UNIVERSITATo:

i+ BARCELONA
Treball final de grau

GRAU D'ENGINYERIA INFORMATICA

Facultat de Matematiques i Informatica
Universitat de Barcelona

AutoTrading with Reinforcement

Learning

Autor: Johnny Nunez Cano

Director: Dr. Eloi Puertas i Prats

Realitzat a: Departament de Matematiques i Informatica
Barcelona, 19 de juny de 2021

Abstract

Trading is the act of studying any financial market and making money with it through
buying and selling of assets. In this project, I will try to automate the actions performed
by a trader without having a thorough knowledge of the financial market or trading tech-
niques. I will use algorithms based on reinforcement learning techniques used in other
fields such as robotics without human interaction in the algorithm’s execution. The main
objective of this project is to investigate the feasibility of using these techniques adapted to
Deep Learning and the ability to cope with the volatility of cryptocurrency. Furthermore,
to show the results of these algorithms, the cryptocurrency Bitcoin and ADA will be used
as a market study by obtaining the historical and making market analysis.

Resum

El trading és l'acte d'estudiar qualsevol mercat financer i guanyar diners a través de la
compravenda d'actius. En aquest projecte tractaré d'automatitzar les accions que realitza
un trader sense tenir un coneixement exhaustiu del mercat financer o de les tecniques de
trading. Utilitzaré algorismes basats en tecniques d’aprenentatge per reforg utilitzades en
altres camps com la robotica sense tenir interaccié humana en l'execucié d'aquest algo-
risme. L'objectiu principal d'aquest projecte és investigar la viabilitat de 1'ts d'aquestes
tecniques adaptades al Deep Learning i la capacitat de fer front a la volatilitat de les crip-
todivises. Per a mostrar els resultats d'aquests algorismes, s'utilitzara la criptomoneda
Bitcoin i ADA com a estudi de mercat obtenint I'historic i fent analisi de mercat.

Resumen

El trading es el acto de estudiar cualquier mercado financiero y ganar dinero con ello a
través de la compraventa de activos. En este proyecto trataré de automatizar las acciones
que realiza un trader sin tener un conocimiento exhaustivo del mercado financiero o de las
técnicas de trading. Utilizaré algoritmos basados en técnicas de aprendizaje por refuerzo
utilizadas en otros campos como la robética sin tener interaccién humana en la ejecucién
de dicho algoritmo. El objetivo principal de este proyecto es investigar la viabilidad del
uso de estas técnicas adaptadas al Deep Learning y la capacidad de hacer frente a la
volatilidad de las criptomonedas. Para mostrar los resultados de estos algoritmos, se
utilizard la criptomoneda Bitcoin y ADA como estudio de mercado obteniendo el histérico
y su andlisis de mercado.

Acknowledgements

First of all, I would like to express my gratitude to Dr. Eloi Puertas. He has been a
great help throughout the university career, both as a Director of studies and with this
project. We have shared our passion for technology in conversations about distributed
systems, cryptocurrencies, or robotics. Thanks to his excellent listening skills, we have
shared ideas to improve this project and the academic field with his constant opinion and
feedback about any technological and personal area.

I also thank Dr. Sergio Escalera and Cristina Palmero for allowing me to get an in-
sight into the excellent work of their research team involved in performing a challenge on
computer vision.

appreciate the help of of the professors at the University of Barcelona who have pro-
vided me with the training. I can't thank Dr Juan Gabriel Gomila (Professor of Mathemat-
ics of the Balearic Islands University) enough for introducing me to the world of Artificial
Intelligence. Together with him, I now help students from around the world to acquire
this branch of computer science.

Finally, I want to thank my family, mainly my parents, for their effort, love, and pa-
tience for allowing me to recover my health and study for a university career which means
the world to me.

II

Contents

(I _Introduction| 1
[1.1 Motivation and Objectives| 2
1.2 Memory Organization| 3

2 State of the Artl 4
21 Background| o 4

[2.1.1 Reinforcement Learning| 4
212 Deep Learning| o oo 8
[2.2 Reinforcement learning with Finance| 13

|3 Data Analysis| 15
Bl Candled. 15
B2 API 16
B3 Indicatorsl 17

B31 Momentum Indicator] L 17

3.2 lume Indicator). o oo 18

34 Indicatorstudy| 19
B5 NormalizedDafalo ovvvi oo 20

4 Methods 22

B1 Model Classification] 22
4.1.1 Deep-Q-Learning|. 23
.12 Double Deep-Q-Learning| 25

[4.2 Gradient Policies Concept| Lo . 26
@421 Deep Actor-Critic|. L Lo 26
E22 Proximal Policy OPEMIZAHON . - « . « « v v oo eeeee e e 27
4.2.3 Deep Deterministic Policy Gradient| 27
#.2.4 ‘Iwin Delayed DDPG|. 0 o L. 29

2. ft Actor-Criticl 29

|5 Design of experiments| 31
0.1 Environment|. o 31
.. 32

[5.2.1 Discretize Action Algorithms| 33

III

|6 Results Analysis|
|6.1 Discretize Action Algorithms| 00 L.
[6.1.1 Deep-Q-Learning|

[6.1.3 Double Deep-Q-Learning|
[6.2 Continuous Action Algorithms|,
[6.2.1 Deep Actor-Critic|.
6.2.2 Proximal Policy Optimization|

[6.2.4 Deep Deterministic Policy Gradient|
[6.2.5 Twin Delayed DDPG|.
6.2.6 Soft Actor-Criticl
[6.2.7 Analysis of Global Results|

[Z__Conclusions|
71 R rch conclusions|o oo
[7.2 Improvements and Future Work|

Bibliography

Introduction

I want to start this paper by saying that, in my personal life, I consider myself a
technology enthusiast. I am constantly reading, informing myself, and contrasting all
kinds of information related to the world of computing. I am writing this paper because I
am one of those people who have been following Bitcoin since its inception when Bitcoin
was worth pennies 12 years ago and when I was just 12 at a time. I am one of those people
who did not get rich and lost money because I did not understand the potential of this
technology and the new money 2.0. I really learned what the Blockchain was, the problems
of today’s capital, and being underaged as well as the access to these cryptocurrencies
around 2014. They are just a representation of the great potential that the Blockchain has.
However, I have never learned to trade at a professional level. I consider it as being a
computer scientist, a philosophy of life that you have to dedicate to day by day in order
to improve. Although I still do not know all about trading, I do have basic knowledge of
chart analysis techniques, and I have studied Blockchain technology more thoroughly. So
I came to a conclusion to make it the main goal of this project. Hence, with a more solid
foundation of computer science and the world of programming I ask myself the following
question: Is it possible to automate transactions without actually spending years of money
and time? I will try to answer it in this project. In addition, a topic that is not often
considered is gambling. I will try to prove that making money is not easy, we have to be
responsible for the actions taken by the entire market and control our fears, so that we can
see the risks the robots take when making decisions.

The project’s primary goal is to introduce artificial intelligence technology, especially
the reinforcement learning branch used in other fields such as robotics or video games.
Nevertheless, here we will present it in the financial area to create an automatic robot,
called a trading robot, which knows how to process the buying and selling of not needed
cryptocurrencies in an intelligent and automated way.

A trader carries out a study of the market, the product or technology, and his own
survey of graphical analysis, trying to find patterns or trends that allow him to see
and predict the market’s direction. Each trader has his own tactics or policy regarding
decision-making, which means that the trader’s judgment, experience, and psychology
play a significant role. A trader requires many years of experience, training, and above all
losses to become an expert and make a living from trading. This process, which is done
manually, requires a substantial investment of time, dedication, and effort that might need
years. However, the solution I am looking for in this project would allow bots to learn in

a matter of hours and make decisions quickly and intelligently without an essential factor
that tends to cause us humans make mistakes, with our feelings and emotions.

Bots have always been present in many areas of computing, for example, Alexa or Siri
in language recognition, simple bots created by decision trees on websites or events, or
even NPCs in video games, but relatively few bots in finance have been seen publicly. It is
well known though that even Wall Street has automated its processes because nowadays
everything is handled by computers. Reinforcement learning and neural networks can
help to create a bot that can find a policy for different trading situations, reducing both
training time and the possibility of reacting quickly to a change in market trends without
prior knowledge.

My knowledge acquired throughout my university career, the Treball de Fi de Grau
(TFG), emphasizes what was taught in the subjects of "Machine Learning," where the
study of data analysis and the main architectures of Deep Learning are applied together
with the subject of "Intelligéncia Artificial" and "Robotica" where the philosophy of rein-
forcement learning is taught and studied.

1.1 Motivation and Objectives

Artificial intelligence currently emphasizes the use of Deep Learning, where it has
been seen the excellent projection at the hardware and software level in recent years in
computer vision, natural language processing and robotics. Therefore, Reinforcement
Learning is considered state of the art in many branches of research.

This project aims to investigate the consequences obtained by applying Deep learn-
ing in such a volatile market as the world of cryptocurrencies, studying the different
algorithms and implementations of neural networks existing in other fields of computer
science, and being able to perform a technical market analysis. There is a particular inter-
est in learning the technology behind a cryptocurrency, especially in the bitcoin, where it
is a revolutionary technology, thanks to mathematics and computer science which make a
specific interest in a future digitized world.

The applied algorithm should be faithful to the trend line and relatively fast. It should
be able to make a decision in a matter of milliseconds as soon as the algorithm’s input
is formed. However, all the implementations seen so far have been carried out in regular
markets such as the stock market, so the algorithm will have to learn in an even more
volatile market. Therefore, a study of indicators will be carried out to help the neural
network to create a more significant number of states in order to be able to make better
decisions.

