

#### A new diverse charophyte flora and biozonation of the Eocene bauxite cover-sequence at Gánt (Vértes Hills, Hungary)

| Journal:         | Journal of Systematic Palaeontology                                                       |
|------------------|-------------------------------------------------------------------------------------------|
| Manuscript ID    | TJSP-2020-0103.R1                                                                         |
| Manuscript Type: | Original Article                                                                          |
| Keywords:        | Characeae, Raskyellaceae, phylozone, gradualistic evolution, Paleogene,<br>Central Europe |
|                  |                                                                                           |



| 2                    |    |                                                                                                                                         |
|----------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 1  | A new diverse charophyte flora and biozonation of the Eocene bauxite                                                                    |
| 5<br>6<br>7          | 2  | cover-sequence at Gánt (Vértes Hills, Hungary)                                                                                          |
| 8<br>9<br>10<br>11   | 3  |                                                                                                                                         |
| 12<br>13<br>14       | 4  | Khaled Trabelsi <sup>a,b,c*</sup> , Benjamin Sames <sup>c,d</sup> , Michael Wagreich <sup>c</sup> , Miklós Kázmér <sup>e</sup> , Andrea |
| 15<br>16<br>17       | 5  | Mindszenty <sup>f</sup> , Carles Martín-Closas <sup>g</sup>                                                                             |
| 18<br>19             | 6  |                                                                                                                                         |
| 20<br>21<br>22       | 7  | <sup>a</sup> Université de Sfax, Faculté des Sciences de Sfax, CP 3000, Sfax, Tunisie; <sup>b</sup> Université de                       |
| 22<br>23<br>24       | 8  | Tunis El Manar II, Faculté des Sciences de Tunis, LR18 ES07, C.P. 2092, Tunis, Tunisie;                                                 |
| 25<br>26             | 9  | <sup>c</sup> Department of Geology, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna,                                         |
| 27<br>28<br>20       | 10 | Austria; <sup>d</sup> Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK                                         |
| 29<br>30<br>31       | 11 | 73072, USA; <sup>e</sup> Department of Palaeontology & MTA-ELTE Geological, Geophysical and                                             |
| 32<br>33             | 12 | Space Science Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117                                                  |
| 34<br>35<br>26       | 13 | Budapest, Hungary; <sup>f</sup> Department of Physical and Applied Geology, Eötvös Loránd                                               |
| 30<br>37<br>38       | 14 | University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; <sup>g</sup> Departament de Dinàmica                                      |
| 39<br>40             | 15 | de la Terra i de l'Oceà, Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències                                          |
| 41<br>42<br>42       | 16 | de la Terra, Universitat de Barcelona-UB, 08028 Barcelona, Catalonia, Spain.                                                            |
| 45<br>44<br>45       | 17 |                                                                                                                                         |
| 46<br>47<br>48       | 18 |                                                                                                                                         |
| 49<br>50<br>51<br>52 | 19 |                                                                                                                                         |
| 53<br>54<br>55       | 20 |                                                                                                                                         |
| 57<br>58<br>59<br>60 | 21 | * Corresponding author, e-mail: <u>trabkhalfss@yahoo.fr (Khaled Trabelsi</u> )                                                          |

A diverse Eocene charophyte flora from a section at Gánt (Vértes Hills), Transdanubian Central Range, north-western Hungary, provides significant new information to previous studies only based on subsurface data published from the mid-20th century. This newly acquired material facilitates the taxonomic revision and emendation of the species *Raskyella peckii* and thereby defines a new anagenetic lineage based on three successive varieties which were formerly considered as separate species or subspecies: *Raskvella peckii* var. *peckii* (early Lutetian–early Bartonian), Raskyella peckii var. caliciformis (early Bartonian), and Raskyella peckii var. *vadaszii* (late Bartonian). Based on this lineage, we propose a new local charophyte biozonation that consists of a 'Raskyella peckii Superzone' (Lutetian-Bartonian), subdivided into three successive charophyte partial range zones: The 'Raskyella peckii peckii Zone' (Lutetian-lowermost Bartonian) characterized by an assemblage of R. peckii peckii, Gyrogona caelata forma caelata, G. caelata forma monolifera and Nitellopsis (Tectochara) aff. palaeohungarica, the 'Raskyella peckii caliciformis Zone' (lower Bartonian) characterized by the assemblage of R. peckii var. caliciformis, G. caelata forma caelata, G. caelata forma monolifera, G. caelata forma baccata, Nitellopsis (Tectochara) aff. palaeohungarica and Chara media, and the 'Raskyella peckii vadaszii Zone' (upper Bartonian) characterized by *R. peckii* var. vadaszii, *G.* caelata forma bicincta, G. caelata forma baccata, G. caelata forma fasciata, G. tuberosa, *Psilochara polita*, *Psilochara* sp., *Chara media* and *Chara subcylindrica*. Future research may show the new local biozonation as applicable to the whole of Europe and complementary to the current European charophyte biozonation. Our results show that the sequences from Gánt, which were previously regarded as upper mid-Eocene (upper Lutetian-lower Bartonian) in age, appear to represent a longer chronostratigraphic interval: lower Lutetian to upper Bartonian. Our chronostratigraphic results imply a longer and more stepwise Eocene major transgression in the Transdanubian Central Range than previously thought. 

 Keywords: Characeae, Raskyellaceae, phylozone, gradualistic evolution, Paleogene, Central
Europe.

Introduction

Charophytes represent one of the most useful tools in the biostratigraphic analysis of Cenozoic non-marine deposits worldwide. During the Eocene, charophytes have been the object of significant taxonomic, biostratigraphic, palaeoecological and palaeobiogeographic interest, particularly in South European basins from France and Spain (Grambast 1958, 1962a, 1972; Feist-Castel 1970, 1972, 1975, 1977a; Feist & Ringeade 1977; Anadón & Feist 1981; Riveline 1986; Anadón et al. 1992; Sanjuan & Martín-Closas 2012). As a result, a European Charophyte Biozonation based largely on these basins was proposed by Riveline et al. (1996). For the Eocene, up to 11 charophyte biozones were defined based mainly on data from Western Europe. This biozonation has been updated since then, e.g., by Sanjuan et al. (2014) for the upper Eocene. In contrast, the Eocene charophyte flora from Central and Eastern Europe is relatively poorly known; and in the case of Hungary, the pioneer study by Rásky (1945) based on subsurface data is practically the only one available. This author described for the first time a species-rich charophyte flora from Hungary, at a time when charophyte taxonomy was still at an early stage. She had already assigned the flora studied in this area to the middle Eocene, and her work was the basis for future studies in charophyte taxonomy, including the definition of the new family Raskyellaceae by Grambast & Grambast (1954). Later, Bignot et al. (1985), based on an exhaustive palaeontological study of the Gánt section including molluscs,

foraminifers, ostracods, palynomorphs and charophytes, assigned the bauxite cover-sequence to the Upper Lutetian or Bartonian, respectively.

This study aims to update the compendium of knowledge on Eocene Hungarian and Central European charophytes, providing a taxonomic revision of the respective flora that is based on surface samples of sections at the Gánt locality, as well as a discussion regarding its biostratigraphic significance and utility. 

### Geological setting

Within the Transdanubian Central Range (TCR), several bauxite deposits that developed across the Cretaceous-Early Tertiary boundary interval are well known for their industrial use as sources of aluminium ore; and among these, the famous karst bauxite of the Vértes Hills from the Gánt locality (north-western Hungary) is a prominent example. Strata overlying the bauxite represent the sedimentary record of progressive subcrustal erosion along the East Alpine-West Carpathian forearc basin (Kázmér et al. 2003). The bauxite represents the base of the Eocene charophyte-bearing strata investigated in this study (Fig. 1). The Eocene succession sampled shows a remarkable lateral and vertical change of facies (Pálfalvi et al. 2006; Pálfalvi 2007) that has been attributed to tectonic forces acting on the sedimentary body (Fodor 2007). The development of the post-bauxite deposits was lain down during oscillation of the groundwater table and eustatic sea level variations (Carannante et al. 1994; Mindszenty 2010), occurring before the region was flooded by a marine incursion during the late Bartonian (Bignot et al. 1985). 

At the Gánt section, the bauxite cover-sequence shows five stratigraphic units in a vertical orientation dating from the middle Eocene (Fig. 2), called 'Packets' in the sense of Bignot et al. (1985). 'Packet 1', about 1.5 m thick, corresponds to the bauxite itself, which unconformably overlies Triassic dolomites. 'Packet 2', 1.5-2 m in thickness, forms the 'blue-hole' freshwater limestone facies (Carannante et al. 1994; Pálfalvi 2007) alternating with clays, rich in charophytes, ostracods and gastropods. 'Packet 3', ca. 6.5 m thick, includes alternating sandy clay, coal and fresh- to brackish water limestone, rich in charophytes, ostracods, molluscs and large benthic foraminifera (Bignot et al. 1985). 'Packet 4' is ca. 12 m thick and is mainly dominated by shallow marine limestone, rich in nummulites, miliolids, molluscs and ostracods. Finally, 'Packet 5' is *ca*. 6m thick and displays an alternation of shallow marine marl and limestone, rich in Nummulites and Orbitolites. 'Packets' 2 and 3 were sampled for charophytes and are studied here. 

-----Figures 1, 2 near here-----

Material and methods 

Intensive sampling for charophytes during two consecutive field work sessions in 2018 and 2019 was carried out on the cover sequence of the bauxite at Gánt (Vértes Hills, Hungary). Moderately- to well-preserved gyrogonites were recovered from marly limestone to hard limestone using acetolysis. This method, first applied by Nötzold (1965) to the study of charophytes, has been recently improved by Trabelsi et al. (2010, 2016) and shown to be very effective in recovering charophyte fructifications and thalli from consolidated carbonate rocks. It consists of soaking the sample of hard calcareous rock, perfectly dried and mechanically comminuted into fragments of about 1–3 mm across, in equal amounts of anhydrous acetic acid 

and anhydrous copper sulphate (acid reacts exothermically). After neutralization by ammonia, the residue is treated with ultra-sound, then washed and rinsed. Gyrogonites were measured using the software Motic Images Plus 2.0 ML with a Motic BA310 stereomicroscope in the Departament de Dinàmica de la Terra i de l'Oceà (University of Barcelona, Catalonia, Spain). Scanning electron microscopy on gold-sputtered selected specimens was conducted with a JEOL JSM-6400 at the Faculty of Earth Sciences, Geography and Astronomy, University of Vienna (Austria) and with a Quanta 200 device at the Centres Científics i Tecnològics of the University of Barcelona (CCiTUB). The studied materials are housed in the Hungarian Natural History Museum (Budapest, Hungary), Botanical Department, Palaeobotanical Collection. The figured specimens are deposited under the inventory numbers: HNHM-PBO 1501–1591. 

#### 127 Systematic palaeontology

The charophyte flora from the bauxite cover sequence at Gánt (Vértes Hills, Hungary) studied here yields gyrogonites from two families: Raskyellaceae and Characeae. The different charophyte species described below are stratigraphically distributed in the section as shown in the Fig. 2.

Revie

 43
 132

 44
 133

 45
 133

 46
 133

 47
 133

 49
 134

 50
 134

 51
 135

 52
 135

 53
 135

 54
 55

 55
 136

 56
 136

 59
 137

 59
 137

 50
 137

| 1<br>2<br>3<br>4     | 138 | Genus <i>Raskyella</i> (Grambast et Grambast, 1954) emend. Grambast, 1962b                    |
|----------------------|-----|-----------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 139 |                                                                                               |
| 8<br>9<br>10<br>11   | 140 | Type species. Raskyella peckii Grambast et Grambast, 1954                                     |
| 12<br>13<br>14       | 141 |                                                                                               |
| 15<br>16<br>17       | 142 | Remarks. This species is understood as including several traditional taxa belonging to the    |
| 18<br>19<br>20<br>21 | 143 | genus Raskyella, which form a gradualistic lineage during the Eocene. These traditional taxa  |
|                      | 144 | have been newly combined here to anagenetic varieties within a single evolutionary lineage or |
| 22<br>23<br>24       | 145 | an evolutionary species, following the recommendations of Wiley (1981) and Ax (1978).         |
| 25<br>26<br>27       | 146 |                                                                                               |
| 28<br>29<br>30       | 147 | Raskyella peckii var. peckii Grambast et Grambast, 1954                                       |
| 31<br>32<br>33       | 148 | (Fig. 3A–H)                                                                                   |
| 34<br>35<br>36       | 149 |                                                                                               |
| 37<br>38<br>39       | 150 | 1954 Raskyella pecki sp. nov. L. & N. Grambast: p. 670, text-figs 1a-c.                       |
| 40<br>41<br>42<br>43 | 151 | 1957 Raskyella pecki Grambast: p. 358, pl. 5, figs 7–9.                                       |
| 44<br>45<br>46       | 152 | 1958 Raskyella pecki Grambast: p. 190, figs 87, a-c; p. 191, text-fig. 88.                    |
| 47<br>48<br>49       | 153 | 1959 Raskyella pecki Horn af Rantzien: pl. 19, figs 7–13.                                     |
| 50<br>51<br>52       | 154 | 1971 Raskyella peckii subsp. ganesensis Soulié-Märsche: pl. 2, 1–5.                           |
| 53<br>54<br>55       | 155 | 1981 Raskyella pecki Anadón & Feist: pl. 1, figs 1–2; pl. 2, figs 3–4.                        |
| 56<br>57<br>58       | 156 | 1986 Raskyella pecki Riveline: pl. 37, figs 7–9.                                              |
| 59<br>60             | 157 | 1999a <i>Raskyella pecki</i> Martín-Closas <i>et al.</i> : p. 11, figs 6, 1–3.                |
|                      |     | /                                                                                             |

Material. Up to 65 gyrogonites in sample G-2.4, and dozens in samples G-2.2 and G-2.3.
Collection numbers of figured specimens: HNHM-PBO 1501–1508.

Description. Gyrogonites are ovoidal to ellipsoidal in shape, spherical to subprolate (ISI 100-120) and of large size, 800–1050 µm in height and 750–1050 µm in width, showing laterally 7-10 (usually 9) convolutions (Fig. 4). Spiral cells often flat (Fig. 3A) to slightly convex (Fig. 3C), or concave (Fig. 3B), but regularly without any kind of ornamentation. Apex broadly rounded, truncated and flattened, with the spiral cells abruptly discontinue and ending acutely in the apical periphery to be replaced by the development of five opercular cells, each obliquely disposed at the end of a spiral cell (Fig. 3F). Germinated specimens (Fig. 3G) show a rose-shaped apical opening. Internal casts of these gyrogonites were also found (Fig. 3E). 

169 Remarks. The contemporaneous unornamented gyrogonites of *Raskyella peckii* subsp. 170 ganesensis Soulié-Märsche, 1971 from the Aquitaine basin (France) appear to represent a 171 gyrogonite population of relatively smaller size within *R. peckii* var. *peckii* and both are here 172 considered synonymous. However, supplementary research on the type material is needed to 173 verify this synonymy, since the morphotype ganesesis is only known from the type locality.

Additionally, the subspecies *Raskyella peckii* subsp. *meridionale* Grambast, 1960, is kept
within the rank of subspecies due to its palaeogeographic restriction. The extremely large
gyrogonites of this subspecies are limited to the southernmost biogeographic range of *Raskyella peckii*, i.e. Algeria (Grambast 1960; Mebrouk *et al.* 1997), and the Betic Domain of the Balearic
Islands (Martín-Closas & Ramos 2005).

Distribution. This is the first record of *R. peckii* var. *peckii* in Hungary and Central Europe.
 This variety is widely distributed in the Lutetian and lower Bartonian of southern Europe,
 mainly in France (L. & N. Grambast 1954; Grambast 1958; Soulié-Märsche 1971, 1974;

| 182                                                         | Riveline 1984, 1986) and Spain (Anadón & Feist 1981; Anadón et al. 1992; Martín-Closas et                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 183                                                         | al. 1999a; Martín-Closas & Ramos 2005). The total range of this variety (early Lutetian-late                                                                                                                                                                                                                                                                                                                                    |
| 184                                                         | Bartonian) has been characterized in the Eastern Ebro basin (Catalonia) by Martín-Closas et al.                                                                                                                                                                                                                                                                                                                                 |
| 185                                                         | (1999) based on correlation with larger foraminifera (mainly Nummulites). Furthermore, R.                                                                                                                                                                                                                                                                                                                                       |
| 186                                                         | peckii var. peckii has been also reported from North Africa, i.e. in the lower Eocene of Algeria                                                                                                                                                                                                                                                                                                                                |
| 187                                                         | (Gevin et al. 1974; Mebrouk et al. 1997; Vianey-Liaud 1994), in the late lower Eocene-early                                                                                                                                                                                                                                                                                                                                     |
| 188                                                         | middle Eocene of Tunisia (Abdeljaoued et al. 1984) and in the Lutetian of Libya (Megerisi &                                                                                                                                                                                                                                                                                                                                     |
| 189                                                         | Mamgain 1980).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 190                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 191                                                         | Figures 3, 4 near here                                                                                                                                                                                                                                                                                                                                                                                                          |
| 192                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 193                                                         | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-                                                                                                                                                                                                                                                                                                                                        |
| 193<br>194                                                  | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas                                                                                                                                                                                                                                                                                                                              |
| 193<br>194<br>195                                           | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas<br>(Fig. 3I–P)                                                                                                                                                                                                                                                                                                               |
| 193<br>194<br>195<br>196                                    | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas<br>(Fig. 3I–P)                                                                                                                                                                                                                                                                                                               |
| 193<br>194<br>195<br>196<br>197                             | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas<br>(Fig. 3I–P)<br>Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96 <sup>ème</sup> Congrès                                                                                                                                                                                                              |
| 193<br>194<br>195<br>196<br>197<br>198                      | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-Closas         (Fig. 3I–P)         Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96 <sup>ème</sup> Congrès         National des Sociétés Savantes, Toulouse, 1971, Section Science, 2, p. 114, text-figure 2 (pl.                                                                                                 |
| 193<br>194<br>195<br>196<br>197<br>198<br>199               | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas<br>(Fig. 3I–P)<br>Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96 <sup>ème</sup> Congrès<br>National des Sociétés Savantes, Toulouse, 1971, Section Science, 2, p. 114, text-figure 2 (pl.<br>I), 1–5.                                                                                                |
| 193<br>194<br>195<br>196<br>197<br>198<br>199<br>200        | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-<br>Closas<br>(Fig. 3I–P)<br>Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96 <sup>ème</sup> Congrès<br>National des Sociétés Savantes, Toulouse, 1971, Section Science, 2, p. 114, text-figure 2 (pl.<br>I), 1–5.                                                                                                |
| 193<br>194<br>195<br>196<br>197<br>198<br>199<br>200<br>201 | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi et Martín-Closas         (Fig. 3I–P)         Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96 <sup>eme</sup> Congrès         National des Sociétés Savantes, Toulouse, 1971, Section Science, 2, p. 114, text-figure 2 (pl. I), 1–5.         1974 Raskyella caliciformis sp. nov., Soulié-Märsche: p. 112, pl. 1, figs 1–5. |

Material. 63 gyrogonites in sample G-2.5. Collection numbers of figured specimens: HNHM-PBO 1509–1516.

**Description.** Large sized gyrogonites (650–1000 µm high and 750–1050 µm wide) of globular to oblate shape (ISI 80–105), showing laterally 6–9 (usually 8) convolutions (Fig. 5). Spiral cells flat to slightly concave ornamented with stout, vertical to slightly inclined, well individualized tubercles (Fig. 3I-K), which are the main diagnostic character of this variety. Apex broadly rounded to truncated showing five opercular cells placed at the end of the spiral cells. The opercular cells are sometimes convex and somewhat polygonal in shape (Fig. 3N), rather than rounded, which is the reason why the dehiscence opening appears sometimes irregularly star-shaped (Fig. 3O), rather than rose-shaped (Fig. 3L), as already noted by Soulié-Märsche (1974) in the type material. The internal cast of the gyrogonite (Fig. 3M) shows straight ridges perpendicular to the well-marked, undulated spiral cells. This wavy surface is uncommon in the inside of other raskyellacean gyrogonites and is thought to correspond internally to the external tubercle ornamentation. 

Distribution. This is the first record of *R. peckii* var. *caliciformis* in Hungary. It was previously
described from the Bartonian of South France (Soulié-Märsche 1974; Riveline 1986), and from
the lower Bartonian (Auversian local stage) of the Ebro Basin, Catalonia, Spain (Anadón &
Feist 1981; Anadón *et al.* 1992).

----- Figure 5 near here------

| 2        |         |                                                                                                        |
|----------|---------|--------------------------------------------------------------------------------------------------------|
| 3<br>4   | 225     | Raskyella peckii var. vadaszii (Grambast et Grambast 1954) comb. nov. Trabelsi et Martín-              |
| 5<br>6   | 226     | Closas                                                                                                 |
| 7        |         |                                                                                                        |
| 8<br>9   | 227     | (Fig. 6A–S)                                                                                            |
| 10       |         |                                                                                                        |
| 11       |         |                                                                                                        |
| 12       | 228     |                                                                                                        |
| 13       |         |                                                                                                        |
| 14<br>15 | 220     | <b>Basionym</b> <i>Bashvalla vadaszi</i> (Báshv) I & N. Gramhast (1954) Bayue Gánárale de              |
| 15<br>16 | 229     | <b>Dasionyin.</b> <i>Ruskyetta vaduszi</i> (Rasky) L. & N. Otambast (1994), Revue Genetate de          |
| 17       | 220     | Botanique (61) n 670                                                                                   |
| 18       | 250     | Botanique (01), p. 070.                                                                                |
| 19       |         |                                                                                                        |
| 20       | 231     |                                                                                                        |
| 21       |         |                                                                                                        |
| 22<br>73 |         |                                                                                                        |
| 23<br>24 | 232     | 1945 Aclistochara vadaszi, sp. nov. Rásky: p. 45, pl. II, figs 22–24.                                  |
| 25       |         |                                                                                                        |
| 26       | • • • • |                                                                                                        |
| 27       | 233     | 1954 Raskyella vadaszi, comb. nov. L. and N. Grambast: p. 670.                                         |
| 28       |         |                                                                                                        |
| 29       | 231     | 1957 Rashvella vadaszi, Gramhast: n. 358 nl. 5 figs 1-6                                                |
| 30<br>31 | 234     | 1957 Ruskyellu vuluszi, Grunoust. p. 556, pl. 5, figs 1 °C.                                            |
| 32       |         |                                                                                                        |
| 33       | 235     | 1959 Raskyella vadaszi, Horn af Rantzien: pl. 20, figs 1–3.                                            |
| 34       |         |                                                                                                        |
| 35       |         |                                                                                                        |
| 36       | 236     | 1981 <i>Raskyella vadaszi</i> , Anadón & Feist: pl. 1, fig. 5; pl. 2, fig. 5.                          |
| 3/<br>20 |         |                                                                                                        |
| 39       | 227     | 1981 Rashvalla aff vadaszi Anadón & Feist: nl. 1. figs 3-1: nl. 2. figs 1-2. 6                         |
| 40       | 257     | 1961 <i>Ruskyellu</i> all. <i>valuuszi, Miladoli &amp; Felst. pl. 1, ligs 5 4, pl. 2, ligs 1 2, 0.</i> |
| 41       |         |                                                                                                        |
| 42       | 238     | 1985 Raskyella vadaszi, Bignot et al.: p. 36, pl. 3, figs 8–11.                                        |
| 43       |         |                                                                                                        |
| 44<br>15 |         |                                                                                                        |
| 45<br>46 | 239     | 1986 Raskyella vadaszi, Riveline: pl. 37, figs 1–6.                                                    |
| 47       |         |                                                                                                        |
| 48       | 240     |                                                                                                        |
| 49       | 240     |                                                                                                        |
| 50       |         |                                                                                                        |
| 51<br>52 | 241     | Material. Hundreds of gyrogonites in samples G-6a and G-6b. Collection numbers of figured              |
| 52<br>53 |         |                                                                                                        |
| 55<br>54 | 242     | specimens: HNHM-PBO 1517–1534                                                                          |
| 55       |         | 1                                                                                                      |
| 56       |         |                                                                                                        |
| 57       | 243     | Description. Large sized gyrogonites (800–1150 µm high and 800–1150 µm wide) of oblate to              |
| 58<br>50 |         |                                                                                                        |
| 59<br>60 | 244     | ovoidal shape (ISI 80-120), showing laterally 7-10 (usually 9) convolutions (Fig. 7). Spiral           |
|          |         |                                                                                                        |

cells often convex and ornamented with stout tubercles of different shapes and sizes, in most cases oriented parallel to the intercellular sutures (Fig. 6A–C), or more rarely tilted 20–30° but keeping parallelism between adjacent nodules (Fig. 6E–G), this being a diagnostic character of this morphotype. Three tubercle morphologies have been observed: (1) rounded tubercles, well individualized in the upper half of the gyrogonite, but fused to neighbouring tubercles in the lower half (Fig. 6I–K), (2) elongated tubercles more or less connected to each other and producing slightly wavy (undulated) sutures (Fig. 6H), (3) irregularly alternating round and elongated tubercles (Fig. 6D). Base of gyrogonite rounded (Fig. 6C, J) to slightly tapered (Fig. 6A, G) and showing a small, superficial and pentagonal basal pore, sometimes within a less-marked funnel (Fig. 6Q). Apex of gyrogonite truncated or broadly rounded and covered by five independent opercular cells at the end of the spiral cells. Opercular cells roughly prismatic, with its outer surface concave, flat or slightly convex (Fig. 6L-M). Germinated specimens show a rounded or rose-like opening (Fig. 6N–P). The inside of the gyrogonite allows observation of a characteristic crenulation of the intercellular sutures near their internal side (Fig. 6R–S), while, to the outside, sutures are flat. Besides, this crenulation occurs also between the opercule cells themselves and between spiral and opercule cells as already described by Feist in Anadón and Feist (1981). 

