
Treball final de grau

GRAU D’ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

MAKING A VIDEO GAME FOR
THE SUPER NINTENDO

ENTERTAINMENT SYSTEM

Autor: Òscar Lek Boada

Director: Ricardo Jorge Rodrigues

Sepúlveda Marques

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, 20 de juny de 2021

Contents

Abstract 1

1 Introduction 2

2 Planning 3

3 Objectives 4

4 Background 5

4.1 Glossary . 5

4.2 Execution and development environment 7

4.2.1 The compiler . 7

4.2.2 The emulator . 7

4.2.3 The programming language 7

4.2.4 The graphics editor . 7

4.2.5 The directory . 8

4.2.6 Testing the project . 8

5 Development 9

5.1 Starting up . 9

5.1.1 Header setup . 9

5.1.2 SNES initialization . 10

5.1.3 Gameloop . 11

5.1.4 Graphics . 13

5.1.5 Cursor . 15

5.1.6 RAM map . 16

0

5.2 Menu . 16

5.2.1 Title screen . 17

5.2.2 Main menu . 17

5.2.3 Options menu . 17

5.2.4 Menu Results . 17

5.3 Tic-tac-toe . 18

5.3.1 Tic-tac-toe initialization . 19

5.3.2 Tic-tac-toe main subroutine . 20

5.3.3 Draw symbol . 20

5.3.4 Artificial intelligence . 20

5.3.5 Tic-tac-toe results . 20

5.4 Checkers . 22

5.4.1 Checkers initialization . 22

5.4.2 Checkers main subroutine . 23

5.4.3 Move checker . 23

5.4.4 Checkers results . 23

5.5 Yacht dice . 24

5.5.1 Initialization . 24

5.5.2 Roll dice . 25

5.5.3 Yacht dice main subroutine . 25

5.5.4 Mark category . 26

5.5.5 Yacht dice results . 27

5.6 Tilecounter . 27

5.6.1 Tilecounter initialization . 27

5.6.2 Tilecounter main subroutine 28

5.6.3 IRQ . 28

5.6.4 Tilecounter results . 29

5.7 Utility subroutines . 30

5.7.1 Random number generator . 30

5.7.2 Fading . 31

5.7.3 Game end . 31

5.7.4 Cursor initialization . 31

5.7.5 Cursor update . 32

5.7.6 Tilemap upload . 32

5.7.7 OAM update . 32

6 Conclusions 33

6.1 Future Work . 33

References 35

Abstract

This project showcases the full development of a video game for the Super
Nintendo Entertainment System, a console released in the year 1990. The game
itself is made of multiple smaller games that intend to showcase as many func-
tionalities and quirks of the system as possible. The games themselves have been
selected to provide a variety of options the players can choose from.

These games include tic-tac-toe, a well-known, deterministic, simple game
which became the target for the implementation of a simple AI; checkers, a more
complex well-known, deterministic, strategy game; yacht dice, a strategy game
with a prevalent element of randomness; tilecounter, a made-up game for this
project, demanding reaction time and observation.

Aquest projecte mostra el desenvolupament d’un videojoc per la Super Nin-
tendo Entertainment System, una videoconsola de l’any 1990. El joc està format
per varis jocs més petits que pretenen mostrar tantes funcionalitats i peculiaritats
del sistema com sigui possible. Els jocs en si han sigut escollits per tal de proveir
una selecció variada d’opcions als jugadors.

Aquests jocs són el tres en ratlla, un joc conegut, deterministic i simple que va
acabant rebent la implementació d’una IA; les dames, un joc d’estratègia conegut,
més complex i deterministic; la generala, un joc d’estratègia amb elements d’at-
zar; el comptaquadres, un joc inventat per aquest projecte, requerint habilitats de
reacció i observació.

Este proyecto muestra el desarrollo de un videojuego para la Super Nintendo
Entertainment System, una videoconsola del año 1990. El juego está formado
por varios juegos más pequeños que pretenden mostrar tantas funcionalidades y
peculiaridades del sistema como sea posible. Los juegos en si han sido elegidos
para proveer una selección variada de opciones a los jugadores.

Estos juegos son el tres en raya, un juego conocido, determinístico y simple
que acabó recibiendo la implementación de una IA; las damas, un juego de estra-
tegia conocido, más complejo y determinístico; la generala, un juego de estrategia
y azar; el cuentacuadros, un juego inventado para este proyecto que requiere ha-
bilidades de reacción y observación.

Chapter 1

Introduction

The Super Nintendo Entertainment System (SNES) is a 16-bit video game con-
sole released by Nintendo in 1990. The console was regarded as a success overall,
with many of its games being regarded as classics today.

We are used to modern programming, with powerful hardware and high level
languages, so this project showcases the development of a video game with the
constraints game developers had at that time.

The game is written in assembly language, as it is the only option available.
This means that usual features of high level languages, such as variables or func-
tions, have to be given a different approach when writing the code. For instance,
displaying graphics requires making a tileset and arranging the tiles in a tilemap,
then uploading them to a specific memory.

The main motivation to carry out this project has been the desire to conduct
the full development of a game for the SNES, having some prior experience with
making small modifications to already existing games for the console.

The rest of this document contains the planning of the project with the dates
milestones were achieved, the objectives of the project, a glossary of terminology
used throughout the document, a description of the environment used during
the project, a development section detailing the process of initializing the console,
making the menus and making each of the games within this project, and the
conclusions derived from the project.

2

Chapter 2

Planning

Development of this project, as illustrated in table 2.1, began on 8th Febru-
ary, 2021, with the target being reaching a functional demo with one game by
19th March, 2021. The project managed to reach such a state in time, with the
initialization, the menus and tic-tac-toe being finished.

After that, it was planned to add four more games, each showcasing a func-
tionality of the console. The initial plan was to implement one game every two
weeks so, as such, Checkers and Yacht dice were finished by 20th April, 2021.