All the results obtained by the algorithms will be compared and analyzed. This will
allow us to see the strengths and weaknesses of the algorithm itself. The final objective
will be to see the best algorithm executed in real-time and see its results and also to see if
it is possible to trade.

1.2

Memory Organization

The structure implemented in this project aims to increase the complexity of the con-
cepts. The explanation will be based on related works, helping to complement the descrip-
tion of the concepts in a visual way, then the structure and design of the implementations
and the different tests carried out will be explained. It is organized as follows:

State of the art: All work requires previous research. This section will show the
story of how reinforcement learning came about, how the idea of Deep Learning
came about, and the most recent related work on such techniques that encourages
research to find the most significant benefit to the problem of this project.

Data Analysis: Knowing how to get the data, what each piece of data means so that
we can understand and implement the different solutions throughout the project.

Methods: This point one of the most important ones. It will be explained theoreti-
cally what each method does and the advantages and disadvantages of taking that
methodology at a theoretical level.

Design of Experiments: The different methods described in the previous section
will be designed to allow us to choose the best model to solve the problem. Then,
the implemented architectures will be tested, and we will try to improve the imple-
mented architectures.

Analysis of Results: The results obtained will be discussed. The different archi-
tectures implemented and the reason why such a result can be obtained will be
compared, concluding the possible deficits that that architecture may receive.

Conclusions: The analysis whether the proposed objectives have been met or not
will be presented. There will also be some discussions on how to improve current
work and some future ideas.

State of the Art

This section summarizes some existing and just released methods that also address the
trading bot problem. They will be mentioned and briefly explained to put this project into
perspective and better contextualize it.

2.1 Background

In this section, before state of the art related to trading bots, I will explain reinforce-
ment learning concepts and the different parts that make up a neural network.

2.1.1 Reinforcement Learning

Reinforcement learning[1] is a branch of Artificial Intelligence. The goal of an agent
is to maximize its benefits and reduce its losses in the most effective way possible by
observing its environment and performing specific actions resulting from rewards and

punishments.
ﬂ; viran men t

A ction

In terp reter
I

Sta E".B

Agent

Figure 2.1: Reinforcement Learning Diagram. Image by Wikipedia

The following definitions are important throughout the paper:

e Agent: the program that is trained for performing a pre-specified task.

¢ Environment: the ecosystem in which the agent performs the tasks, whether real
or virtual.

* Action: movements made by the agent, which have an impact on the ecosystem.

e States: The environment offers possible situations where the agent can take action,
and this changes each time the agent takes action.

e Reward: the evaluation of an action, which can be positive or negative.

¢ Discount: Solves the problem that the agent does not know which path to take
because it has a dichotomy in decision-making equality.

¢ Penalty: is a value used so that our agent remains indefinitely without taking
action; when he has comparable actions, it is a way of forcing him to solve the
problem.

The agent should not choose a plan to solve his problem, because the definition of a
plan is to predict something without changing its behavior. Then it changes in the envi-
ronment may occur that cause the agent to have to change the action along its sequence of
actions. action. Hence, in reinforcement learning we talk about policy, the agent should
choose a policy that allows him to solve the problem posed so that the agent can solve the
problem with some randomness as well as if the environment changes.

The action that the agent chooses at each moment should not only depend on the
reward that it is going to receive in the short term, but it should also select the actions
that in the long term will bring it the maximum possible gain in the whole episode (all the
states that are between an initial state and a terminal state). To solve all these hypotheses,
the Bellman-Ford equation was born.

Bellman-Ford Equation

V(s) = max(R(s,a) +yV(s'))

where:
V = Value
R = Reward
s = state
s’ = future state
a = action

v = discount

The Bellman equation came to solve one of the paradigms of programming, such as
dynamic programming[2]. This equation allows us to obtain the value of the state main-
tained by the agent. Therefore, it produces an estimate of the reward that the agent will
bring until the end of the plot, starting from the state s, which means that all acting agents
are seeking what improves the value or situation regarding the current state.

The gamma is to solve the problem when the agent does not know which path to take
because he has a dichotomy in decision-making equality. Thus, he would have the same
value in all his actions.

The problem with this equation is that you get a plan, so it is a deterministic solution,
it would always take the same actions.

To solve this problem, probabilities come into play. The deterministic search ensures
that the same action is always executed 100% of the time. With probabilities, we obtain a
non-deterministic search; for example, if an agent must take Left, Right, Up and Down if
we add a certain probability for taking each of these actions, we would add randomness.
Example: Left: 15%, Right:15%, Up:20%, Down:50%. To improve Bellman’s equation,
Markov processes appear.

Markov Processes

It is a time-dependent random/stochastic phenomenon that enforces the Markov prop-
erty. The Markov property[3] refers to the property that specific random or stochastic pro-
cesses are memory-less, which means that the probability distribution of the future value
of the random variable only depends on the value in the present and is independent of
everything that has happened in the past.

So all processes that fulfill this property are called Markov processes, i.e., a Markov
process is a process where at each time step, the conditional probability distribution of
the past times is independent.

This means that a previous action will not condition the taking of the current condition,
so it is independent. So the decision we make is random or partially under the control of
the agent’s decision-maker to avoid the agent having 100% randomness.

The V becomes the weight of the possible decisions that the agent can make.

where:
V = Value
R = Reward
s = state
s’ = future state
a = action

v = discount
P = Probability

With this equation, we solve the deterministic search problem, and now we will obtain
a policy to solve the problem.

One of the most famous policies is the e-greedy policy, where the agent will almost
always take the best possible action given the information it has. Still, occasionally, with
a €, the agent will take a completely random action. This € value is decided at the outset
before executing the agent and will be the way we balance the exploration and exploitation
problem. Exploiting allows us to maximize the rewards with the set of actions we already

know. In contrast, exploration will enable us to investigate all possible actions to see if we
can get a better group of actions to maximize the gain further.

Into this new equation comes the penalty factor. It is a factor where the agent is forced
to make decisions and not stay indefinitely in a state, so in this case, we dedicate negative
intermediate rewards for the agent to risk-taking actions.

Q-Learning Equation

Q(s,a) = R(s,a) +7v-Y_P(s,a,8')- V(')

S/
where:

Q = value function

V = Value

R = Reward

s = state

s’ = future state
a = action

v = discount

P = Probability

A new variable, Q, appears that measures the quality of the action from the state[4].
In contrast, the value only measures the quality of being in that state, so the Q-Learning
algorithm tries to learn how much reward it will get in the long run for each pair of states
and actions (s, a). We call that function the action-value function represented as Q(s, a),
which returns the reward that the agent will receive when executing action a from state
s, and assuming it will follow the same policy dictated by the Q function until the end of
the episode, so it tries to maximize the quality of the moves. From there, it looks at what
action to take. So he thinks like this: what’s the best action he can handle? He compares
them. Once it has reached them, it sticks with the one that gives it the maximum quality
of movement and moves on, and so on until it finds the optimal solution.

Q(s,a) = R(s,a) + -) P(s,a,s") - max Q(s',a))

V(s) = max Q(s,a))
where:

Q = value function

V = Value

R = Reward

s = state

s’ = future state
a = action

a' = future action
v = discount
P = Probability

Temporal Difference

Now we add the time difference[5], which is only the value of Q being modified over
time. So it measures the increase in information.

TD(a,s) = (R(s,a) + v + max Q(s',a")) — Q(s,a)
where:

TD = Temporal Difference

Q = value function
V = Value

R = Reward

s = state

s’ = future state

a = action

a’ = future action
v = discount

P = Probability

A new variable is added, called Alpha, which allows, for example, to discard the
previous information or discard it but make a hybrid to ensure that the new value does
not substitute the last value.

Q(s,a) = Q(s,a) +a-TD(a,s)
where:

TD = Temporal Difference

Q = value function
s = state

a = action

v = discount

« = learning rate

2.1.2 Deep Learning

The Neuron

Deep learning emerged in the 1970s, thanks to Alexey Ivakhnenko[6] who wrote the
first paper on neural networks. In 1989, Yann Lecunn wrote the first paper on Efficient
Backpropagation,[7] and in 2006, Geoffrey Hinton, among other researchers, programmed
the first Deep learning model[8]][9]. The main idea is to try to translate some of the neuro-
science that governs the laws of the human brain into a computer. However, there are still
many unknowns about what actually happens in the human brain from the neuroscience
side.

Mitochondrion

C‘\—‘ Nucleus

Axon

Cell terminal

S Myelin
body / .~ sheath
Node of Synapse

Dendrite b s~ ranvier Schwann I‘
Ve ;ell
Axon Q =

Figure 2.2: Neuron Representation. Image by The University of Queensland

In the neuron in Figure 2.2, one single neuron will receive information from a wide
number of neurons through its dendrites. Further on, the synapses will decide whether
that input will stimulate or inhibit the neuron activity. For each pair of dendrite and
synapse, the result will be multiplied and summed with the others. If the neuron gets
activated because the signal has reached a high enough value, it will send a signal through
its axon. Otherwise, it will remain silent and act as a switch.