Distribution. R. vadaszii has been first described by Rásky (1945) from middle Eocene borehole samples (60 m depth) at Gánt, in beds roughly equivalent laterally to the outcrop succession studied here. Therefore, the samples studied may be considered topotypes. Subsequently, the age of this variety was suggested to be upper Bartonian by Bignot et al. (1985) based on the associated microfossils (foraminifers, ostracods, and pollen) from the same beds of the bauxite cover-sequence at the Gánt section (Vértes Hills). R. peckii var. vadaszii has also been well documented in France, in the upper Bartonian of the Paris Basin (Grambast 1957, 1958, 1962a; Riveline 1986) and from several basins in southern France (Feist-Castel 

| 1                    |     |                                                                                                |
|----------------------|-----|------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 270 | 1976). Anadón & Feist (1981) and Anadón et al. (1992) documented this variety also in the      |
| 5<br>6<br>7          | 271 | upper Bartonian of the Eastern Ebro Basin (Catalonia, Spain).                                  |
| 8<br>9<br>10         | 272 |                                                                                                |
| 11<br>12<br>13       | 273 | Figures 6, 7 near here                                                                         |
| 14<br>15<br>16       | 274 |                                                                                                |
| 17<br>18<br>19<br>20 | 275 | Family Characeae (Richard ex C.A. Agardh, 1824) emend. Martín-Closas et Schudack, 1991         |
| 20<br>21<br>22<br>23 | 276 | Subfamily Charoideae Braun in Migula, 1897                                                     |
| 23<br>24<br>25<br>26 | 277 | Genus Gyrogona (Lamarck, 1804 ex Lamarck, 1822) emend. Grambast, 1956                          |
| 27<br>28<br>29       | 278 |                                                                                                |
| 30<br>31<br>32       | 279 | Gyrogona caelata (Reid et Groves, 1921) Grambast, 1956                                         |
| 33<br>34<br>35       | 280 | (Fig. 8A–V)                                                                                    |
| 36<br>37<br>38       | 281 |                                                                                                |
| 39<br>40<br>41       | 282 | 1921 Chara caelata sp. nov., Reid & Groves: p. 184, pl. 4, figs 4-6.                           |
| 42<br>43<br>44<br>45 | 283 | 1927 Kosmogyra caelata, Pia: p. 90.                                                            |
| 45<br>46<br>47<br>48 | 284 | 1954 Brachychara caelata, L. & N. Grambast: p. 667.                                            |
| 49<br>50<br>51       | 285 | 1956 Gyrogona caelata, Grambast: p. 280.                                                       |
| 52<br>53<br>54       | 286 | 1977b Gyrogona caelata, Feist-Castel: p. 117.                                                  |
| 55<br>56<br>57       | 287 | 1981 Gyrogona caelata, Grambast & Grambast-Fessard: p. 22, text-fig. 11, a-f; pl. 4, figs 1-9. |
| 58<br>59<br>60       | 288 | 1981 Gyrogona cf. Caelata, Anadón & Feist: p. 163.                                             |

289 1986 *Gyrogona caelata*, Riveline: pl. 38, figs 1–5, 7–8.

290 1989 *Gyrogona caelata*, Choi: pl. 2, figs 1–11.

1991 Gyrogona caelata, Weidmann et al.: p. 900, fig. 3, C.

292 2014 Gyrogona caelata, Sanjuan & Martín-Closas: p. 403, fig. 7, A–C.

Material. 56 gyrogonites in sample G-2.2, 38 in sample G-2.3, 29 in sample G-2.4, 18 in sample
G-2.5, and 23 in sample G-6a. Collection numbers of figured specimens: HNHM-PBO 1535–
1553.

**Description.** Medium to large gyrogonites, 600–800 µm high and 700–1000 µm wide with generally oblate to suboblate spheroidal shape (ISI 80–100) and showing laterally 5–7 (usually 6) convolutions (Fig. 9). Apex and base broadly rounded to subtruncate. Apex showing a less-marked spiral cell periapical thinning (e.g., Fig. 8G) and, in some specimens, apical nodules of different shape, generally flat or slightly convex (e.g. Fig. 8S). Base showing a small pentagonal basal pore (Fig. 8F), sometimes flared by a shallow funnel (Fig. 8P). Basal plate unicellular and only visible from the gyrogonite interior (Fig. 8U–V). Spiral cells flat to slightly concave and ornamented with different patterns of tubercles, which allowed Grambast (1958) and Grambast & Grambast-Fessard (1981) to distinguish a number of morphotypes, ranking them as *formae* of the same species. The following five forms were recognized in the material studied: (1) G. caelata forma caelata characterized by small nodules well-spaced and irregularly ranged along the spiral cell median line (e.g. Fig. 8A, D), (2) G. caelata forma bicincta characterized by nodules irregularly ranged along two lines parallel to spiral cell sutures (Fig. 8H, I), (3) G. caelata forma monolifera showing medium-sized nodules close to each other, sometimes fused and forming a thin, irregular mid-cellular crest (e.g., Fig. 8L), (4) G. caelata forma baccata 

| 3<br>4         | 312 |
|----------------|-----|
| 5<br>6         | 313 |
| 7<br>8         | 314 |
| 9<br>10<br>11  | 315 |
| 12<br>13       | 316 |
| 14<br>15       | 217 |
| 16<br>17       | 210 |
| 18<br>19<br>20 | 510 |
| 20<br>21<br>22 | 319 |
| 22<br>23<br>24 | 320 |
| 25<br>26       | 321 |
| 27<br>28       | 322 |
| 29<br>30       | 323 |
| 31<br>32       | 324 |
| 33<br>34<br>35 | 325 |
| 36<br>37       |     |
| 38<br>39       | 326 |
| 40<br>41<br>42 | 327 |
| 43<br>44       | 328 |
| 45<br>46       |     |
| 47<br>48<br>40 | 329 |
| 49<br>50<br>51 | 330 |
| 52<br>53       | 221 |
| 54<br>55       | 551 |
| 56<br>57<br>58 | 332 |
| 59             |     |

characterized by large nodules very closely ranged along the spiral-cell median line (e.g., Fig. 312 8N–Q), (5) G. caelata forma fasciata characterized by a broad median band of variable width 313 (e.g., Fig. 8R–T). 314

**Distribution.** The species *Gyrogona caelata* is reported here from Hungary for the first time. 315 According to Riveline (1986), this species was widely distributed in the upper Lutetian-316 Priabonian non-marine deposits of Western Europe. It was first recorded from the Isle of Wight, 317 England by Reid & Groves (1921). Thereafter, it was reported from the upper Lutetian to upper 318 319 Priabonian of France (Grambast 1958; Grambast & Grambast-Fessard 1981; Feist-Castel 1971; Feist & Ringeade 1977; Feist-Castel 1977a, b; Ollivier-Pierre et al. 1988), Spain (Anadón & 320 Feist 1981; Choi 1989; Anadón et al. 1992; Sanjuan & Martín-Closas 2014), Switzerland 321 (Weidmann et al. 1991), as well as from the middle Eocene of Romania (Iva 1987). In North 322 Africa, the species has also been documented from the central part of the Sahara, Algeria, by 323 Mebrouk et al. (1997). 324

----- Figures 8, 9, near here-----

328 Gyrogona tuberosa (Reid et Groves, 1921) Grambast in Grambast et Grambast-Fessard, 1981

- (Fig. 10A–J)
- 331 1921 Chara wrighti var. rhytidocarpa, Reid & Groves: p. 183, pl. 4, fig. 3.
- 1958 Gyrogona tuberosa, Grambast: p. 139, fig. 54. 332
- 1976 Gyrogona tuberosa, Feist-Castel: p. 26. 333 60

*Gyrogona tuberosa*, Grambast & Grambast-Fessard: p. 25, text-fig. 12, a–d; pl. 5, figs 1–
6.

1986 Gyrogona tuberosa, Riveline: pl. 14, figs 8–11.

Material. 35 gyrogonites in sample G-6b. Collection numbers of figured specimens: HNHM-PBO 1554–1563.

 **Description.** Large gyrogonites, 820–1000 μm high and 835–1050 μm wide with generally oblate to suboblate spheroidal shape (ISI 80–100) and showing laterally 6–7 convolutions (usually 6). Apex subtruncate (Fig. 10A, C) to somewhat pointed (Fig. 10D, G) with spiral cells protruding (Fig. 10H). Base broadly rounded (Fig. 10B, F) to slightly tapered (Fig. 10A, C, E) and showing a small, superficial and pentagonal basal pore, sometimes within a less-marked funnel (Fig. 10I–J). Spiral cells flat or concave, smooth or somewhat ornamented and separated by protruding narrow to weakly undulated intercellular ridges.

**Distribution.** *Gyrogona tuberosa* is reported here from Hungary and central Europe for the first time. According to Riveline (1986) and Riveline & Cavelier (1987), this species was widely distributed in upper Bartonian non-marine deposits of Western Europe. It was first recorded from the Isle of Wight and Hampshire (England) by Reid & Groves (1921). Subesequently, it was reported from the upper Bartonian of the Paris Basin (Grambast 1958; Grambast & Grambast-Fessard 1981; Riveline 1986; Riveline & Cavelier 1987), as well as from several basins of southern France (Feist-Castel 1976).

57 355 

| 1                    |     |                                                                                                       |
|----------------------|-----|-------------------------------------------------------------------------------------------------------|
| 2<br>3               | 356 | Figure 10 near here                                                                                   |
| 4<br>5               |     |                                                                                                       |
| 6<br>7<br>8          | 357 |                                                                                                       |
| 9<br>10<br>11        | 358 | Genus Psilochara Grambast, 1959                                                                       |
| 12<br>13<br>14       | 359 |                                                                                                       |
| 15<br>16<br>17       | 360 | Psilochara polita (Reid et Groves, 1921) Grambast, 1959                                               |
| 18<br>19<br>20       | 361 | (Fig. 11A–F)                                                                                          |
| 21<br>22<br>23       | 362 |                                                                                                       |
| 24<br>25<br>26       | 363 | 1921 Chara polita, sp. nov. Reid & Groves: p. 187, pl. 5, figs 9, 12.                                 |
| 27<br>28<br>29       | 364 | 1927 Gyrogona politus, Pia: p. 90.                                                                    |
| 30<br>31<br>32<br>33 | 365 | 1958 Ovochara polita, comb. nov. Grambast: p. 167.                                                    |
| 34<br>35<br>36       | 366 | 1959 Peckichara polita, Horn af Rantzien: p. 116, pl. 13, figs 1–3.                                   |
| 37<br>38<br>39       | 367 | 1959 Psilochara polita, Grambast: p. 11.                                                              |
| 40<br>41<br>42       | 368 | 1977b Psilochara polita, Feist-Castel: p. 153.                                                        |
| 43<br>44<br>45       | 369 | 1986 Psilochara polita, Riveline: p. 59, pl. 22, figs 8-12.                                           |
| 46<br>47<br>48       | 370 |                                                                                                       |
| 49<br>50<br>51       | 371 | Material. 58 gyrogonites in sample G-6a. Collection numbers of figured specimens: HNHM-               |
| 52<br>53<br>54       | 372 | PBO 1564–1569.                                                                                        |
| 55<br>56<br>57       | 373 | <b>Description.</b> Medium-sized gyrogonites (550–700 $\mu$ m in height 500–650 and $\mu$ m in width) |
| 58<br>59             | 374 | with ovoidal shape (ISI 100-120) and laterally showing 7-10 convolutions (Fig. 11A-C; Fig.            |
| 60                   | 375 | 12). Apex round to pointed (Fig. 11A–C). Base tapering to prolonged into a stout basal column         |

376 (Fig 11A-C) and showing a small pentagonal basal pore (Fig. 11F). Spiral cells smooth,

377 concave or flat and separated by protruding narrow to weakly undulated intercellular ridges.

**Distribution.** *Psilochara polita* is described here from the middle Eocene of Hungary for the first time. It has previously been described from the upper Bartonian of the Isle of Wight, England, (Reid & Groves 1921; Feist-Castel 1977b; Riveline 1986) and of the Paris Basin (Grambast 1958; Riveline 1986).

----- Figures 11, 12 near here------Psilochara sp. (Fig. 11G–I) Material. 17 gyrogonites in sample G-6a. Collection numbers of figured specimens: HNHM-PBO 1570-1571. **Description.** Medium to large-sized gyrogonites (780–905 µm wide and 670–775 µm high) with elongated ovoidal (subprolate) shape (ISI 110-125) and laterally showing 8-10 convolutions (Fig. 11G). Apex truncated. Apical end of spiral cells enlarged and pointing upwards (Fig. 11H). Base truncated to somewhat tapering, bearing a small pentagonal basal pore. Basal plate unipartite and visible from the gyrogonite interior (Fig. 11I). Spiral cells concave or flat and smooth, except at the periapical area, where they are irregularly ornamented 

| 1<br>2               |     |                                                                                                    |
|----------------------|-----|----------------------------------------------------------------------------------------------------|
| -<br>3<br>4          | 397 | Remark. The low number of gyrogonites hinders a more precise taxonomic attribution of this         |
| 5<br>6               | 398 | population. However, it is reported here since it differs in size and shape from the other species |
| 7<br>8<br>9          | 399 | of <i>Psilochara</i> found at Gánt.                                                                |
| 10<br>11<br>12       | 400 |                                                                                                    |
| 13<br>14<br>15<br>16 | 401 | Genus <i>Nitellopsis</i> Hy, 1889                                                                  |
| 17<br>18<br>19       | 402 |                                                                                                    |
| 20<br>21             | 403 | Sub-genus Tectochara L. et N. Grambast, 1954                                                       |
| 22<br>23<br>24<br>25 | 404 |                                                                                                    |
| 26<br>27             | 405 | Nitellopsis (Tectochara) aff. palaeohungarica (Rásky, 1945) Grambast et Soulié-Märsche,            |
| 28<br>29<br>30       | 406 | 1972                                                                                               |
| 31<br>32<br>33       | 407 | (Fig. 11J–N)                                                                                       |
| 34<br>35<br>36       | 408 |                                                                                                    |
| 37<br>38<br>39<br>40 | 409 | 1945 Chara palaeohungarica, sp. nov. Rásky: p. 38, pl. 1, figs 16–18.                              |
| 41<br>42<br>43       | 410 | 1955 Tectochara palaeohungarica, comb. nov. Mädler: p. 298.                                        |
| 44<br>45<br>46       | 411 | 1959 Tectochara palaeohungarica, Horn af Rantzien: p. 90, pl. 8, figs 4-7.                         |
| 47<br>48             | 412 | 1972 Nitellopsis (Tectochara) palaeohungarica, nov. comb. Grambast & Soulié-Märsche: p.            |
| 49<br>50<br>51       | 413 | 4.                                                                                                 |
| 52<br>53<br>54       | 414 |                                                                                                    |
| 55<br>56<br>57       | 415 | Material. 28 gyrogonites in sample G-2.3 and 33 in sample G-2.5. Collection numbers of             |
| 58<br>59<br>60       | 416 | figured specimens: HNHM-PBO 1572–1576.                                                             |

Description. Gyrogonites very large (900–1200 μm high and 800–1050 μm wide), oval, prolate
spheroidal (ISI 100–120) in shape, showing 8–11 (often 9) convolutions in lateral view (Fig.
11J–L; Fig. 13). Spiral cells concave to flat. Apex prominent with spiral cells protruding to
form a central rosette. Spiral cells show both narrowing and thinning in the periapical area (Fig.
11M). Base rounded to almost conical, occasionally lengthened in a short broad column. A
large (155–230 μm across) pentagonal basal pore occurs within a wide basal funnel (Fig. 11N).

Distribution. The species '*Chara' palaeohungarica* was first described from subsurface beds
attributed to the Paleocene in Dorog, Hungary, by Rásky (1945). Here this species is described
from beds cropping out at Gánt, which are probably time-equivalent to those of the type locality.
The present study supports reassignment of this species to the middle Eocene rather than to the
Paleocene.

**Remarks**. The gyrogonites studied here are diagenetically deformed, which hinders a more definitive taxonomic attribution. A re-study of the type material (HNHM 55.1458–55.1460) by one of the authors of this study (CMC) showed that, besides the holotype, which is a subspherical gyrogonite as illustrated by Rásky (1945, pl. I, Fig. 16), there were more oval to elongated gyrogonites present in the collection similar to those described here, which Rásky (1945, p. 38) termed 'cylindrical'.

Genus Chara Vaillant, 1719

----- Figure13 near here-----

| 1        |      |                                                                                                    |
|----------|------|----------------------------------------------------------------------------------------------------|
| 2        |      |                                                                                                    |
| 4        | 439  | Chara media Grambast, 1958                                                                         |
| 5        |      |                                                                                                    |
| 6        | 440  | (Fig. 14A–I)                                                                                       |
| 7<br>8   |      |                                                                                                    |
| 9        |      |                                                                                                    |
| 10       | 441  |                                                                                                    |
| 11       |      |                                                                                                    |
| 12       | 442  | 1958 Chara media, Grambast: p. 178, fig. 81b.                                                      |
| 14       |      |                                                                                                    |
| 15       | 112  | 1086 Chara madia Riveline: n 68 nl 20 figs 6 12                                                    |
| 16<br>17 | 445  | 1980. Chara meaia, Rivenne. p. 68, pl. 29, figs 0–12.                                              |
| 18       |      |                                                                                                    |
| 19       | 444  |                                                                                                    |
| 20       |      |                                                                                                    |
| 21<br>22 | 115  | <b>Material</b> Up to 80 gyrogonites in both samples G-2.5 and G-6a. Collection numbers of figured |
| 23       | 445  | Waterial. Op to ob gylogonites in both samples of 2.5 and of ou. Concetion numbers of figured      |
| 24       | 446  | specimens: HNHM-PBO 1577–1585.                                                                     |
| 25<br>26 |      |                                                                                                    |
| 20<br>27 |      |                                                                                                    |
| 28       | 447  | <b>Description.</b> Gyrogonites of medium size (400–650 µm high and 300–500 µm wide) ellipsoidal   |
| 29       | 118  | subprolate (ISI 110-145) laterally showing $8-11$ (usually $9-10$ ) convolutions (Fig. 14A-G       |
| 30<br>31 | 440  | subprotate (151 110 145), faterally showing 6 11 (usually 5 10) convolutions (11g. 1471 O,         |
| 32       | 449  | Fig. 15). Maximum width nearly at the half to $2/3$ of height. Apex rounded to slightly conical.   |
| 33       |      |                                                                                                    |
| 34<br>35 | 450  | with distinctly widening of the spiral cell endings (Fig. 14H). Spiral cells concave, smooth and   |
| 36       |      |                                                                                                    |
| 37       | 451  | without any periapical modification. Base tapering showing a superficial pentagonal basal pore     |
| 38       | 452  | (Fig. 14I)                                                                                         |
| 39<br>40 | 452  | (F1g. 141).                                                                                        |
| 41       |      |                                                                                                    |
| 42       | 453  | Distribution. Chara media is described here from the upper Eocene (upper Bartonian) of             |
| 43<br>44 |      |                                                                                                    |
| 45       | 454  | Hungary for the first time. Grambast (1958) and Riveline (1986) documented this species from       |
| 46       | 455  | the unper Partenian lower Oligogone of several basing in France Palgium and Cormany                |
| 47<br>49 | 455  | the upper Bartoman-lower Ongocene of several basins in France, Bergium, and Germany.               |
| 40<br>49 |      |                                                                                                    |
| 50       | 456  |                                                                                                    |
| 51       |      |                                                                                                    |
| 52<br>53 | /157 | Figures 14, 15 near here                                                                           |
| 55<br>54 | 457  | rigues 14, 15 neur noie                                                                            |
| 55       |      |                                                                                                    |
| 56<br>57 | 458  |                                                                                                    |
| 57<br>58 |      |                                                                                                    |
| 59       | 459  | Chara subcvlindrica Reid et Groves. 1921                                                           |
| 60       |      | •                                                                                                  |

URL: http://mc.manuscriptcentral.com/tjsp

| 1<br>ว   |     |                                                                                                             |
|----------|-----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 460 | (Fig 14J–O)                                                                                                 |
| 4<br>5   |     |                                                                                                             |
| 6        | 461 |                                                                                                             |
| 7        | 401 |                                                                                                             |
| 8<br>9   | 460 |                                                                                                             |
| 10       | 462 | 1921 Chara subcyunarica, sp. nov. Reid & Groves: p. 187, pl. 5, fig. 4–5.                                   |
| 11<br>12 |     |                                                                                                             |
| 13       | 463 | 1959 Grambastichara subcylindrica, Horn af Rantzien: p. 76, pl. 3, figs 5–7.                                |
| 14<br>15 |     |                                                                                                             |
| 16       | 464 | 1986 Chara cf. subcylindrica, Riveline: p. 67, pl. 30, figs 5-8.                                            |
| 17<br>18 |     |                                                                                                             |
| 19       | 465 |                                                                                                             |
| 20       |     |                                                                                                             |
| 21       | 466 | <b>Material.</b> Up to 250 gyrogonites in sample G-6b. Collection numbers of figured specimens:             |
| 23       |     |                                                                                                             |
| 24<br>25 | 467 | НNHM-PBO 1586–1591.                                                                                         |
| 26       |     |                                                                                                             |
| 27<br>28 | 468 | <b>Description.</b> Medium-sized gyrogonites (500–750 µm high and 200–400 µm wide) ellipsoidal              |
| 29       | 460 |                                                                                                             |
| 30<br>31 | 469 | prolate to perprolate (ISI 130–200) in shape, laterally showing 8–11 (usually 9–10)                         |
| 32       | 470 | convolutions (Fig. 14J-M; Fig. 16). Maximum width at the equator. Apex rounded with                         |
| 33<br>34 |     | 4                                                                                                           |
| 35       | 471 | widening of the spiral cell endings (Fig. 14N). Spiral cells often slightly concave to flat,                |
| 36<br>27 | 472 | separated by narrow intercellular ridges, cells non-ornamented and without any periapical                   |
| 37<br>38 |     |                                                                                                             |
| 39       | 473 | modification. Base regularly tapering to round, showing a superficial pentagonal basal pore                 |
| 40<br>41 | 171 | (Fig. $140$ )                                                                                               |
| 42       | 4/4 | (Fig. 140).                                                                                                 |
| 43<br>44 |     |                                                                                                             |
| 45       | 475 | <b>Distribution.</b> This is the first report of <i>Chara subcylindrica</i> in Hungary. According to Reid & |
| 46<br>47 | 476 | Groves (1921) and Riveline (1986), this species occurs in the upper Bartonian-lower Oligocene               |
| 48       |     |                                                                                                             |
| 49<br>50 | 477 | of England, France, Belgium and Germany.                                                                    |
| 50<br>51 |     |                                                                                                             |
| 52       | 478 |                                                                                                             |
| 53<br>54 |     |                                                                                                             |
| 55       | 479 | Figure 16 near here                                                                                         |
| 56<br>57 |     | -                                                                                                           |
| 58       | 480 |                                                                                                             |
| 59<br>60 |     |                                                                                                             |
| 50       |     |                                                                                                             |
|          |     |                                                                                                             |

**Discussion** 

483 Definition of the *Raskyella peckii* anagenetic lineage

Evolutionary lineages formed by a succession of charophyte fructifications changing gradually in time were first described in the family Clavatoraceae by Grambast (1974). Later, similar lineages were found as well in the family Characeae (e.g. lineage Harrisichara vasiformis-tuberculata described by Feist-Castel 1977b; or lineage Peckichara pectinata by Vicente et al. 2018). Here we describe the first of such lineages in the family Raskyellaceae. In the Lutetian and Bartonian of Gánt (Hungary), three former species of the genus Raskyella - R. peckii, R. *caliciformis*, and *R. vadaszii* – have been found to form a continuous succession of gyrogonite morphologies, connected by intermediate morphotypes. This gradualistic lineage is interpreted as an evolutionary species in the sense of Wiley (1981) and Ax (1987), and the original taxa have been newly combined as an genetic varieties of the species with nomenclatural priority, which is *R. peckii*.

The first evolutionary stage of the *R. peckii* lineage (Fig. 17) is represented by *R. peckii* var. *peckii*, and includes, as well, the smallest gyrogonite morphotype initially described as Raskyella peckii ganesensis Soulié-Märsche, 1971. R. peckii var. peckii is characterized by gyrogonites which are very variable in size, but consistently unornamented. This stage has a long duration, since it was documented from the lower Lutetian to the upper Bartonian of the Ebro Basin, Catalonia, by Martín-Closas et al. (1999a) and can thus be superimposed onto some of the ulterior morphotypes of the lineage, this being quite a common situation in charophyte lineages (e.g., Grambast, 1974). The coeval Raskvella peckii subsp. meridionale Grambast, 1960, was not found in the section studied and corresponds to a southern geographic subspecies

of this lineage, thriving in North Africa and the Prebetic Domain in the Balearic Islands in Spain
(Grambast 1960; Martín-Closas & Ramos 2005).