By then, there was an idea to add an artificial intelligence to a game, so two
weeks were dedicated to the implementation of a tic-tac-toe AI instead of another
game, reducing the total to four.

By 18th May, 2021, the project had all four games finished and an AI for one
of them, as well as the addition of some finishing touches.

The planning and writing of this document started thereafter, with its comple-
tion finishing on 20th June, 2021.

Date Activity
08/02/2021 Start of the documentation phase, research about the first steps of the project.
28/02/2021 First graphics drawn on screen, minimalist gameloop.
12/03/2021 First iteration of the menu.
19/03/2021 The first game, tic-tac-toe, is finished.
06/04/2021 Checkers is finished.
20/04/2021 Yacht dice is completed.
04/05/2021 The AI for tic-tac-toe is completed.
18/05/2021 The last game, tilecounter, is finished.
20/06/2021 The writting of this document is completed.

Table 2.1: Milestones achieved throughout the project

3

Chapter 3

Objectives

The main objective of this project is to create a new SNES game from scratch.
The intention is to create a collection of small games for two players in which both
players are shown the same information.

To accomplish this, we want to have a menu where the player can select among
those games, transition into the selected game and play it. We want the menus
and the games to feel fluid and responsive.

Another objective of the project is to learn how to develop a full game without
an existing base to build up from and to further improve my understanding about
the mechanics and limitations of the SNES.

4

Chapter 4

Background

4.1 Glossary

This section intends to show several definitions of the terms used throughout
this document, as they will make understanding the project more straightforward.

Memory Map The address space of the SNES is 3 bytes wide, resulting in all
components of the SNES architecture needing to be located within addresses
$000000 through $FFFFFF so the CPU can access any of those components through
their respective addresses.

Work RAM (WRAM) Multipurpose RAM used to load and store data for any
use.

Video RAM (VRAM) Specialized RAM used to store tilesets and tilemaps. In-
directly accessed via registers $2116 through $2119.

Color Graphics RAM (CGRAM) Specialized RAM used to store the entire palette.
Indirectly accessed via registers $2121 and $2122.

Object Attribute Memory A location in memory designated to contain the prop-
erties of objects. Indirectly accessed via registers $2102 through $2104.

Save RAM RAM that can persist even after the console is turned off.

5

6 Background

Mirroring A location that can be accessed in more than one way in the address
space.

Interrupt A signal that pauses current program execution and runs its respective
subroutine.

Cathode-Ray Tube (CRT) The type of monitor used during the SNES era. Con-
sists of a vacuum tube containing one or more electron guns, the beams of which
are manipulated to display images on a phosphorescent screen one row at a time.

Scanline A row of pixels generated by the electron beam of a CRT.

Blanking A period in which the electron beam of the CRT is turned off.

Horizontal Blanking (H-Blank) The blanking period between two consecutive
scanlines.

Vertical Blanking (V-Blank) The blanking period between the last scanline of a
frame and the first scanline of the next frame.

Forced Blanking (F-Blank) The blanking period in which the beam is turned off
when it would otherwise be on, controlled by register $2100.

Direct Memory Acces (DMA) Allows for fast transferring of data from any-
where in the 24-bit address space and any of the registers between $2100 and
$21FF.

H-Blank DMA (HDMA) Allows to time a DMA transfer during specific H-
blanks.

Subroutine A self-contained block of code or instructions the program runs.

4.2 Execution and development environment 7

4.2 Execution and development environment

4.2.1 The compiler

In order to compile the project, an assembler is needed, which takes the source
files containing the 65c816 code and other data, as well as resources such as graph-
ics. Asar [4] is the assembler used to compile this project. It assembles the source
files according to the specifications found in its manual [5]. Among other assem-
blers, it was chosen because it has many useful features, is easy to use and is the
one I was familiar with prior to this project.

4.2.2 The emulator

After compiling the ROM, we need to test it somehow, and testing it on a real
SNES would be cumbersome, as it would require transferring the ROM into a
cartridge every time it needed to be tested. An emulator for the SNES allows a
computing device to run the console’s software, making programming and testing
in a computer a streamlined process.

The emulator used to test the project is lsnes [7], chosen because it allows
showing the values contained in specific addresses at any given time, useful for
debugging. For just checking out the program, other emulators such as ZMZ [9]
or bsnes [8] may be used.

4.2.3 The programming language

65c816 [6] is the assembly language in which this project’s code is written, the
only one supported by the console’s main processor. The code can be divided in
instructions and data. Instructions are the opcodes plus up to 3 bytes of data. For
example, we can have the instruction LDA $08 to load the value in address $08 into
the accumulator.

4.2.4 The graphics editor

To create and edit graphics, a suitable editor capable of generating a file con-
taining the graphics in a format recognizable by the SNES is needed. The graphics
editor used is YY-CHR [10]. This tool is a multi-platform graphics editor, support-
ing a variety of formats beyond those supported by the SNES.

8 Background

4.2.5 The directory

The directory structure of this project consists of the main folder containing
the ASM source files and a resources folder containing the tilsets, the tilemaps
and the palette.

4.2.6 Testing the project

A script is included in order to compile the project. For a successful com-
pilation, one only needs to ensure to have Asar on the main folder of the pro-
ject. Alternatively, one can run Asar within the main folder of the project, type
"main.asm" when prompted for the patch name and type "TFG.smc" for the output
file. To run the generated ROM, one can simply open it with the emulator.

Chapter 5

Development

5.1 Starting up

In order to have a program running, we first need to take care of the initial
set-up. The header data needs to be set up, as well as the initialization code that
will run upon starting the SNES and the gameloop that will run every frame.

5.1.1 Header setup

The header [12][1, pp. 26–40] is located at address $00FFC0 of the ROM and
contains its metadata and the addresses of the interrupt vectors. The metadata
contains information about the game, as seen in table 5.1, often used by emulators
to identify the type of cartridge of the ROM.