~

Input value 2 Xz Output signal

Input value 1 Xa

Input value m Koo

Figure 2.3: Neuron Representation. Image by Juan Gabriel Gomila

As we can see, each neuron has an input that would be our normalized data; in that
neuron, the products of each weight are added by the respective input value, where all the
weighted sum is summarized in a single number, as simple as multiplying and counting,
for each input. Then an activation function is applied, if the neuron is activated or not. If
it is activated, the information is transmitted to the next layer.

The Activation Function

There are many activation functions [10], which allow us to activate a neural network[11].
The most common ones are:

e Threshold function: if the input value is negative, it converts it to 0, but if the input
value is positive, it converts it to 1. It is like a True or False.

y [Threshold Function |

Figure 2.4: Threshold Function. Image by Juan Gabriel Gomila

e Sigmoid: Basically, what it does is to say how likely it is that the neuron is activated,
so we are talking about probabilities.

y (Sigmoid)

B(x) =

/’

Figure 2.5: Sigmoid Function. Image by Juan Gabriel Gomila

1+e>

i[s
£

® Rectifier(ReLu). Transforms everything negative to 0, and from there, everything
positive stays the same.

y [Rectifier \

. &(x) = max(x, 0)

Figure 2.6: ReLU Function. Image by Juan Gabriel Gomila

¢ Hyperbolic tangent. Similar to the sigmoid function, only that it starts in negative.
It is used when we need negative values.

10

y Hyperbolic Tangent (tanh)]
e
. YRR

1+e-2

Figure 2.7: Hyperbolic Tangent Function. Image by Juan Gabriel Gomila

How do Neural Networks work?

Input value m

-)
N

Figure 2.8: A Simple Neuronal Network. Image by Juan Gabriel Gomila

As we can see in the picture, neural networks, if they were only with one output
layer, could only propagate the weighted result of the input. So, where is the magic in
deep learning[12]? Layers of neurons are added. The more layers, the deeper the neural
network. Within those layers, the neurons are activated through the interconnections
between them. For example, in layer 1, the first neuron is activated by neurons 1 and 3 of
the input layer, and so it happens consecutively for each neuron. So we could say, each
neuron interprets information in its way. Separately, each neuron would be powerless, but
a set of neurons makes the system work and is able to predict as a human brain works
through millions of neurons.

How do Neural Networks learn?

This is the question that everyone asks when they see something related to deep learn-
ing. Neural networks learn thanks to an error function that is provided in the output,
i.e., a neural network usually separates the output value with the actual current value
to adjust the weights of the neural network. Neural networks, through their neurons and
connections predict a value. This value does not have to resemble the actual current value,
so we must adjust that error difference with the actual value, so the neural network has to
correct how far are we from the actual value. This value can be quantified and updated
through a function called a cost function, which is defined as half the squared difference
between the actual value and the predicted value. The goal is to minimize that error, so
we forward the amount of error back to the neural network through backpropagation.

11

Input value 2 Xz o

» _/ -
Inputvalem | Xm @ P

Figure 2.9: A Simple Neuronal Network. Image by Juan Gabriel Gomila

Gradient Descent

How does the neural network optimize the cost function? In the neural network,
we have the problem of dimensionality, which means that the dimension of the problem
grows so much that it is impossible to solve it. For that, we use gradient descent.

C=}ly-yP

Figure 2.10: Descent Gradient. Image by Juan Gabriel Gomila

The idea of gradient descent[13] is to find the minimum of a function, indicating the
tangent (direction) through the calculation of the gradient (the derivative), to try to min-
imize the function. We only change the weights of the neural network, which forces the
cost function to be smaller. Randomness is added to this function to improve the algo-
rithm, stochastic gradient. This helps us if a function is not convex. While the gradient
descent in a multidimensional space would look for the local minimum (a sub-optimal
solution), the stochastic gradient descent looks for the global minimum, the optimal so-
lution to the problem. At the data level, we do gradient descent to give you the whole
block of data, so it would not be optimal. Whereas in the stochastic gradient, we give you
a set of data, and then we correct the weights of the neural network, and so forth. The
problem is that this would have a very high computational cost, so we do a mixed one,
we introduce mini-blocks(mini-batch) to the neural network.

Back Propagation

Finally, the neural network is responsible for correcting the weights through backprop-
agation [7], which is the part of the algorithm that allows us to fix the global adjustment
of the neural network weights so that all the weights are adjusted simultaneously. The
correction is made once all the data has been passed through the neural network.

12

Backpropagation

Figure 2.11: "Neural Networks and Deep Learning". Michael A. Nielsen

The image above shows the backward propagation technique, where each of the layers
must update weights between neurons in order to minimize the error in the next predic-
tion.

2.2 Reinforcement learning with Finance

This section looks at all the state-of-the-art seen above, together with the latest deep re-
inforcement learning algorithms applied to finance. It reviews some existing and recently
published methods that also address the trading problem. The techniques used will be
briefly mentioned and explained to put this project in perspective and get a broader con-
text. It is worth differentiating that there are previously conducted studies where recur-
rent neural networks or some statistical analysis is used to predict an asset’s price, while
these studies try to intelligently automate the buying and selling of assets without human
interaction.

As I mentioned in the introduction, trading automation is not a new problem. In 2012,
before the rise of neural networks, reinforcement learning was explicitly introduced to the
Q-Learning algorithm [14] applied to artificial and real-time daily financial asset prices.

Some new methods [15} [16] based on Deep Learning appeared in 2019. For example,
a new policy based on gradient descent and new algorithms such as Advantage Actor-
Critic and Proximal Policy Optimization was introduced, optimizing state generation to
the agent. The same year another study introduced Asynchronous Advantage Actor-Critic
with recurrent neural layers to simulate agent memory.

A year later, using the agent-based on Deep Q-Learning [17] was included in different
assets, obtaining promising results using good optimization. Finally, at ICAIF 2020, a
paper [18] was presented where all types of reinforcement learning algorithms were used,
including for the first time the use of technical indicators and the use of the OpenAI Gym
library to generate the appropriate environment.

A new study in the Chinese stock market [19] indicated Reinforcement Learning with
Convolutional Neural Networks[20] to obtain the agent’s policy. They were getting better
results and faster training.

Currently, two studies [21} 22] have obtained good results—both trained agents based
on the Proximal Policy Optimization algorithm. The latter research has included us-
ing multi-agents configured with a novel rule-based policy approach to improve their

13

decision-making by adjusting their choice of action in the face of state uncertainty. As the
same paper indicates, learning based on risk curiosity acts as an intrinsic reward function.
It is heavily loaded with signals to find salient relationships between stock and market
behaviors so that its actions constantly improve.

14

Data Analysis

How do we receive the data? What data will we receive? Where will we receive it
from? All these questions are addressed in this section. Information is one of the most
critical parts of an artificial intelligence project and takes up 80% of the time. In this
project, the data is straightforward to obtain through the exchanges APL

3.1 Candles

The candlesticks we see in a financial market, called Japanese candles[23]], are a graph-
ical representation that allows us to understand the behavior between buyers and sellers
of assets in the markets. This candlestick represents the relationship between the opening
price and the closing price that form the candlestick’s body. When the candle’s closing
price is higher than the opening price, the candle’s body will be green. When the opposite
is the case, the candle will be red. The thin lines marked outside the candle’s body are
called shadows where they indicate the high and low that was reached in that candle and
can be of different lengths, short or long. Each candle will close according to the time we
mark, and there are candles for minutes, hours, and days.

15

Up

High

Close

Open

Low

Down
High

| Open

Close

| Low

Figure 3.1: Basic trading candlesticks. Image by Hallblazzar

3.2 API

To obtain these candlesticks, we will connect to the Binance API (Application Program
Interface).API is a set of definitions and protocols for the development and integration
of application software, and the communication between two software applications is
realized through a set of rules. Therefore, we can call the API a formal specification, which
determines how one software module communicates or interacts with another module to
implement one or more functions. But, of course, it all depends on the application that
will use them and the permissions granted to third-party developers by the API owner.

Binance is a Centralised Exchange. An Exchange is an access point to buy and sell
these cryptocurrencies. If we read the Binance API documentation[24], we will find that

the information perceived will be through a JSON structure:

71

1499040000000,
"0.01634790",
"0.80000000",
"0.01575800",
"0.01577100",

"148976.11427815",

1499644799999,
"2434.19055334",
308,
"1756.87402397",
"28.46694368",

H oH o H H H H H H H H*

Open time

Open

High

Low

Close

Volume

Close time

Quote asset volume

Number of trades

Taker buy base asset volume
Taker buy quote asset volume

16

"17928899.62484339" # Can be ignored

The code above is all the information we will receive about a candle. One candle equals
one row in our table, so this candle must be formatted so that each piece of information
is a column in our data-set. Opening price, highest price, lowest price, and closing price
(OHLC), this type of chart is often used for technical analysis and means the following:

3.3

Open Time: Time and date of candle opening in UNIX system format.
Open: Opening price.

High: Highest candle price.

Low: Lowest candle price.

Close: Closing price.

Volume: Volume is the number of shares traded in a given period of time.

Close Time: Time and date of candle closing in UNIX system format.

Indicators

Trading indicators are mathematical calculations represented as lines on a price chart
and can help traders identify specific signals and trends within the market.
Many mathematical indicators can be found in different libraries of any programming
language. In our case, we will use TA-LIB[25], where the following list of mathematical
indicators is provided:

Overlap Studies
Momentum Indicators
Volume Indicators
Volatility Indicators
Price Transform

Cycle Indicators
Pattern Recognition
Statistic Functions
Math Transform

Math Operators

In our case, we will focus on two types of indicators because of how we want to address
the problem. The following definitions are provided by Ta Library documentation [25]:

3.3.1

Momentum Indicator.

