1") & snp$Date<as.Date("2015-01-01")]=1

batch[snp$Date>=as.Date("2015-01-1") & snp$Date<as.Date("2016-01-1")]=2

batch[snp$Date>=as.Date("2016-01-1") & snp$Date<as.Date("2017-01-01")]=3

batch[snp$Date>=as.Date("2017-01-01") & snp$Date<as.Date("2018-01-1")]=4

batch[snp$Date>=as.Date("2018-01-01") & snp$Date<as.Date("2019-01-1")]=5

batch[snp$Date>=as.Date("2019-01-01") & snp$Date<as.Date("2020-01-1")]=6

batch[snp$Date>=as.Date("2020-01-01")]=K

snp=cbind(batch,snp[,-1])

table(snp$batch)

xlviii CHAPTER 7. ADDITIONAL TABLES + CODE

N=440

stocks.per.g=40

n.groups=11

sampled=sort(sample(2:479,N))

snp=snp[,c(1,sampled)]

I=matrix(sample(1:N),ncol=stocks.per.g)

for(i in 1:5){

I=rbind(I,matrix(sample(1:N),ncol=stocks.per.g))

}

I=cbind(rep(1:n.groups,6),I)

I=cbind(rep(1:6,each=n.groups),I)

write.csv(I,"Id3.csv", row.names = FALSE)

#no seed, sorry. Id3 File on my github: https://github.com/FranDeLio/RCode

write.csv(snp,"snpgreat.csv", row.names = FALSE)

dim(I)

#cov

#do a for that does this all methods too

K=66

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

for(j in 1:K){#unique(snp$batch)){

distance=cov(snp[snp$batch==I[j,1], unlist(I[j,-c(1,2)])+1])

colnames(distance)=paste(1:stocks.per.g)

stacked=rbind(stacked,distance)

}

stacked=cbind(from.subbatch,stacked)

stacked=cbind(from.batch,stacked)

end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken

#stacked=cbind(from.batch,stacked)

write.csv(stacked,"COVright3.csv", row.names = FALSE)

dim(stacked)

#do a for that does this 4 all methods

K=66

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

for(j in 1:K){#unique(snp$batch)){

distance=cor(snp[snp$batch==I[j,1], unlist(I[j,-c(1,2)])+1])

distance=sqrt((1-distance)/2)

colnames(distance)=paste(1:stocks.per.g)

7.3. R: COMPUTING DISSIMILARITY MATRICES xlix

stacked=rbind(stacked,distance)

}

stacked=cbind(from.subbatch,stacked)

stacked=cbind(from.batch,stacked)

end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken

#stacked=cbind(from.batch,stacked)

write.csv(stacked,"CORMETright3.csv", row.names = FALSE)

Marcenko.Pastur=function(R){

Q=ncol(R)/nrow(R)

Kr=cor(R)

max.lambda=(1+sqrt(Q))^2

spectral=eigen(Kr)

eigenvalues=spectral$values

constant.eigenvalues=mean(eigenvalues[max.lambda>=eigenvalues])

spectral$values[max.lambda>=spectral$values]=constant.eigenvalues

Kr=spectral$vectors%*%diag(spectral$values)%*%t(spectral$vectors)

Kr=Kr%*%solve(sqrt(diag(diag(Kr)))%*%t(sqrt(diag(diag(Kr)))),tol=1e-16)

Kr=(Kr+t(Kr))/2

return(list(denoised_cov=Kr,sum_eigs=sum(max.lambda<eigenvalues)))

}

K=66

eig=c()

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

for(j in 1:K){#unique(snp$batch)){

marcenko=Marcenko.Pastur(snp[snp$batch==I[j,1], unlist(I[j,-c(1,2)])+1])

distance=marcenko$denoised_cov

#distance=sqrt((1-distance)/2), done in python

colnames(distance)=paste(1:stocks.per.g)

eig=c(eig,marcenko$sum_eigs)

stacked=rbind(stacked,distance)