Data Size (bytes) Value Meaning
Internal game title 21 "Treball de fi de grau"
Mapping mode 1 $20 LoROM, SlowRom
Cartridge type 1 $01 ROM and SRAM
ROM size 1 $05 32 kB
SRAM size 1 $01 2 kB
Region 1 $0E Common/International
Developer ID 1 $00 N/A
Version 1 $00 v1.0
Checksum 2 $42DD Sum of all bytes in the ROM
Checksum complement 2 $BD22

Table 5.1: Metadata contents of the header

9

10 Development

• The mapping mode determines how the addresses are mapped within the
address space and can be LoROM or HiROM, supporting ROM sizes of up
to 4 MB, with ExLoROM and ExHiROM bumping that limit up to 8 MB. This
field also determines whether FastROM is enabled, providing an increased
access speed for some regions of the ROM.

• The cartridge type indicates whether the cartridge contains a SRAM chip or
any coprocessors.

• The ROM size determines the amount of space needed to store the whole
program, calculated by the formula dlog2(size in kB)e. A mere 32 kB are
sufficient to store the entirety of the program.

• The SRAM size determines the size of the cartridge SRAM, with 2 kB, the
smallest non-zero value, being more than enough.

• The remaining fields are self-explanatory.

The interrupt vectors are located just after the ROM metadata, starting at ad-
dress $00FFE0. These vectors are 2-byte pointers that point to the subroutine that
will run upon its respective interrupt firing. Only the NMI, RESET and IRQ inter-
rupts are used in this project.

• The NMI interrupt occurs once per frame, at 60 fps, and is used to mark the
start of a frame, useful for setting up the gameloop.

• The RESET interrupt occurs whenever the console is powered on or reset,
and marks the start of the program.

• The IRQ interrupt can be turned on or off, and it can be set to happen at
a specific scanline position, one or multiple times per frame. This interrupt
will only be used during the game tilecounter and its use in this project will
be explained in more detail in that game’s section.

5.1.2 SNES initialization

In order to initialize the SNES properly, many registers may need to be reset
manually, as well as the RAM, in order to clear any remaining data that could
have been leftover from an earlier execution due to a console reset, for example.

This initialization is based on the one found in this example [14]. This process
is shown in Algorithm 1, and it does as follows:

5.1 Starting up 11

• Interrupts are disabled to guarantee the code to be run unimpeded.

• F-blank is enabled to allow some registers to be written to.

• Emulation mode and decimal mode are disabled, as they are always enabled
on power-on and reset.

• Direct page, the base address used when using direct addressing, is set to
$0000.

• The stack pointer is set to $1FFF, used mainly for keeping track of the return
address of a subroutine.

• Set up the DMA transfers by allocating one channel per transfer.

• Transfer the WRAM, CGRAM and VRAM data by enabling the DMA chan-
nels.

• Set the tilemap size and tilemap registers to their initial values.

• Clear any remaining data leftover from a previous execution from the re-
maining, required registers.

• Load the SRAM data into WRAM unless it does not exist, in which case load
the default values.

• Re-enable interrupts.

• Disable F-blank.

• Jump to the gameloop.

5.1.3 Gameloop

In order to get a gameloop running, the NMI interrupts are an essential com-
ponent, as they mark the start of a frame, allowing certain code to be run at the
start of V-blank. Algorithm 2 shows what the code at figure 5.1 does, which does
not need to be run during V-blank, and is an endless loop that awaits an NMI (ig-
nores IRQ), increments the frame counter, advances the random number generator
and calls the subroutine resulting from the pointers table.

Some registers can only be updated during a blanking period, therefore, mir-
rors in WRAM are used to store the values obtained during the execution of a
frame to then be copied to their respective registers.

12 Development

Algorithm 1: SNES Initialization

1 disable interrupts;
2 activate F-blank;
3 disable 6502 emulation mode and decimal mode;
4 set the direct page at address $0000 and the stack at address $1FFF;
5 set up upcoming DMA transfers;
6 transfer value $00 to WRAM addresses $0000 through $1FFF via DMA;
7 transfer palette data to CGRAM via DMA;
8 transfer tileset data to VRAM via DMA;
9 initialize tilemap address and size registers;

10 initialize all remaining registers to their default value, if required;
11 if SRAM data exists then
12 load language, turn order and AI settings from SRAM;
13 else
14 load default values for language, turn order and AI settings;
15 end
16 enable interrupts;
17 set F-blank to be disabled next V-blank;
18 jump to gameloop;

Algorithm 2: Gameloop

1 for forever do
2 wait for interrupt;
3 if frame has finished then
4 increment frame counter;
5 call the random number generator subroutine;
6 call the subroutine corresponding to the current game state;
7 end
8 end

In order to receive inputs from the player, the data sent by the SNES controller
needs to be read and stored, as seen in lines 5 through 18 of algorithm 3. For that
purpose, the console has a method for reading the controller data automatically:
Auto-Joypad Read [13][1, pp. 79, 80]. It begins reading the data on the background
at the start of V-blank and finishes shortly after, indicated by the least significant
bit of register $4212. The data can then be read from registers $4218 and $4219
for player 1 and from registers $421A and $421B for player 2 [11].

5.1 Starting up 13

Figure 5.1: Gameloop code and pointers

Every game state has its specific NMI subroutine as well, mainly in order to
make specific adjustments to the tilemap.

5.1.4 Graphics

Evidently, the game needs to show something on the screen to the player. For
that purpose, the SNES has a picture processing unit that takes care of all the
graphics processing and rendering the screen, with its behaviour depending of
the values of its registers [11].

Graphics can be rendered in a variety of ways depending on the current back-
ground mode, located at register $2105. Background mode 1 is used during the
majority of the game, as it allows having two 4 bits per pixel (bpp) backgrounds,
BG1 and BG2, plus an extra 2bpp background, BG3.

BG1 is used for the panel on the menu, as well as the various frames found in
each game and their playfields. BG2 is used purely as a backdrop for the current
game state. BG3 is used for text, as its reduced bit depth makes it a perfect
candidate for heads-up displays and text in general.