The second evolutionary stage in the lineage of R. peckii is represented by R. peckii var. caliciformis. Intermediate morphotypes between R. peckii var. peckii and R. peckii var. *caliciformis* display a progressive increase in the gyrogonite size (up to 1000 µm in height), and a change in shape from elongated to rounded, between samples G-2.2 and G-2.4 of the Gánt section. Furthermore, there is a progressive development of the ornamentation corresponding to R. peckii var. caliciformis in the same sequence, with for instance 100% of gyrogonites corresponding to *R. peckii* var. *peckii* in sample G-2.4, while in sample G-2.5, there is only 10% of R. peckii var. peckii, resulting in 90% of R. peckii var. caliciformis (Fig. 17). 

The third stage of the lineage is represented by *R. vadaszii* from the upper Bartonian, which shows an additional increase of the gyrogonite size of about 150–250 µm in height and 100– 125 µm in width, and especially the development of progressively more complex ornamentation patterns in comparison to the previous evolutionary step (Fig. 17). This gradual change can be observed between samples G-2.5 and G-6b of the Gánt section. Thus, sample G-5 displays a homogeneous population with 100% of gyrogonites corresponding to R. peckii var. caliciformis, while in the overlying sample G-6a, the gyrogonite population of R. peckii contains only 15% of specimens of R. peckii var. caliciformis and 85% of R. peckii var. vadaszii. Finally, in sample G-6b there is a homogeneous population of gyrogonites corresponding to R. peckii var. vadaszii.

524 Overall, the *R. peckii* lineage follows the general evolutionary trend in the evolutionary lineages 525 of other charophyte families, characterized by an increase in size and sphericity (Clavatoraceae 526 and Raskyellaceae), and a progressive development of ornamentation (Characeae), as shown

| 2              |     |                                                                                                   |
|----------------|-----|---------------------------------------------------------------------------------------------------|
| 3<br>4         | 527 | by Feist-Castel (1977b), Martín-Closas et al. (1999b), Sille et al. (2004) and Vicente & Martín-  |
| 5<br>6<br>7    | 528 | Closas (2018).                                                                                    |
| 8<br>9<br>10   | 529 |                                                                                                   |
| 11<br>12<br>13 | 530 | Figure 17 near here                                                                               |
| 14<br>15<br>16 | 531 |                                                                                                   |
| 17<br>18<br>19 | 532 | New local charophyte biozonation                                                                  |
| 20<br>21<br>22 | 533 | Among the charophyte species described from the bauxite cover-sequence at the Gánt section        |
| 23<br>24       | 534 | (Vértes Hills, Hungary), Raskyella peckii represents the most significant species for use in      |
| 25<br>26<br>27 | 535 | biostratigrpahy within the non-marine Lutetian and Bartonian, as previously suggested by          |
| 28<br>29       | 536 | Riveline et al. (1996) and Martín-Closas et al. (1999a). The Raskyella peckii biozone was         |
| 30<br>31       | 537 | defined by Riveline et al. (1996) as a 'partial range zone comprising the interval from the first |
| 32<br>33       | 538 | appearance of Raskyella peckii L. and N. Grambast, 1954, to the first appearance of Chara         |
| 34<br>35<br>36 | 539 | friteli Grambast, 1958, lower Lutetian to lower Bartonian in age. This study proposes to extend   |
| 37<br>38       | 540 | this biozone to cover also the upper Bartonian, and to redesignate it as a superzone subdivided   |
| 39<br>40<br>41 | 541 | into the following three successive biozones (Fig. 18):                                           |
| 42<br>43       | 542 | - Raskyella peckii peckii Zone: partial range zone defined from the first occurrence of the       |
| 44<br>45<br>46 | 543 | morphotype peckii to the first occurrence of the morphotype caliciformis, Lutetian-lower          |
| 47<br>48       | 544 | Bartonian in age. The local charophyte assemblage characterizing this zone in Gánt occurs in      |
| 49<br>50       | 545 | the basal part of the studied section ('Packet 2', 'blue-hole' freshwater limestone facies,       |
| 51<br>52       | 546 | samples G-2.2, G-2.3 and G-2.4), and is composed of R. peckii var. peckii, G. caelata forma       |
| 55<br>54<br>55 | 547 | caelata, G. caelata forma monolifera, and Nitellopsis (Tectochara) aff. palaeohungarica, some     |
| 56<br>57       | 548 | of which are well known to occur in several European basins (Rásky 1945; Grambast 1958;           |
| 58<br>59<br>60 | 549 | Riveline 1986; Martín-Closas et al. 1999a) during the same time interval.                         |
| -              |     |                                                                                                   |

- Raskyella peckii caliciformis Zone: partial range zone defined from the first occurrence of the morphotype *caliciformis* to the first occurrence of the morphotype *vadaszii*, lower Bartonian in age. This zone includes in Gánt the assemblage found in the lower part of 'Packet 3' (samples G-2.5) and composed of *R. peckii* var. *caliciformis*, *G. caelata* forma *caelata*, *G. caelata* forma *monolifera*, *G. caelata* forma *baccata*, *Nitellopsis (Tectochara)* aff. *palaeohungarica*, and *Chara media*.

- Raskyella pecki vadaszii Zone: partial range zone defined from the first occurrence of the
morphotype *vadaszii* to the first occurrence of the next zone defined in the Paris Basin, which
is *Psilochara repanda*. This zone would be upper Bartonian in age. The assemblage occurring
in the middle part of the Gánt section ('Packet 3', samples G-6a and G-6b), composed of *R*. *peckii* var. *vadaszii*, *G. caelata* forma *bicincta*, *G. caelata* forma *baccata*, *G. caelata* forma *fasciata*, *Psilochara polita*, *Psilochara* sp., *Chara media*, and *Chara subcylindrica*characterizes locally this biozone.

#### 564 Implications on the age of the bauxite cover-sequence

The biostratigraphic analysis carried out suggests a relative age of Lutetian– Bartonian (Fig. 18) of the bauxite cover-sequence at the Gánt section (Vértes Hills, Hungary), rather than constraining it to the Bartonian as previously suggested by Bignot (1985). A Lutetian age, deduced from the charophytes and attributed to the lower part of the studied series, has been already suggested in several works preceding that of Bignot (1985), notably those of Szőts (1938), Kopek (1980), and Dudich & Kopek (1982), on the basis of mollusc and palynomorph biostratigraphy. The data presented herein support the idea that the Eocene succession in the studied area reflects a stepwise marine transgression upon the bauxite deposits, beginning in the Lutetian. Our new chronostratigraphic framework sheds new light on the timing of the long-

lasting subaerial exposure and alteration process generating the bauxite strata. Consequently, coeval strata from surrounding localities within the Transdanubian Central Range should be restudied and analysed from the viewpoint of charophyte biostratigraphy, in order to correlate the post-bauxite depositional event(s) on a regional scale and to improve the understanding of its tectono-eustatic control. 

- ----- Figure 18, near here-----to pe
- Conclusions

Eocene (Lutetian-Bartonian) charophyte assemblages are taxonomically described for the first time from an outcrop of the bauxite cover-sequence at Gánt (Vértes Hills), Hungary's Transdanubian Central Range. The sections show for the first time that the raskyellacean charophytes also evolved in gradualistic lineages, similarly to what is already known for other charophyte families. The *Raskvella peckii* lineage is formed by three successive stages and is interpreted here in terms of the anagenesis of the evolutionary species Raskyella peckii, including its gradual change to the morphotype previously known as *R. vadaszi*. 

From a biostratigraphic viewpoint, the assemblages studied belong to the Raskyella peckii biozone of Martín-Closas et al. (1999a), which is here reinterpreted as a superzone extending to cover the Raskyella vadaszii Zone of Riveline et al. (1996) and attributed to the Lutetian-Bartonian interval. In this study, this superzone is subdivided into three successive local partial range biozones, defined by each of the successive varieties of the evolutionary species R. peckii: (1) the Raskyella peckii peckii partial range zone is characterized by R. peckii peckii, G. caelata

forma caelata, G. caelata forma monolifera and Nitellopsis (Tectochara) aff. palaeohungarica, Lutetian-lowermost Bartonian in age; (2) the *Raskvella peckii caliciformis* partial range zone is characterized by R. peckii caliciformis, G. caelata forma caelata, G. caelata forma monolifera, G. caelata forma baccata, Nitellopsis (Tectochara) aff. palaeohungarica and Chara media, lower Bartonian in age; and (3) the Raskyella peckii vadaszii partial range zone is characterized by *R. peckii vadaszii*, *G. caelata* forma *bicincta*, *G. caelata* forma *baccata*, *G.* caelata forma fasciata, G. tuberosa, Psilochara polita, Psilohara sp., Chara media and Chara subcylindrica, upper Bartonian in age.

In light of the new results presented here, the charophyte-bearing sequences studied in this work represent a longer time span than previously thought, running from the Lutetian to the Bartonian. This has direct implications on the understanding of the Eocene regional stratigraphic scheme of the Transdanubian Central Range, particularly in terms of synchronism/diachronism in the regional stratigraphic correlation, as well as the timing of the tectono-sedimentary control and palaeogeographic evolution.

#### 612 Acknowledgements

613 This study is a contribution to UNESCO-IGCP 632 'Continental Crises of the Jurassic: Major 614 Extinction Events and Environmental Changes within Lacustrine Ecosystems', subproject 'Late 615 Mesozoic lacustrine systems in Tunisia and their global correlation' (BS), and UNESCO IGCP 616 Project 661 'The Critical Zone in Karst Systems', subproject: 'Evolution of fossil blue hole 617 limestones and the critical zone in a greenhouse world' (MW, KT) within the scope of the Earth 618 System Science (ESS) programme funded by the Austrian Academy of Sciences (BS), as well 619 as project CGL2015-69805-P from the Spanish Ministry of Innovation and Competitiveness

| 620                                                                                                                                                       | and to project SGR2017-841 of the AGAUR (Catalan Research Agency) (CM-C). It also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 621                                                                                                                                                       | benefitted from Austrian Science Fund (FWF) project P 27687-N29 (BS), and from the results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 622                                                                                                                                                       | of the SYNTHESYS project HU-TAF6533 accorded to CM-C to study the Klára Rásky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 623                                                                                                                                                       | collection at the Hungarian Natural History Museum in Budapest. We sincerely acknowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 624                                                                                                                                                       | Dr. Ingeborg Soulié-Märsche (Université de Montpellier II, France), Dr. Josep Sanjuan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 625                                                                                                                                                       | (University of Barcelona, Spain), and Dr. Alba Vicente (Universidad Nacional Autónoma de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 626                                                                                                                                                       | México-UNAM, México), as well as the editor Dr. Paul M. Barrett for their valuable and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 627                                                                                                                                                       | constructive observations and criticism that greatly improved the manuscript during the peer-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 628                                                                                                                                                       | review process. Kevin Kearney (University of Vienna, Austria) is acknowledged for English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 629                                                                                                                                                       | language editing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 630                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 631                                                                                                                                                       | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 632                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 632<br>633                                                                                                                                                | Abdeljaoued, A., Sassi, S., Triat, JM. & Truc, G. 1984. Nouvelles précisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 632<br>633<br>634                                                                                                                                         | Abdeljaoued, A., Sassi, S., Triat, JM. & Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur «                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 632<br>633<br>634<br>635                                                                                                                                  | Abdeljaoued, A., Sassi, S., Triat, JM. & Truc, G. 1984. Nouvelles précisions<br>stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur «<br>l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 632<br>633<br>634<br>635<br>636                                                                                                                           | Abdeljaoued, A., Sassi, S., Triat, JM. & Truc, G. 1984. Nouvelles précisions<br>stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur «<br>l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–<br>Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i> , <b>22</b> , 73–77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 632<br>633<br>634<br>635<br>636<br>637                                                                                                                    | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 632<br>633<br>634<br>635<br>636<br>637<br>638                                                                                                             | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> <li>Anadón, P. &amp; Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| 632<br>633<br>634<br>635<br>636<br>637<br>638<br>639                                                                                                      | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> <li>Anadón, P. &amp; Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin de l'Ebre oriental. <i>Palaeontographica</i>, 178 B(4–6), 143–168</li> </ul>                                                                                                                                                                                                                                                                                    |
| 632<br>633<br>634<br>635<br>636<br>637<br>638<br>639<br>640                                                                                               | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> <li>Anadón, P. &amp; Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin de l'Ebre oriental. <i>Palaeontographica</i>, 178 B(4–6), 143–168</li> <li>Anadón, P., Cabrera, L., Choi, SJ., Colombo, F., Feist, M. &amp; Sáez A. 1992. Biozonación</li> </ul>                                                                                                                                                                                |
| 632<br>633<br>634<br>635<br>636<br>637<br>638<br>639<br>640<br>641                                                                                        | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> <li>Anadón, P. &amp; Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin de l'Ebre oriental. <i>Palaeontographica</i>, 178 B(4–6), 143–168</li> <li>Anadón, P., Cabrera, L., Choi, SJ., Colombo, F., Feist, M. &amp; Sáez A. 1992. Biozonación del Paleógeno continental de la zona oriental de la Cuenca del Ebro mediante carofitas:</li> </ul>                                                                                        |
| <ul> <li>632</li> <li>633</li> <li>634</li> <li>635</li> <li>636</li> <li>637</li> <li>638</li> <li>639</li> <li>640</li> <li>641</li> <li>642</li> </ul> | <ul> <li>Abdeljaoued, A., Sassi, S., Triat, JM. &amp; Truc, G. 1984. Nouvelles précisions stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur « l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur–Ludien. <i>Nouvelles Archives du Museum d'Histoire Naturelle de Lyon</i>, 22, 73–77.</li> <li>Agardh, C. A. 1824. <i>Systema Algarum</i>. Lundae Literis Berlingianis, Lundae, 312 pp.</li> <li>Anadón, P. &amp; Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin de l'Ebre oriental. <i>Palaeontographica</i>, 178 B(4–6), 143–168</li> <li>Anadón, P., Cabrera, L., Choi, SJ., Colombo, F., Feist, M. &amp; Sáez A. 1992. Biozonación del Paleógeno continental de la zona oriental de la Cuenca del Ebro mediante carofítas: implicaciones en la biozonación general de carofítas de Europa occidental. <i>Acta</i></li> </ul> |

Bignot, G., Blondeau, A., Guenet, C., Perreau, M., Poignant, A., Renard, M., Riveline. J.,

| 2           |
|-------------|
| 3           |
| 4           |
| 5           |
| 6           |
| 7           |
| 8           |
| 0           |
| 10          |
| 10          |
| 11          |
| 12          |
| 13          |
| 14          |
| 15          |
| 16          |
| 17          |
| 18          |
| 19          |
| 20          |
| 21          |
| י∠<br>רר    |
| ∠∠<br>วว    |
| 23          |
| 24          |
| 25          |
| 26          |
| 27          |
| 28          |
| 29          |
| 30          |
| 31          |
| 27          |
| J∠<br>22    |
| 22          |
| 34          |
| 35          |
| 36          |
| 37          |
| 38          |
| 39          |
| 40          |
| 41          |
| 42          |
| 42          |
| 7J<br>11    |
| -1-1<br>1 F |
| 45          |
| 46          |
| 47          |
| 48          |
| 49          |
| 50          |
| 51          |
| 52          |
| 53          |
| 54          |
| 55          |
| 55          |
| 50<br>57    |
| 5/          |
| 58          |
| 59          |
| 60          |

1

646

Ax, P. 1987. The Phylogenetic System. The Systematization of Organisms on the Basis of Their
 Phylogenesis. Wiley-Interscience, New York, 340 pp.

# Gruas, C., Dudich, E., Kázmér, M. & Kopek, G. 1985. Age and characteristics of the Eocene transgression at Gánt (Vértes Mts. Transdanubia, Hungary). *Acta Geologica Hungarica*, 28(1–2), 29–48.

#### 650 Carannante, G., Mindszenty, A., Neumann, A. C., Rasmussen, K. A., Simone, L. & Tóth,

**K.** 1994. Inland blue-hole-type ponds in the Mesozoic–Tertiary karst-filling sequences.

Abstracts, 15th IAS Regional Meeting, April, 1994, Ischia, Italy. 25–59.

- 653 Choi, S. J. 1989. Les Charophytes du Bassin Potassique Catalan (Nord-Est de l'Espagne) à la
  654 limite Eocène-Oligocène. *Paléobiologie continentale*, 26, 1–67.
- Dudich, E. & Kopek, G. 1982. Outlines of the Eocene paleogeography of the Bakony
   Mountains, Transdanubia, Hungary. *Földtani Közlöny (Bulletin of the Hungarian Geological Society*), 3–4, 417–431. [In Hungarian with English Abstract].

### Feist-Castel, M. 1970. Distribution verticale des Charophytes dans l'Eocène du Minervois. *Bulletin de la Société Géologique de France*, 12, 926–931.

Feist-Castel, M. 1971. Sur les Charophytes fossiles du Bassin tertiaire d'Alès (Gard). *Geobios*,
4, 157–172.

### Feist-Castel, M. 1972. Charophytes Eocène de la région montpelliéraine. *Paléobiologie Continentale*, 3, 1–22.

### Feist-Castel, M. 1975. Répartition des Charophytes dans le Paléocène et l'Eocène du bassin d'Aix-en-Provence. *Bulletin de la Société Géologique de France*, 17(7), 88–97.

Feist-Castel, M. 1976. Les charophytes dans le Paléocène du Sud de la France (Provence,
Languedoc, Aquitaine). Etude Systématique et biostratigraphique. Unpublished PhD

Page 31 of 103

| 1<br>2                            |     |                                                                                                   |
|-----------------------------------|-----|---------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                       | 668 | thesis, University of Montpellier II, Science and Technology, Languedoc. Article de               |
| 5<br>6<br>7<br>8<br>9<br>10<br>11 | 669 | synthèse, 82 p.                                                                                   |
|                                   | 670 | Feist-Castel, M. 1977a. Étude floristique et biostratigraphique des Charophytes dans les séries   |
|                                   | 671 | du Paléogène de Provence. Géologie Méditerranéenne, 4, 109–138.                                   |
| 12<br>13                          | 672 | Feist-Castel, M. 1977b. Evolution of the charophyte floras in the Upper Eocene and Lower          |
| 14<br>15                          | 673 | Oligocene of the Isle of Wight. Palaeontology, 20, 143–157.                                       |
| 16<br>17<br>18                    | 674 | Feist, M. & Ringeade, M. 1977. Étude biostratigraphique et paléobotanique (Charophytes) des       |
| 19<br>20                          | 675 | formations continentales d'Aquitaine de l'Eocène supérieur au Miocène inférieur.                  |
| 21<br>22                          | 676 | Bulletin de la Société géologique de France, 19, 341–354.                                         |
| 23<br>24<br>25                    | 677 | Fodor, L. 2007. Segment linkage and stress field in transtensional strike-slip fault array: Field |
| 25<br>26<br>27                    | 678 | examples from the Pannonian Basin. In: Cunningham, D.F. and Mann, P. (eds): Tectonics             |
| 28<br>29<br>30<br>31              | 679 | of strike-slip restraining and releasing bends. Geological Society, London, Special               |
|                                   | 680 | Publications, <b>290</b> , 482 pp.                                                                |
| 32<br>33<br>34                    | 681 | Gevin, P., Feist, M. & Mongereau, N. 1974. Découverte de charophytes d'âge Eocène au Glib         |
| 35<br>36                          | 682 | Zegdou (Sahara algérien). Bulletin de la Société d'Histoire naturelle d'Afrique du Nord,          |
| 37<br>38                          | 683 | <b>65</b> , 371–374.                                                                              |
| 39<br>40<br>41                    | 684 | Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge:          |
| 42<br>43                          | 685 | Cambridge University Press, 589 pp.                                                               |
| 44<br>45                          | 686 | Grambast, L. 1956. Le genre Gyrogona Lamarck (Characeae). Compte Rendu Sommaire des               |
| 46<br>47<br>48                    | 687 | Séances de la Société Géologique de France, 14, 278–280.                                          |
| 48<br>49<br>50                    | 688 | Grambast, L. 1957. Ornementation de la gyrogonite et systématique chez les charophytes            |
| 51<br>52                          | 689 | fossiles. <i>Revue générale de Botanique</i> , <b>64</b> , 339–362.                               |
| 53<br>54                          | 690 | Grambast, L. 1958. Etude sur les Charophytes tertiaires d'Europe Occidentale et leurs rapports    |
| 55<br>56<br>57<br>58<br>59<br>60  | 691 | avec les formes actuelles. Unpublished PhD thesis, University of Paris. 286 p.                    |

| 2                                |     |                                                                                                |
|----------------------------------|-----|------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                      | 692 | Grambast, L. 1959. Tendances évolutives dans le phylum des Charophytes. Comptes Rendus         |
| 5<br>6                           | 693 | des Séances de L'Académie des Sciences Paris, 249, 557–559.                                    |
| 7<br>8<br>0                      | 694 | Grambast, L. 1960. Description et signification stratigraphique de deux charophytes d'origine  |
| 9<br>10<br>11                    | 695 | saharienne. Revue de Micropaléontologie, 4, 192–198.                                           |
| 12<br>13                         | 696 | Grambast, L. 1962a. Sur l'intérêt stratigraphique des Charophytes fossiles: exemples           |
| 14<br>15                         | 697 | d'application au Tertiaire parisien. Comptes Rendus de la Société géologique de France,        |
| 16<br>17<br>18                   | 698 | 7, 207–209.                                                                                    |
| 19<br>20                         | 699 | Grambast, L. 1962b. Aperçu sur les Charophytes tertiaires du Languedoc et leur signification   |
| 21<br>22                         | 700 | stratigraphique. Comptes Rendus Sommaires des Séances de la Société Géologique de              |
| 23<br>24<br>25                   | 701 | France, <b>10</b> , 313–314.                                                                   |
| 25<br>26<br>27                   | 702 | Grambast, L. 1972. Principes de l'utilisation stratigraphique des charophytes. Applications au |
| 28<br>29                         | 703 | Paléogène d'Europe occidentale. Mémoire du Bureau de Recherches géologiques et                 |
| 30<br>31<br>32                   | 704 | minières, <b>77</b> , 319–328.                                                                 |
| 32<br>33<br>34                   | 705 | Grambast, L. 1974. Phylogeny of the Charophyta. Taxon 23, 463–481.                             |
| 35<br>36                         | 706 | Grambast, L. & Grambast, N. 1954. Sur la position systématique de quelques Charophytes         |
| 37<br>38                         | 707 | tertiaires. <i>Revue Générale de Botanique</i> , <b>61</b> , 665–671.                          |
| 39<br>40<br>41                   | 708 | Grambast, L. & Grambast, N. 1955. Les Raskyelloïdeae, sous-famille fossile des Characeae.      |
| 42<br>43                         | 709 | Compte Rendu de l'Académie des Sciences, Paris, 240, 999–1001.                                 |
| 44<br>45                         | 710 | Grambast, L. & Soulié-Märsche, I. 1972. Sur l'ancienneté et la diversification des Nitellopsis |
| 46<br>47<br>49                   | 711 | (Charophytes). Paléobiologie continentale, III(3), 1–14.                                       |
| 40<br>49<br>50                   | 712 | Grambast, L. & Grambast-Fessard, N. 1981. Etude sur les Charophytes tertiaires d'Europe        |
| 51<br>52                         | 713 | occidentale. III. Le genre Gyrogona. Paléobiologie continentale, 12(2), 1-35.                  |
| 53<br>54<br>55                   | 714 | Horn af Rantzien, H. 1959. Morphological types and organ-genera of Tertiary Charophyte         |
| 55<br>56<br>57<br>58<br>59<br>60 | 715 | fructifications. Stockholm Contributions in Geology, 4, 45–197.                                |

| 716 |                                                                                                                                                                                                                                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 717 |                                                                                                                                                                                                                                                                                                                                                 |
| 718 |                                                                                                                                                                                                                                                                                                                                                 |
| 719 |                                                                                                                                                                                                                                                                                                                                                 |
| 720 |                                                                                                                                                                                                                                                                                                                                                 |
| 721 |                                                                                                                                                                                                                                                                                                                                                 |
| 722 |                                                                                                                                                                                                                                                                                                                                                 |
| 723 |                                                                                                                                                                                                                                                                                                                                                 |
| 724 |                                                                                                                                                                                                                                                                                                                                                 |
| 725 |                                                                                                                                                                                                                                                                                                                                                 |
| 726 |                                                                                                                                                                                                                                                                                                                                                 |
| 727 |                                                                                                                                                                                                                                                                                                                                                 |
| 728 |                                                                                                                                                                                                                                                                                                                                                 |
| 729 |                                                                                                                                                                                                                                                                                                                                                 |
| 730 |                                                                                                                                                                                                                                                                                                                                                 |
| 731 |                                                                                                                                                                                                                                                                                                                                                 |
| 732 |                                                                                                                                                                                                                                                                                                                                                 |
| 732 |                                                                                                                                                                                                                                                                                                                                                 |
| 755 |                                                                                                                                                                                                                                                                                                                                                 |
| 754 |                                                                                                                                                                                                                                                                                                                                                 |
| 735 |                                                                                                                                                                                                                                                                                                                                                 |
| /36 |                                                                                                                                                                                                                                                                                                                                                 |
| 737 |                                                                                                                                                                                                                                                                                                                                                 |
| 738 |                                                                                                                                                                                                                                                                                                                                                 |
| 739 |                                                                                                                                                                                                                                                                                                                                                 |
| 740 |                                                                                                                                                                                                                                                                                                                                                 |
|     | <ul> <li>716</li> <li>717</li> <li>718</li> <li>719</li> <li>720</li> <li>721</li> <li>722</li> <li>723</li> <li>724</li> <li>725</li> <li>726</li> <li>727</li> <li>728</li> <li>729</li> <li>730</li> <li>731</li> <li>732</li> <li>733</li> <li>734</li> <li>735</li> <li>736</li> <li>737</li> <li>738</li> <li>739</li> <li>740</li> </ul> |

716 Hy, F. 1889. Sur les modes de ramifications et cortication dans la famille des Characées.
717 *Bulletin de la Société Botanique de France*, 36, 393–398.