Indicates the speed or strength of a move. How fast the price is growing. It means by
its definition that they are used in short-term trading mainly.

17

Average Directional Movement Index (ADX).

The positive direction indicator (+DI) and negative direction indicator (-DI) are de-

rived from the smoothed average of these differences and measure the direction of the
trend over time. These two indicators are usually collectively referred to as the Direc-
tional Movement Index (DMI).
The Average Directional Index (ADX) is derived from the smoothed average of the differ-
ence between +DI and -DI and measures the strength of the trend over time (regardless of
the direction). Using these three indicators in combination, the chartist can determine the
direction and strength of the trend.

(+DI — (—DI))

APX =D+ (-pI)

Listing 3.1: ADX Code
real = ADX(high, low, close, timeperiod=14)

Relative Strength Index (RSI).

Compare the range of recent gains and losses in a specific period to measure the speed
and change of securities prices. It is mainly used to try to identify overbought or oversold

conditions in asset trading.
100

Listing 3.2: RSI Code
real = RSI(close, timeperiod=14)

3.3.2 Volume Indicator.

Volume indicator helps to determine the price direction of security and the strength
of the price change. By definition, it uses the number of ticks (price change) that have
appeared during a time interval or, in other words, the volumes of transactions made.

Volume-price trend (VPT)

Based on the running cumulative volume, increase or subtract the multiple of the stock
price trend and the percentage change of the current trading volume, depending on the
upward or downward movement of the investment.

Today'sClosingPrice
PreviousClosing

VPT = PreviousVPT + Volume - (

)

Listing 3.3: RSI Code

VPT = VolumePriceTrendIndicator (close, volume)

18

3.4 Indicator study

In variable studies, one of the first rules to learn is that adding more information
through variables is not the best option, but that quality rather than quantity is more
important in order to avoid the problem of dimensionality. There are many indicators in
trading. I have taken the three above that I know and that a beginner usually uses. To
study these indicators, we can use Pearson’s correlation on the variables calculated with
the cryptocurrency dataset. The correct way to analyze these types of indicators is to
do it independently for each type of indicator, for example, to study all the variables of
Momentum Indicators. Still, here I show you that there can also be problems between two
types of indicators when it comes to putting them together.

The Pearson correlation coefficient aims to indicate the degree of association between
two variables, therefore:

* Correlation is less than zero: If the correlation is less than zero, it is negative. That
is, the variables are negatively correlated. When the value of one variable is high,
the value of the other variable is low—the closer to -1, the more precise the extreme
covariance. If the coefficient is equal to -1, we are referring to a complete negative
correlation.

® The correlation is more significant than zero: If the correlation is equal to +1, it
means it is entirely positive. In this case, it means that the correlation is positively
correlated. That is, the variables are directly correlated. When the value of one
variable is high, the value of another variable is also high, and the same is true
when it is low. If it is close to +1, the coefficient will be covariant.

* Correlation is zero: When the correlation is zero, it means that a specific covariant
meaning cannot be determined. However, this does not mean that there is no non-
linear relationship between the variables.

Figure 3.2: Indicators in Bitcoin Figure 3.3: Indicators in ADA
As we can see, the results are practically the same, although it varies slightly because

there are different types of currencies. With these images, we can conclude that adding
more indicators does not mean obtaining better information, as there are indicators that

19

may contradict each other. Therefore, we must follow the KISS (Keep it Simple, Stupid!)
pattern, which means that the more difficult it is to make it easy, the more minimalist our
set of variables, the better, as long as those variables are of quality.

3.5 Normalized Data

In this section, we will proceed to normalize the data. Nowadays, Bitcoin is the ref-
erence. So we will study its trend. In the following image, we can visualize the Bitcoin
history since 2011. Now, we have to proceed to make the study and normalize to adapt
the data-set to the environment.

65000.00

Vol. 17.104K

23000.00

14000.00
8000.00
4800.00
3000.00
1800.00
1100.00
650.00
370.00
20.00
140.00
80.00
48.00
30.00
18.00

11.00

-~
1.50
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 fel
16:51:00 (UTC+2) | % log auto

1D 5D 1M 3M 6M YTD 1A 5A Todos 53

Figure 3.4: Historical Bitcoin

Once normalized, we can see that the values are between 0 and 1, but the trend is still
displayed and depending on the time. This is wrong.

Figure 3.5: Bitcoin Normalized

One of the ways to remove seasonality is to make the difference between the current
value and the previous value (yield difference) and then use the sigmoid function to

20

normalize.

Figure 3.6: Basic trading candlesticks. Image by Hallblazzar

We have removed the dependence on time, but we can still observe that there is some
seasonality. Therefore, in trading, as can be seen in the original image, the logarithmic
scale is used to remove the seasonality to add the logarithmic function at each time differ-
ence.

Figure 3.7: Logaritmic Bitcoin Normalized

After analyzing the data-set, we now have the correct data for the input of our future
bots.

21

Methods

4.1 Model Classification

‘ Reinforcement Learning Algorithms J

\ RL without Model | \ RL in Model
Policy Optimisation Q-Learning Learn from the Model J— Based on a Model
Gradient Policy ‘ A2C /A3C ‘ DQAN ‘ ‘ World Model AlphaZero
A2C/A3C ‘ PPO ‘ ‘ C51 ‘ ‘ 12A ‘
‘ PPO ‘ ‘ TRPO ‘ QR-DQN ‘ ‘ MBMF ‘

Figure 4.1: Model Classification

As we can see in the previous image, we have algorithms based on non-models and
models, and this means that the algorithm learns how the environment works and if it
uses its dynamics of changes in it, so it has all the provision of the set of probabilities to
move from one state to another. Therefore, for our problem it is not viable.

We find two differences on the side of model-free algorithms based on policy opti-
mization (on-policy) and algorithms based on Q-Learning (off-policy). In our case, we
will mainly focus on the off-policy models, although we will implement some on-policy
models; basically, they are algorithms that learn through the value function seen above,
and their behavioral policy and their objective policy can be different while on the other
side they must be the same.

22

4.1.1 Deep-Q-Learning

Q-Learning
Q-table
State — |
Qutput
——— Q-value
Action 22
Deep Q-Learning
MNeural Network Output .
— ", Q-value of Action1
Output
—, Q-value of Action2
State input
Output
P, Q-value of ActionM

Figure 4.2: Q-Learning vs Deep-Q-Learning. Image by Amber

The Q-Learning algorithm seen above works very well when the environment is sim-
ple. For example, the function Q(s, a) can be represented as a table or matrix of values,
for instance, in mazes like Pacman or austere 2D environments. But when the number of
states and actions is much more complex in computational speed and space, it becomes
infeasible. Thus arose Deep-Q-Learning[26] where neural networks allow us to approx-
imate non-linear functions. Thanks to its great potential, it is used to approximate the
Q-function; in other cases, it is also used to approximate the objective function.

Now we take the states where our neural network will input and predict our Q values.
In the neural network, there is no time difference as in Q-Learning. We do not compare
and make the difference of Q values. The neural network can predict and remember what
has happened before because the agent has previously passed through that state.

To train the neural network, one more function must be added to the equation.

L =) (QTarget — Q)

So basically, we measure the error with a loss function before we measure the time
difference, so it becomes the expected value minus the prediction. Each of the values of
that difference can be positive or negative, so what you do is square it so that difference
indicates how likely the error is.

23

Experience Replay

Listing 4.1: A space in our tuple

[observation, action, reward, done flag, next state]

Experience[27] allows us to remember solutions to previously solved problems and
not change the state and action, at every moment. As the neural network predicts for
every state change, for example, when a vehicle is in a straight line, as a consequence
giving the neural network the same state and action, in our case if an asset is in total
rise, it would be to maintain the action of not selling. This, in turn, means that we stop
visiting the environment episodically first to collect some data on the states saw in the
past and then train our neural network on the accumulated experiences. The main idea
is to store the agent’s experience in the form of a tuple <state, action, reward, next state>
and then extract batches from those experiences to train the neural network to increase
the robustness of the learning. These extractions are done randomly to learn from a much
broader context of past experiences and avoid learning from what has happened recently.
This memory can be implemented in the form of a buffer, like a cyclic queue, as new
memories arrive and old ones are removed since the memory capacity of the buffer is
fixed.

Prioritized Experience Replay

P(i) = Zr:;i‘
w = (5 55"

p = priority, P = probability, w = weight, N = numbero fexperiences

Prioritize [28] our buffer helps speed up the problem-solving process because samples
drawn with higher weights are drawn more frequently. In DQN, we randomly sample
experiences in a linear distribution, which means that we only need a container to store
experiences. We don’t have to worry about how the buffers are sorted. In the repetition
of priority experiences, we need to associate each experience with additional information,
priority, probability, and weight. The focus is updated according to the loss obtained
after the neural network is forwarded. This calculate the probability based on the priority
of experience. In contrast, the weight (correcting the bias introduced by non-uniform
sampling during the neural network backpropagation) is calculated based on probability.

24

4.1.2 Double Deep-Q-Learning

(SRR

Q(s, a; ;) r+ymax|Q(s', a’; 0;_,)

Figure 4.3: Double Deep Q-Learning. Image by Artem Oppermann

The problem with the DQN algorithm is that it tends to overestimate the rewards, i.e.,
the Q-values it learns to think that they will get a higher reward than they actually will.
So the paper [29] shows us an improvement of the DQN. The procedure is to separate
the search and selection of the action. On the other hand, the evaluation of the action
shows that the first neural network chooses what will be the best possible action, and the
following network will evaluate that action to get the Q-value.