14 Development

Algorithm 3: NMI Gameloop

1 push the A, X and Y registers to the stack;
2 activate F-blank;
3 call the NMI subroutine corresponding to the current game state;
4 update all registers with their WRAM mirrors;
5 while auto-joypad read is not finished do
6 do nothing;
7 end
8 if controller 1 is connected then
9 controller 1 RAM← controller 1 data;

10 else
11 controller 1 RAM← controller 2 data;
12 end
13 if controller 2 is connected then
14 controller 2 RAM← controller 2 data;
15 else
16 controller 2 RAM← controller 1 data;
17 end
18 update buttons newly pressed this frame;
19 mark current frame as finished;
20 push Y, X and A registers from the stack;
21 return from interrupt;

There is an extra setting that provides with the option of displaying BG3 in
front of other backgrounds. Since BG3 is used for text in this project, this func-
tionality is activated.

Besides backgrounds, objects are also rendered on the screen. Objects are in-
dividual, independent entities each having a 34-bit (4 bytes, 2 bits) entry located
in OAM. 17 bits are used for position, 8 bits for the tile used and 9 bits for miscel-
laneous properties.

The graphics data consists of the tileset and the tilemaps. The tileset, as seen
in figure 5.2, contains all the tiles used to form a tilemap. A tilemap is an arrange-
ment of tiles used to fill an entire background. The tiles in 5.2a are the tiles used
in BG1, BG2 and objects throughout the game in a bit depth of 4bpp, with the tiles
in 5.2b being the font used for text in BG3 in 2bpp.

The original font [3] lacked some special characters, such as "ñ", so they had to
be added. The characters were repositioned so that their tile indices matched their
ASCII number, if possible, for convenience. Additionally, a shadow was added to

5.1 Starting up 15

all the characters to make the text stand out more.

Lastly, the palette consists of 256 colours, divided in 16 palettes of 16 colours
each. In background mode 1, the first 8 are for backgrounds, while the other 8 are
for objects. Each tile of a background or an object can display the colours of one
palette. Note that the 8 palettes for BG3 have 4 colours each and are split among
the first 32 colours of the entire palette. The first colour of a palette is always
treated as transparency.

A tile size of 8× 8 pixels and a tilemap size of 32× 32 tiles (totaling 256× 256
pixels) are used, as those are the minimum dimensions a background can have,
enough to fit the default SNES screen resolution, which means that that is all you
need for a static background. Even so, a background will wrap around the screen
when scrolled, as seen in the main menu’s backdrop.

(a) Main graphics in 4bpp (b) Font in 2bpp

Figure 5.2: Contents of the tilesets

5.1.5 Cursor

A cursor provides a way to navigate through the menus and make selections
during a game. Two addresses contain its x and y positions, which the player is
able to manipulate when pressing up, down, left or right on the directional pad.
Two addresses contain the maximum positions the cursor may have at a given
time, wrapping around if the cursor would otherwise go out of range.

If the player holds down a direction, the cursor will move again after a certain
amount of frames. This is known as delayed auto-shift and it is set to a value of

16 Development

18 frames. If the direction is still held, the cursor advances again. This is known
as auto-repeat rate and it is set to a value of 4 frames.

Two types of cursors were made: arrow and square. The arrow cursor is used
during the menus, as it works best for navigating through a single column of
elements. On the other hand, the square cursor is more suited towards selecting
an element from a grid, therefore used during the games.

The graphics of the cursor are updated every time a game state is initialized or
whenever a player’s turn starts in order to accommodate for what kind of cursor
is needed and whose player it belongs. Its animation is also updated whenever
the cursor is active.

5.1.6 RAM map

In order to give a name to all the variables in the code, a dedicated file for
address definitions is made. As illustrated in figure 5.3, variables representing a
one byte value, a two byte value or a table of values, have been mapped to an
address of one, two or three bytes depending on the addressing mode [6].

The commonly used variables, such as the frame counter and the playfield, are
mapped to direct page addresses due to those only requiring one byte to address.
On the other hand, the long tables of data that are not accessed too often, like the
HDMA table, are mapped to an absolute address, requiring two bytes to address.

Figure 5.3: Sample of the RAM map

5.2 Menu

The menu state is the state the game starts on power-on or reset. It consists of
the title screen, the main menu and the options menu.

5.2 Menu 17

When switching between submenus within the menu state, a pixelation effect
is applied to background 3 (text) in order to show a fluid transition. Such effect is
achieved by writing to register $2106 [11].

The BG2 tilemap, showing the backdrop, scrolls across the screen at a rate of 1
pixel per 2 frames horizontally and 1 pixel per 4 frames vertically.

5.2.1 Title screen

The title screen contains the game’s title and a Press Start prompt. Naturally,
the player may advance to the main menu by pressing the Start button.

5.2.2 Main menu

The main menu screen consists of four options, each selecting its correspond-
ing game, as well as a fifth one for the options menu. Pressing the A button will
advance to the corresponding selection, while pressing the B button will go back
to the title screen.

5.2.3 Options menu

The options menu screen consists of three options, plus an option to go back to
the main menu. Pressing the A button will cycle among the possible values each
setting can have, while pressing the B button will go back to the main menu, just
like selecting the Back option.

The Language setting may be set to English, Español or Català; the game is fully
localized in those languages. The First move setting may be set to Player 1, Player
2 or Random; it determines which player moves first for turn-based games. The
Versus CPU setting may be set to Off, Easy or Hard; currently only available for
tic-tac-toe, it makes player 2’s moves determined by an in-game AI.

When exiting the options menu, the settings are saved into SRAM so they can
be reloaded even after the console is reset or turned off and back on. This can be
done by writing to addresses in banks $70 and $71, mirrored at banks $F0 and
$F1.

5.2.4 Menu Results

In figure 5.4 we see how the menu and its submenus ended up, with their
selectable options through an arrow cursor and the menu to menu transitions.