- Iva, M. 1987. Quelques espèces de Charophytes lutétiens du Nord-Ouest de la Transylvanie.
  Pp. 43–48. *In* Petrescu, I., Ghergari, L., Mészáros, N. & Nicorici, E. (eds) *The Eocene from the Transylvanian Basin, Romania*. Babeş-Bolyai Univesity Cluj, Cluj-Napoca.
- Kázmér, M., Dunkl, I., Frisch, W., Ozsvárt, P. 2003. The Palaeogene forearc basin of the
   Eastern Alps and Western Carpathians: subduction erosion and basin evolution. *Journal of Geological Society, London*, 160, 413–428.
- Kopek, G. 1980. A Bakony hegység ÉK-i részének eocénje [L'Éocéne de la partie Nord orientale de la Montagne du Bakony (Transdanubie, Hongrie)]. *Magyar Állami Földtani Intézet Évkönyve [Annales Instituti Publici Geologiae Hungarici]*, 63(1), 7–132 [133–
   176]. [In Hungarian and French]
- 728 Lamarck, J. B. 1822. *Histoire Naturelle des Animaux Sans Vertèbres*. Paris, Verdière Editeur,
   729 711 pp.
- 730 Lindley, J. 1836. *A Natural System of Botany*, second ed. Longman, London, 526 pp.
- 731 Mädler, K. 1955. Zur Taxinomie der tertiären Charophyten. *Geologisches Jahrbuch*, 70, 265–
   732 328.
- 733 Martin, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In*:
   734 Farinaci, A., Ed., *Proceedings of the II Planktonic Conference*, v. 2, 739–785. Roma:
   735 Edizioni Tecnoscienza.
- <sup>99</sup> 736 Martín-Closas, C. & Schudack, M.E. 1991. Phylogenetic analysis and systematization of
   <sup>10</sup> 737 post-paleozoic Charophytes. *Bulletin de la Société Botanique de France*, 138. Actualités
   <sup>13</sup> botaniques 1, 53–71.
- 739 Martín-Closas, C. & Ramos, E. 2005. Palaeogene charophytes of the Balearic Islands (Spain).
   740 *Geologica Acta* 3, 39–58.

| 2              |  |
|----------------|--|
| 3              |  |
| 4              |  |
| 5              |  |
| 6              |  |
| 7              |  |
| ,<br>o         |  |
| 0              |  |
| 9              |  |
| 10             |  |
| 11             |  |
| 12             |  |
| 13             |  |
| 14             |  |
| 15             |  |
| 16             |  |
| 17             |  |
| 18             |  |
| 19             |  |
| 20             |  |
| 21             |  |
| 22             |  |
| 22             |  |
| 23             |  |
| 24             |  |
| 25             |  |
| 20             |  |
| 27             |  |
| 28             |  |
| 29             |  |
| 30             |  |
| 31             |  |
| 32             |  |
| 33             |  |
| 34             |  |
| 35             |  |
| 36             |  |
| 37             |  |
| 38             |  |
| 39             |  |
| 40             |  |
| 11             |  |
| 71<br>12       |  |
| -ד∠<br>גע      |  |
| <del>د ب</del> |  |
| 44             |  |
| 45             |  |
| 46             |  |
| 47             |  |
| 48             |  |
| 49             |  |
| 50             |  |
| 51             |  |
| 52             |  |
| 53             |  |
| 54             |  |
| 55             |  |
| 56             |  |
| 57             |  |
| 58             |  |
| 50             |  |
| 59             |  |

Martín-Closas, C., Serra-Kiel, J., Busquets, P. & Ramos-Guerrero, E. 1999a. New
 correlation between charophyte and larger foraminifera biozones (Middle Eocene,
 southeastern Pyrene es). *Geobios*, 32, 5–18.

Martín-Closas, C., Bosch-Casadevall, R., Serra-Kiel, J. 1999b. Biomechanics and evolution
of spiralization in charophyte fructifications. *In*: Kurmann M.H. & Hemsley A.R. (eds.).
The evolution of plant architecture. London, Royal Botanic Gardens Kew. p. 399-421.

- 747 Mebrouk, F., Mahboubi, M., Bessedik, M. & Feist, M. 1997. L'apport des charophytes à la
  748 stratigraphie des formations continentales Paléogènes de l'Algérie. *Geobios*, 30, 171–
  749 177.
  - Megerisi, M. F. & Mamgain, V. D. 1980. The Upper Cretaceous-Tertiary Formations of
    northern Libya: a synthesis. *Department of Geological Researches and Mining Bulletin*,
    12, 1–85.

## Migula, W. 1897. Die Characeen Deutschlands, Österreichs und der Schweiz. *In* Rabenhorst, L. (ed.), *Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. Zweite Auflage, Fünfter Band, Part 12.* Eduard Kummer, Leipzig, 765 pp.

756 Mindszenty, A. 2010. Bauxite deposits of Gánt (Vértes Hills, Hungary). Acta Mineralogica 757 Petrographica, Field Guide Series, 11, 1–11.

Nötzold, T. 1965. Die Präparation von Gyrogoniten und kalkigen Charophyten-Oogonien aus
 festen Kalksteinen. *Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin*, 7, 216–221.

Ollivier-Pierre, M. F., Riveline, J., Lautridou, J. P. & Cavelier, C. 1988. Le fossé de Céaucé
(Orne) et les bassins ludiens (Eocène supérieur) de la partie orientale du Massif
armoricain: sédimentologie, paléontologie. Intérêt stratigraphique, paléogéographique et
tectonique. *Géologie de France*, 1, 51–60.

| 2<br>3         | 765 | Pálfalvi, S., Fodor, L. Kercsmár, Z., Báldi-Beke, M., Kollánvi, K. & Less, G. Y. 2006.        |
|----------------|-----|-----------------------------------------------------------------------------------------------|
| 4<br>5         |     |                                                                                               |
| 6              | 766 | Sedimentation pattern, tectonic control, and basin evolution of the northern                  |
| /<br>8<br>9    | 767 | Transdanubian Eocene basins (Vértes Hills, central Hungary). Geophysical Research             |
| 10<br>11       | 768 | Abstracts, <b>8</b> , 08384.                                                                  |
| 12<br>13       | 769 | Pálfalvi, S. 2007. Reconstruction of Eocene depositional environments in the Vértes Hills,    |
| 14<br>15<br>16 | 770 | based on microfacies analysis. Unpublished PhD thesis, University of Budapest,                |
| 17<br>18       | 771 | Budapest, 150 pp.                                                                             |
| 19<br>20       | 772 | Pia, J. 1927. Charophyta. In Hirmer, M. (ed.), Handbuch der Paläobotanik, 1. R. Oldenbourg    |
| 21<br>22       | 773 | Druck und Verlag, München-Berlin, 708 pp.                                                     |
| 23<br>24<br>25 | 774 | Rásky, K. 1945. Fossile Charophyten-Früchte aus Ungarn. Budapest, Verlag des Ungarischen      |
| 26<br>27       | 775 | Naturwissenschaftlichen Museums, 75 pp.                                                       |
| 28<br>29       | 776 | Reid, C. & Groves, J. 1921. The Charophyta of the Lower Headon Beds of Hordle (Hordwell)      |
| 30<br>31<br>32 | 777 | Cliffs (South Hampshire). Quarterly Journal of the Geological Society of London, 77,          |
| 32<br>33<br>34 | 778 | 175–192.                                                                                      |
| 35<br>36       | 779 | Riveline, J. 1984. Les gisements à charophytes du Cénozoïque (Danien à Burdigalien)           |
| 37<br>38       | 780 | d'Europe occidentale: Lithostratigraphie, Biostratigraphie, chronostratigraphie. Bulletin     |
| 39<br>40<br>41 | 781 | d'Information des Géologues du Bassin de Paris, 4, 583 pp.                                    |
| 42<br>43       | 782 | Riveline, J. 1986. Les charophytes du Paléogène et du Miocène inférieur d'Europe occidentale. |
| 44<br>45       | 783 | Cahiers de Paléontologie (édition du C.N.R.S), 227 pp.                                        |
| 46<br>47<br>48 | 784 | Riveline, J. & Cavelier, C. 1987. Les charophytes du passage Eocene moyen-Eocene superieur    |
| 49<br>50       | 785 | en Europe occidentale; implications stratigraphiques. Bulletin de la Société Géologique       |
| 51<br>52       | 786 | <i>de France</i> , <b>III</b> (2), 307–315.                                                   |
| 53<br>54       | 787 | Riveline, J, Berger J. P., Bilan W, Feist, M., Martín-Closas, C., Schudack, M. E. & Soulié-   |
| 55<br>56<br>57 | 788 | Märsche, I. 1996. European Mesozoic-Cenozoic Charophyte Biozonation. Bulletin de la           |
| 58<br>59<br>60 | 789 | Société Géologique de France, 167, 453–468.                                                   |
| 2           |  |
|-------------|--|
| 2           |  |
| 1           |  |
| 4           |  |
| 5           |  |
| 6           |  |
| 7           |  |
| 8           |  |
| 9           |  |
| 10          |  |
| 11          |  |
| 11          |  |
| 12          |  |
| 13          |  |
| 14          |  |
| 15          |  |
| 16          |  |
| 17          |  |
| 10          |  |
| 10          |  |
| 19          |  |
| 20          |  |
| 21          |  |
| 22          |  |
| 23          |  |
| 24          |  |
| 25          |  |
| 25          |  |
| 20          |  |
| 27          |  |
| 28          |  |
| 29          |  |
| 30          |  |
| 31          |  |
| 32          |  |
| 22          |  |
| 22          |  |
| 34          |  |
| 35          |  |
| 36          |  |
| 37          |  |
| 38          |  |
| 39          |  |
| 10          |  |
| -10<br>/1 1 |  |
| 41          |  |
| 42          |  |
| 43          |  |
| 44          |  |
| 45          |  |
| 46          |  |
| 47          |  |
| 48          |  |
| ⊿0          |  |
| 77<br>50    |  |
| 50          |  |
| 51          |  |
| 52          |  |
| 53          |  |
| 54          |  |
| 55          |  |
| 56          |  |
| 50          |  |
| 5/          |  |
| 58          |  |
| 59          |  |
| 60          |  |

Sanjuan, J. & Martín-Closas, C. 2012. Charophyte palaeoecology in the Upper Eocene of the
 Eastern Ebro basin (Catalonia, Spain). Biostratigraphic implications. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 365–366, 247–262.

Sanjuan, J. & Martín-Closas, C. 2014. Taxonomy and palaeobiogeography of charophytes
from the Upper Eocene–Lower Oligocene of the Eastern Ebro Basin (Catalonia, NE
Spain). *Geodiversitas*, 36, 385–420.

- Sanjuan, J., Martín-Closas, C., Costa, E., Barberà, X. & Garcés, M. 2014. Calibration of
   Eocene-Oligocene charophyte biozones in the eastern Ebro Basin (Catalonia, Spain).
   Stratigraphy, 11, 61–81.
- Schudack, M. E. 1993. Die Charophyten im Oberjura und Unterkreide Westeuropas. Mit einer
   phylogenetischen Analyse der Gesamtgruppe. *Berliner Geowissenschaftliche Abhandlungen, Reihe A*, 8, 1–209.
- Sille, N. P., Collinson, M. E., Kucera, M. & Hooker, J. J. 2004. Evolution within the
  charophyte genus *Harrisichara*, late Paleogene, southern England; environmental and
  biostratigraphic implications. *Palaeogeography Palaeoclimatology Palaeoecolgy*, 208,
  153–173.
- 806 Smith, G. M. 1938. *Cryptogamic Botany Volume 1, Algae and Fungi*. McGraw Hill, New York,
  807 547 pp. [Class Charophyceae, p. 127].
- 808 Szőts, E. 1938. A móri Antalhegy óharmadkori képződményei [Early Tertiary formations of
   809 Antalhegy at Mór, Hungary]. PhD thesis, Supplement to Földtani Szemle, Budapest, 42
   810 pp. [Published thesis, in Hungarian].
- 811 Soulié-Märsche, I. 1971. Description de nouvelles Charophytes éocènes. *Bulletin de la Société* d'Histoire naturelle de Toulouse, 107(1–2), 18–27.

| -<br>3<br>4    | 813 |
|----------------|-----|
| 5<br>6         | 814 |
| 7<br>8         | 815 |
| 9<br>10<br>11  | 816 |
| 12<br>13       | 817 |
| 14<br>15       | 818 |
| 16<br>17<br>19 | 819 |
| 19<br>20       | 820 |
| 21<br>22       | 821 |
| 23<br>24       | 822 |
| 25<br>26<br>27 | 823 |
| 28<br>29       | 824 |
| 30<br>31       | 825 |
| 32<br>33<br>34 | 826 |
| 35<br>36       | 827 |
| 37<br>38       | 828 |
| 39<br>40<br>41 | 829 |
| 41<br>42<br>43 | 830 |
| 44<br>45       | 831 |
| 46<br>47<br>48 | 832 |
| 40<br>49<br>50 | 833 |
| 51<br>52       | 834 |
| 53<br>54<br>55 | 835 |
| 55<br>56<br>57 | 836 |
| 58<br>59<br>60 |     |

Soulié-Märsche, I. 1974. Nouvelles espèces de Charophytes éocènes du Bassin d'Aquitaine. 813 814 Compte Rendu 96ème Congrès national Sociétés Savantes Toulouse, 1971, section *Science Paris*, **2**, 109–144. 815

Trabelsi, K., Touir, J., Soulié-Märsche, I., Martín-Closas, C., Soussi, M. & Colin, J. P. 816 2010. Découverte des charophytes de l'Albien dans la Formation Kebar (Tunisie 817 centrale): implications paléoécologiques et paléobiogéographiques. Annales de 818 Paléontologie, 96, 117–133. 819

Trabelsi, K., Soussi, M., Touir, J., Houla, Yassine, Abbes, C. & Martin-Closas, C. 2016. 820 Charophytes biostratigraphy of the nonmarine Lower Cretaceous in the Central Tunisian 821 822 Atlas (North Africa). Paleobiogeographic implications. Cretaceous Research, 67, 66–83. Vaillant, S. 1719. Charactères de quatorze genres de plantes. Mémoires de l'Académie royale 823

des Sciences de Paris pour 1719, 17–20. 824

Vianey-Liaud, M., Jaeger, J.-J., Hartenberger, J.-L. & Mahboubi, M. 1994. Les rongeurs 825 de l'Eocène d'Afrique nord-occidental [Glib Zegdou (Algérie) et Chambi (Tunisie)] et 826 l'origine des Anomaluridae. Palaeovertebrata, 23, 93-118. 827

Vicente, A. & Martín-Closas, C. 2018. Gradualistic characean lineages in the Upper 828 Cretaceous–Palaeocene of southern Europe. *Historical Biology*, **30**(5), 593–607. 829

Weidmann, M., Franzen, E. & Berger, J. P. 1991. Sur l'âge des Couches à Cérithes ou 830 Couches des Diablerets de l'Eocène alpin. Eclogae Geologicae Helvetiae, 84(3), 893-831 919. 832

Willey E. O. 1981. Phylogenetics. John Wiley and Sons, New York. 833

**Figure Captions** 835

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| /<br>Q   |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 20       |  |
| 27<br>20 |  |
| 20       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |
|          |  |

| 837 | Figure 1. A, geographical and geological setting of the study area (after Fodor 2007). B,       |
|-----|-------------------------------------------------------------------------------------------------|
| 838 | panoramic view of the studied Gánt section at the Vértes Hills (north-western Hungary).         |
| 839 |                                                                                                 |
| 840 | Figure 2. Distribution of the charophytes species in the bauxite cover-sequence of the studied  |
| 841 | Gánt section (Vértes Hills, Hungary), according to Bignot et al. (1985), updated for            |
| 842 | charophyte content.                                                                             |
| 843 |                                                                                                 |
| 844 | Figure 3. Raskyella peckii gyrogonites from the Gánt bauxite cover-sequence. A–H,               |
| 845 | Raskyella pecki var. peckii (samples G-2.2, G-2.3, G-2.4, and G-2.5), HNHM-PBO 1501–            |
| 846 | 1508. A-E, lateral view; F-G, apical view; H, basal view. I-P, Raskyella peckii var.            |
| 847 | caliciformis (samples G-2.5 and G-6a), HNHM-PBO 1509–1516. I-K, lateral view; L, lateral        |
| 848 | view of gyrogonite partially broken showing internal cast. M, internal cast with well-          |
| 849 | developed undulations. N–O, apical view; P, basal view.                                         |
| 850 |                                                                                                 |
| 851 | Figure 4. Frequency distribution of the height (A), width (B), number of convolutions (C),      |
| 852 | and height/width ratio (ISI) (D) of the Raskyella peckii var. peckii population (50 gyrogonites |
| 853 | measured), from samples G-2.2, G-2.3, and G-2.4 in the bauxite cover-sequence of the Gánt       |
| 854 | section.                                                                                        |
| 855 |                                                                                                 |
| 856 | Figure 5. Frequency distribution of the height (A), width (B), number of convolutions (C),      |
| 857 | and height/width ratio (ISI) (D) of the Raskyella peckii var. caliciformis population (50       |
| 858 | gyrogonites measured), from sample G-2.5 in the bauxite cover-sequence of the Gánt section.     |

| 859 |                                                                                                                                                                                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 860 | Figure 6. <i>Raskyella peckii vadaszii</i> gyrogonites from the Gánt bauxite cover-sequence (A–S,                                                                                                                                                                                           |
| 861 | samples G-6a and G-6b, HNHM-PBO 1517–1534). A–K, lateral view. L–P, apical view; Q,                                                                                                                                                                                                         |
| 862 | basal view; <b>R–S</b> , inside wall of a gyrogonite showing the crenate undulation of the cellular                                                                                                                                                                                         |
| 863 | sutures in contact with the spiral cells and the apical cells.                                                                                                                                                                                                                              |
| 864 |                                                                                                                                                                                                                                                                                             |
| 865 | Figure 7. Frequency distribution of the height (A), width (B), number of convolutions (C),                                                                                                                                                                                                  |
| 866 | and height/width ratio (ISI) (D) of the Raskyella peckii var. vadaszii population (50                                                                                                                                                                                                       |
| 867 | gyrogonites measured), from samples G-6a and G-6b in the bauxite cover-sequence of the                                                                                                                                                                                                      |
| 868 | Gánt section.                                                                                                                                                                                                                                                                               |
| 869 |                                                                                                                                                                                                                                                                                             |
| 870 | Figure 8. Gyrogona caelata gyrogonites from the Gánt bauxite cover-sequence. A–G,                                                                                                                                                                                                           |
| 871 | Gyrogona caelata forma caelata (samples G-2.2, G-2.3, G-2.4, and G-2.5), HNHM-PBO                                                                                                                                                                                                           |
| 872 | 1535–1553. A–B, D–E, basal view C, detail of the ornamentation pattern; F, basal view; G,                                                                                                                                                                                                   |
| 873 | apical view. H-K, Gyrogona caelata forma bicincta (samples G-6a and G-6b). H, lateral                                                                                                                                                                                                       |
| 874 | view; I, detail of the ornamentation pattern; J-K, apical view. L-M, Gyrogona caelata forma                                                                                                                                                                                                 |
| 875 | monolifera (samples G-2.2, G-2.3, G-2.4, and G-2.5). L, lateral view; M, basal view. N-Q,                                                                                                                                                                                                   |
| 876 | <i>Gyrogona caelata</i> forma <i>baccata</i> (samples G-2.5, G-6a, and G-6b). N–O, lateral view; P,                                                                                                                                                                                         |
| 877 | basal view; <b>Q</b> , apical view. <b>R–V</b> , <i>Gyrogona caelata</i> forma <i>fasciata</i> (samples G-6a and G-6b).                                                                                                                                                                     |
| 878 | <b>R</b> , lateral view; <b>S</b> – <b>T</b> , apical view; <b>U</b> – <b>V</b> , detail of the simple (unipartite) basal plate.                                                                                                                                                            |
| 879 |                                                                                                                                                                                                                                                                                             |
| 880 | Figure 9. Frequency distribution of the height (A), width (B), number of convolutions (C),                                                                                                                                                                                                  |
| 881 | and height/width ratio (ISI) (D) of the Gyrogona caelata population (50 gyrogonites                                                                                                                                                                                                         |
|     | <ul> <li>859</li> <li>860</li> <li>861</li> <li>862</li> <li>863</li> <li>866</li> <li>867</li> <li>868</li> <li>869</li> <li>870</li> <li>871</li> <li>872</li> <li>873</li> <li>874</li> <li>875</li> <li>876</li> <li>877</li> <li>878</li> <li>879</li> <li>880</li> <li>881</li> </ul> |

URL: http://mc.manuscriptcentral.com/tjsp

measured), from samples G-2.2, G-2.3, G-2.4, G-2.5, and G-6a in the bauxite cover-sequence

| 2<br>3<br>4          | 882 |
|----------------------|-----|
| 5<br>6               | 883 |
| 7<br>8<br>9<br>10    | 884 |
| 10<br>11<br>12       | 885 |
| 13<br>14<br>15       | 886 |
| 16<br>17<br>18       | 887 |
| 19<br>20<br>21       | 888 |
| 22<br>23             | 889 |
| 24<br>25<br>26       | 890 |
| 20<br>27<br>28       | 891 |
| 29<br>30             | 892 |
| 31<br>32<br>33       | 893 |
| 34<br>35<br>36       | 894 |
| 37<br>38<br>39       | 895 |
| 40<br>41             | 896 |
| 42<br>43             | 897 |
| 44<br>45<br>46<br>47 | 898 |
| 48<br>49             | 899 |
| 50<br>51<br>52       | 900 |
| 53<br>54             | 901 |
| 55<br>56             | 902 |
| 57<br>58<br>59<br>60 | 903 |

1

of the Gánt section.

| 884 |                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 885 | Figure 10. Gyrogona tuberosa gyrogonites from the Gánt bauxite cover-sequence (sample G-                          |
| 886 | 6b), HNHM-PBO 1554–1563. A–G, lateral view; H, apical view; I–J, basal view.                                      |
| 887 |                                                                                                                   |
| 888 | Figure 11. Gyrogonites of genera Psilochara and Nitellopsis from the Gánt bauxite cover-                          |
| 889 | sequence. A-F, Psilochara polita (sample G-6a), HNHM-PBO 1564–1569. A-C, lateral                                  |
| 890 | view; <b>D–E</b> , apical view; <b>F</b> , basal view. <b>G–I</b> , <i>Psilochara</i> sp. (sample G-6a), HNHM-PBO |
| 891 | 1570–1571. G, lateral view; H, apical view; I, internal view showing simple (unipartite) basal                    |
| 892 | plate (arrowed). J-N, Nitellopsis (Tectochara) aff. palaeohungarica (samples G-2.3 and G-                         |
| 893 | 2.5), HNHM-PBO 1572–1576. J–L, lateral view; M, apical view; N, basal view.                                       |
| 894 |                                                                                                                   |
| 895 | Figure 12. Frequency distribution of the height (A), width (B), number of convolutions (C),                       |
| 896 | and height /width ratio (ISI) (D) of the Psilochara polita population (50 gyrogonites                             |
| 897 | measured), from sample G-6a in the bauxite cover-sequence of the Gánt section.                                    |
| 898 |                                                                                                                   |
| 899 | Figure 13. Frequency distribution of the height (A), width (B), number of convolutions (C),                       |
| 900 | and height /width ratio (ISI) (D) of the Nitellopsis (Tectochara) aff. palaeohungarica                            |
| 901 | population (50 gyrogonites measured), from samples G-2.3 and G-2.5 in the bauxite cover-                          |
| 902 | sequence of the Gánt section.                                                                                     |
| 903 |                                                                                                                   |

| 2                                                                          |     |                                                                                             |
|----------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|
| 3<br>4                                                                     | 904 | Figure 14. Chara gyrogonites from the Gánt bauxite cover-sequence. A–I, Chara media         |
| 5<br>6                                                                     | 905 | (samples G-2.5 and G-6a), HNHM-PBO 1577–1585. A–G, lateral view; H, apical view; I,         |
| /<br>8<br>9                                                                | 906 | basal view. J-O, Chara subcylindrica (sample G-6b), HNHM-PBO 1586–1591. J-M, lateral        |
| )<br>10<br>11                                                              | 907 | view; N, apical view; O, basal view.                                                        |
| 12<br>13<br>14<br>15                                                       | 908 |                                                                                             |
| 16<br>17                                                                   | 909 | Figure 15. Frequency distribution of the height (A), width (B), number of convolutions (C), |
| 18<br>19                                                                   | 910 | and height /width ratio (ISI) (D) of the Chara media population (50 gyrogonites measured),  |
| 20<br>21<br>22                                                             | 911 | from samples G-2.5 and G-6a in the bauxite cover-sequence of the Gánt section.              |
| 23<br>24<br>25<br>26                                                       | 912 |                                                                                             |
| 20<br>27<br>28                                                             | 913 | Figure 16. Frequency distribution of the height (A), width (B), number of convolutions (C), |
| 29<br>30                                                                   | 914 | and height/width ratio (ISI) (D) of the Chara subcylindrica population (50 gyrogonites      |
| 31<br>32<br>33                                                             | 915 | measured), from sample G-6b in the bauxite cover-sequence of the Gánt section.              |
| 34<br>35<br>36                                                             | 916 |                                                                                             |
| 37<br>38<br>39                                                             | 917 | Figure 17. Stratigraphic distribution of variants of the anagenetic lineage of the species  |
| 40<br>41<br>42                                                             | 918 | Raskyella peckii.                                                                           |
| 43<br>44<br>45                                                             | 919 |                                                                                             |
| 46<br>47                                                                   | 920 | Figure 18. Charophyte Biostratigraphy, age and correlation of the bauxite cover-sequence of |
| 48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 921 | the Gánt section.                                                                           |

| 2          |  |
|------------|--|
| 2          |  |
| 3          |  |
|            |  |
| 4          |  |
| 5          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| /          |  |
| 8          |  |
| 0          |  |
| 9          |  |
| 10         |  |
|            |  |
| 11         |  |
| 12         |  |
| 12         |  |
| 13         |  |
| 1/         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 10         |  |
| 17         |  |
| 10         |  |
| ١ð         |  |
| 19         |  |
| 20         |  |
| 20         |  |
| 21         |  |
| ~ `        |  |
| 22         |  |
| 23         |  |
| ~ )        |  |
| 24         |  |
| 25         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 27         |  |
| 28         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 50         |  |
| 31         |  |
| 22         |  |
| 52         |  |
| 33         |  |
| 24         |  |
| 54         |  |
| 35         |  |
| 20         |  |
| 30         |  |
| 37         |  |
| 20         |  |
| 38         |  |
| 30         |  |
|            |  |
| 40         |  |
| <b>∆</b> 1 |  |
| 71         |  |
| 42         |  |
| ⊿२         |  |
| -J         |  |
| 44         |  |
| 15         |  |
| 40         |  |
| 46         |  |
| 47         |  |
| 4/         |  |
| 48         |  |
|            |  |
| 49         |  |
| 50         |  |
|            |  |
| 51         |  |
| 52         |  |
| 52         |  |
| 53         |  |
| 51         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 20         |  |
| 57         |  |
| EO         |  |
| 28         |  |
| 59         |  |
|            |  |
| 60         |  |