25

4.2 Gradient Policies Concept

On one hand, these algorithms will learn a neural network that returns us the Q values.
On the other hand, we have a second neural network taking the states of the environment
and returning the action to execute. Therefore, we only define a policy function that
estimates the probability of taking each possible action from each state. The advantage we
gain over the value-based algorithms seen previously is that we can represent continuous
actions; for example, in a car, we could predict how fast we want to accelerate. Also, they
work better in stochastic environments, so we could significantly improve our problem
where there is high volatility. Finally, they directly optimize the function to be optimized
and tend to converge faster. The gradient policy[30] aims to maximize the expected return,
which means that it tries to obtain the maximum rewards as fast as possible in the short
term. Its update is given by intermediate weights and not with Q values through the
ascending gradient in the direction of the increasing function, thus increasing the expected
return.

4.2.1 Deep Actor-Critic

States Actions

States

Actions

Figure 4.4: Architecture Actor-Critic. Image by Juan Gabriel Gomila

We have two distinct neural networks, Actor and Critic [31]], The actor is directly in
charge of the policy, and it will take as inputs the states of the environment and return the
actions it has to execute. In contrast, the critic considers the states and the actions, so they
are concatenated, then it evaluates and returns the quality of the actions, i.e., the Q-value.
For example, a student takes an exam (Actor) and corrects the exam (Critical). In our case,

26

we will define that the actor will invent future finances, and the critic will decide whether
they can be valid or not.

4.2.2 Proximal Policy Optimization

Proximal Policy Optimization[32] is an algorithm whose goal is to optimize the strat-
egy for a given state and action pair (s,a) without always knowing the complete state
and action. In the case where we have an unknown conversion function, we can use *in-
verse strategy* to obtain the strategy. The inverse strategy is the strategy opposite to the
transfer function. Similarly, the near-end strategy is received by the neighboring strategy
as a function of the action. For any strategy, the strategy gradient method is an iterative
algorithm that iteratively updates the strategy.

This feature aims to perform a gradient ascent step (equivalent to doing a reverse
gradient descent). In this way, our business representatives are forced to take actions
that bring higher returns and avoid bad behavior. After the update, the distance between
the new strategy and the old strategy should not be too far. For this reason, PP0 uses
clipping to avoid excessive updates. In the near-end strategy optimization, the distance is
accumulated and used to construct a decompression learning model. In this way, in each
training step, the system can download the optimal value of the actor more efficiently
than other techniques.

4.2.3 Deep Deterministic Policy Gradient

Aetor and Critie

= TS
N x
1@ D

<

Target DNN

v
Tosin Acton
Performing
Currentistate New ranstons
TID

L)

Figure 4.5: Architecture DDPG. Image by Zhu, Taiyu and Li, Kenneth and Kuang, Lei and
Herrero [33]

In traditional reinforcement learning, we are interested in maximizing rewards in each
period. In DDPG[34], we are traditionally only interested in maximizing rewards in one
episode. This algorithm is called a "deterministic" algorithm because it does not make de-
cisions based on the past. Instead, the decision is made based on the current observations,
and the policy gradient is calculated based on the recent observations. Deep Deterministic
Policy Gradient[35] is an algorithm used to solve the policy gradient problem. Strategy
gradient is a well-known technique used in reinforcement learning based on the calcula-
tion of strategy gradient. The idea is that the policy gradient of the policy function is a
direct result of the gradient of some loss function concerning the proxy policy, and the

27

gradient can be calculated efficiently by finding the derivative with respect to the pol-
icy. Here, a new algorithm is proposed to calculate the policy gradient effectively. This
technology is based on the idea of deterministic policy gradient. The algorithm includes
calculating the loss function of certain policy functions and the gradient of the policy of
a single agent. The idea is to update the strategy using the strategy gradient algorithm,
which can be obtained by finding the derivative of some deterministic strategy. This is
done by finding a deterministic strategy sequence because it does not depend on previous
actions. The gradient of the strategy will be calculated, and the strategy sequence will
be updated using the derivative strategy algorithm. Therefore, the technique is easy to
implement because the algorithm is computationally simple. The algorithm is based on
the following two key ideas: The policy gradient is calculated for the entire state space,
not just for the current state. There are many more states in the state space than actions.
Therefore, there is no need to calculate the current state and following state strategies.
The calculation can be done efficiently by using the action space. The action space is
much smaller than the state, and the state is much less than the action. When we want
to calculate the gradient of the strategy, we must calculate the derivative of the action at
the current time step. Therefore, the strategy is updated by calculating the derivative of
the loss function under specific actions, and the strategy gradient algorithm must be used
to calculate the derivative. We introduce a new deterministic action gradient technique,
which uses the action gradient algorithm to calculate the action gradient. For example,
we can calculate the action gradient of the current step and any action performed in the
action sequence. This can be done by using the motion gradient algorithm to calculate
the motion gradient. However, this requires us to know the order of operations, which
we do not know in advance. Therefore, we cannot use the operation update (operation
sequence) in the next step to calculate the policy gradient. In our deterministic algorithm,
the action is updated at the same time as the target action. Therefore, it is not necessary
to calculate the derivative at each time step. The derivatives of the loss functions are al-
ways stored in a table and can then be used in any decision-making step. This makes
the algorithm very easy to implement. Further differences between the deterministic and
stochastic algorithms are described below. More precisely, the strategy gradient of deter-
ministic calculation is always stored in the matrix. In other words, we can calculate all
policy gradients. The randomly calculated policy gradient can be stored in a vector. On
the other hand, stochastic gradients cannot be stored in vectors. In this case, we must
calculate all gradients at once. It is possible to perform calculations at the same time.
However, sometimes the analysis is performed longer than the calculation, for example,
when calculating a random value function.

28

424 Twin Delayed DDPG

States States

Actions Actions.

States States

Actions Actions.

Critic Target Critic Target

Figure 4.6: Architecture Twin Delayed DDPG. Image by Juan Gabriel Gomila

Although DDPG can sometimes achieve excellent performance, it is usually fragile in
hyper-parameters and other types of adjustments. The typical failure mode of DDPG
is that the learned Q function begins to significantly overestimate the Q value, which
will cause the strategy to be interrupted because it takes advantage of the error in the Q
function. Double Twin Delay DDPG (TD3) is an algorithm that solves this problem by
introducing three key techniques:

e Tip 1: Tailor double-Q learning. TD3 learns two Q functions instead of one (hence
the "twin") and uses the smaller of the two Q values to form the target in the Bellman
error loss function.

e Tip 2: "Delay" policy updates. The frequency of the TD3 updating strategy (and
target network) is lower than the Q function. Therefore, the paper recommends a
policy update every two Q function updates.

¢ Tip 3: Smooth the target policy. TD3 adds noise to the target action and smoothing
Q, and the changes in the action make it more difficult for the strategy to take
advantage of Q function errors. In summary, these three techniques have greatly
improved the performance of the baseline DDPG.

4.2.5 Soft Actor-Critic

Soft Actor-Critic[36] is a training technique in which actors do not rely on evaluating
their limited control rights but rely on supporting actors. The actor has auxiliary functions
that can determine its growth radius and direction. People can use it instead of the feed-
back function. Soft Actor-Critic (SAC) is an algorithm that optimizes stochastic strategies
in a non-strategic way, thus building a bridge between stochastic strategy optimization
and DDPG style methods. It is not a direct successor to TD3 (direct concurrent release).

29

Still, it contains tailored double-Q techniques, and due to the inherent randomness of the
strategy in SAC, it also benefits from target strategy smoothing.

A core feature of SAC is entropy regularization. The strategy is trained to maximize
the trade-off between the expected return and entropy, a measure of randomness in the
strategy. This is closely related to the trade-off between exploration and development:
increasing entropy will lead to more exploration, speeding up future learning. It also
prevents the strategy from prematurely converging to a bad local optimum.

30

Design of experiments

In this section, we will explain the whole design of experiments performed. First of all,
we create an environment, as this will give us an advantage over working directly on the
data. Using the environment, we can manipulate all the behavior we want the algorithms
to have. It is like defining the rules of the game, which would be to create a local Exchange
adapted so that the different algorithms can be executed. It also has a "check" function that
allows you to see if your environment is well created, so it is advantageous. By inheriting
from class(gym.Env), we get the following functions. On the other hand, all these designs
will be run on a machine with 16GB of RAM, an Intel i7, an Nvidia RTX 3090 Founders
Edition GPU, and a SATA SSD. All these algorithms run on Google Colab, but as you
might get kicked out of the session, I decided to run it locally to see the graphs on the
Tensorboard (to see if the algorithms are learning).

5.1 Environment

We can create different types of environments. Python environment, OpenAl Gym
environment[37], Tensorflow[38] environment, and so on. In my case, I use the OpenAl
Gym environment, as it has a lot of documentation and many predefined environments
like Atari machines.

Listing 5.1: Custom Environment Example

def __init__(self)

def step(self, action)

def reset(self)

def render(self, mode = "human’)

In the init function, we must modify the space of observations, with the minimum
and maximum we need, based on the needs of the environment and the space of actions
according to the environment’s needs. In addition, it is advisable to define the range of
rewards. Those specific algorithms need a discrete action space while other algorithms
need a normalized and continuous action space. We must also declare all the necessary
variables for our environments, such as the data frame, the commissions, portfolio, and
initial value. We will use discrete and Box spaces.