18 Development

(a) Main menu (b) Options menu

(c) Options menu after changing language (d) Pixelation effect

Figure 5.4: Game screen of the menu

5.3 Tic-tac-toe

A widespread, well-known game in which two players take turns marking an
initially empty grid with crosses or circles, with the objective of the game being
connecting three of your own symbols in a straight line.

This was the first game to be developed, as its simplicity made it a perfect
candidate for establishing a base for developing the upcoming games.

5.3 Tic-tac-toe 19

5.3.1 Tic-tac-toe initialization

At first, during NMI, the corresponding tilemaps are loaded into VRAM and
the OAM is cleared. After NMI, many variables are set up in accordance to al-
gorithm 4.

The frame after initialization is complete, the screen will start to fade in, getting
brighter every frame until it achieves maximum brightness.

Algorithm 4: Tic-tac-toe initialization

1 brightness← 0;
2 tilemap timer← 0;
3 set background positions;
4 cursor position← (0,0);
5 max cursor position← (2,2);
6 set the cursor graphics position table to fit each cell of the playfield;
7 set default cursor palettes (blue for player 1, red for player 2);
8 if turn order = random then
9 current player← player 1 or player 2 at random;

10 else
11 current player← value from turn order setting;
12 end
13 initialize square cursor;
14 game mode← tic-tac-toe main;
15 substate← fade-in;
16 return;

Figure 5.5: Tic-tac-toe grid being drawn

20 Development

Finally, the tilemap is updated to display an opening transition that draws the
3× 3 grid. This procedure happens during several frames until the grid is fully
drawn, then play can start.

5.3.2 Tic-tac-toe main subroutine

On the first frame, text showing the player currently in control is displayed,
just as an indication.

The current player is able to move the cursor through the grid to the desired
location of their move, pressing the A button to confirm it, advance the substate
and resolve whether the game reached a terminal state. The terminal state is
reached when a player wins by lining three in a row or all nine spaces on the grid
end up occupied.

5.3.3 Draw symbol

After a player makes a selection, their symbol is drawn akin to how the grid
was drawn during setup. The tilemap is modified every frame until the full sym-
bol is drawn, then play resumes for the opposing player unless a terminal state is
reached, in which case the game advances to the end screen.

5.3.4 Artificial intelligence

A simple AI was made to demonstrate the game being able to play as one
of the players. It uses the strategy described in algorithm 5. Note that on hard
difficulty the AI will always play the optimal move [2], while on easy difficulty it
will have a 50% chance to play a random move if there is no trivial (win or block)
move.

The inclusion of an easy mode makes the AI need to react to any possible
board state instead of just the follow-ups to the optimal moves, as well as to make
it possible for the human player to win.

5.3.5 Tic-tac-toe results

This game laid the foundation for the development of the ensuing games, mak-
ing the process of adding games more straightforward.

We have managed to implement the game successfully with an AI capable of
responding to any given board state. In figure 5.6, we can see a possible outcome
of a match against the AI.

5.3 Tic-tac-toe 21

Algorithm 5: Strategy used by the AI, assuming AI plays as circle

/* board is a grid with each square filled with 0, 1 or 2;
representing empty, cross or circle, respectively. */

Input: Board state
/* move is the position on the board where the AI will play. */
Output: Move to make

1 move← null;
2 for line in board.lines do
3 if line has 2 of the same symbol last space empty then
4 move← the empty space;
5 if matching symbol is circle then

/* Winning move found, returns immediately. */
6 return move;
7 end
8 end
9 end

10 if move 6= null then
/* A move that blocks a win from the opponent is found. */

11 return move;
12 else if difficulty = easy & random bit = 0 then
13 return random element from the available squares;
14 else if a fork is available then
15 return a square such that two or more ways to win are available next

turn;
16 else if opponent has one or more forks available then
17 if all forks can be blocked then
18 return a square that blocks all forks;
19 else if a win can be threatened then
20 return a square that makes two in a line and threatens a win next

turn;
21 end
22 end
23 if center is empty then
24 return center;
25 else if opposite corner is empty then
26 return a corner opposite to an opponent move;
27 else if any corner is empty then
28 return any available corner;
29 else
30 return any available side;
31 end

22 Development

Figure 5.6: Possible match against the hard AI

5.4 Checkers

A well-known strategy game for two players which involves diagonal moves
of pieces and mandatory captures by jumping over the opponent’s pieces.

This game was chosen to illustrate the management of a large amount of ob-
jects on the screen, as well as the handling of a large board.

5.4.1 Checkers initialization

The general procedure is similar to what is done in Tic-tac-toe, with the max-
imum cursor positions having been accommodated for the 8× 8 board, changing
the cursor palette to red and white to match the checkers and initializing the
checkers.

The checkers are put into the playfield, each one having a unique identifier, a
colour and a crowned status. Following that, every checker is given object data to
upload to OAM, but the OAM will not be updated until the board graphics are
drawn.

For the opening transition, one square of each colour, starting at opposite ends
of the board, are drawn each frame following a zigzag pattern contained in an
offset table. Play can then begin.

5.4 Checkers 23

5.4.2 Checkers main subroutine

Text indicating the current player is drawn below the board on the first frame.

The cursor is able to be moved freely across the board, being able to select any
checker owned by the current player by pressing the A button. The checker will
then be highlighted and will be able to be deselected by pressing the A button
with the cursor over that checker or by pressing the B button. Pressing the A
button on a different square makes the currently selected checker move there if
such move is legal.

A checker may move diagonally forwards to an adjacent square if such square
is unoccupied. If that square is occupied by an opponent’s checker and the square
immediately beyond is empty, the checker may be captured by jumping over it. If
a capturing move is available, it is mandatory to make a capture. Furthermore, if
a piece has another capture available after capturing, that piece is forced to make
that capture within the same move. When a piece reaches the opposite row of the
board, that piece becomes a king, allowing it to also move and capture backwards.