1

2

3

4

5

6

7

8

9

10

11

17

18

19

20

21

22

# A new diverse charophyte flora and biozonation of the Eocene bauxite cover-sequence at Gánt (Vértes Hills, Hungary)

Khaled Trabelsi<sup>1,2,3</sup>Trabelsi<sup>a,b,c\*</sup>, Benjamin Sames<sup>3,4</sup>Sames<sup>c,d</sup>, Michael Wagreich<sup>3</sup>Wagreich<sup>c</sup>,

Miklós Kázmér<sup>s</sup>Kázmér<sup>e</sup>, Andrea Mindszenty<sup>6</sup>Mindszenty<sup>f</sup>, Carles Martín-Closas<sup>7</sup>Closas<sup>8</sup> <sup>1</sup>Université<sup>a</sup>Université de Sfax, Faculté des Sciences de Sfax, CP <u>30383000</u>, Sfax, Tunisie; <sup>2</sup>Université<sup>b</sup>Université de Tunis El Manar II, Faculté des Sciences de Tunis, LR18 ES07, C.P. 2092, Tunis, Tunisie; <sup>3</sup>Department<sup>e</sup>Department of Geology, University of Vienna, UZA 2, Althanstrasse 14, 1090

Vienna, Austria; <sup>4</sup>Sam<sup>d</sup>Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave,

12 Norman, OK 73072, USA; <sup>5</sup>Department<sup>e</sup>Department of Palaeontology & MTA-ELTE

13 Geological, Geophysical and Space Science Research Group, Eötvös Loránd University,

14 Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; <sup>6</sup>Department Department of Physical

15 and Applied Geology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest,

16 *Hungary*; <sup>7</sup>Departament<sup>g</sup>Departament de Dinàmica de la Terra i de l'Oceà, Institut de

Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona-UB, 08028 Barcelona, Catalonia, Spain.

23 \* Corresponding author, e-mail: <u>trabkhalfss@yahoo.fr</u>(Khaled Trabelsi)

A largely new and A diverse Eocene charophyte flora from a section at Gánt (Vértes Hills), Transdanubian Central Range, north-western Hungary, provides significant new information to previous studies only based on subsurface data published from the mid-20th Century. The century. This newly acquired material facilitates the taxonomic study of this flora allows revision and emendation of the species Raskyella peckii facilitates the definition of and thereby defines a new evolutionary anagenetic lineage based on three successive anagenetic varieties of this species which were formerly considered as separate species or subspecies: Raskyella peckii var. peckii (early Lutetian-early Bartonian), Raskvella peckii var. caliciformis (early Bartonian), and Raskvella peckii var. vadaszii (late Bartonian). Based on these this lineage, we propose a new local charophyte biozonation with the new that consists of a 'Raskyella peckii Superzone Superzone' (Lutetian-Bartonian), subdivided into three successive charophyte partial range zones: The 'Raskyella peckii peckii Zone' (Lutetian-lowermost Bartonian) is locally characterized by an assemblage of *R. peckii peckii*, *Gyrogona caelata* forma *caelata*, *G.* caelata forma monolifera and Nitellopsis (Tectochara) aff. palaeohungarica. The, the 'Raskyella peckii caliciformis Zone' (lower Bartonian) includes characterized by the local assemblage of R. peckii var. caliciformis, G. caelata forma caelata, G. caelata forma monolifera, G. caelata forma baccata, Nitellopsis (Tectochara) aff. palaeohungarica and Chara media. The, and the 'Raskyella peckii vadaszii Zone' (upper Bartonian) is composed of the local assemblage of characterized by R. peckii var. vadaszii, G. caelata forma bicincta, G. caelata forma baccata, G. caelata forma fasciata, G. tuberosa, Psilochara polita, Psilochara sp., Chara media and Chara subcylindrica. Future research may show the new local biozonation as applicable to the whole of Europe and complementing complementary to the current European charophyte biozonation. Our results show that the sequences from Gánt, which were previously regarded as upper mid-Eocene (upper Lutetian-lower Bartonian) in age, 

appear to compriserepresent a longer timechronostratigraphic interval, i.e.: lower Lutetian tillto
upper Bartonian, with also has implications on the understanding of the regional stratigraphy

50 of. Our chronostratigraphic results imply a longer and more stepwise Eocene major

51 <u>transgression in</u> the Transdanubian Central Range <u>during the Eocenethan previously thought</u>.

53 Keywords: Characeae, Raskyellaceae, biozonation, evolutionary lineagephylozone,
 54 gradualistic evolution, Paleogene, Central Europe.

or peries

56 Introduction

Charophytes represent one of the most useful tools in the biostratigraphic analysis of Cenozoic non-marine deposits worldwide. During the Eocene, charophytes have been the object of significant taxonomic, biostratigraphic, palaeoecological and palaeobiogeographic interest, particularly in South European basins from France and Spain (Grambast 1958, 1962a, 1972a1972; Feist-Castel 1970, 1972, 1975, 1977a; Feist & Ringeade 1977; Anadón & Feist 1981; Riveline 1986; Anadón et al. 1992; Sanjuan & Martín-Closas 2012;). As a result, a European Charophyte Biozonation based largely on these basins was proposed by Riveline et al. (1996). For the Eocene, up to 11 charophyte biozones were defined based mainly on data from Western Europe. This biozonation has been updated since then, e.g., by Sanjuan et al. (2014).) for the upper Eocene. In contrast, the Eocene charophyte flora from Central and Eastern Europe is relatively less well-poorly known; and in the case of Hungary, the pioneer 

study by Rásky (1945) based on subsurface data is practically the only known. With the aimone available. This author described for the first time a species-rich charophyte flora from Hungary, at a time when charophyte taxonomy was still at an early stage. She had already assigned the flora studied in this area to the middle Eocene, and her work was the basis for future studies in charophyte taxonomy, including the definition of updating thethe new family Raskyellaceae by Grambast & Grambast (1954). Later, Bignot et al. (1985), based on an exhaustive palaeontological study of the Gánt section including molluscs, foraminifers, ostracods, palynomorphs and charophytes, assigned the bauxite cover-sequence to the Upper Lutetian or Bartonian, respectively. 

This study aims to update the compendium of knowledge on Eocene Hungarian and Central
 European charophytes, the present study providesproviding a taxonomic revision of this flora
 from the respective flora that is based on surface samples of sections at the Gánt locality-based
 on an outcropping section, as well as a discussion onregarding its significance for
 biostratigraphic purposes significance and utility.

# 

## 84 Geological setting

Within the Transdanubian Central Range (TCR), several bauxite deposits that developed duringacross the Cretaceous–Early Tertiary boundary <u>interval</u> are well known <u>for their</u> industrial use as economically exploited ores<u>sources</u> of aluminium, from which ore; and among these, the famous karst bauxite of the Vértes Hills from the Gánt locality,– (north-western Hungary–stands–out. Above) is a prominent example. Strata overlying the bauxite, the succession represents represent the sedimentary record of progressive subcrustal erosion along

the East Alpine-West Carpathian forearc basin (Kázmér et al. 2003). The bauxite represents the base of the Eocene charophyte-bearing strata studied hereininvestigated in this study (Fig. 1). The Eocene succession sampled shows a remarkable lateral and vertical change of sedimentary facies (Pálfalvi et al. 2006; Pálfalvi 2007) that has been attributed to tectonic controlforces acting on the sedimentationsedimentary body (Fodor 2007). The development of the postbauxite deposits occurred under dualwas lain down during oscillation of the groundwater table and the marine relative custatic sea level variations (Carannante et al. 1994; Mindszenty 2010), occurring before the region was invaded flooded by an opena marine incursion during the late Bartonian (Bignot et al. 1985). At the Gánt section, the bauxite cover-sequence vertically shows five stratigraphic units of in a vertical orientation dating from the middle Eocene age (Fig. 2), called 'Packets' in the sense of Bignot et al. (1985), from ). 'Packet 1', about 1.5 m thick, corresponds to the bauxite itself, which only units 2 and 3 are studied herein.unconformably overlies Triassic dolomites. 'Packet 2', <u>1.5–2 m in thickness</u>, forms the 'blue-hole' freshwater limestone facies (Carannante et al. 1994; Pálfalvi 2007), while) alternating with clays, rich in charophytes, ostracods and gastropods. 'Packet 3', ca. 6.5 m thick, includes alternating sandy clay, coal and fresh- to brackish water limestone, rich in charophytes, ostracods, molluscs and large benthic foraminifera (Bignot et al. 1985). In the latter facies charophytes 1985). 'Packet 4' is ca. 12 m thick and is mainly dominated by shallow marine limestone, rich in nummulites, miliolids, molluses and ostracods. Finally, 'Packet 5' is *ca*. 6m thick and displays an alternation of shallow 

marine marl and limestone, rich in Nummulites and Orbitolites. 'Packets' 2 and 3 were sampled-

for charophytes and are studied here. 

------Figures 1, 2 near here------

# 117 Material and methods

Intensive sampling for charophytes during two consecutive field workswork sessions in 2018 and 2019 has been was carried out on the cover sequence of the bauxite at Gánt (Vértes Hills, Hungary). Moderately-preserved to well-preserved gyrogonites were recovered from marly limestone to hard limestone using acetolysis. This method, first applied by Nötzold (1965) to the study of charophytes, has been recently improved by Trabelsi et al. (2010, 2016) and shown to be very effective in recovering well preserved charophyte fructifications and thalli from consolidated carbonate rocks. It consists in taking of soaking the sample of hard calcareous rock, perfectly dried and mechanically comminuted ininto fragments of about 1-3 mm across-and adding similar, in equal amounts of anhydrous acetic acid and anhydrous copper sulfatesulphate (acid attacks in an exothermic reaction reacts exothermically). After neutralization by ammonia, the residue is treated with ultra-sound, then washed and rinsed. Gyrogonites were measured using the software Motic Images Plus 2.0 ML with a Motic BA310 stereomicroscope in the Departament de Dinàmica de la Terra i de l'Oceà (University of Barcelona, Catalonia, Spain). Scanning electron microscopy on gold-sputtered selected specimens was conducted with a Jeol JEOL JSM-6400 device at the Faculty of Earth Sciences, Geography and Astronomy, University of Vienna (Austria) and with a Quanta 200 device at the Centres Científics i Tecnològics of the University of Barcelona (CCiTUB), Spain.). The studied materials are housed in the Hungarian Natural History Museum (Budapest, Hungary), Botanical Department, Palaeobotanical Collection. The figured specimens are deposited under the inventory numbers: HNHM-PBO xxxx-yyyyy1501–1591. 

# 140 Systematic palaeontology

| 2        |   |
|----------|---|
| 3        | ŀ |
| 4        |   |
| 5        |   |
| 7        |   |
| 8        |   |
| 9        |   |
| 10       | - |
| 12       |   |
| 13       |   |
| 14       | - |
| 15       |   |
| 10       |   |
| 18       |   |
| 19       |   |
| 20<br>21 | - |
| 22       |   |
| 23       |   |
| 24       |   |
| 25<br>26 |   |
| 27       |   |
| 28       | L |
| 29<br>30 | - |
| 31       |   |
| 32       |   |
| 33       |   |
| 34<br>35 |   |
| 36       |   |
| 37       |   |
| 38       | • |
| 39<br>40 |   |
| 41       |   |
| 42       |   |
| 43<br>11 |   |
| 45       |   |
| 46       |   |
| 47<br>40 | - |
| 48<br>49 |   |
| 50       | - |
| 51       | ŀ |
| 52       |   |
| 53<br>54 |   |
| 55       |   |
| 56       |   |
| 57<br>58 |   |
| 59       |   |
| 60       |   |
|          |   |
|          |   |

| 141 | The charophyte flora from the bauxite cover sequence at Gánt (Vértes Hills, Hungary) studied    |
|-----|-------------------------------------------------------------------------------------------------|
| 142 | here yields gyrogonites from two families: Raskyellaceae and Characeae. The different           |
| 143 | charophyte species described below are stratigraphically distributed in the section as shown in |
| 144 | the Fig. 2.                                                                                     |
| 145 |                                                                                                 |
| 146 | Division Charophyta Migula, 1897                                                                |
| 147 | Class Charophyceae G. M. Smith, 1938 emend. Schudack, 1993                                      |
| 148 | Order Charales Lindley, 1836                                                                    |
| 149 | Family Raskyellaceae Grambast, 1957                                                             |
| 150 | Sub-Family Raskyelloideae, Grambast et Grambast, 1955                                           |
| 151 | Genus <i>Raskyella</i> (L. & N. Grambast et Grambast, 1954) emend. Grambast, 1962b              |
| 152 |                                                                                                 |
| 153 | <b>Type species.</b> Raskyella peckii L. & N.Grambast et Grambast, 1954                         |
| 154 |                                                                                                 |
| 155 | Remarks. This species is understood as including several traditional taxa belonging to the      |
| 156 | genus Raskyella L. & N. Grambast (1954), which form a gradualistic lineage during the           |
| 157 | Eocene. These traditional taxa have been newly combined here to anagenetic varieties within a   |
| 158 | single evolutionary lineage or an evolutionary species, following the recommendations of        |
| 159 | Wiley (1981) and Ax (1978).                                                                     |
| 160 |                                                                                                 |
| 161 | Raskyella peckii var. peckii L. & N.Grambast et Grambast, 1954                                  |

| 1<br>2<br>3                                              |     |                                                                                                                              |
|----------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                              | 162 | (Fig. 3A–H)                                                                                                                  |
| 6<br>7<br>8                                              | 163 |                                                                                                                              |
| 9<br>10<br>11                                            | 164 | 1954 Raskyella pecki sp. nov. L. & N. Grambast: p. 670, text-figs 1a-c.                                                      |
| 12<br>13<br>14                                           | 165 | 1957 Raskyella pecki Grambast: p. 358, pl. 5, figs 7–9.                                                                      |
| 15<br>16<br>17                                           | 166 | 1958 Raskyella pecki Grambast: p. 190, figs 87, a-c; p. 191, text-fig. 88.                                                   |
| 18<br>19<br>20                                           | 167 | 1959 Raskyella pecki Horn af Rantzien: pl. 19, figs 7–13.                                                                    |
| 21<br>22<br>23                                           | 168 | 1971 Raskyella peckii subsp. ganesensis Soulié-Märsche: pl. 2, 1–5.                                                          |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 169 | 1981 Raskyella pecki Anadón & Feist: pl. 1, figs 1–2; pl. 2, figs 3–4.                                                       |
|                                                          | 170 | 1986 Raskyella pecki Riveline: pl. 37, figs 7–9.                                                                             |
|                                                          | 171 | 1999b <u>1999a</u> Raskyella pecki Martín-Closas et al.: p. 11, figs 6, 1–3.                                                 |
| 34<br>35<br>36                                           | 172 |                                                                                                                              |
| 37<br>38                                                 | 173 | Material. Up to 65 gyrogonites in sample G-2.4, and dozens in samples G-2.2 and G-2.3.                                       |
| 39<br>40<br>41                                           | 174 | Collection numbers of figures figured specimens: HNHM-PBO xxxxx-yyyyy1501-1508.                                              |
| 42<br>43<br>44                                           | 175 | Description. Gyrogonites of are ovoidal to ellipsoidal in shape, spherical to subprolate (ISI 100–                           |
| 45<br>46                                                 | 176 | 120) and of large size, 800–1050 $\mu m$ in height and 750–1050 $\mu m$ in width, showing laterally                          |
| 47<br>48                                                 | 177 | 7–10 (usually 9) convolutions (Fig. 4). Spiral cells often flat (Fig. $3, A3A$ ) to slightly convex                          |
| 49<br>50<br>51<br>52<br>53                               | 178 | (Fig. $3, \underline{C3C}$ ), or concave (Fig. $3, \underline{B3B}$ ), but regularly without any kind of ornamentation. Apex |
|                                                          | 179 | broadly rounded, truncated and flattened, with the spiral cells abruptly discontinue and ending                              |
| 54<br>55                                                 | 180 | acutely in the apical periphery to be replaced by the development of five deciduous opercular                                |
| 56<br>57<br>58                                           | 181 | cells, each obliquely disposed at the end of a spiral cell (Fig. 3, F). In case of germinated                                |

specimen<u>3F</u>). Germinated specimens (Fig. 3, G),3G) show a rose-shaped apical pore
 appearsopening. Internal casts of these gyrogonites were also found (Figs 3, EFig. 3E).

**Remarks.** The contemporaneous unornamented gyrogonites of *Raskyella peckii* subsp. *ganesensis* Soulié-Märsche, 1971 from the Aquitaine basin (France) appear to represent a relatively smaller gyrogonite population of relatively smaller size within *R. peckii* var. *peckii* and both are here considered here synonymous. However, supplementary research on the type material is needed to verify this synonymy, since this morphotype was not found in the studied Gánt material, nor elsewhere to date the morphotype *ganesesis* is only known from the type locality.

Additionally, the subspecies *Raskyella peckii* subsp. *meridionale* Grambast, 1960, is kept within the rank of subspecies due to its palaeogeographic restriction. The extremely large gyrogonites of this subspecies are limited to the southernmost biogeographic range of *Raskyella peckii*, i.e. Algeria (Grambast 1960; Mebrouk *et al.* 1997), and the Betic Domain inof the Balearic Islands (Martín-Closas *et al.*& Ramos 2005)).

**Distribution.** This is the first record of *R. peckii* var. *peckii* in Hungary, and Central Europe. This variety is widely distributed in the Lutetian and lower Bartonian of southern Europe, mainly in France (L. and& N. Grambast 1954; Grambast 1958; Soulié-Märsche 1971, 1974; Riveline 1984, 1986) and Spain (Anadón & Feist 1981; Ramos-Guerrero et al. 1989; Anadón et al. 1992; Martín-Closas et al. 1999b).1999a; Martín-Closas & Ramos 2005). The total range of this variety (early Lutetian-lowerlate Bartonian) has been characterized in the Eastern Ebro basin (Northeast SpainCatalonia) by Martín-Closas et al. (1999b1999) based on correlation with larger foraminifera (mainly Nummulites). Furthermore, R. peckii var. peckii has been also reported from North Africa, i.e. in the lower Eocene of Algeria (Gevin et al. 1974; Mebrouk et 

| 2<br>3               | 205 | al. 1997; Vianey-Liaud 1994), in the late lower Eocene-early middle Eocene of Tunisia                     |
|----------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 4<br>5<br>6          | 206 | (Abdeljaoued et al. 1984) and in the Lutetian of Libya (Megerisi & Mamgain 1980).                         |
| 7<br>8<br>9          | 207 |                                                                                                           |
| 10<br>11<br>12<br>13 | 208 | Figures 3, 4 near here                                                                                    |
| 14<br>15<br>16       | 209 |                                                                                                           |
| 17<br>18<br>19       | 210 | Raskyella peckii var. caliciformis (Soulié-Märsche, 1974) comb. nov. Trabelsi & et Martín-                |
| 20<br>21             | 211 | Closas                                                                                                    |
| 22<br>23<br>24       | 212 | (Fig. 3I–P)                                                                                               |
| 25<br>26<br>27<br>28 | 213 |                                                                                                           |
| 29<br>30             | 214 | Basionym. Raskyella caliciformis Soulié-Märsche, 1974, Compte Rendu 96ème Congrès                         |
| 31<br>32<br>33       | 215 | National des Sociétés Savantes, Toulouse, 1971, Section Science, 2, p. 114, text-figure 2 (pl.            |
| 33<br>34<br>35       | 216 | I), 1–5.                                                                                                  |
| 36<br>37<br>38<br>39 | 217 |                                                                                                           |
| 40<br>41<br>42       | 218 | 1974 Raskyella caliciformis sp. nov Soulié-Märsche: p. 112, pl. 1, figs 1–5.                              |
| 43<br>44<br>45       | 219 | 1981 Raskyella caliciformis, Anadón & Feist: pl. 1, figs 6–7; pl. 2, figs 7–8.                            |
| 46<br>47<br>48       | 220 |                                                                                                           |
| 49<br>50<br>51       | 221 | Material. 63 gyrogonites in sample G-2.5. Collection numbers of figures figured specimens:                |
| 52<br>53             | 222 | HNHM-PBO <del>xxxxx-yyyyy<u>1509–1516</u>.</del>                                                          |
| 55<br>56             | 223 | <b>Description.</b> Large sized gyrogonites (650–1000 $\mu$ m high and 750–1050 $\mu$ m wide) of globular |
| 57<br>58             | 224 | to oblate shape (ISI 80-105), showing laterally 6-9 (usually 8) convolutions (Fig. 5). Spiral             |
| 59<br>60             | 225 | cells flat to slightly concave ornamented with stout, vertical to slightly inclined, well                 |
|                      |     |                                                                                                           |

| 2        |
|----------|
| 2        |
| 5        |
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 15       |
| 16       |
| 17       |
| 18       |
| 10       |
| 20       |
| 20       |
| 21       |
| 22       |
| 22       |
| ∠J<br>]4 |
| 24       |
| 25       |
| 26       |
| 27       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 20       |
| 32       |
| 33       |
| 34       |
| 35       |
| 55       |
| 36       |
| 37       |
| 38       |
| 20       |
| 29       |
| 40       |
| 41       |
| 42       |
| 42       |
|          |
| 44       |
| 45       |
| 46       |
| 17       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |
| 55       |

individualized tuberculestubercles (Fig. 3, 131–K), which are the main diagnostic character of this variety. Apex broadly rounded to truncated showing five deciduous opercular cells placed at the end of the spiral cells. The opercular cells are sometimes convex and somewhat polygonal in shape (Fig. 3, N)3N), rather than rounded, which is the reason why the dehiscence poreopening appears sometimes irregularly star-shaped (Fig. 3, O)3O), rather than rose-shaped (Fig. 3, M3L), as already noted by Soulié-Märsche (1974) in the type material. The internal cast of the gyrogonite (Fig. 3, M3M) shows low and straight ridges delimitingperpendicular to the well–marked, undulated spiral cells. This wavy surface is uncommon in the inside of other raskyellacean gyrogonites and is thought to correspond internally to the external tubercle ornamentation.

Distribution. This is the first record of *R. peckii* var. *caliciformis* in Hungary. It was previously
described from the Bartonian of South France (Soulié-Märsche 1974; Riveline 1986), and from
the lower Bartonian (Auversian local stage) of the Ebro Basin, in-Catalonia, Spain (Anadón &
Feist, 1981; Anadón *et al.* 1992).