31

Listing 5.2: Custom Environment Example

Box —> R™n (x1,x2,x3,...,xn), xi [low, high] #gym.spaces.
#gym. spaces . Box(low = -10, high = 10, shape = (2,)) # (x,y), -10<x,y<10

Discrete —> Integers between 0 and n-1, {0,1,2,3,...,n-1}
#gym.spaces . Discrete (5) # {0,1,2,3,3,4}

#Dict —> Dictionary of more complex spaces
#gym.spaces . Dict ({

"position”: gym.spaces.Discrete(3), #{0,1,2}
"velocity ”: gym.spaces. Discrete(2) #{0,1}

1)

Multi Binary —> {(T,F}"n (x1,x2,x3,...xn), xi {T,F}
gym.spaces.MultiBinary (3)# (x,y,z), x,y,z = TIF

Multi Discrete —> {a,a+1,a+2..., b}’™m
#gym.spaces . MultiDiscrete ([-10,10],[0,1])

Tuple —> Product of simple spaces
#gym. spaces . Tuple ((gym.spaces . Discrete (3), gym.spaces.Discrete(2)))#{0,1,2}x{0,1}

prng —> Random Seed

Step function. This function executes the action determined at each step to guide
the agent in the environment. The reset method will also be executed at the end of each
episode, and it does the game over function when we have no more states in the space
of observation. It is essential to note that this function calculates the action taken. In our
case, we have separated the action into two functions according to the type of algorithm
(discrete or continuous). This also calculates the reward based on the action. The following
observation configures the state if it is a terminal state (done) and optionally defines the
values to be persisted within the info dictionary.

Reset Function. This function resets the environment variables, and we return the
initial observation after having configured a whole episode. Thus, on one hand, we also
separate it into two functions, in one function all the variables related to the environment
and in another function all the variables of the session user.

Render function. This is very important since we can represent on screen all the
values of the environment as well as its graphical representation. In the case of making an
application, it would be the output that the user would get. In my case, we take the idea
of a market representation, and I also create a return of several variables that interest me.

5.2 Methods

All methods have been extracted from the stable-baselines3 library[39] written in
Pytorch[40]. It should be noted that the Double-Deep-Q-learning model is not found in
this library but in its first version[41] written in Tensorflow. As my GPU is not compati-
ble with Tensorflow version one, I have decided to use Google Colab[42] for this specific
method so that training times may vary. Furthermore, as we are only studying the be-

32

haviour of these algorithms in trading, we will only adopt particular values such as the
memory size, the number of episodes, and the block size so that all these algorithms are
compatible with my equipment, as some of them consume huge amounts of memory. Fur-
thermore, all algorithms use MlpPolicy, meaning that their inner layers are Dense layers
instead of, e.g., Convolutional Layers. Total timesteps are assigned by 200,000 units, which
is the number of steps in total the agent will do for any environment. The total timesteps
can be across several episodes, meaning that this value is not bound to some maximum.

5.2.1 Discretize Action Algorithms

Here the important thing to note, as in theory, is the importance of the replay buffer
where we have allocated a space of 100000 units. In addition, the action space will be
defined by action space = spaces.Discrete(3) in the environment will have a 3-dimensional
shape (buy, sell and hold).

Listing 5.3: Q-Learning Function

stable_baselines3 .dqn.DON(policy , env, learning_rate=0.0001,
buffer_size=1000000, learning_starts=50000, batch_size=32, tau=1.0,
gamma=0.99, train_freq=4, gradient_steps=1, replay_buffer_class=None,
replay_buffer_kwargs=None, optimize_memory_usage=False,
target_update_interval=10000, exploration_fraction=0.1,
exploration_initial_eps=1.0, exploration_final_eps=0.05, max_grad_norm=10,
tensorboard_log=None, create_eval_env=False, policy_kwargs=None, verbose=0,
seed=None, device="auto’, _init_setup_model=True)

This algorithm is a derivation of the original deep q learning. To activate it, we only need
to set double g=True.

Listing 5.4: Double-Q-Learning Function

stable_baselines.deepq.DON(policy , env, gamma=0.99, learning_rate=0.0005,
buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02,
exploration_initial_eps=1.0, train_freq=1, batch_size=32, double_q=True,
learning_starts=1000, target_network_update_freq=500,
prioritized_replay=False, prioritized_replay_alpha=0.6,
prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None,
prioritized_replay_eps=1e-06, param_noise=False, n_cpu_tf_sess=None,
verbose=0, tensorboard_log=None, _init_setup_model=True, policy_kwargs=None,
full_tensorboard_log=False, seed=None)

5.2.2 Continuous Action Algorithm

These algorithms must be defined in the environment with action space = spaces.
For example, box (low=-1, high=1, shape=(3,)), this means that space will be normalized
between -1 and 1 and will have a 3-dimensional shape (buy, sell and hold). Recall that
the model we will see below relies on tracking estimated future reward returns (our value
function) and learning new and more complex strategies to follow in order for our agent
to be in a longer time horizon and get higher rewards. With the algorithm now optimizing
two functions simultaneously it quickly becomes a more complex problem.

33

Listing 5.5: Actor-Critic Function

stable_baselines3.a2c.A2C(policy, env, learning_rate=0.0007, n_steps=5,
gamma=0.99, gae_lambda=1.0, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5,
rms_prop_eps=le-05, use_rms_prop=True, use_sde=False, sde_sample_freq=— 1,
normalize_advantage=False, tensorboard_log=None, create_eval_env=False,
policy_kwargs=None, verbose=0, seed=None, device="auto’,
_init_setup_model=True)

If you find training unstable or want to match performance of

stable -baselines A2C, consider using RMSpropTFLike optimizer from
stable_baselines3 .common.sb2_compat.rmsprop_tf_like. You can change
optimizer with A2C(policy_kwargs=dict(optimizer_class=RMSpropTFLike,
eps=le-5))

Listing 5.6: Proximal Policy Optimization Function

stable_baselines3 .ppo.PPO(policy , env, learning_rate=0.0003, n_steps=2048,
batch_size=64, n_epochs=10, gamma=0.99, gae_lambda=0.95, clip_range=0.2,
clip_range_vf=None, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5,
use_sde=False, sde_sample_freq=— 1, target_kl=None, tensorboard_log=None,
create_eval_env=False, policy_kwargs=None, verbose=0, seed=None,
device="auto’, _init_setup_model=True)

For DDPG and Twin Delay, we must add noise to our actions. Otherwise, the algorithm
will not work, and it is vital to limit the memory usage as they come with a very high
default value, which can exceed 16GB.

The reason we added noise is because the action space is very simple, so the algorithm
would not explore the space of observations.

Listing 5.7: Action Noise

NormalActionNoise (mean=np . zeros (n actions),
sigma=0.5 * np.ones(n actions))

Listing 5.8: Deep Deterministic Policy Gradient Function

stable_baselines3 .ddpg.DDPG(policy , env, learning_rate=0.001,
buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005,
gamma=0.99, train_freq=(1, ’episode’), gradient_steps=- 1,
action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None,
optimize_memory_usage=False , tensorboard_log=None, create_eval_env=False,
policy_kwargs=None, verbose=0, seed=None, device="auto’,
_init_setup_model=True)

Listing 5.9: Twin Delayed DDPG Function

stable_baselines3.td3.TD3(policy, env, learning_rate=0.001,
buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005,
gamma=0.99, train_freq=(1, ’episode’), gradient_steps=- 1,
action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None,
optimize_memory_usage=False , policy_delay=2, target_policy_noise=0.2,
target_noise_clip=0.5, tensorboard_log=None, create_eval_env=False,
policy_kwargs=None, verbose=0, seed=None, device="auto’,
_init_setup_model=True)

34

Listing 5.10: Soft Actor Critic

stable_baselines3.sac.SAC(policy, env, learning_rate=0.0003,
buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005,
gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None,
replay_buffer_class=None, replay_buffer_kwargs=None,
optimize_memory_usage=False , ent_coef="auto’, target_update_interval=1,
target_entropy="auto’, use_sde=False, sde_sample_freq=— 1,
use_sde_at_warmup=False , tensorboard_log=None, create_eval_env=False,
policy_kwargs=None, verbose=0, seed=None, device="auto’,
_init_setup_model=True)

5.2.3 Procedure

1. Connect to the Binance API with our credentials to obtain the Bitcoin and ADA
history. To facilitate this connection, we will use the python-binance library[43].

2. We convert each candle in rows and create the following columns: Open time, Open,
High, Low, Close, Volume, Close time, Quote asset volume, Number of trades, Taker
buys base asset volume, Taker buys quote asset volume, Ignore.

3. Remove the "ignore" column, change Open Time and Close Time from UNIX format
to DateTime.

4. Calculate RSI, ADX, VPT indicators for our dataset. IMPORTANT: We must choose
the days we want our indicators to take.

5. We create two environments: Discrete and continuous thanks to a variable that we
have previously defined, and we split the dataset into training and test. Then, we in-
troduce the data frame by parameter, and the Windows Size (THIS IS IMPORTANT)
means how many rows we want to take as a window for the neural network. In my
case, I have taken a window of 2 weeks in candles of 15 minutes. So it would be 4
candles of 15 min in 1-hour x 24h x 14 days = 1344 rows.

6. Once the environments are created, we must validate with the function check env
that the environments are correctly created.