The terminal state of the game is achieved when the current player has no legal
moves available, usually due to losing all of their pieces.

5.4.3 Move checker

This is the state used to move the object of the moved checker.

It moves the checker towards its destination one pixel every two frames for a
regular move, and one pixel per frame for a capture. The captured piece, if any, is
then placed off the board on top of any previous ones.

During a capture, the capturing checker needs to appear in front of the cap-
tured piece. Objects have a property that determines whether to display in front
of or behind backgrounds, but the priority between two objects is determined by
their order in OAM. Conveniently, register $2103 can be used to give priority to
an object other than the first one [11], so priority is given to the capturing piece.

After that, it recalculates the current player’s legal moves to allow success-
ive captures, otherwise it switches players and calculates their legal moves. If a
terminal state is reached, the game advances to the end screen.

5.4.4 Checkers results

A faithful recreation of the well-established game was successfully made, man-
aging to demonstrate the handling of several objects and proper restriction of legal

24 Development

moves. In figure 5.7 we see how the finalized version looks.

Figure 5.7: Game screen of Checkers

5.5 Yacht dice

A game in which two players take turns rolling five dice and fill multiple
categories with their score.

This game intends to showcase the random number generator in the game, as
there is no native alternative we can resort to.

5.5.1 Initialization

As seen beforehand, the initialization procedure is similar to the aforemen-
tioned games. This time, there are two cursor tables: one for categories and one
for dice, switched by pressing left or right on the directional pad, without hori-
zontal wraparound.

The registers $2126 through $2129 control the position of the windows [11],
which allow the occlusion of backgrounds and/or objects in a specific region of
the screen. These windows are used for the opening transition of this game as
seen in figure 5.8, hiding the table of categories at the start and revealing it as
time passes. This transition effect is achieved by changing the window offsets via
HDMA in order to only affect the scanlines that contain the table of categories. The
windows are shifted horizontally by changing the values written to their registers,
while they are shifted vertically by modifying the amount of scanlines each HDMA
entry is active for.

5.5 Yacht dice 25

Another HDMA channel is set up in order to fit the BG3 text within the table
of categories, moving the text up by four pixels for every line of text.

Figure 5.8: Yacht score table during the opening transition

5.5.2 Roll dice

Before a player takes control, the five dice are initialized by creating an entry
on the OAM for each dice plus one entry for the re-roll button.

Next, the dice are rolled, animating until they reach their position and show
their result. The animation frame for the dice is randomly determined out of
eight possible frames, and is flipped both vertically and horizontally whenever it
changes, making them feel like they roll.

The result of the dice roll is, naturally, determined at random with only one
call to the random number generator, as there are 65 = 7776 possible outcomes
for rolling five 6-sided dice and 216 = 65536 possible outcomes for the random
number generator, so 13 out of 16 random bits are sufficient, although extra calls
may be needed if the 13-bit result falls in the range [7777, 8191].

5.5.3 Yacht dice main subroutine

The current player can move around their column on the table of categories
and the dice.

The player may select dice to set it aside and keep it instead of re-rolling it.
The player may choose to re-roll the dice twice (for a total of three rolls).

At any point, the player in control may mark one of their unmarked categories
on the table, regardless of whether they have re-rolls remaining or not, according

26 Development

to the rules described in table 5.2.

At all points the player is able to see the possible score the would obtain in a
category in gray text and the categories they have already marked in black text.

5.5.4 Mark category

The score corresponding to the marked category is now displayed in black
text, and the previous possible scores are erased. The bonus category is updated
to show the current progress made there in gray text, and turned into a black "+35"
or a "+0" when the bonus category criteria is either fulfilled or failed.

To make converting from a numeric value to the tiles needed for the shown
text, the values are treated as binary-coded decimal by using the innate decimal
mode of the SNES. This functionality can be activated by setting the decimal pro-
cessor flag, and deactivated by clearing it. This simplifies the conversion by mak-
ing each nibble represent a digit, so, for example, hexadecimal value of $25 would
be treated as 25 in decimal.

Finally, the current player switches and the dice are reinitialized or, in the case
all categories have been filled by both players, the game finishes.

Category Score
Ones Sum of dice with the number 1
Twos Sum of dice with the number 2
Threes Sum of dice with the number 3
Fours Sum of dice with the number 4
Fives Sum of dice with the number 5
Sixes Sum of dice with the number 6
Bonus 35 if the sum of all number categories (ones through sixes) is at least 63,

otherwise 0 (unselectable)
Choice Sum of all dice
4 of a kind Sum of all dice if at least four dice have the same number, otherwise 0
Full house Sum of all dice if three of the same number plus the other two of the same

number, otherwise 0
Small straight 15 if four numbers in sequence appear, otherwise 0
Large straight 30 if five numbers in sequence appear, otherwise 0
Yacht 50 if all five dice have the same number, otherwise 0
Total Shows current total score (unselectable)

Table 5.2: Scoring rules for this variation of yacht dice

5.6 Tilecounter 27

Figure 5.9: Game screens of Yacht dice

5.5.5 Yacht dice results

The end result of this game is a game that manages to utilize the random num-
ber generator and the decimal mode, as well as multiple simultaneous columns
of variable height for the cursor. In figure 5.9 we can see a mid-game state and a
terminal state.

5.6 Tilecounter

A made-up game about a 5 × 5 grid of coloured tiles in which the players
need to determine the most plentiful tile over a total of 16 rounds. The amount
of distinct tiles found on a given round varies, and so does the way the tiles are
presented to the players.

5.6.1 Tilecounter initialization

The brightness, tilemap timer and background positions are all initialized just
like in previous games, but the cursor is not used. Current player is set to $0A
to draw the current round instead, as this is not a turn-based game. Background
mode 2 is used to allow BG3 data to be interpreted as offset values[1, pp. 78, 208]
for BG1 and BG2.