----- Figure 5 near here-----

*Raskyella peckii* var. *vadaszii* (L. & N.Grambast et Grambast 1954) comb. nov. Trabelsi & et Martín-Closas
 244 Martín-Closas

(Fig. 6A–S)

| 2                    |     |                                                                                                                                |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 247 | Basionym. Raskyella vadaszi (Rásky) L. & N. Grambast (1954), Revue Générale de                                                 |
| 5<br>6<br>7          | 248 | Botanique (61), p. 670.                                                                                                        |
| 8<br>9<br>10         | 249 |                                                                                                                                |
| 11<br>12<br>13       | 250 | 1945 Aclistochara vadaszi, sp. nov. Rásky: p. 45, pl. II, figs 22–24.                                                          |
| 14<br>15<br>16       | 251 | 1954 Raskyella vadaszi, comb. nov. L. and N. Grambast: p. 670.                                                                 |
| 17<br>18<br>19       | 252 | 1957 Raskyella vadaszi, Grambast: p. 358, pl. 5, figs 1–6.                                                                     |
| 20<br>21<br>22<br>23 | 253 | 1959 Raskyella vadaszi, Horn af Rantzien: pl. 20, figs 1–3.                                                                    |
| 24<br>25<br>26       | 254 | 1981 Raskyella vadaszi, Anadón & Feist: pl. 1, fig. 5; pl. 2, fig. 5.                                                          |
| 27<br>28<br>29       | 255 | 1981 Raskyella aff. vadaszi, Anadón & Feist: pl. 1, figs 3–4; pl. 2, figs 1–2, 6.                                              |
| 30<br>31<br>32       | 256 | 1985 Raskyella vadaszi, Bignot et al.: p. 36, pl. 3, figs 8–11.                                                                |
| 33<br>34<br>35       | 257 | 1986 Raskyella vadaszi, Riveline: pl. 37, figs 1–6.                                                                            |
| 36<br>37<br>38       | 258 |                                                                                                                                |
| 39<br>40<br>41       | 259 | Material. Hundreds of gyrogonites in samples G-6a and G-6b. Collection numbers of                                              |
| 42<br>43<br>44       | 260 | figuresfigured specimens: HNHM-PBO xxxxx-yyyyy1517–1534.                                                                       |
| 45<br>46             | 261 | Description. Large sized gyrogonites (800–1150 $\mu$ m in widthhigh and 800–1150 $\mu$ m in                                    |
| 47<br>48<br>49       | 262 | highwide) of oblate to ovoidal shape (ISI 80-120), showing laterally 7-10 (usually 9)                                          |
| 50<br>51             | 263 | convolutions (Fig. 7). Spiral cells often convex and ornamented with stout tubercles of different                              |
| 52<br>53             | 264 | shapes and sizes, in most cases oriented parallel to the intercellular sutures (Fig. $\frac{6}{6}$ , $A\underline{6A}$ -C), or |
| 54<br>55<br>56       | 265 | more rarely tilted 20–30° but keeping parallelism between adjacent nodules (Fig. $\frac{6}{6}$ , E <u>6E</u> –G),              |
| 57<br>58             | 266 | this being a diagnostic character of this morphotype. Three tubercle morphologies have been                                    |

267 observed: (1) rounded tuberculestubercles, well individualized in the upper half of the

gyrogonite, but fused to neighbouring tubercules tubercules in the lower half (Fig. 6, I6I–K), (2) elongated tubercules tubercles more or less connected to each other and producing slightly wavy (undulated) sutures (Fig. 6, H6H), (3) irregularly alternating round and elongated tubercles (Fig. 6, A–D6D). Base of gyrogonite rounded (Fig. 6, C6C, J) to slightly tapered (Fig. 6, A6A, G) and showing a small, superficial and pentagonal basal pore, sometimes within a less-marked funnel (Fig. 6, Q6Q). Apex of gyrogonite truncated or broadly rounded showing and covered by five deciduous independent opercular cells at the end of the spiral cells. Opercular cells roughly prismatic, with its outer surface concave, flat or slightly convex (Fig. 6, L6L-M), leaving a rose-shaped dehiscence pore in germinated). Germinated specimens show a rounded or rose-like opening (Fig. 6, N6N-P). The inside of the gyrogonite allows observation of a characteristic crenulation of the intercellular sutures near their internal side (Fig. 6, R6R-S), while, to the outside, sutures are flat. Besides, this crenulation occurs also between the opercule cells themselves and between spiral and opercule cells as already described by Feist in Anadón &and Feist (1981). 

Distribution. R. vadaszii has been first described by Rásky (1945) from middle Eocene borehole samples (60m60 m depth) at Gánt, in beds roughly equivalent laterally to the outcrop succession studied here. Therefore, the samples studied may be considered as topotypes. Subsequently, the age of this variety was suggested to be upper Bartonian by Bignot et al. (1985) based on the basis of the associated microfossils (foraminifers, ostracods, and pollen) from the same beds of the bauxite cover-sequence at the Gánt section (Vértes Hills). R. peckii var. *vadaszii* has also been also well documented in France, in the upper Bartonian of the Paris Basin (Grambast 1957, 1958, 1962a; Riveline 1986) and infrom several basins from in southern France (Feist-Castel 1976). Anadón & Feist (1981) and Anadón et al. (1992) documented also this variety also in the upper Bartonian of the Eastern Ebro Basin (Catalonia, Spain). 

| 1        |       |                                                                                                              |
|----------|-------|--------------------------------------------------------------------------------------------------------------|
| 2        | • • • |                                                                                                              |
| 4        | 293   | Figures 6, 7 near here                                                                                       |
| 5        |       |                                                                                                              |
| 6        | 294   |                                                                                                              |
| 7        |       |                                                                                                              |
| 8        | 1     |                                                                                                              |
| 9<br>10  | 295   | Family Characeae (Richard ex C.A. Agardh, 1824) emend. Martín-Closas andet Schudack,                         |
| 11       |       |                                                                                                              |
| 12       | 296   | 1991                                                                                                         |
| 13       |       |                                                                                                              |
| 14       | 207   | Subfamily Charoidean Proun in Migula 1907                                                                    |
| 15<br>16 | 297   | Sublaminy Charolucae Braun <i>in</i> Wigula, 1897                                                            |
| 17       |       |                                                                                                              |
| 18       | 298   | Genus Gyrogona (Lamarck, 1804 ex Lamarck, 1822) emend. Grambast, 1956                                        |
| 19       |       |                                                                                                              |
| 20       |       |                                                                                                              |
| 21       | 299   |                                                                                                              |
| 22       |       |                                                                                                              |
| 24       | 200   | Guragana caplata (Reid & Groves 1921) Grambast 1956                                                          |
| 25       | 300   | Gyrogona caetata (Reid eer Groves, 1921) Granibast, 1930                                                     |
| 26       |       |                                                                                                              |
| 2/       | 301   | (Fig. 8A–V)                                                                                                  |
| 20<br>29 |       |                                                                                                              |
| 30       |       |                                                                                                              |
| 31       | 302   |                                                                                                              |
| 32       |       |                                                                                                              |
| 33       | 303   | 1921 Chara caelata sp. nov- Reid & Groves: p. 184 pl. 4 figs 4–6                                             |
| 35       | 505   |                                                                                                              |
| 36       |       |                                                                                                              |
| 37       | 304   | 1927 Kosmogyra caelata, Pia: p. 90.                                                                          |
| 38       |       |                                                                                                              |
| 39       | 205   | 1054 Durschuck zur angleten L. & N. Crombastin (67                                                           |
| 40<br>41 | 305   | 1954 Brachychara caelala, L. & NGrambast. p. 667.                                                            |
| 42       |       |                                                                                                              |
| 43       | 306   | 1956 Gvrogona caelata, Grambast: p. 280.                                                                     |
| 44       |       |                                                                                                              |
| 45       |       |                                                                                                              |
| 40<br>47 | 307   | 1977b Gyrogona caelata, Feist-Castel: p. 117.                                                                |
| 48       |       |                                                                                                              |
| 49       | 208   | 1981 Guragana caplata Grambast & Grambast-Fessard: p. 22 text-fig. 11. a-f: pl. 4. figs. 1-9                 |
| 50       | 508   | $1561 \text{ Gyrogona caetata_c}  Oranibast & Oranibast-ressard. p. 22, text-lig. 11, a-1, pl. 4, ligs 1-9.$ |
| 51       |       |                                                                                                              |
| 52<br>53 | 309   | 1981 Gyrogona cf. caelata <u>Caelata,</u> Anadón & Feist: p. 163.                                            |
| 54       |       |                                                                                                              |
| 55       |       |                                                                                                              |
| 56       | 310   | 1986 Gyrogona caelata, Riveline: pl. 38, figs 1–5, 7–8.                                                      |
| 57       |       |                                                                                                              |
| 28<br>20 | 311   | 1989 Gyrogona caelata, Choi: pl. 2 figs 1–11                                                                 |
| 60       |       |                                                                                                              |
|          |       |                                                                                                              |

*Gyrogona caelata*, Weidmann *et al*.: p. 900, fig. 3, C.

2014 Gyrogona caelata, Sanjuan & Martín-Closas: p. 403, fig. 7, A–C.

Material. Up to 10056 gyrogonites in samplessample G-2.2, <u>38 in sample G-2.3</u>, <u>29 in sample G-2.4</u>, <u>18 in sample G-2.5</u>, and <u>23 in sample G-6a</u>. Collection numbers of figures figured specimens: HNHM-PBO <u>xxxxx-yyyyy</u>1535–1553.

**Description.** Medium to large gyrogonites, 600–800 µm high and 700–1000 µm wide with generally oblate to suboblate spheroidal shape (ISI 80–100) and showing laterally 5–7 (usually 6) convolutions (Fig. 9). Apex and base broadly rounded to subtruncate. Apex showing a less-marked spiral cell periapical thinning (e.g., Fig. 8, R),8G) and, in some specimens, apical nodules of different shape, generally flat or slightly convex (e.g. Fig. 8, <u>S8S</u>). Base showing a small pentagonal basal pore (Fig. 8, G8F), sometimes flared by a shallow funnel (Fig. 8, P8P). Basal plate unicellular and only visible from the gyrogonite interior (Fig. 8, U8U–V). Spiral cells flat to slightly concave and ornamented with different patterns of tuberculestubercles, which allow distinction of a number of morphotypes (allowed Grambast, (1958; Grambast) and Grambast & Grambast-Fessard, (1981), from which) to distinguish a number of morphotypes, ranking them as formae of the same species. The following five forms were recognized in the material studied: (1) G. caelata forma caelata characterized by small nodules well-spaced and irregularly ranged along the spiral cell median line (e.g. Fig. 8, A, D), (2) G. caelata forma monolifera showing medium sized nodules close to each other, sometimes fused forming a thin, irregular mid-cellular crest (e.g. Fig. 8, L), (3) G.8A, D), (2) G. caelata forma bicincta characterized by nodules irregularly ranged along two lines parallel to spiral cell sutures (Fig. 8, H, I), (4) G.8H, I), (3) G. caelata forma monolifera showing medium-sized nodules close to each other, sometimes fused and forming a thin, irregular mid-cellular crest (e.g., Fig. 8L), (4) 

| 336 | <u><i>G. caelata</i></u> forma <i>baccata</i> characterized by large nodules very closely ranged along the spiral-       |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 337 | cell median line (e.g., Fig. 8, N8N–Q), (5) <i>G. caelata</i> forma <i>fasciata</i> characterized by a broad             |
| 338 | median band of variable width (e.g., Fig. $\frac{8}{7}$ , R <u>8R</u> -T).                                               |
| 339 | Distribution. The species Gyrogona caelata is first-reported here from Hungary for the first                             |
| 340 | time. According to Riveline (1986), this species was widely distributed in the upper Lutetian-                           |
| 341 | Priabonian non-marine deposits of Western Europe. It was first recorded from the Isle of Wight,                          |
| 342 | England by Reid & Groves (1921). Thereafter, it was reported from the upper Lutetian to upper                            |
| 343 | Priabonian of France (Grambast 1958; Grambast & Grambast-Fessard 1981; Feist-Castel 1971;                                |
| 344 | Feist & Ringeade 1977; Feist-Castel 1977a, b; Ollivier-Pierre et al. 1988), Spain (Anadón &                              |
| 345 | Feist 1981; Choi 1989; Anadón et al. 1992; Sanjuan & Martín-Closas 2014), Switzerland                                    |
| 346 | (Weidmann et al. 1991), as well as from the middle Eocene of Romania (Iva 1987). In North                                |
| 347 | Africa, the species has also been documented from the central part of the Sahara, Algeria, by                            |
| 348 | Mebrouk <i>et al.</i> (1997).                                                                                            |
| 349 |                                                                                                                          |
|     |                                                                                                                          |
| 350 | Figures 8, 9, near here                                                                                                  |
| 351 |                                                                                                                          |
| 352 | <i>Gyrogona tuberosa</i> (Reid <u>&amp;et</u> Groves, 1921) Grambast <i>in</i> Grambast <u>&amp;et</u> Grambast-Fessard, |
| 353 | 1981                                                                                                                     |
| 354 | (Fig. 10A–J)                                                                                                             |
| 355 |                                                                                                                          |
| 356 | 1921 Chara wrighti var. rhytidocarpa, Reid & Groves: p. 183, pl. 4, fig. 3.                                              |
| 357 | 1958 Gyrogona tuberosa, Grambast: p. 139, fig. 54.                                                                       |

358 1976 Gyrogona tuberosa, Feist-Castel: p. 26.

*Gyrogona tuberosa*, Grambast & Grambast-Fessard: p. 25, text-fig. 12, a–d; pl. 5, figs 1–
6.

*Gyrogona tuberosa*, Riveline: pl. 14, figs 8–11.

Material. 35 gyrogonites in samples G-6b. sample G-6b. Collection numbers of figured
 specimens: HNHM-PBO 1554–1563.

**Description.** Large gyrogonites, 820–1000 µm high and 835–1050 µm wide with generally oblate to suboblate spheroidal shape (ISI 80-100) and showing laterally 6-7 convolutions (usually 6). Apex subtruncate (Fig. 10, A10A, C) to somewhat prominent and pointed (Fig. 10, **D10D**, G) with spiral cells protruding (Fig. 10, H10H). Base broadly rounded (Fig. 10, B10B), F) to slightly tapered (Fig. 10, A10A, C, E) and showing a small, superficial and pentagonal basal pore, sometimes within a less-marked funnel (Fig. 10, 110I–J). Spiral cells flat or concave, smooth or somewhat ornamented and separated by protruding narrow to weakly undulated intercellular ridges. 

**Distribution.** *Gyrogona tuberosa* is first-reported here from Hungary, and from central Europe for the first time. According to Riveline (1986) and Riveline & Cavelier (1987), this species was widely distributed in upper Bartonian non-marine deposits of Western Europe. It was first recorded from the Isle of Wight and Hampshire (England) by Reid & Groves (1921). ThereafterSubesequently, it was reported from the upper Bartonian of the Paris Basin (Grambast 1958; Grambast & Grambast-Fessard 1981; Riveline 1986; Riveline & Cavelier 1987), as well as infrom several basins from four france (Feist-Castel 1976).

| 1        |     |                                                                                           |
|----------|-----|-------------------------------------------------------------------------------------------|
| 2        |     |                                                                                           |
| 3        | 381 |                                                                                           |
| 5        |     |                                                                                           |
| 6        | 202 | Figure 10 pear here                                                                       |
| 7        | 302 | Tigure 10 heat here                                                                       |
| 8        |     |                                                                                           |
| 9        | 383 |                                                                                           |
| 10       |     |                                                                                           |
| 12       |     |                                                                                           |
| 13       | 384 | Genus <i>Psilochara</i> Grambast, 1959                                                    |
| 14       |     |                                                                                           |
| 15<br>16 | 385 |                                                                                           |
| 17       |     |                                                                                           |
| 18       |     |                                                                                           |
| 19       | 386 | Psilochara polita (Reid <u>&amp;et</u> Groves, 1921) Grambast, 1959                       |
| 20       |     |                                                                                           |
| 21<br>22 | 207 | (Fig. 11A  F)                                                                             |
| 23       | 307 | (11g. 11A-1)                                                                              |
| 24       |     |                                                                                           |
| 25       | 388 |                                                                                           |
| 26<br>27 |     |                                                                                           |
| 27       | 200 | 1021 Chara polita an nov Roid & Groves: n 197 nl 5 figs 0 12                              |
| 29       | 389 | 1921 <i>Chara polita</i> , sp. nov. Reid & Gloves. p. 187, pl. 3, figs 9, 12.             |
| 30       |     |                                                                                           |
| 31       | 390 | 1927 Gyrogona politus, Pia: p. 90.                                                        |
| 5∠<br>33 |     |                                                                                           |
| 34       |     |                                                                                           |
| 35       | 391 | 1958 Ovochara polita, comb. nov. Grambast: p. 167.                                        |
| 36       |     |                                                                                           |
| 3/       | 392 | 1959 <i>Peckichara polita</i> , Horn af Rantzien; p. 116, pl. 13, figs 1–3.               |
| 30<br>39 |     |                                                                                           |
| 40       |     |                                                                                           |
| 41       | 393 | 1959 Psilochara polita, Grambast: p. 11.                                                  |
| 42       |     |                                                                                           |
| 43<br>11 | 201 | 1977h Psilochara polita Feist-Castel: n 153                                               |
| 45       | 554 | 1) // 0 I subenuru politu, 1 eist-Castel. p. 135.                                         |
| 46       |     |                                                                                           |
| 47       | 395 | 1986 Psilochara polita, Riveline: p. 59, pl. 22, figs 8-12.                               |
| 48       |     |                                                                                           |
| 49<br>50 | 206 |                                                                                           |
| 51       | 390 |                                                                                           |
| 52       |     |                                                                                           |
| 53       | 397 | Material. 58 gyrogonites in sample G-6a. Collection numbers of figures figured specimens: |
| 54<br>55 |     |                                                                                           |
| 56       | 398 | HNHM-PBO <del>xxxxx-yyyyy<u>1564–1569</u>.</del>                                          |
| 57       |     |                                                                                           |
| 58       | I   |                                                                                           |
| 59<br>60 |     |                                                                                           |
| 00       |     |                                                                                           |

**Description.** Medium--sized gyrogonites (520-830 µm in width and 580-710550-700 µm in height 500–650 and µm in width) with ovoidal shape (ISI 105100–120) and laterally showing 7-810 convolutions (Fig. 11, A11A-C; Fig. 12). Apex round to pointed (Fig. 11, A11A-C). Base tapering to prolonged into a stout basal column (Fig 11, A11A-C) and showing a small pentagonal basal pore (Fig. 11, F11F). Spiral cells smooth, concave or flat and separated by protruding narrow to weakly undulated intercellular ridges. **Distribution.** *Psilochara polita* is first described here from the middle Eocene of Hungary- for the first time. It has previously been described previously from the upper Bartonian of the Isle of Wight, England, (Reid & Groves 1921; Feist-Castel 1977b; Riveline 1986) as well as and of the Paris Basin (Grambast 1958; Riveline 1986). ------ Figures 11, 12 near here------*Psilochara* sp. (Fig. 11G–I) Material. 17 gyrogonites in sample G-6a. Collection numbers of figures figured specimens: HNHM-PBO xxxx-yyyyy1570–1571. **Description.** Medium to large-sized gyrogonites (780–905 µm wide and 670–775 µm high) with elongated ovoidal (subprolate) shape (ISI 110-125) and laterally showing 8-10 convolutions (Fig. 11, G11G). Apex truncated. Apical end of spiral cells enlarged and pointing

420 upwards (Fig. <del>11, H<u>11H</u>)</del>. Base truncated to somewhat tapering, bearing a small pentagonal

| 3<br>4         | 421 |
|----------------|-----|
| 5<br>6         | 422 |
| 7<br>8         | 423 |
| 9<br>10        | I   |
| 11<br>12       | 424 |
| 13<br>14       | 425 |
| 15<br>16       | 426 |
| 17<br>18       | 427 |
| 19<br>20       | 427 |
| 21<br>22       | 428 |
| 23<br>24       | 429 |
| 25<br>26       |     |
| 27<br>28       | 430 |
| 29<br>30       | 431 |
| 31<br>32       |     |
| 33<br>34<br>25 | 432 |
| 35<br>36<br>27 | 433 |
| 37<br>38       | 100 |
| 39<br>40       | 434 |
| 41<br>42<br>42 | 435 |
| 43<br>44<br>45 |     |
| 45<br>46<br>47 | 436 |
| 47<br>48<br>49 | 437 |
| 50<br>51       | I   |
| 52<br>53       | 438 |
| 54<br>55       | 439 |
| 56<br>57       |     |
| 58<br>59       | 440 |
| 60             |     |

basal pore. Basal plate unipartite and visible from the gyrogonite interior (Fig. 11, 111). Spiral
cells concave or flat and smooth, except at the periapical area, where they are irregularly
ornamented with a broad mid-cellular crest.

424 Distribution. *Psilochara* sp. is described here first time from the upper Eocene (upper
425 Bartonian) of Hungary.

426 Remark. The low number of gyrogonites hinders a more precise taxonomic attribution of this
427 population. However, it is reported here since it differs in size and shape from the other species

428 of *Psilochara* found at Gánt.

Genus Nitellopsis Hy, 1889

Sous-genreSub-genus Tectochara L. andet N. Grambast, 1954

34 Nitellopsis (Tectochara) aff. palaeohungarica (Rásky, 1945) Grambast &et Soulié-Märsche,

| 435 | 1972                                                                  |
|-----|-----------------------------------------------------------------------|
| 436 | (Fig. 11J–N)                                                          |
| 437 |                                                                       |
| 438 | 1945 Chara palaeohungarica, sp. nov. Rásky: p. 38, pl. 1, figs 16–18. |
| 439 | 1955 Tectochara palaeohungarica, comb. nov. Mädler: p. 298.           |
|     |                                                                       |

1972 Nitellopsis (Tectochara) palaeohungarica, nov. comb. Grambast & Soulié-Märsche: p.

<u>4.</u>

Material. 6128 gyrogonites in both samplessample G-2.3 and <u>33 in sample G-2.5</u>. Collection
 numbers of figuresfigured specimens: HNHM-PBO xxxxx-yyyyy1572–1576.

**Description.** VeryGyrogonites very large gyrogonites (900–1200 μm high and 800–1050 μm wide), oval, prolate spheroidal (ISI 100–120) pear-shaped andin shape, showing 8–11 (often 9) convolutions in lateral view (Fig. 11, J11J–L; Fig. 13). Spiral cells concave to flat. Apex prominent with spiral cells protruding to form a central rosette. Spiral cells show both shorteningnarrowing and thinning in the periapical area (Fig. 11, M11M). Base rounded to almost conical, occasionally lengthened in a short broad column. A large (155–230 μm across) pentagonal basal pore occurs within a wide basal funnel (Fig. 11, N11N).

**Distribution.** The species *Tectochara 'Chara' palaeohungarica* was first described from subsurface beds attributed to the Paleocene in Dorog, Hungary, by Rásky (1945). Here this species is described from beds cropping out <u>inat</u> Gánt, which are probably <u>time-</u>equivalent to those of the type locality. The present study <u>allows reassigningsupports reassignment of</u> this species to the middle Eocene rather than to the Paleocene.