7. Thanks to a benchmark function, we agglutinate all the models in a function so that
they are executed iteratively.

8. For each model, we create it with the predefined parameters and define the ver-
bose=2, so that all the information and the path of the Tensorboard is displayed on
the screen. Then we call the function to learn passing it the parameter timesteps.
This way, it will learn our model.

9. Finally, we save the model in a path with the same function.

10. (Optional) if we want to test our model, we only have to follow this pattern with the
test data frame:

35

Listing 5.11: Test DQN model example

obs = env_val_discretize.reset ()

for i in range(len(df_val)):
action, _states = dqn.predict(obs)
obs, rewards, dones,

info = env_val_discretize.step (action)
env_val_discretize.render (mode="system")

36

Results Analysis

This section discusses the results obtained from the previously explained architectures
and their later implementation. It introduces a standard way to measure the loss value
agent quantitatively and also the results in the test dataset, human-perceived point of
view. Examples of where the network gives good results and fails to produce the expected
results will also be given and analyzed.

6.1 Discretize Action Algorithms

BTC is taken as a reference in these two algorithms because of the problems that I will
discuss below.

6.1.1 Deep-Q-Learning

1127PM | 1128PM | 1120PM 1130PM | 1131PM | 1132PM 1133PM | 1134PM 1135PM 1136PM | 11:37PM 11:38PM 11:30PM | 1140PM | 11:41PM 1142PM | 1143PM 11:44PM 1145PM | 1146PM 11:47PM
WMav 15 207

Figure 6.1: DQN Loss

This is not uncommon for reinforcement learning and does not indicate any problems.
However, as the agent gets better at the game, it is indeed more challenging to estimate
the reward (because it is no longer always 0). In addition, as the reward becomes higher
and the average episode length becomes longer and longer, the amount of variance in the
reward will also become more extensive, so even if it is necessary to prevent the loss from
increasing, it is very challenging.

37

6.1.2 Test Results

As we have seen, one of the severe problems of brokers who only predict appropriate
actions is that they bet or sell all at every step because they have no control over the bet
amount, so this is not the best algorithm for trading. Therefore, the agent hardly executes
any actions because he learns that betting everything carries significant risk.

9800 - ‘

1040 -
9775 -

L o
lj’..-ly+¢i¢¢

1000 -

’ - ﬁ

980 - .

s - T T

9650 -

9625 - i ' i i
50 -

2099 -

@'1010 © o © o
o o i
& o R

i

Price
Balance

s
™
&

Date

Figure 6.2: DQN Playing in Data Test

6.1.3 Double Deep-Q-Learning

This model learning improves a lot as it does not overestimate rewards by having two
neural networks. There is less noise, and the loss is more stable, and it tends to 0, which
means that our agent is learning, but as we have commented in the previous model, these
architectures do not have control over the amount to bet. They learn not to take risks
because a bad move loses all the money, and they will not be able to continue playing.

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 6.3: DDQN Loss

38

6.2 Continuous Action Algorithms

Recall that these algorithms have two sets of actions, the action to take and the amount
percentage to sell or buy.

6.2.1 Deep Actor-Critic

It was trained with the Adam optimizer and then tested by the optimizer featured in
the library, RMSpropTFLike.

actor_loss critic_loss entropy_loss explained_variance
tag: train/actor_loss tag: train/critic_loss tag: train/entropy_loss tag: train/explained_variance

0s 0o 402 o
406 2
07 07
41 5
05 05 414 o
418
03 03 e
422
01 01 4z 18

0 40k 80k 120k 160k 200k 0 40K 80k 120k 160k 200k
policy_loss std value_loss
rain/policy_loss tag: train/std tag: train/value_loss

800

5 600
0 oe7
Te4 ———————— o 400
5
Sed
e o 035 200
3e4
-5
164 0o 0
0 40k 80k 120k 160k 200K 0 40k 80k 120k 160k 200k 0 40k 80K 1206 160K 200K 0 40k 8Ok 1206 160K 200k

Figure 6.4: A2C tensorboard

It does not really play its due role here. Instead, it treats the problem as a classification,
so we get the value entropy loss. There is a serious problem here: the entropy loss gives
extraordinary values, which means that it fails to converge, so it does not learn anything.

6.2.2 Proximal Policy Optimization

With both ADA and BTC, we get the same results. Therefore, PPO is able to learn in
such circumstances.

loss
tag: train/loss

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 6.5: PPO Loss

39

6.2.3 Test Results

As we can see, the blue bar has moved, this means that it has been buying and selling,
as it has decreased the total equity we have by -30$ and then increased to -23$, so it is
buying and selling.

Price
8
&
Balance

o
%@’L‘ﬂ
2w

0
S
Fiis
b
Date

0
o2
&
S

©
%@'1“1
7 o

Figure 6.6: PPO Playing in Data Test
6.24 Deep Deterministic Policy Gradient

actor_loss
tag:train/actor_loss

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 6.7: DPPG Actor Loss

40

sritic_loss
ag: train/critic_loss

0 20k 40k 60k 20k 100k 1206 140k 160k 180k 200k

Figure 6.8: DDPG Critic Loss
Actor losses increase, which is good, but on the critic’s side, we can see a lot of noise,

and it cannot go down. This means that the critic cannot communicate to the Actor
whether his decisions are correct.

6.2.5 Twin Delayed DDPG

actor_loss
tag: train/actor_loss

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 6.9: TD3 Actor Loss

eritic_loss
tag: train/critic_loss

480
460
440
420
400
380
360

340

320

0 20k 40k 60k 20k 100k 120k 140k 160k 180k 200k

Figure 6.10: TD3 Critic Loss

Here is the same situation, the actor losses increase, which is good, but on the critic’s
side, we can see that there is a lot of noise. Yet, in this case, we can see a downward trend.

41

Perhaps more training time would improve this curve.

6.2.6 Soft Actor-Critic

actor_loss
tag: train/actor_loss

critic_loss
tag: train/eritic_loss

600

300

SAC has strange behavior with a linear trend, it is difficult to explain what is happen-

Figure 6.11: SAC Actor Loss

Figure 6.12: SAC Critic Loss

ing, but given the results, it is ruled out.

6.2.7 Analysis of Global Results

The results are not optimistic, but there are signs that the agent is indeed learning

something:

e Agents. The use of frameworks allows you to implement and see the different
behaviors of the agents quickly but with a big penalty as it is the understanding
of how to create these models internally at the programming level and the loss of
customization and experimentation. Stable-Baselines is an excellent framework for
beginners who start experimenting with the world of reinforcement learning. Still,
for models where production is required, such as the different tests we have created,
it is necessary to create custom architectures that allow us to address the problem in
the most optimal way possible. Furthermore, in the case of a bug, because we don’t

42

know what behavior the model is having, such as the result of our Actor-Critic, it
is quite complex to analyze and try to solve it only by changing hyper-parameters.
One of the serious problems of using this type of frameworks is the depth of the
networks, as they tend to use generic networks of few layers for simple problems
and that everyone can run the library. So with this type of problems, it is a volatile
market that makes agents not able to learn, agents conclude that it is best not to bet,
but keep your money in your wallet so they hardly make movements of buying and
selling cryptocurrencies, not to even mention that some models do not even try.

e Environment. The environment created is quite simple and has great importance,

almost as important as the design of the agents because it is the room in which the
agents are going to interact, using the programmed rules of the game. However, it
has several problems that I have been able to conclude after experimenting with the
different models. First, it has a bottleneck with the transmission of information to
the GPU, which means that the GPU practically works at only 30% of its capacity.
Second, it has another bottleneck in the access search of the rows to obtain the
information. Finally, it has not implemented parallelism, so it is impossible to train
with multi-agents which would improve trying different architectures or strategies
in a much faster way.
Another serious problem it has is the feedback of the reward to the agents. For
example, that in a bull market like Bitcoin, since its creation, a programmed reward
such as valuing the current total equity where is the sum between the value of the
cryptocurrencies in FIAT and the own money retained in the portfolio make it too
simplistic. This means that in case of interacting an agent with the market what he
will do is buy and hold because he knows that the market will continue to rise. That
said, it seems pretty smart to bet on the long. Still, we want to make even bigger
profits and the possibility of being able to buy even more cryptocurrencies, and with
such simplistic formulas, the trader becomes conservative.

43

Conclusions

This section is divided into two subsections. The conclusion from the first explanation
The results are shown in the previous section discusses whether the initial goals have been
achieved or not. The last one proposed a new way to solve the problem and set a Continue
the work that has already been done.

7.1 Research conclusions

The results have been gratifying.
I have been able to observe in a rewarding way most of the algorithms in-depth and to
see the different ideas of how they try to imitate the behavior of a human being. It is true
that when I did this project my idea was quite optimistic about the possible results of the
different agents but I have been able to know exactly that it is possible to create trading
bots. I have been able to verify and analyze that the world of trading is very complicated,
and that things are not so simple. Therefore any advertisement on the internet related to
making easy money on trading is really a fallacy. Therefore, we must be responsible for
investing in cryptocurrencies, knowing what technologies are behind, investing in risks,
and that cryptocurrency does not equal profit, as many factors can make the market vary,
from governments censoring cryptocurrencies to tweets from influential people like Elon
Musk. That does not detract from the fact that I was pleased to see signs that agents were
actually learning something and that there is a lot of improvement in this area, but we
cannot forget that in the end, the market continuously interacts with humans in it, that it
is not as basic as autonomous driving for example where an agent can learn the rules of
the road because there the rules really exist. Here everyone tries to learn some method
that buys at lows and sells at high, but it is complicated, even a trader on the same move
can have an optimistic option and a pessimistic option, but the agents have shown us that
buying and doing HODL is an intelligent option that we can consider.
The general objectives:

(a) Data manipulation and study. Accessing the Binance API and analyzing indicators,
and adapting the data to the dataset study shows me great satisfaction for possible
future personal implementations.