On NMI, the tilemaps and background offsets are uploaded to VRAM, draws a
0 on both score counters, sets up various HDMA channels, enables IRQ to happen
at scanline $A1 and points the background 3 tilemap address to the offset data.

28 Development

5.6.2 Tilecounter main subroutine

The grid is generated by placing one of the correct tiles on it, then filling it
with as many tiles as the round needs distributed equally, favouring the correct
tile to ensure it is actually the one that appears the most. The grid is then shuffled.

There are always four possible answers the players are able to choose. There is
always only one correct answer, with the other three tiles belonging to the incorrect
answers being present in the grid unless there are less than four tiles in the grid,
in which case it selects any remaining absent tile.

The players are then able to input their answer. Either the directional pad or
the A, B, X or Y buttons can be used to select an answer based on its position. For
example, either the Y button or left on the directional pad can be used to select
the answer located on the left.

If a player selects the correct answer, it is awarded one point. If a player selects
an incorrect answer or selects multiple answers, the opponent is awarded a point.
In the event both players are either both correct or both incorrect, the round ends
in a tie and no points are awarded. A symbol appears on the chosen answers,
with a green checkmark signifying a correct answer and a red cross signifying an
incorrect one.

Some time is given for the players to acknowledge the outcome of the round
and a new grid is generated again, until the last round, where the game will end
with the highest scoring player victorious or in a tie.

5.6.3 IRQ

IRQ is enabled on this game in order to make some graphics-related changes at
a specific scanline, essentially splitting the screen in two portions. This separation
is done to allow having both the tilemap offset change and a BG3 rendered on the
same frame.

The top part is where the tile grid is displayed and the bottom part has the
score counters for both players as well as the possible answers they can pick.

As seen in algorithm 6, the background mode is changed from 2 to 1 to disable
offset change and enable BG3. BG1 is shifted 20 pixels up in order to match its
intended display position, as the section showing the answers is ubicated lower
down in the tilemap in order to not interfere with the vertical offset changes, as
they could shift past their intended location.

If IRQ were to be disabled in a round that uses the tile offset function, the
screen would look like in figure 5.10 due to no mid-frame register updating taking

5.6 Tilecounter 29

place.

Afterwards, the involved registers are set back to their original values in their
mirrors during NMI.

Figure 5.10: Hypothetical situation without IRQ

5.6.4 Tilecounter results

A reaction-oriented game is satisfactorily implemented, showing the capabilit-
ies of tile offsetting and the possible applications of IRQ. Figure 5.11 shows many
graphic functionalities used along the rounds.

Algorithm 6: IRQ contents for tilecounter

1 push the A register to the stack;
2 activate F-blank;
3 set background mode to 1, BG3 priority;
4 point the BG3 tilemap address to the tilemap;
5 adjust the BG3 position;
6 move BG1 up to match intended display;
7 disable the windows;
8 pull the A register from the stack;
9 return from interrupt;

30 Development

(a) Horizontal row shift through HDMA (b) Vertical column shift through tile offsetting

(c) Separation between columns through tile
offsetting

(d) Separation between rows through HDMA
and window occlusion

Figure 5.11: Multiple game screens of Tilecounter

5.7 Utility subroutines

Subroutines are snippets of code that can be called from another location of
the code, just like a function would do in a higher level language.

5.7.1 Random number generator

The SNES does not have a native random number generator, so we have to
develop one. As shown in figure 5.12, the 16-bit pseudo-random number is gener-
ated by taking the sum of the horizontal and vertical scanline locations, the current
frame count, the inputs from controllers 1 and 2, the previous random result and

5.7 Utility subroutines 31

the address the subroutine was called from; swaps the order of its bytes and stores
it as the new random number.

Figure 5.12: Subroutine used to generate a pseudo-random number

5.7.2 Fading

This subroutine is used for both the fade-in and the fade-out effects. The
fade-in effect is used as a substate after initialization but before play starts, and
it makes the screen brightness increase from its minimum value to its maximum
across several frames. The fade-out effect does the opposite by dimming the screen
until it becomes black, used after a game’s end screen.

5.7.3 Game end

A general subroutine for drawing on screen the outcome of the game. It loads
a line of text on BG3 saying which player won, or that the game ended in a draw.

It awaits for any player to press either the A, B or Start buttons to then start a
fade-out effect and return to the main menu.

5.7.4 Cursor initialization

For the arrow cursor, one entry in OAM with its position, tile number and
palette is created. For the square cursor, one entry is made for every corner, total-

32 Development

ing four, having their horizontal and vertical flip properties adjusted as needed
and with their palette showing the current player in control.

5.7.5 Cursor update

Updates the position of the cursor graphics in relation to the position of the
cursor itself and its current animation frame. It looks for the position each OAM
entry is supposed to have for the given cursor position in a table and shifts it
slightly according to the current animation frame.

5.7.6 Tilemap upload

These subroutines each upload a tilemap to VRAM in different ways. They are
as follows:

• Load empty tilemap: it clears the selected amount of bytes from the selected
tilemap by transferring zeros through DMA.

• Load uncompressed tilemap: it takes the raw tilemap data form the selected
address and transfers it through DMA.

• Load compressed tilemap: it takes compressed tilemap data, decompresses
it and uploads it directly to VRAM.

A compressed tilemap allows for long sequences of repeating tiles to be
represented as the tile in question and its amount. A string of tiles that
only share properties is compressed by specifying the common properties
followed by the tile numbers.

• Load partial tilemap: it takes multiple sequences of tiles and uploads them
one by one in their specified positions, allowing for efficient uploading of
sparse lines of tiles, like text.

5.7.7 OAM update

The OAM is updated by transferring its mirror through DMA. An OAM clear
can be performed by first clearing the OAM mirror, also through DMA, and then
performing the OAM update.

Chapter 6

Conclusions

Our initial objectives were to make a game for the SNES from the ground up,
with fluid and responsive controls for the games and the menus.

Given those initial objectives, we can conclude that the objectives that were set
were satisfactorily completed, as a game for the SNES was able to be made without
a prior foundation, and the games themselves manage to have two players playing
against each other with just the information presented on the screen.