}

stacked=cbind(from.subbatch,stacked)

stacked=cbind(from.batch,stacked)

end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken

#stacked=cbind(from.batch,stacked)

write.csv(stacked,"MARCOVright3.csv", row.names = FALSE)

dim(stacked)

l CHAPTER 7. ADDITIONAL TABLES + CODE

#pca features

library(cluster)

library(tsfeatures)

K=66

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

characteristika=data.frame()

for(i in 1:K){ #unique(snp$batch)){

desired.batch=snp[snp$batch==I[j,1], unlist(I[j,-c(1,2)])+1]

pca=prcomp(as.matrix(tsfeatures(as.list(ts(desired.batch)),

features = c("stl_features","acf_features","entropy","stability",

"lumpiness"))[,-c(1:2,11:14)]),center=TRUE,scale=TRUE)

characteristika=rbind(characteristika, as.matrix(daisy(pca$x,metric="euclidean")))

}

characteristika=cbind(from.subbatch,characteristika)

characteristika=cbind(from.batch,characteristika)

end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken

dim(characteristika)

write.csv(characteristika,"FEATURESright3.csv", row.names = FALSE)

#dtwarp

library(TSclust)

K=66

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

for(j in 1:K){#unique(snp$batch)){

distance=diss(snp[snp$batch==I[j,1], unlist(I[j,-c(1,2)])+1],METHOD="DTWARP")

distance=as.data.frame(as.matrix(distance))

colnames(distance)=paste(1:stocks.per.g)

stacked=rbind(stacked,distance)

}

stacked=cbind(from.subbatch,stacked)

stacked=cbind(from.batch,stacked)

end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken

#stacked=cbind(from.batch,stacked)

write.csv(stacked,"DTWright3.csv", row.names = FALSE)

dim(stacked)

7.3. R: COMPUTING DISSIMILARITY MATRICES li

#making MI dissimilarity

library(copent)

library(rmi)

library(entropy)

copentNorm=function(M){

M=as.matrix(M)

N=ncol(M)

distance=data.frame(matrix(0,N,N))

for(i in 1:N){

for(j in 1:i){

if(i!=j){

distance[i,j]=knn_mi(M[,c(i,j)],splits=c(1,1),

options = list(method = "KSG2", k = 5))#alternative is copent(M[,c(i,j)])

} else { distance[i,j]=entropy::entropy(M[,i],method="CS")}

}

}

for(i in 1:N){

for(j in 1:i){

distance[i,j]=1-distance[i,j]/(max(distance[i,i],distance[j,j]))

}

}

distance=distance+t(distance)

return(distance)

}

K=66

start.time <- Sys.time()

stacked=data.frame()

from.batch=rep(1:6,each=n.groups*stocks.per.g)

from.subbatch=rep(1:n.groups,6,each=stocks.per.g)

for(j in 1:K){#unique(snp$batch)){

distance=copentNorm(snp[snp$batch==I[K,1], unlist(I[K,-c(1,2)])+1])

stacked=rbind(stacked,distance)

end.time <- Sys.time()

time.taken <- end.time - start.time

print(time.taken)

}

stacked=cbind(from.subbatch,stacked)

stacked=cbind(from.batch,stacked)

#stacked=cbind(from.batch,stacked)

write.csv(stacked,"MIright3.csv", row.names = FALSE)

dim(stacked)

lii CHAPTER 7. ADDITIONAL TABLES + CODE

7.4 Python: Computing Portfolios + Performance

import pandas as pd

import numpy as np

from scipy.linalg import block_diag

from scipy.cluster.hierarchy import linkage

from scipy.spatial.distance import squareform

import matplotlib.pyplot as plt

def seriation(Z, N, cur_index):

"""Returns the order implied by a hierarchical tree (dendrogram).

:param Z: A hierarchical tree (dendrogram).

:param N: The number of points given to the clustering process.

:param cur_index: The position in the tree for the recursive traversal.

:return: The order implied by the hierarchical tree Z.

"""

if cur_index < N:

return [cur_index]

else:

left = int(Z[cur_index - N, 0])

right = int(Z[cur_index - N, 1])

return (seriation(Z, N, left) + seriation(Z, N, right))

def compute_serial_matrix(dist_mat, method="single"):

"""Returns a sorted distance matrix.