**Remarks**. The gyrogonites studied here are diagenetically deformed, which hinders a more definitive taxonomic attribution. A re-study of the type material (HNHM 55.1458–55.1460) by one of the authors of this study (CMC) showed that, besides the holotype, which is a subspherical gyrogonite as illustrated by Rásky (1945, pl. I, Fig. 16), there were more oval to elongated gyrogonites present in the collection similar to those described here, which Rásky (1945, p. 38) termed 'cylindrical'.

| 1        |     |                                                                                                                     |
|----------|-----|---------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 101 |                                                                                                                     |
| 4        | 464 |                                                                                                                     |
| 5        |     |                                                                                                                     |
| 6        | 465 | Figure13 near here                                                                                                  |
| /<br>8   |     |                                                                                                                     |
| 9        |     |                                                                                                                     |
| 10       | 466 |                                                                                                                     |
| 11       |     |                                                                                                                     |
| 12       | 467 | Genus <i>Chara</i> Vaillant 1719                                                                                    |
| 13<br>14 |     |                                                                                                                     |
| 15       |     |                                                                                                                     |
| 16       | 468 |                                                                                                                     |
| 17       |     |                                                                                                                     |
| 18       | 160 | Chang madia Grambast 1058                                                                                           |
| 19<br>20 | 409 | Churu meutu Grambast, 1958                                                                                          |
| 21       |     |                                                                                                                     |
| 22       | 470 | (Fig. 14A–I)                                                                                                        |
| 23       |     |                                                                                                                     |
| 24<br>25 | 471 |                                                                                                                     |
| 26       | 471 |                                                                                                                     |
| 27       |     |                                                                                                                     |
| 28       | 472 | 1958 Chara media, Grambast: p. 178, fig. 81b.                                                                       |
| 29       |     |                                                                                                                     |
| 30<br>31 |     |                                                                                                                     |
| 32       | 473 | 1986. <i>Chara media</i> , Riveline: p. 68, pl. 29, figs 6–12.                                                      |
| 33       |     |                                                                                                                     |
| 34<br>25 | 474 |                                                                                                                     |
| 35<br>36 |     |                                                                                                                     |
| 37       |     |                                                                                                                     |
| 38       | 475 | Material. Up to 80 gyrogonites in both samples G-2.5 and G-6a. Collection numbers of                                |
| 39       | 470 | General marine and UNUM DDO marine and 1577 1595                                                                    |
| 40<br>41 | 476 | nguresngured specimens: HNHM-PBO <del>xxxxx-yyyyy1577–1585</del> .                                                  |
| 42       |     |                                                                                                                     |
| 43       | 477 | <b>Description.</b> Gyrogonites of medium size (400–650 µm high and 300–500 µm wide) ellipsoidal                    |
| 44       |     |                                                                                                                     |
| 45<br>46 | 478 | subprolate (ISI 110–145), laterally showing lateraly 8–11 (usually 9–10) convolutions (Fig. 14,                     |
| 46<br>47 |     |                                                                                                                     |
| 48       | 479 | A <u>14A</u> –G, Fig. 15). Maximum width nearly at the half to 2/3 of height. Apex rounded to slightly              |
| 49       |     |                                                                                                                     |
| 50       | 480 | <u>conical</u> , with distinctly widening of the spiral cell endings (Fig. <u>14, H14H</u> ). Spiral cells concave, |
| 51<br>52 |     |                                                                                                                     |
| 52<br>53 | 481 | smooth and without any periapical modification. Base tapering showing a superficial                                 |
| 54       | 400 |                                                                                                                     |
| 55       | 482 | pentagonal basal pore (Fig. $\frac{14}{141}$ ).                                                                     |
| 56       |     |                                                                                                                     |
| 57<br>58 | I.  |                                                                                                                     |
| 59       |     |                                                                                                                     |

| 483 | <b>Distribution.</b> <i>Chara media</i> is first time described here from the upper Eocene (upper Bartonian) |
|-----|--------------------------------------------------------------------------------------------------------------|
| 484 | of Hungary for the first time. Grambast (1958) and Riveline (1986) documented this species                   |
| 485 | from the upper Bartonian-lower Oligocene of several basins in France, Belgium, and Germany.                  |
| 486 |                                                                                                              |
| 487 | Figures14Figures 14, 15 near here                                                                            |
| 488 |                                                                                                              |
| 489 | Chara subcylindrica Reid &et Groves, 1921                                                                    |
| 490 | (Fig. 14J–O)                                                                                                 |
| 491 |                                                                                                              |
| 492 | 1921 Chara subcylindrica, sp. nov. Reid & Groves: p. 187, pl. 5, fig. 4–5.                                   |
| 493 | 1959 Grambastichara subcylindrica, Horn af Rantzien: p. 76, pl. 3, figs 5–7.                                 |
| 494 | 1986 Chara cf. subcylindrica, Riveline: p. 67, pl. 30, figs 5–8.                                             |
| 495 |                                                                                                              |
| 496 | Material. Up to 250 gyrogonites in sample G-6b. Collection numbers of figures figured                        |
| 497 | specimens: HNHM-PBO xxxxx-yyyyy1586–1591.                                                                    |
| 498 | <b>Description.</b> Medium-sized gyrogonites (500–750 $\mu$ m high and 200–400 $\mu$ m wide) ellipsoidal     |
| 499 | prolate to perprolate (ISI 130-200);) in shape, laterally showing 8-11 (usually 9-10)                        |
| 500 | convolutions (Fig. 14, J14J-M; Fig. 16). Maximum width at the equator. Apex rounded with                     |
| 501 | widening of the spiral cell endings (Fig. 14, N14N). Spiral cells often slightly concave to flat,            |
| 502 | separated by narrow intercellular ridges, cells non-ornamented and without any periapical                    |

modification. Base regularly tapering to round, showing a superficial pentagonal basal pore
(Fig. 14, 0140).

**Distribution.** This is the first report of *Chara subcylindrica* in the upper Eocene (upper Bartonian) of Hungary. According to Reid and& Groves (1921) and Riveline (1986), this species occurs in the upper Bartonian–lower Oligocene of England, France, Belgium and Germany.

----- Figure 16 near here -----

**Discussion** 

### 514 Definition of the *Raskyella peckii* anagenetic lineage

Evolutionary lineages formed by a succession of charophyte fructifications changing gradually in time have beenwere first described in the family Clavatoraceae by Grambast (1974). Later, similar lineages were found as well in the family Characeae (e.g. lineage Harrisichara vasiformis-tuberculata described by Feist-Castel 1977b; or lineage Peckichara pectinata by Vicente *et al.* 2018). The Here we describe the first one of such lineage is described herelineages in the family Raskyellaceae. ThreeIn the Lutetian and Bartonian of Gánt (Hungary), three former species of the genus Raskyella, -R. peckii, R. caliciformis, and R. vadaszii, -have beenfound-in the Lutetian and Bartonian of Gánt (Hungary) to form a continuous succession of gyrogonite morphologies, connected by intermediate morphotypes. This gradualistic lineage is interpreted as an evolutionary species in the sense of Wiley (1981) and Ax (1987), and the 

525 original taxa have been newly combined as anagenetic varieties of the species with 526 nomenclatural priority, which is *R. peckii*.

The first evolutionary stage of the R. peckii lineage (Fig. 17) is represented by R. peckii var. peckii, and includes, as well, the smallest gyrogonite morphotype initially described as Raskyella peckii ganesesisganesensis Soulié-Märsche, 1971. R. peckii var. peckii is characterized by gyrogonites which are very variable in size, but consistently consistently unornamented. This stage has a long duration, since it has been was documented from the lower Lutetian to the lowerupper Bartonian of the Ebro basinBasin, Catalonia, by Martín-Closas et al. (1999b1999a) and can thus be superimposed toonto some of the ulterior morphotypes of the lineage-, this being quite a common situation in charophyte lineages (e.g., Grambast, 1974). The coeval Raskyella peckii subsp. meridionale Grambast, 1960, was not found in the section studied and corresponds to a southern geographic subspecies of this lineage, thriving in North Africa and the Prebetic Domain in the Balearic Islands in Spain (Grambast 1960; Martín-Closas et al. 2004& Ramos 2005). 

The second stepevolutionary stage in the lineage of *R. peckii* is represented by *R. peckii* var. caliciformis. Intermediate morphotypes between R. peckii var. peckii and R. peckii var. *caliciformis* display a progressive increase in the gyrogonite size (up to 1000 µm in highheight), and a change in shape from elongated to rounded, between samples G-2.2 and G-2.4 of the Gánt section. Furthermore, there is a progressive development of the ornamentation corresponding to R. peckii var. caliciformis in the same sequence, with for instance 100% of gyrogonites corresponding to R. peckii var. peckii in sample G-2.4, while in sample G-2.5, there is only 10% of *R. peckii* var. *peckii* for, resulting in 90% of *R. peckii* var. *caliciformis* (Fig. 17). 

547 The third stage of the lineage is represented by *R. vadaszii*<sub>5</sub> from the upper Bartonian, which 548 shows an additional increase of the gyrogonite size of about 150–250  $\mu$ m in height and 100–

125 µm in width, and especially the development of progressively more complex ornamentation patterns in comparison to the previous evolutionary step (Fig. 17). This gradual change can be observed between samples G-2.5 and G-6b of the Gánt section. Thus, sample G-5 displays a homogeneous population with 100% of gyrogonites corresponding to R. peckii var. caliciformis, while in the overlying sample G-6a, the gyrogonite population of R. peckii contains only 15% of specimens of R. peckii var. caliciformis and 85% of R. peckii var. vadaszii. Finally, in sample G-6b there is a homogeneous population of gyrogonites corresponding to R. peckii var. vadaszii. Overall, the *R. peckii* lineage follows the general evolutionary trend in the evolutionary lineages from of other charophyte families, characterized by an increase in size and sphericity (Clavatoraceae and Raskyellaceae), and a progressive development of ornamentation (Characeae), as shown by Feist-Castel (19771977b), Martín-Closas et al. (1999b), Sille et al. (2004) and Vicente & Martín-Closas (2018). ----- Figure 17 near here -----New local charophyte biozonation Among the charophytescharophyte species described from the bauxite cover-sequence at the Gánt section (Vértes Hills, Hungary), Raskyella peckii represents the most significant species 

568 in terms of biostratigraphy for use in biostratigrpahy within the non-marine Lutetian and

Bartonian, as previously suggested by Riveline *et al.* (1996) and Martín-Closas *et al.* (1999a).

570 The *Raskyella peckii* biozone was defined by the latter authors (p. XRiveline *et al.* (1996) as a

571 'partial range zone comprising the interval from the first appearance of *Raskyella peckii* L. and

N. Grambast, 1954, to the first appearance of *Chara friteli* Grambast, 1958-1958, lower Lutetian to lower Bartonian in age. This study proposes to extend this biozone to cover also the upper Bartonian, and to renameredesignate it as a superzone subdivided into the following three successive biozones (Fig. 18):

- Raskyella peckii zoneZone: partial range zone defined from the first occurrence of the morphotype *peckii* to the first occurrence of the morphotype *caliciformis*, Lutetian-lower Bartonian in age. The local charophyte assemblage characterizing this zone in Gánt occurs in the basal part of the studied section ('Packet 2', 'blue-hole' freshwater limestone facies, samples G-2.2, G-2.3 and G-2.4), and is composed of R. peckii var. peckii, G. caelata forma caelata, G. caelata forma monolifera, and Nitellopsis (Tectochara) aff. palaeohungarica, some of which are well known to occur in several European basins (Rásky 1945; Grambast 1958; Riveline 1986; Martín-Closas et al. 1999a) during the same time interval. 

- Raskyella peckii caliciformis zoneZone: partial range zone defined from the first occurrence
of the morphotype *caliciformis* to the first occurrence of the morphotype *vadaszii*, lower
Bartonian in age. This zone includes in Gánt the assemblage found in the lower part of 'Packet
3' (samples G-2.5) and composed of *R. peckii* var. *caliciformis*, *G. caelata* forma *caelata*, *G. caelata* forma *monolifera*, *G. caelata* forma *baccata*, *Nitellopsis* (*Tectochara*) aff.
palaeohungarica, and Chara media.

- Raskyella pecki vadaszii zoneZone: partial range zone defined from the first occurrence of
the morphotype *vadaszii* to the first occurrence of the next zone defined in the Paris Basin,
which is *Psilochara repanda*. This zone would be upper Bartonian in age. The assemblage
occurring in the middle part of the Gánt section ('Packet 3', samples G-6a and G-6b), composed
of *R. peckii* var. *vadaszii*, *G. caelata* forma *bicincta*, *G. caelata* forma *baccata*, *G. caelata* forma

 *fasciata*, *Psilochara polita*, *Psilochara* sp., *Chara media*, and *Chara subcylindrica* 596 characterizes locally this biozone.

#### 598 Implications on the age of the bauxite cover-sequence

The biostratigraphic analysis carried out allows suggesting suggests a relative age of Lutetian-Bartonian (Fig. 18) toof the studied bauxite cover-sequence at the Gánt section (Vértes Hills, Hungary), rather than uniquely uppermost middle Eocene (constraining it to the Bartonian) as previously suggested by Bignot (1985). Thus, theA Lutetian age, deduced from the charophytes and attributed to the lower part of the studied series herein from the TCR, has been already suggested in several works preceding that of Bignot (1985), notably those of Szőts (1938), Kopek (1980), and Dudich & Kopek (1982), on the basis of mollusc and palynomorph biostratigraphy. The data presented herein support the idea that the Eocene succession in the studied area reflects a stepwise marine transgression beginning since the Lutetian, early Eocene upon the bauxite deposits. Such a, beginning in the Lutetian. Our new chronostratigraphic framework sheds new light on the timing of the long-lasting subaerial exposure and alteration process generating the bauxite strata, which stratigraphically seems to occur at a major regional unconformity between late Triassic and early Eocene rather than in the middle Eocene as previously assumed by Mindszenty (2010). Consequently, it will be significant to review the coeval strata from the surrounding localities within the TCRTransdanubian Central Range should be re-studied and analysed from the viewpoint of charophyte-based biostratigraphy point of view, in order to establish a regional charophyte biozonation scheme allowing better understanding of the regional stratigraphic correlation of correlate the post-bauxite sedimentarydepositional event(s) on a regional scale and their associated to improve the understanding of its tectono-eustatic control.

----- Figure 18, near here------Conclusions Eocene (Lutetian–Bartonian) charophyte assemblages are taxonomically described for the first time from an outcrop of the bauxite cover-sequence at the Gánt section (Vértes Hills), Hungary's Transdanubian Central Range. This section shows The sections show for the first time that Raskyellaceae didthe raskyellacean charophytes also evolveevolved in gradualistic lineages, similarly as it wasto what is already known for other charophyte families. The *Raskyella peckii* lineage is formed by three successive stages and is interpreted here in terms of the anagenetic evolutionanagenesis of the evolutionary species *Raskyella peckii*, including its gradual change to the morphotype previously known formerly as R. vadaszi. From the biostartigraphica biostratigraphic viewpoint, the assemblages studied belong to the Raskyella peckii biozone of Martín-Closas et al. (1999b1999a), which is here reinterpreted here as a superzone extending to cover the *Raskyella vadaszii* zoneZone of Riveline *et al.* (1996) and therefore attributed to the Lutetian-Bartonian interval age. This. In this study, this superzone is subdivided herein into three successive local partial range biozones, defined by each of the successive varieties of the evolutionary species R. peckii: (1) the Raskyella peckii *peckii* partial range zone is formed characterized by *R. peckii peckii*, *G. caelata* forma *caelata*, G. caelata forma monolifera and Nitellopsis (Tectochara) aff. palaeohungarica, Lutetian-lowermost Bartonian in age; (2) the Raskyella peckii caliciformis partial range zone is formed characterized by R. peckii caliciformis, G. caelata forma caelata, G. caelata forma 

 *monolifera*, *G. caelata* forma *baccata*, *Nitellopsis* (*Tectochara*) <u>aff</u>. *palaeohungarica* and *Chara media*, lower Bartonian in age; and (3) the *Raskyella peckii <u>vadaszivadaszii</u>* partial range
zone is <u>formedcharacterized</u> by *R. peckii vadaszii*, *G. caelata* forma *bicincta*, *G. caelata* forma *baccata*, *G. caelata* forma *fasciata*, *G. tuberosa*, *Psilochara polita*, *Psilohara* sp., *Chara media*and *Chara subcylindrica*, upper Bartonian in age.

In the light of the new results presented here, the studied charophyte-bearing sequences studied in this work represent a largerlonger time span than previously thought, lasting during running from the Lutetian andto the Bartonian<sub>52</sub>. This has direct implications inon the understanding of the Eocene\_regional stratigraphic scheme of the Transdanubian Central Range-during the Eocene, particularly in terms of synchronism/diachronism; in the regional/supraregional stratigraphic correlation, as well as the timing of the tectono-sedimentary control and palaeogeographic reconstitution. evolution.

## 655 Acknowledgements

This study is a contribution to UNESCO-IGCP 632 'Continental Crises of the Jurassic: Major Extinction Events and Environmental Changes within Lacustrine Ecosystems', subproject 'Late Mesozoic lacustrine systems in Tunisia and their global correlation' (BS), and UNESCO IGCP Project 661 'The Critical Zone in Karst Systems', subproject: 'Evolution of fossil blue hole limestones and the critical zone in a greenhouse world' (MW, KT) within the scope of the Earth System Science (ESS) programme funded by the Austrian Academy of Sciences (BS), as well as project CGL2015-69805-P from the Spanish Ministry of Innovation and Competitiveness and to project SGR2017-841 of the AGAUR (Catalan Research Agency) (MCCM-C). It also benefitted from Austrian Science Fund (FWF) project P 27687-N29 (BS), and from the results
| 665 | of the SYNTHESYS project HU-TAF6533 accorded to CM-C to study the Klára Rásky                 |
|-----|-----------------------------------------------------------------------------------------------|
| 666 | collection at the Hungarian Natural History Museum in Budapest. We sincerely acknowledge      |
| 667 | Dr. Ingeborg Soulié-Märsche (Université de Montpellier II, France), Dr. Josep Sanjuan         |
| 668 | (University of Barcelona, Spain), and Dr. Alba Vicente (Universidad Nacional Autónoma de      |
| 669 | México-UNAM, México), as well as the editor Dr. Paul M. Barrett for their valuable and        |
| 670 | constructive observations and criticism that greatly improved the manuscript during the peer- |
| 671 | review process. Kevin Kearney (University of Vienna, Austria) is acknowledged for English     |
| 672 | language editing.                                                                             |
| 673 |                                                                                               |
| 674 | References                                                                                    |
|     |                                                                                               |
| 6/5 |                                                                                               |
| 676 | Abdeljaoued, A., Sassi, S., Triat, JM. & Truc, G. 1984. Nouvelles précisions                  |
| 677 | stratigraphiques et biostratigraphiques (mollusques terrestres et charophytes) sur «          |
| 678 | l'Eocène continental » de Tunisie centrale et méridionale: intervalle Paléocène supérieur-    |
| 679 | Ludien. Nouvelles Archives du Museum d'Histoire Naturelle de Lyon, 22, 73–77.                 |
| 680 | Agardh, C. A. 1824. Systema Algarum. Lundae Literis Berlingianis, Lundae, 312 pp.             |
| 681 | Anadón, P & Feist, M. 1981. Charophytes et biostratigraphie du Paléogène inférieur du bassin  |
| 682 | de l'Ebre oriental. Palaeontographica, 178 B-(4-6), 143-168                                   |
| 683 | Anadón, P., Cabrera, L., Choi, SJ., Colombo, F., Feist, M. & <u>SaezSáez</u> A. 1992.         |
| 684 | BiozonacionBiozonación del PaleogenoPaleógeno continental de la zona oriental de la           |
| 685 | Cuenca del Ebro mediante carofitas: implicaciones en la biozonacionbiozonación general        |
| 686 | de carofitas de Europa occidental. Acta Geologica Hispanica, 27-(1-2), 69-94.                 |
| 687 | Ax, P. 1987. The Phylogenetic System. The Systematization of Organisms on the Basis of Their  |
| 688 | Phylogenesis. New York: Wiley-Interscience, New York, 340 pp.                                 |

| 3<br>4                     | 689 | Bignot, G., Blondeau, A., Guenet, C., Perreau, M., Poignant, A., Renard, M., Riveline. J.,      |
|----------------------------|-----|-------------------------------------------------------------------------------------------------|
| 5<br>6<br>7                | 690 | Gruas, C., Dudich, E., Kázmér, M. & Kopek, G. 1985. Age and characteristics of the              |
| 7<br>8<br>9                | 691 | Eocene transgression at Gánt (Vértes Mts. Transdanubia, Hungary). Acta Geologica                |
| 10<br>11                   | 692 | <i>Hungarica</i> , <b>28</b> -(1–2), 29–48.                                                     |
| 12<br>13                   | 693 | Carannante, G., Mindszenty, A., Neumann, A. C., Rasmussen, K. A., Simone, L. & Tóth,            |
| 14<br>15<br>16             | 694 | K. 1994. Inland blue-hole-type ponds in the Mesozoic–Tertiary karst-filling sequences.          |
| 17<br>18                   | 695 | Abstracts, 15th IAS Regional Meeting, April, 1994, Ischia, Italy. 25-59.                        |
| 19<br>20                   | 696 | Choi, S. J. 1989. Les Charophytes du Bassin Potassique Catalan (Nord-Est de l'Espagne) à la     |
| 21<br>22<br>23             | 697 | limite Eocène-Oligocène. Paléobiologie continentale, 26, 1–67.                                  |
| 23<br>24<br>25             | 698 | Dudich, E. & Kopek, G. 1982. Outlines of the Eocene paleogeography of the Bakony                |
| 26<br>27                   | 699 | Mountains, Transdanubia, Hungary. Földtani Közlöny (Bulletin of the Hungarian                   |
| 28<br>29                   | 700 | <i>Geological Society)</i> , <b>3–4</b> , 417–431. [In Hungarian with English Abstract].        |
| 30<br>31<br>32             | 701 | Feist-Castel, M. 1970. Distribution verticale des Charophytes dans l'Eocène du Minervois.       |
| 33<br>34                   | 702 | Bulletin de la Société Géologique de France, 12, 926–931.                                       |
| 35<br>36                   | 703 | Feist-Castel, M. 1971. Sur les Charophytes fossiles du Bassin tertiaire d'Alès (Gard). Geobios, |
| 37<br>38<br>39             | 704 | 4, 157–172.                                                                                     |
| 40<br>41                   | 705 | Feist-Castel, M. 1972. Charophytes Eocène de la région montpelliéraine. Paléobiologie           |
| 42<br>43                   | 706 | Continentale, <b>3</b> , 1–22.                                                                  |
| 44<br>45<br>46             | 707 | Feist-Castel, M. 1975. Répartition des Charophytes dans le Paléocène et l'Eocène du bassin      |
| 47<br>48                   | 708 | d'Aix-en-Provence. Bulletin de la Société Géologique de France, 17-(7), 88-97.                  |
| 49<br>50                   | 709 | Feist-Castel, M. 1976. Les charophytes dans le Paléocène du Sud de la France (Provence,         |
| 51<br>52<br>53             | 710 | Languedoc, Aquitaine). Etude Systématique et biostratigraphique. Unpublished PhD                |
| 54<br>55                   | 711 | thesis, University of Montpellier II, Science and Technology, Languedoc. Article de             |
| 56<br>57<br>58<br>59<br>60 | 712 | synthèse, 82 p.                                                                                 |

| graphique des Charophytes dans les séries    |
|----------------------------------------------|
|                                              |
| néenne, <b>4</b> , 109–138.                  |
| e floras in the Upper Eocene and Lower       |
| <b>20</b> , 143–157.                         |
| biostratigraphique et paléobotanique         |
| d'Aquitaine de l'Eocène supérieur au         |
| gique de France, <b>19</b> , 341–354.        |
| ranstensional strike-slip fault array: Field |
| gham, D.F. and Mann, P. (eds): Tectonics     |
| s. Geological Society, London, Special       |
|                                              |
| verte de charophytes d'âge Eocène au Glib    |
| é d'Histoire naturelle d'Afrique du Nord,    |
|                                              |
| A Geologic Time Scale 2004. Cambridge:       |
|                                              |
| Characeae). Compte Rendu Sommaire des        |
| 4, 278–280.                                  |
| ite et systématique chez les charophytes     |
| -362.                                        |
| res d'Europe Occidentale et leurs rapports   |
| esis, University of Paris. 286 p.            |
| nylum des Charophytes. Comptes Rendus        |
| , <b>249</b> , 557–559.                      |
|                                              |

| 2        |              |
|----------|--------------|
| 3        | 737          |
| 4<br>5   |              |
| 5<br>6   | 738          |
| 7        | 730          |
| 8<br>9   | 139          |
| 10       | 740          |
| 11<br>12 |              |
| 13       | 741          |
| 14<br>15 | 742          |
| 16       |              |
| 17       | 743          |
| 18<br>19 | 711          |
| 20       | /44          |
| 21<br>22 | 745          |
| 23       |              |
| 24       | 746          |
| 25<br>26 | 7/17         |
| 27       | / 4 /        |
| 28<br>29 | 748          |
| 30       |              |
| 31       | 749          |
| 32<br>33 | 750          |
| 34       | /50          |
| 35       | 751          |
| 30<br>37 |              |
| 38       | 752          |
| 39<br>40 | 753          |
| 40<br>41 | /55          |
| 42       | 754          |
| 43<br>44 |              |
| 44<br>45 | 755          |
| 46       |              |
| 47<br>48 | /56          |
| 49       | 757          |
| 50       |              |
| 51<br>52 | 758          |
| 53       | <b>-</b> - ^ |
| 54<br>55 | 759          |
| 56       | 760          |
| 57       |              |
| 58<br>59 |              |
| 60       |              |
|          |              |

Grambast, L. 1960. Description et signification stratigraphique de deux charophytes d'origine
saharienne. *-Revue de Micropaléontologie*, 4, 192–198.

- 739 Grambast, L. 1962a. Sur l'intérêt stratigraphique des Charophytes fossiles: exemples
  740 d'application au Tertiaire parisien. *Comptes Rendus de la Société géologique de France*,
  741 7, 207–209.
- Grambast, L. 1962b. Aperçu sur les Charophytes tertiaires du Languedoc et leur signification
  stratigraphique. *Comptes Rendus Sommaires des Séances de la Société Géologique de France*, 10, 313–314.
- Grambast, L. <u>1972a1972</u>. Principes de l'utilisation stratigraphique des charophytes.
  Applications au Paléogène d'Europe occidentale. *Mémoire du Bureau de Recherches géologiques et minières*, 77, 319–328.
- Grambast, L. 1972b. Etude sur les Charophytes tertiaires d'Europe Occidentale. I: Genre
   Tectochara. *Paléobiologie Continentale*, 3 (2), 1–301974. Phylogeny of the Charophyta.
   *Taxon* 23, 463–481.
  - Grambast, L. & Grambast, N. 1954. Sur la position systématique de quelques Charophytes
     tertiaires. *Revue Générale de Botanique*, 61, 665–671.
  - Grambast, L. & Grambast, N. 1955. Les Raskyelloïdeae, sous-famille fossile des Characeae.
     *Compte Rendu de l'Académie des Sciences, Paris*, 240, 999–1001.

Grambast, L. & Soulié-Märsche, I. 1972. Sur l'ancienneté et la diversification des *Nitellopsis* (Charophytes). *Paléobiologie continentale*, III-(3), 1–14.

Grambast, L. & Grambast-Fessard, N. 1981. Etude sur les Charophytes tertiaires d'Europe
 occidentale. III. Le genre *Gyrogona*. *Paléobiologie continentale*, 12-(2), 1–35.