The deviation of the project in order to forgo the implementation of an extra
game in favour of an AI for an already implemented game paid off, as exemplify-
ing the addition of an AI added an extra layer of complexity to the project.

From this project I managed to expand my knowledge about programming
for the SNES by acknowledging the procedure needed to get a program running
without a previous base to build upon, as well as learning more about the usage
of some functionalities I was not familiarized with.

All in all, it has been a purposeful and interesting experience, as it allowed me
to deepen my knowledge about a topic I was invested into.

6.1 Future Work

As for future work in this project, the obvious choice would be to develop more
games, as the underlying infrastructure is there.

Implementing additional AIs for other games is also a potential extension for
this project, as the concept is already exemplified in tic-tac-toe and the other games
would benefit from the addition.

Finally, an addition to this project would be to add music and sound effects, as

33

34 Conclusions

it was deemed too complex of a task to warrant development over the other areas
of the project.

References

[1] Nintendo of America. SNES Developer Manual. 1993. url: https://archive.
org/details/SNESDevManual (visited on 18/06/2021).

[2] Kevin Crowley and Robert S. Siegler. “Flexible Strategy Use in Young Chil-
dren’s Tic-Tac-Toe”. In: (1993), p. 536. url: https://doi.org/10.1207/
s15516709cog1704_3 (visited on 18/06/2021).

[3] GrandChaos9000 (username). Modern DOS 8 Font. 2014. url: https://www.
smwcentral.net/?p=section&a=details&id=9146 (visited on 18/06/2021).

[4] Alcaro (username). Asar v1.81. 2021. url: https://github.com/RPGHacker/
asar (visited on 18/06/2021).

[5] RPGHacker (username). Asar User Manual. 2021. url: https://rpghacker.
github.io/asar/manual/ (visited on 18/06/2021).

[6] Bruce Clark. 65C816 Opcodes. 2015. url: http://www.6502.org/tutorials/
65c816opcodes.html (visited on 18/06/2021).

[7] Ilari (username). lsnes. url: http://tasvideos.org/Lsnes.html (visited on
18/06/2021).

[8] Near (username) and byuu (username). bsnes. url: https://github.com/
bsnes-emu/bsnes (visited on 18/06/2021).

[9] Alcaro (username) and the ZSNES team. ZMZ. url: https://www.smwcentr
al.net/?p=section&a=details&id=5681 (visited on 18/06/2021).

[10] YY (username). YY-CHR. 2020. url: http://www.romhacking.net/utilitie
s/958/ (visited on 18/06/2021).

[11] Anomie (username). SNES hardware registers. 2007. url: http://www.romhac
king.net/documents/196/ (visited on 18/06/2021).

[12] SNES memory map. url: https://en.wikibooks.org/wiki/Super_NES_
Programming/SNES_memory_map (visited on 18/06/2021).

[13] Joypad input. url: https://en.wikibooks.org/wiki/Super_NES_Programmi
ng/Joypad_Input (visited on 18/06/2021).

35

https://archive.org/details/SNESDevManual
https://archive.org/details/SNESDevManual
https://doi.org/10.1207/s15516709cog1704_3
https://doi.org/10.1207/s15516709cog1704_3
https://www.smwcentral.net/?p=section&a=details&id=9146
https://www.smwcentral.net/?p=section&a=details&id=9146
https://github.com/RPGHacker/asar
https://github.com/RPGHacker/asar
https://rpghacker.github.io/asar/manual/
https://rpghacker.github.io/asar/manual/
http://www.6502.org/tutorials/65c816opcodes.html
http://www.6502.org/tutorials/65c816opcodes.html
http://tasvideos.org/Lsnes.html
https://github.com/bsnes-emu/bsnes
https://github.com/bsnes-emu/bsnes
https://www.smwcentral.net/?p=section&a=details&id=5681
https://www.smwcentral.net/?p=section&a=details&id=5681
http://www.romhacking.net/utilities/958/
http://www.romhacking.net/utilities/958/
http://www.romhacking.net/documents/196/
http://www.romhacking.net/documents/196/
https://en.wikibooks.org/wiki/Super_NES_Programming/SNES_memory_map
https://en.wikibooks.org/wiki/Super_NES_Programming/SNES_memory_map
https://en.wikibooks.org/wiki/Super_NES_Programming/Joypad_Input
https://en.wikibooks.org/wiki/Super_NES_Programming/Joypad_Input

36 REFERENCES

[14] Aceman2000 (username). Making a Small Game - Tic-Tac-Toe. url: https://
wiki.superfamicom.org/making-a-small-game-tic-tac-toe (visited on
18/06/2021).

https://wiki.superfamicom.org/making-a-small-game-tic-tac-toe
https://wiki.superfamicom.org/making-a-small-game-tic-tac-toe

	Abstract
	Introduction
	Planning
	Objectives
	Background
	Glossary
	Execution and development environment
	The compiler
	The emulator
	The programming language
	The graphics editor
	The directory
	Testing the project

	Development
	Starting up
	Header setup
	SNES initialization
	Gameloop
	Graphics
	Cursor
	RAM map

	Menu
	Title screen
	Main menu
	Options menu
	Menu Results

	Tic-tac-toe
	Tic-tac-toe initialization
	Tic-tac-toe main subroutine
	Draw symbol
	Artificial intelligence
	Tic-tac-toe results

	Checkers
	Checkers initialization
	Checkers main subroutine
	Move checker
	Checkers results

	Yacht dice
	Initialization
	Roll dice
	Yacht dice main subroutine
	Mark category
	Yacht dice results

	Tilecounter
	Tilecounter initialization
	Tilecounter main subroutine
	IRQ
	Tilecounter results

	Utility subroutines
	Random number generator
	Fading
	Game end
	Cursor initialization
	Cursor update
	Tilemap upload
	OAM update

	Conclusions
	Future Work

	References