:param dist_mat: A distance matrix.

:param method: A string in ["ward", "single", "average", "complete"].

output:

- seriated_dist is the input dist_mat,

but with re-ordered rows and columns

according to the seriation, i.e. the

order implied by the hierarchical tree

- res_order is the order implied by

the hierarhical tree

- res_linkage is the hierarhical tree (dendrogram)

compute_serial_matrix transforms a distance matrix into

a sorted distance matrix according to the order implied

by the hierarchical tree (dendrogram)

"""

N = len(dist_mat)

7.4. PYTHON: COMPUTING PORTFOLIOS + PERFORMANCE liii

flat_dist_mat = squareform(dist_mat)

res_linkage = linkage(flat_dist_mat, method=method)

res_order = seriation(res_linkage, N, N + N - 2)

seriated_dist = np.zeros((N, N))

a,b = np.triu_indices(N, k=1)

seriated_dist[a,b] = dist_mat[[res_order[i] for i in a],

[res_order[j] for j in b]]

seriated_dist[b,a] = seriated_dist[a,b]

return seriated_dist, res_order, res_linkage

def compute_HRP_weights(covariances, res_order):

weights = pd.Series(1, index=res_order)

clustered_alphas = [res_order]

while len(clustered_alphas) > 0:

clustered_alphas = [cluster[start:end] for cluster in clustered_alphas

for start, end in ((0, len(cluster) // 2),

(len(cluster) // 2, len(cluster)))

if len(cluster) > 1]

for subcluster in range(0, len(clustered_alphas), 2):

left_cluster = clustered_alphas[subcluster]

right_cluster = clustered_alphas[subcluster + 1]

left_subcovar = covariances[left_cluster].loc[left_cluster]

inv_diag = 1 / np.diag(left_subcovar.values)

parity_w = inv_diag * (1 / np.sum(inv_diag))

left_cluster_var = np.dot(parity_w, np.dot(left_subcovar, parity_w))

right_subcovar = covariances[right_cluster].loc[right_cluster]

inv_diag = 1 / np.diag(right_subcovar.values)

parity_w = inv_diag * (1 / np.sum(inv_diag))

right_cluster_var = np.dot(parity_w, np.dot(right_subcovar, parity_w))

alloc_factor = 1 - left_cluster_var /

(left_cluster_var + right_cluster_var)

weights[left_cluster] *= alloc_factor

weights[right_cluster] *= 1 - alloc_factor

return weights

def compute_MV_weights(covariances):

inv_covar = np.linalg.inv(covariances)

u = np.ones(len(covariances))

liv CHAPTER 7. ADDITIONAL TABLES + CODE

return np.dot(inv_covar, u) / np.dot(u, np.dot(inv_covar, u))

def compute_RP_weights(covariances):

weights = (1 / np.diag(covariances))

return weights / sum(weights)

def compute_unif_weights(covariances):

return [1 / len(covariances) for i in range(len(covariances))]

def Expected_Shortfall(weights,returns,alpha):

x=np.dot(returns,HRP_weights)

return np.mean(x[x<np.quantile(x,alpha)])

##Execution

covright=pd.read_csv("COVright3.csv")

cormet=pd.read_csv("CORMETright3.csv")

marcovright=pd.read_csv("MARCOVright3.csv")

marcovright.iloc[:,2:42]=np.sqrt((1-marcovright.iloc[:,2:42])/2)

dtwright=pd.read_csv("DTWright3.csv")

miright=pd.read_csv("MIright3.csv")

dfright=pd.read_csv("snpgreat.csv")

features=pd.read_csv("FEATURESright3.csv")

Id=pd.read_csv("Id3.csv")

Id2=Id.drop([’V1’,’V2’],axis=1).copy()