(b) Trading Techniques. It has been possible to simulate an automated and fast trading
environment where the different agents have interacted in the purchase and sale of

44

cryptocurrencies and the study of the calculation of the various indicators.

(c) Environment. We have been able to simulate a simple environment that allows us to
adapt to the cryptocurrency market, as we can see in an Exchange at a computational
level with our own rules to feed the different learning agents by reinforcement.

So, given these pessimistic results, I wonder, is it not possible to beat the market with
reinforcement learning techniques? Generally, cryptocurrencies and any stock market
have a severe problem for these models that is votality. Agents in unstable environments,
with many variations, do not usually work, as they do not manage to learn to beat the
market, they get a lot of noise, and the only thing to do most of the time is to learn a
conservative behavior or act randomly, but in the next section you will see some improve-
ments that can be fixed to a large extent.

7.2 Improvements and Future Work

To sum up, I will explain the different ideas that have occurred to me during the
project, considering the results to continue improving it.

All in all, changing the terminal state function to a more aggressive function and
improving the reward function, most algorithms manage to learn more locally instead of
focusing too much on retention. The problem is that the algorithm always starts at step
0 of the data set, so every time it gets to the end state, it starts from the beginning. To
optimize this problem, randomness should be added from the beginning to create small
pieces of local training to access the entire data set. As a result, a much more complex
reward should be made. Currently, the difference between previous total equity and
current equity is produced. This provides an incentive to hold. A severe idea would be
to compensate the agent when the value of the cryptocurrency goes down, and it doesn’t
have cryptocurrencies when this happens. It would be a motivation to sell at highs and
buy at lows. One could think of more ways to make this function complex, such as being
conditional through the volume of the candle, having a delay through the steps to get
smaller and smaller rewards if it doesn’t interact with the environment.

The second one is quite obvious: creating models with a more significant number of
layers to learn different market patterns. Also, modifications to the models such as using
1D Convolutional Layers or using LTSM[44] layers to learn a more extensive sequence of
candlesticks.

On the other hand, in order to create a much better environment we should allow
parallelism for training and execution of the agents and remove bottlenecks. Also, create a
different environment for production where it is connected in real-time to the API, to make
real use, with a cyclic queue for x number of rows that allows to calculate the different
indicators and not to fill the memory infinitely. On the other hand, environments could
be created for the various products, such as Liquidity trading, where you bet on whether
an asset is going to go up or down.

Nevertheless, it might also be a good idea to ask more complex questions than trading
alone: can the network learn to trade and apply a different style or user-motivated strat-
egy? For example, it is possible that the user may wish to for a more aggressive or more

45

conservative strategy depending on the user’s personality or how the market is doing.
Would it be possible to add sentiment analysis of tweets from influencers in these mar-
kets, with architectures such as BERT[45], and add it to the dataset as a variable? Would
the agent learn to use it?

46

Bibliography

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement learning i: Introduction, 1998.
[2] Richard Bellman. The theory of dynamic programming, 1954.
[3] Richard Bellman. A survey of applications of markov decision processes, 1993.

[4] M. V. Otterlo and M. Wiering. Markov decision processes: Concepts and algorithms.
2012.

[5] RICHARD S. SUTTON. Learning to predict by the methods of temporal differences,
1988.

[6] P.A. Karnazes and R.D. Bonnell. System identification techniques using the group
method of data handling. IFAC Proceedings Volumes, 15(4):713-718, 1982. 6th IFAC
Symposium on Identification and System Parameter Estimation, Washington USA,
7-11 June.

[7] Yann LeCun. Efficient backpro, 1998.

[8] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm
for boltzmann machines. Cognitive Science, 9(1):147-169, 1985.

[9] Geoffrey E. Hinton. Learning multiple layers of representation. Trends in Cognitive
Sciences, 11:428-434, 2007.

[10] CASPER HANSEN. Activation functions explained - gelu, selu, elu, relu and more.
2019.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Geoffrey Gordon, David Dunson, and Miroslav Dudik, editors, Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 315-323, Fort Lauderdale,
FL, USA, 11-13 Apr 2011. PMLR.

[12] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[13] iamtrask. Gradient descent. https://iamtrask.github.io/2015/07/27/
python-network-part2/, 2015.

47

https://iamtrask.github.io/2015/07/27/python-network-part2/
https://iamtrask.github.io/2015/07/27/python-network-part2/

[14] Francesco Bertoluzzo and Marco Corazza. Testing different reinforcement learning
configurations for financial trading: Introduction and applications. Procedia Economics
and Finance, 3:68-77, 2012. International Conference Emerging Markets Queries in
Finance and Business, Petru Maior University of Tirgu-Mures, ROMANIA, October
24th - 27th, 2012.

[15] Jonathan Sadighian. Deep reinforcement learning in cryptocurrency market making,
2019.

[16] E. S. Ponomareyv, I. V. Oseledets, and A. S. Cichocki. Using reinforcement learning in
the algorithmic trading problem. Journal of Communications Technology and Electronics,
64(12):1450-1457, Dec 2019.

[17] Thibaut Théate and Damien Ernst. An application of deep reinforcement learning to
algorithmic trading, 2020.

[18] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen
Xiao, and Christina Dan Wang. Finrl: A deep reinforcement learning library for
automated stock trading in quantitative finance, 2020.

[19] Gang Huang, Xiaohua Zhou, and Qingyang Song. Deep reinforcement learning for
portfolio management based on the empirical study of chinese stock market, 2021.

[20] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36:193-202, 1980.

[21] Antonio Briola, Jeremy Turiel, Riccardo Marcaccioli, and Tomaso Aste. Deep rein-
forcement learning for active high frequency trading, 2021.

[22] Badr Hirchoua, Brahim Ouhbi, and Bouchra Frikh. Deep reinforcement learning
based trading agents: Risk curiosity driven learning for financial rules-based policy.
Expert Systems with Applications, 170:114553, 2021.

[23] S. Nison. Japanese Candlestick Charting Techniques: A Contemporary Guide to the Ancient
Investment Techniques of the Far East. New York Institute of Finance, 2001.

[24] Binance. Binance official api. https://binance-docs.github.io/apidocs/spot/
en/, 2021.

[25] Dario Lopez Padial. Ta library. https://technical-analysis-library-in-python.
readthedocs.io/en/latest/| 2021.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning, 2013.

[27] Shangtong Zhang and Richard S. Sutton. A deeper look at experience replay, 2018.
[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience

replay, 2016.

48

https://binance-docs.github.io/apidocs/spot/en/
https://binance-docs.github.io/apidocs/spot/en/
https://technical-analysis-library-in-python.readthedocs.io/en/latest/
https://technical-analysis-library-in-python.readthedocs.io/en/latest/

[29] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double g-learning, 2015.

[30] Lilian Weng. Policy gradient algorithms. lilianweng.github.io/lil-log, 2018.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning(a2c), 2016.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms(ppo), 2017.

[33] Taiyu Zhu, Kenneth Li, Lei Kuang, Pau Herrero, and Pantelis Georgiou. An insulin
bolus advisor for type 1 diabetes using deep reinforcement learning. Sensors (Basel,
Switzerland), 20, 09 2020.

[34] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning(ddpg), 2019.

[35] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research, pages 387-395, Bejing, China, 22-24 Jun
2014. PMLR.

[36] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor(sac), 2018.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[38] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from tensorflow.org.

[39] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable baselines3. https://github.com/DLR-RM/
stable-baselines3, 2019.

49

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

[40]

[41]

[42]
[43]

[44]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024-8035. Curran Asso-
ciates, Inc., 2019.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Stable baselines. https://github.com/hill-a/stable-baselines| 2018.

Ekaba Bisong. Google Colaboratory, pages 59—-64. Apress, Berkeley, CA, 2019.

Welcome to python-binance. https://github.com/sammchardy/python-binance,
2021.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735-1780, 1997.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

50

https://github.com/hill-a/stable-baselines
https://github.com/sammchardy/python-binance

	Introduction
	Motivation and Objectives
	Memory Organization

	State of the Art
	Background
	Reinforcement Learning
	Deep Learning

	Reinforcement learning with Finance

	Data Analysis
	Candles
	API
	Indicators
	Momentum Indicator.
	Volume Indicator.

	Indicator study
	Normalized Data

	Methods
	Model Classification
	Deep-Q-Learning
	Double Deep-Q-Learning

	Gradient Policies Concept
	Deep Actor-Critic
	Proximal Policy Optimization
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG
	Soft Actor-Critic

	Design of experiments
	Environment
	Methods
	Discretize Action Algorithms
	Continuous Action Algorithm
	Procedure

	Results Analysis
	Discretize Action Algorithms
	Deep-Q-Learning
	Test Results
	Double Deep-Q-Learning

	Continuous Action Algorithms
	Deep Actor-Critic
	Proximal Policy Optimization
	Test Results
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG
	Soft Actor-Critic
	Analysis of Global Results

	Conclusions
	Research conclusions
	Improvements and Future Work

	Bibliography