#cormet

dr2=pd.DataFrame(np.zeros([6,11]))

dv2=pd.DataFrame(np.zeros([6,11]))

des2=pd.DataFrame(np.zeros([6,11]))

diss=cormet

k=0

for i in range(1,7):

for j in range(1,12):

distances=diss.loc[(diss["from.batch"]==i) &

(diss["from.subbatch"]==j),:].copy()

distances=distances.drop(["from.batch","from.subbatch"],axis=1)

distances.columns=list(range(0,40))

distances.index=list(range(0,40))

covi=covright.loc[(covright["from.batch"]==i) &

7.4. PYTHON: COMPUTING PORTFOLIOS + PERFORMANCE lv

(covright["from.subbatch"]==j),:].copy()

covi=covi.drop(["from.batch","from.subbatch"],axis=1)

covi.columns=list(range(0,40))

covi.index=list(range(0,40))

ordered_dist_mat, res_order, res_linkage =

compute_serial_matrix(distances.values, method=’single’)

HRP_weights=compute_HRP_weights(covi, res_order)

HRP_weights=HRP_weights[range(0,40)]

#ds.loc[i-1,:]=HRP_weights

a=dfright.iloc[:, Id2.iloc[k,:].values].copy()

a=a[dfright[’batch’]==i+1]

dr2.loc[i-1,j-1]=np.dot(HRP_weights,a.apply(sum,axis=0))

dv2.loc[i-1,j-1]=np.sqrt(np.dot(HRP_weights,covi).dot(HRP_weights))

des2.loc[i-1,j-1]=Expected_Shortfall(HRP_weights,a,0.05)

k+=1

dr2.apply(np.mean,axis=1)

#marcenko

dr3=pd.DataFrame(np.zeros([6,11]))

dv3=pd.DataFrame(np.zeros([6,11]))

des3=pd.DataFrame(np.zeros([6,11]))

diss=marcovright

k=0

for i in range(1,7):

for j in range(1,12):

distances=diss.loc[(diss["from.batch"]==i) &

(diss["from.subbatch"]==j),:].copy()

distances=distances.drop(["from.batch","from.subbatch"],axis=1)

distances.columns=list(range(0,40))

distances.index=list(range(0,40))

covi=covright.loc[(covright["from.batch"]==i) &

(covright["from.subbatch"]==j),:].copy()

covi=covi.drop(["from.batch","from.subbatch"],axis=1)

covi.columns=list(range(0,40))

covi.index=list(range(0,40))

ordered_dist_mat, res_order, res_linkage =

compute_serial_matrix(distances.values, method=’single’)

HRP_weights=compute_HRP_weights(covi, res_order)

HRP_weights=HRP_weights[range(0,40)]

#ds.loc[i-1,:]=HRP_weights

a=dfright.iloc[:, Id2.iloc[k,:].values].copy()

a=a[dfright[’batch’]==i+1]

dr3.loc[i-1,j-1]=np.dot(HRP_weights,a.apply(sum,axis=0))

dv3.loc[i-1,j-1]=np.sqrt(np.dot(HRP_weights,covi).dot(HRP_weights))

des3.loc[i-1,j-1]=Expected_Shortfall(HRP_weights,a,0.05)

k+=1

lvi CHAPTER 7. ADDITIONAL TABLES + CODE

dr3.apply(np.mean,axis=1)

#mi

dr4=pd.DataFrame(np.zeros([6,11]))

dv4=pd.DataFrame(np.zeros([6,11]))

des4=pd.DataFrame(np.zeros([6,11]))

diss=miright

k=0

for i in range(1,7):

for j in range(1,12):

distances=diss.loc[(diss["from.batch"]==i) &

(diss["from.subbatch"]==j),:].copy()

distances=distances.drop(["from.batch","from.subbatch"],axis=1)

distances.columns=list(range(0,40))

distances.index=list(range(0,40))

covi=covright.loc[(covright["from.batch"]==i) &

(covright["from.subbatch"]==j),:].copy()

covi=covi.drop(["from.batch","from.subbatch"],axis=1)

covi.columns=list(range(0,40))

covi.index=list(range(0,40))

ordered_dist_mat, res_order, res_linkage =

compute_serial_matrix(distances.values, method=’single’)

HRP_weights=compute_HRP_weights(covi, res_order)

HRP_weights=HRP_weights[range(0,40)]

#ds.loc[i-1,:]=HRP_weights

a=dfright.iloc[:, Id2.iloc[k,:].values].copy()

a=a[dfright[’batch’]==i+1]

dr4.loc[i-1,j-1]=np.dot(HRP_weights,a.apply(sum,axis=0))

dv4.loc[i-1,j-1]=np.sqrt(np.dot(HRP_weights,covi).dot(HRP_weights))

des4.loc[i-1,j-1]=Expected_Shortfall(HRP_weights,a,0.05)

k+=1

dr4.apply(np.mean,axis=1)

#features

dr5=pd.DataFrame(np.zeros([6,11]))

dv5=pd.DataFrame(np.zeros([6,11]))

des5=pd.DataFrame(np.zeros([6,11]))

diss=features

k=0

for i in range(1,7):

for j in range(1,12):

distances=diss.loc[(diss["from.batch"]==i) &

(diss["from.subbatch"]==j),:].copy()

distances=distances.drop(["from.batch","from.subbatch"],axis=1)

distances.columns=list(range(0,40))

distances.index=list(range(0,40))

7.4. PYTHON: COMPUTING PORTFOLIOS + PERFORMANCE lvii

covi=covright.loc[(covright["from.batch"]==i) &

(covright["from.subbatch"]==j),:].copy()

covi=covi.drop(["from.batch","from.subbatch"],axis=1)

covi.columns=list(range(0,40))

covi.index=list(range(0,40))

ordered_dist_mat, res_order, res_linkage =

compute_serial_matrix(distances.values, method=’single’)

HRP_weights=compute_HRP_weights(covi, res_order)

HRP_weights=HRP_weights[range(0,40)]

#ds.loc[i-1,:]=HRP_weights

a=dfright.iloc[:, Id2.iloc[k,:].values].copy()

a=a[dfright[’batch’]==i+1]

dr5.loc[i-1,j-1]=np.dot(HRP_weights,a.apply(sum,axis=0))

dv5.loc[i-1,j-1]=np.sqrt(np.dot(HRP_weights,covi).dot(HRP_weights))

des5.loc[i-1,j-1]=Expected_Shortfall(HRP_weights,a,0.05)

k+=1

dr5.apply(np.mean,axis=1)

#unif

dr6=pd.DataFrame(np.zeros([6,11]))

dv6=pd.DataFrame(np.zeros([6,11]))

des6=pd.DataFrame(np.zeros([6,11]))

diss=features

k=0

for i in range(1,7):

for j in range(1,12):

distances=diss.loc[(diss["from.batch"]==i) &

(diss["from.subbatch"]==j),:].copy()

distances=distances.drop(["from.batch","from.subbatch"],axis=1)

distances.columns=list(range(0,40))

distances.index=list(range(0,40))

covi=covright.loc[(covright["from.batch"]==i) &

(covright["from.subbatch"]==j),:].copy()

covi=covi.drop(["from.batch","from.subbatch"],axis=1)

covi.columns=list(range(0,40))

covi.index=list(range(0,40))

ordered_dist_mat, res_order, res_linkage =

compute_serial_matrix(distances.values, method=’single’)

HRP_weights=compute_unif_weights(covi)

#ds.loc[i-1,:]=HRP_weights

a=dfright.iloc[:, Id2.iloc[k,:].values].copy()

a=a[dfright[’batch’]==i+1]

dr6.loc[i-1,j-1]=np.dot(HRP_weights,a.apply(sum,axis=0))

dv6.loc[i-1,j-1]=np.sqrt(np.dot(HRP_weights,covi).dot(HRP_weights))

des6.loc[i-1,j-1]=Expected_Shortfall(HRP_weights,a,0.05)

k+=1

dr6.apply(np.mean,axis=1)

lviii CHAPTER 7. ADDITIONAL TABLES + CODE

df1=dr1.append(dr2).append(dr3).append(dr4).append(dr5).append(dr6)

df1.to_csv("returnsHRP.csv",index=False)

df2=dv1.append(dv2).append(dv3).append(dv4).append(dv5).append(dv6)

df2.to_csv("volatilityHRP.csv",index=False)

df3=des1.append(des2).append(des3).append(des4).append(des5).append(des6)

df3.to_csv("cvarHRP.csv",index=False)

7.5 R: Final Analysis

rHRP <- read.csv("~/Datasets/returnsHRP.csv")

volHRP <- read.csv("~/Datasets/volatilityHRP.csv")

esHRP <- read.csv("~/Datasets/cvarHRP.csv")

rHRP=cbind("method"=as.factor(rep(c("DTW","COR","DCOR","MI","FEATURES","Unif"),

each=6)),"year"=rep(1:6,6),rHRP)

volHRP=cbind("method"=as.factor(rep(c("DTW","COR","DCOR","MI","FEATURES","Unif"),

each=6)),"year"=rep(1:6,6),volHRP)

esHRP=cbind("method"=as.factor(rep(c("DTW","COR","DCOR","MI","FEATURES","Unif"),

each=6)),"year"=rep(1:6,6),esHRP)

#mean, standard error according to method

tapply(apply(rHRP[,-c(1,2)],1,mean),rHRP$method,mean)

tapply(apply(rHRP[,-c(1,2)],1,sd),rHRP[,1],mean)

tapply(apply(volHRP[,-c(1,2)],1,mean),volHRP[,1],mean)

tapply(apply(volHRP[,-c(1,2)],1,sd),volHRP[,1],mean)

tapply(apply(esHRP[,-c(1,2)],1,mean),esHRP[,1],mean)

tapply(apply(esHRP[,-c(1,2)],1,sd),esHRP[,1],mean)

(M=tapply(apply(rHRP[,-c(1,2)],1,mean),list(rHRP$method,rHRP$year),mean))

(t=tapply(apply(rHRP[,-c(1,2)],1,mean),rHRP$year,mean))

cor(t(rbind(scale(M,scale=F),t)))

library(RColorBrewer)

library(cowplot)

library(ggplot2)

qplot(df2[df2$year==1,3],df[df$year==1,3],color=df[df$year==1,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+ labs(colour = ’Methods’)

qplot(df2[df2$year==2,3],df[df$year==2,3],color=df[df$year==2,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+ labs(colour = ’Methods’)

qplot(df2[df2$year==3,3],df[df$year==3,3],color=df[df$year==3,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+ labs(colour = ’Method’)

7.5. R: FINAL ANALYSIS lix

qplot(df2[df2$year==4,3],df[df$year==4,3],color=df[df$year==4,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+labs(colour = ’Methods’)

qplot(df2[df2$year==5,3],df[df$year==5,3],color=df[df$year==5,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+labs(colour = ’Methods’)

qplot(df2[df2$year==6,3],df[df$year==6,3],color=df[df$year==6,1],geom="point",

ylab="Returns",xlab="Volatility",size=I(3.5))+ labs(colour = ’Methods’)

dd=data.frame(year=rep(2015:2020,6),Method=as.factor(rep(c("DTW","COR","DCOR","MI",

"FEATURES","Unif"),each=6)),returns=apply(rHRP[,-c(1,2)],1,mean))

dd2=data.frame(year=rep(2015:2020,6),Method=as.factor(rep(c("DTW","COR","DCOR","MI",

"FEATURES","Unif"),each=6)),returns=apply(volHRP[,-c(1,2)],1,mean))

dd3=data.frame(year=rep(2015:2020,6),Method=as.factor(rep(c("DTW","COR","DCOR","MI",

"FEATURES","Unif"),each=6)),returns=apply(esHRP[,-c(1,2)],1,mean))

for(i in c("DTW","COR","DCOR","MI","FEATURES","Unif")){

dd[dd$Method==i,3]=cumsum(dd[dd$Method==i,3])

}

for(i in c("DTW","COR","DCOR","MI","FEATURES","Unif")){

dd2[dd2$Method==i,3]=cumsum(dd2[dd2$Method==i,3])

}

for(i in c("DTW","COR","DCOR","MI","FEATURES","Unif")){

dd3[dd3$Method==i,3]=cumsum(dd3[dd3$Method==i,3])

}

ggplot(dd) +

geom_line(aes(x=year, y=returns, color=Method))+

ylab("Cumulative Returns")+xlab("Year")