Horn Afaf Rantzien, H. 1959. Morphological types and organ-genera of tertiaryTertiary
 Charophyte fructifications. *Stockholm ContributionContributions in Geology*, 4, 45–197.

| 3        |
|----------|
| 4        |
| 5        |
| 6        |
| 7        |
| /<br>0   |
| 0        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| ~~<br>72 |
| ∠⊃<br>⊃4 |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 20       |
| 20       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 57       |
| 54       |
| 55       |
| 50       |
| 5/       |
| 58       |
| 59       |
| 60       |

Hy, F. 1889. Sur les modes de ramifications et cortication dans la famille des Characées. *Bulletin de la Société Botanique de France*, 36, 393–398.

- **Iva, M.** 1987. Quelques espèces de Charophytes lutétiens du Nord-Ouest de la Transylvanie.
- Pp. 43–48. *In* Petrescu, I., Ghergari, L., Mészáros, N. & Nicorici, E. (eds).) *The Eocene from the Transylvanian Basin, Romania*. Babeş-Bolyai Univesity Cluj, Cluj-Napoca.
- 766 Kázmér, M., Dunkl, I., Frisch, W., Ozsvárt, P. 2003. The Palaeogene forearc basin of the
   767 Eastern Alps and Western Carpathians: subduction erosion and basin evolution. *Journal* 768 of Geological Society, London, 160, 413–428.

## Kopek, G. 1980. A Bakony hegység ÉK-i részének eocénje [L'Éocéne de la partie Nordorientale de la Montagne du Bakony (Transdanubie, Hongrie)]. *Magyar Állami Földtani Intézet Évkönyve [Annales Instituti Publici Geologiae Hungarici]*, 63-(1), 7–132 [133– 176]. [In Hungarian and French]

- Lamarck, J. B. 1822. *Histoire Naturelle des Animaux Sans Vertèbres*. Paris, Verdière Editeur,
  774 711 pp.
- **Lindley, J.** 1836. *A Natural System of Botany*, second ed. Longman, London, 526 pp.
- 776 Mädler, K. <u>1955b1955</u>. Zur Taxinomie der tertiären Charophyten. *Geologisches Jahrbuch*, 70,
  777 265–328.
  - Martin, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In*:
     Farinaci, A., Ed., *Proceedings of the II Planktonic Conference*, v. 2, 739–785. Roma:
     Edizioni Tecnoscienza.
- Martín-Closas, C. & Schudack, M.E. 1991. Phylogenetic analysis and systematization of
  post-paleozoic Charophytes. *Bulletin de la Société Botanique de France*, 138. Actualités
  botaniques 1, 53–71.
- Martín-Closas, C. & Ramos, E. 2005. Palaeogene charophytes of the Balearic Islands (Spain).
   *Geologica Acta* 3, 39–58.

| 2                    |     |                                                                                                        |
|----------------------|-----|--------------------------------------------------------------------------------------------------------|
| 3<br>4               | 786 | Martín-Closas, C., Bosch, R. & Serra-Kiel, J. 1999a. Biomechanics and evolution of                     |
| 5<br>6               | 787 | spiralization in charophyte fructifications. In Kurmann MH, Hemsley A.R. (eds). The                    |
| 7<br>8               | 788 | evolution of plant architectureLondon Royal Botanic Gardens Kew, 506 pp.                               |
| 9<br>10<br>11        | 789 | Martín-Closas, C., Serra–Kiel, J., Busquets, P. & Ramos-Guerrero, E. <del>1999b<u>1999a</u>. New</del> |
| 12<br>13             | 790 | correlation between charophyte and larger foraminifera biozones (Middle Eocene,                        |
| 14<br>15             | 791 | southeastern Pyrene es). <i>Géobios<u>Geobios</u></i> , <b>32</b> , 5–18.                              |
| 16<br>17<br>18       | 792 | Martín-Closas, C., Bosch-Casadevall, R., Serra-Kiel, J. 1999b. Biomechanics and evolution              |
| 19<br>20             | 793 | of spiralization in charophyte fructifications. In: Kurmann M.H. & Hemsley A.R. (eds.).                |
| 21<br>22             | 794 | The evolution of plant architecture. Mebrouk, F. & Feist, M. 1999. Nouvelles                           |
| 23<br>24<br>25       | 795 | charophytes de l'Eocène continental de l'Algérie. Géologie méditerranéenne, 26, 29-45.                 |
| 25<br>26<br>27       | 796 | London, Royal Botanic Gardens Kew. p. 399-421.                                                         |
| 28<br>29             | 797 | Mebrouk, F., Mahboubi, M., Bessedik, M. & Feist, M. 1997. L'apport des charophytes à la                |
| 30<br>31<br>32       | 798 | stratigraphie des formations continentales Paléogènes de l'Algérie. Geobios, 30, 171-                  |
| 33<br>34             | 799 | 177.                                                                                                   |
| 35<br>36             | 800 | Megerisi, M. F. & Mamgain, V. D. 1980. The Upper Cretaceous-Tertiary Formations of                     |
| 37<br>38<br>30       | 801 | northern Libya: a synthesis. Department of Geological Researches and Mining Bulletin,                  |
| 39<br>40<br>41<br>42 | 802 | <b>12</b> , 1–85.                                                                                      |
| 42<br>43<br>44       | 803 | Mindszenty, A. 2010. Bauxite deposits of Gánt (Vértes Hills, Hungary). Acta Mineralogica-              |
| 45<br>46<br>47       | 804 | Petrographica, Field Guide Series, 11, 1–11.                                                           |
| 48<br>49             | 805 | Migula, W. 1897. Die Characeen Deutschlands-, Österreichs und der Schweiz. In Rabenhorst,              |
| 50<br>51<br>52       | 806 | L. (ed.), Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der                   |
| 52<br>53<br>54<br>55 | 807 | Schweiz. Zweite Auflage, Fünfter Band, Part 12. Eduard Kummer, Leipzig, 765 pp.                        |
| 56<br>57             | 808 | Mindszenty, A. 2010. Bauxite deposits of Gánt (Vértes Hills, Hungary). Acta Mineralogica-              |
| 58<br>59<br>60       | 809 | <u>Petrographica, Field Guide Series, 11, 1–11.</u>                                                    |

Nötzold, T. 1965. Die Präparation von Gyrogoniten und kalkigen Charophyten-Oogonien aus festen Kalksteinen. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 7, 216–221. 

Ollivier-Pierre, M. F., Riveline, J., Lautridou, J. P. & Cavelier, C. 1988. Le fossé de Céaucé (Orne) et les bassins ludiens (Eocène supérieur) de la partie orientale du Massif armoricain: sédimen-tologiesédimentologie, paléontologie. Intérêt stratigraphique, paléogéographique et tectonique. Géologie de France, 1, 51-60. 

Pálfalvi, S., Fodor, L. Kercsmár, Z., Báldi-Beke, M., Kollányi, K. & Less, G. Y. 2006. Sedimentation pattern, tectonic control, and basin evolution of the northern Transdanubian Eocene basins (Vértes Hills, central Hungary). Geophysical Research 08384. Abstracts, 8,

https://meetings.copernicus.org/www.cosis.net/abstracts/EGU06/08384/EGU06-J-

08384.pdf 

## Pálfalvi, S. 2007. Reconstruction of Eocene depositional environmets environments in the Vértes Hills, based on microfacies analysis. Unpublished PhD thesis, University of Budapest, Budapest, 150 pp.

Pia, J. 1927. Charophyta. In Hirmer, M. (ed.), Handbuch der Paläobotanik, 1. R. Oldenbourg Druck und Verlag, München-Berlin, 708 pp. 

## Rásky, K. 1945. - Fossile Charophyten-Früchte aus Ungarn. Budapest, Verlag des Ungarischen Naturwissenschaftlichen Museums, 75 pp.

- Ramos-Guerrero, E., Rodríguez-Perea, A., Sabat, F. & Serra-Kiel, J. 1989. Cenozoic tectosedimentary evolution of Mallorca island. Geodinamica Acta, 3, 53-72.
- Reid, C. & Groves, J. 1921. The Charophyta of the Lower Headon Beds of Hordle (Hordwell) Cliffs (South Hampshire). Quarterly Journal of the Geological Society of London, 77,
- 175-192.

| -<br>3<br>4    | 83 |
|----------------|----|
| 5<br>6         | 83 |
| 7<br>8<br>0    | 83 |
| 9<br>10<br>11  | 83 |
| 12<br>13       | 83 |
| 14<br>15<br>16 | 84 |
| 17<br>18       | 84 |
| 19<br>20       | 84 |
| 21<br>22<br>22 | 84 |
| 23<br>24<br>25 | 84 |
| 26<br>27       | 84 |
| 28<br>29       | 84 |
| 30<br>31<br>32 | 84 |
| 33<br>34       | 84 |
| 35<br>36       | 84 |
| 37<br>38<br>39 | 85 |
| 40<br>41       | 85 |
| 42<br>43       | 85 |
| 44<br>45<br>46 | 85 |
| 40<br>47<br>48 | 85 |
| 49<br>50       | 85 |
| 51<br>52       | 85 |
| 53<br>54<br>55 | 85 |
| 56<br>57       | 85 |
| 58<br>59       | 85 |
| 00             |    |

**Riveline, J.** 1984. Les gisements à charophytes du Cénozoïque (Danien à Burdigalien)
 d'Europe occidentale: Lithostratigraphie, Biostratigraphie, chronostratigraphie. *Bulletin d'Information des Géologues du Bassin de* Paris, 4, 583 pp.

Riveline, J. 1986. Les charophytes du Paléogène et du Miocène inférieur d'Europe occidentale.
 *Cahiers de Paléontologie (édition du C.N.R.S)*, 227 ppp.

Riveline, J. & Cavelier, C. 1987. Les charophytes du passage Eocene moyen-Eocene superieur
 en Europe occidentale; implications stratigraphiques. *Bulletin de la Société Géologique de France*, III-(2), 307–315.

Riveline, J, Berger J. P., Bilan W, Feist, M., Martín-Closas, C., Schudack, M. E. & Soulié Märsche, I. 1996. European Mesozoic-Cenozoic Charophyte Biozonation. *Bulletin de la Société Géologique de France*, 167, 453–468.

846 Sanjuan, J. & Martín-Closas, C. 2012. Charophyte palaeoecology in the Upper Eocene of the
 847 Eastern Ebro basin (Catalonia, Spain). Biostratigraphic implications. *Palaeogeography,* 848 *Palaeoclimatology, Palaeoecology*, 365–366, 247–262.

## Sanjuan, J. & Martín-Closas, C. 2014. Taxonomy and palaeobiogeography of charophytes from the Upper Eocene–Lower Oligocene of the Eastern Ebro Basin (Catalonia, NE Spain). *Geodiversitas*, 36, 385–420.

Sanjuan, J., Martín-Closas, C., Costa, E., Barberà, X. & Garcés, M. 2014. Calibration of
 Eocene-Oligocene charophyte biozones in the eastern Ebro Basin (Catalonia, Spain).
 Stratigraphy, 11, 61–81.

855 Schudack, M. E. 1993. Die Charophyten im Oberjura und Unterkreide Westeuropas. Mit einer
 856 phylogenetischen Analyse der Gesamtgruppe. *Berliner Geowissenschaftliche* 857 *Abhandlungen, Reihe A*, 8, 1–209.

858 Sille, N. P., Collinson, M. E., Kucera, M. & Hooker, J. J. 2004. Evolution within the
859 charophyte genus *Harrisichara*, late Paleogene, southern England; environmental and

| 1<br>2                                                                                                                                                                                                                                                                                                                 |     |                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                       | 860 | biostratigraphic implications. Palaeogeography Palaeoclimatology Palaeoecolgy, 208,           |
|                                                                                                                                                                                                                                                                                                                        | 861 | 153–173.                                                                                      |
|                                                                                                                                                                                                                                                                                                                        | 862 | Smith, G. M. 1938. Cryptogamic Botany Volume 1, Algae and Fungi. McGraw Hill, New York,       |
|                                                                                                                                                                                                                                                                                                                        | 863 | 547 pp. [Class Charophyceae, p. 127].                                                         |
| 12<br>13                                                                                                                                                                                                                                                                                                               | 864 | Szőts, E. 1938. A móri Antalhegy óharmadkori képződményei [Early Tertiary formations of       |
| 14         15         16         17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42 | 865 | Antalhegy at Mór, Hungary]. PhD thesis, Supplement to Földtani Szemle, Budapest, 42           |
|                                                                                                                                                                                                                                                                                                                        | 866 | pp. [Published thesis, in Hungarian]].                                                        |
|                                                                                                                                                                                                                                                                                                                        | 867 | Soulié-Märsche, I. 1971. Description de nouvelles Charophytes éocènes. Bulletin de la Société |
|                                                                                                                                                                                                                                                                                                                        | 868 | d'Histoire naturelle de Toulouse, 107-(1–2), 18–27.                                           |
|                                                                                                                                                                                                                                                                                                                        | 869 | Soulié-Märsche, I. 1974. Nouvelles espèces de Charophytes éocènes du Bassin d'Aquitaine.      |
|                                                                                                                                                                                                                                                                                                                        | 870 | Compte Rendu 96ème Congrès national Sociétés Savantes Toulouse, 1971, section                 |
|                                                                                                                                                                                                                                                                                                                        | 871 | <i>Science Paris</i> , <b>2</b> , 109–144.                                                    |
|                                                                                                                                                                                                                                                                                                                        | 872 | Trabelsi, K., Touir, J., Soulié-Märsche, I., Martín-Closas, C., Soussi, M. & Colin, J. P.     |
|                                                                                                                                                                                                                                                                                                                        | 873 | 2010. Découverte des charophytes de l'Albien dans la Formation Kebar (Tunisie                 |
|                                                                                                                                                                                                                                                                                                                        | 874 | centrale): implications paléoécologiques et paléobiogéographiques. Annales de                 |
|                                                                                                                                                                                                                                                                                                                        | 875 | Paléontologie, 96, 117–133.                                                                   |
|                                                                                                                                                                                                                                                                                                                        | 876 | Trabelsi, K., Soussi, M., Touir, J., Houla, Yassine, Abbes, C. & Martin-Closas, C. 2016.      |
|                                                                                                                                                                                                                                                                                                                        | 877 | Charophytes biostratigraphy of the nonmarine Lower Cretaceous in the Central Tunisian         |
| 44<br>45                                                                                                                                                                                                                                                                                                               | 878 | Atlas (North Africa). Paleobiogeographic implications. Cretaceous Research, 67, 66-83.        |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                                                                                                                                                                                                                                                                     | 879 | Vaillant, S. 1719. Charactères de quatorze genres de plantes. Mémoires de l'Académie royale   |
|                                                                                                                                                                                                                                                                                                                        | 880 | des Sciences de Paris pour 1719, 17–20.                                                       |
|                                                                                                                                                                                                                                                                                                                        | 881 | Vianey-Liaud, M., Jaeger, JJ., Hartenberger, JL. & Mahboubi, M. 1994. Les rongeurs            |
|                                                                                                                                                                                                                                                                                                                        | 882 | de l'Eocène d'Afrique nord-occidental [Glib Zegdou (Algérie) et Chambi (Tunisie)] et          |
| 55<br>56                                                                                                                                                                                                                                                                                                               | 883 | l'origine des Anomaluridae. Palaeovertebrata, 23, 93-118.                                     |
| 57<br>58<br>50                                                                                                                                                                                                                                                                                                         |     |                                                                                               |
| 60                                                                                                                                                                                                                                                                                                                     |     |                                                                                               |

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4<br>5   |  |
| 5        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20<br>21 |  |
| ∠ı<br>22 |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 3/       |  |
| 30       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47<br>78 |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 50<br>57 |  |
| 57       |  |
| 59       |  |
| 60       |  |

| 884 | Vicente, A. & Martín-Closas, C. 2018. Gradualistic characean lineages in the Upper             |
|-----|------------------------------------------------------------------------------------------------|
| 885 | Cretaceous–Palaeocene of southern Europe. <i>Historical Biology</i> , <b>30</b> -(5), 593–607. |
| 886 | Weidmann, M., Franzen, E. & Berger, J. P. 1991. Sur l'âge des Couches à Cérithes ou            |
| 887 | Couches des Diablerets de l'Eocène alpin. Eclogae Geologicae Helvetiae, 84-(3), 893-           |
| 888 | 919.                                                                                           |
| 889 | Wiley, R. H. 1981. Social structure and individual ontogenies: problems of description,        |
| 890 | mechanism, and evolution. In Bateson, P. P. G. and Klopfer, P. H. (ed.). Perspecitves in       |
| 891 | Ethology. Vol. 4: Advantages of diversity. Plenum Press, New York, 262 pp.                     |
| 892 | Willey E. O. 1981. Phylogenetics. John Wiley and Sons, New York.                               |
| 893 |                                                                                                |
| 894 | Figure Captions                                                                                |
| 895 |                                                                                                |
| 896 | Figure 1. A, geographical and geological setting of the study area (after Fodor 2007). B,      |
| 897 | panoramic view of the studied Gánt section at the Vértes Hills (north-western Hungary).        |
| 898 |                                                                                                |
| 050 |                                                                                                |
| 899 | Figure 2. Distribution of the charophytes species in the bauxite cover-sequence from of the    |
| 900 | studied Gánt section (Vértes Hills, Hungary), according to Bignot et al. (1985).), updated for |
| 901 | charophyte content.                                                                            |
| 902 |                                                                                                |
| 903 | Figure 3. Gyrogonites of species-Raskyella peckii gyrogonites from the Gánt bauxite cover-     |
| 904 | sequence. A–H, Raskyella pecki var. peckii (samples G-2.2, G-2.3, G-2.4, and G-2.5).           |
| 905 | HNHM-PBO 1501–1508. A–E, lateral view; F–G, apical view; H, basal view. I–P, Raskyella         |
| 906 | peckii var. caliciformis (samplesamples G-2.5, and G-6a).), HNHM-PBO 1509–1516. I–K,           |
| 907 | lateral view; L, lateral view of gyrogonite partially devoided from external layerbroken       |

showing the oospore.internal cast. M, the oosporeinternal cast with well-developed
undulations. N–O, apical view; P, basal view. Specimen numbers HNHM-PBO xxxxx-yyyyy
will be added for each respective specimen.

Figure 4. Frequency distribution of the lengthheight (A), width (B), number of convolutions

(C), lengthand height/width ratio (ISI) (D) of the *Raskvella peckii* var. *peckii* population (50

gyrogonites measured), from samples G-2.2, G-2.3, and G-2.4 in the bauxite cover-sequence

915 of the Gánt section.

Figure 5. Frequency distribution of the lengthheight (A), width (B), number of convolutions
(C), lengthand height/width ratio (ISI) (D) of the *Raskyella peckii* var. *caliciformis* population
(50 gyrogonites measured), from sample G-2.5 in the bauxite cover-sequence of the Gánt
section.

Figure 6. Gyrogonites of species *Raskyella peckii <u>vadaszii gyrogonites</u>* from the Gánt bauxite
cover-sequence. (A–S, *Raskyella peckii var. vadaszii* (samples G-6a and G-6b, <u>HNHM-PBO</u>
<u>1517–1534</u>). A–K, lateral view. L–P, apical view; Q, basal view; R–S, inside wall of a
gyrogonite showing the crenate undulation of the cellular sutures in contact with the spiral
cells and the apical cells. Specimen numbers HNHM-PBO xxxxx-yyyyy will be added for
each respective specimen.

Figure 7. Frequency distribution of the lengthheight (A), width (B), number of convolutions
(C), lengthand height/width ratio (ISI) (D) of the *Raskyella peckii* var. *vadaszii* population (50
gyrogonites measured), from samples G-6a and G-6b in the bauxite cover-sequence of the
Gánt section.

Figure 8. Gyrogonites of species Gyrogona caelata gyrogonites from the Gánt bauxite cover-sequence. A–G, Gyrogona caelata forma caelata (samples G-2.2, G-2.3, G-2.4, and G-2.5+), HNHM-PBO 1535–1553. A–B, D–E, basal view C, detail of the ornamentation pattern; F, basal view; G, apical view. H-K, Gyrogona caelata forma bicincta (samples G-6a, and G-6b). H, lateral view; I, detail of the ornamentation pattern; J-K, apical view. L-M, Gyrogona caelata forma monolifera (samples G-2.2, G-2.3, G-2.4, and G-2.5). L, lateral view; M, basal view. N–Q, Gyrogona caelata forma baccata (samples G-2.5, G-6a, and G-6b). N–O, lateral view; P, basal view; Q, apical view. R-V, Gyrogona caelata forma fasciata (samples G-6a; and G-6b). R, lateral view; S-T, apical view; U-V, detail of the simple (unipartite) basal plate. Specimen numbers HNHM-PBO xxxxx-yyyyy will be added for each respective specimen.

Figure 9. Frequency distribution of the lengthheight (A), width (B), number of convolutions
(C), lengthand height/width ratio (ISI) (D) of the *Gyrogona caelata* population (50 gyrogonites measured), from samples G-2.2, G-2.3, G-2.4, G-2.5, and G-6a in the bauxite cover-sequence of the Gánt section.

Figure 10. Gyrogonites of species Gyrogona tuberosa gyrogonites from the Gánt bauxite cover-sequence (samples sample G-6b), HNHM-PBO 1554–1563. A-G, lateral view; H, apical view; I-J, basal view. Specimen numbers HNHM-PBO xxxxx-yyyyy will be added for each respective specimen. Figure 11. Gyrogonites of genusgenera Psilochara and Nitellopsis from the Gánt bauxite cover-sequence. A–F, Psilochara polita (samplessample G-6a), HNHM-PBO 1564–1569. A-C, lateral view; D-E, apical view; F, basal view. G-I, Psilochara sp. (samplessample G-6a).), HNHM-PBO 1570–1571. G, lateral view; H, apical view; I, internal view showing simple (unipartite) basal plate (arrowed). J–N, Nitellopsis (Tectochara) aff. palaeohungarica (samples G-2.3 and G-2.5), HNHM-PBO 1572–1576. J–L, lateral view; M, apical view; N, basal view. Specimen numbers HNHM-PBO xxxxx-yyyyy will be added for each respective specimen. Figure 12. Frequency distribution of the lengthheight (A), width (B), number of convolutions (C), lengthand height /width ratio (ISI) (D) of the *Psilochara polita* population (50 gyrogonites measured), from sample G-6a in the bauxite cover-sequence of the Gánt section. Figure 13. Frequency distribution of the lengthheight (A), width (B), number of convolutions (C), lengthand height /width ratio (ISI) (D) of the Nitellopsis (Tectochara) aff. palaeohungarica population (50 gyrogonites measured), from samples G-2.3 and G-2.5 in the bauxite cover-sequence of the Gánt section. 

| 1        |  |
|----------|--|
| 2        |  |
| 2        |  |
| 1        |  |
| 5        |  |
| 5        |  |
| 0        |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 10       |  |
| עו<br>20 |  |
| ∠∪<br>21 |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 21       |  |
| 21       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 11       |  |
| <br>15   |  |
| 40       |  |
| 46       |  |
| 4/       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 50       |  |
| 58<br>50 |  |
| 59       |  |

| 974 | Figure 14. Gyrogonites of genus Chara gyrogonites from the Gánt bauxite cover-sequence.                       |
|-----|---------------------------------------------------------------------------------------------------------------|
| 975 | A–I, <i>Chara media</i> (samples G-2.5 and G-6a).), <u>HNHM-PBO 1577–1585.</u> A–G, lateral view;             |
| 976 | H, apical view; I, basal view. J–O, Chara subcylindrica (samplessample G-6b).), HNHM-                         |
| 977 | PBO 1586–1591. J-M, lateral view; N, apical view; O, basal view. Specimen numbers                             |
| 978 | HNHM-PBO xxxxx-yyyyy will be added for each respective specimen.                                              |
| 979 |                                                                                                               |
| 980 | Figure 15. Frequency distribution of the lengthheight (A), width (B), number of convolutions                  |
| 981 | (C), lengthand height/width ratio (ISI) (D) of the Chara media population (50 gyrogonites                     |
| 982 | measured), from samples G-2.5 and G-6a in the bauxite cover-sequence of the Gánt section.                     |
| 983 |                                                                                                               |
| 984 | Figure 16. Frequency distribution of the lengthheight (A), width (B), number of convolutions                  |
| 985 | (C), lengthand height/width ratio (ISI) (D) of the Chara subcylindrica population (50                         |
| 986 | gyrogonites measured), from samplessample G-6b in the bauxite cover-sequence of the Gánt                      |
| 987 | section.                                                                                                      |
| 988 |                                                                                                               |
| 989 | <b>Figure 17.</b> Stratigraphic distribution of variants of the anagenetic evolutionary-lineage of <u>the</u> |
| 990 | species Raskyella peckii.                                                                                     |
| 991 |                                                                                                               |
| 992 | Figure 18. Charophyte Biostratigraphy, age and correlation of the bauxite cover-sequence                      |
| 993 | from <u>of</u> the Gánt section.                                                                              |
|     |                                                                                                               |
|     |                                                                                                               |





Figure 1. A, geographical and geological setting of the study area (after Fodor 2007). B, panoramic view of the studied Gánt section at the Vértes Hills (north-western Hungary).

480x291mm (300 x 300 DPI)





467x589mm (300 x 300 DPI)





Figure 4. Frequency distribution of the height (A), width (B), number of convolutions (C), and height/width ratio (ISI) (D) of the Raskyella peckii var. peckii population (50 gyrogonites measured), from samples G-2.2, G-2.3, and G-2.4 in the bauxite cover-sequence of the Gánt section.

380x246mm (300 x 300 DPI)



Figure 5. Frequency distribution of the height (A), width (B), number of convolutions (C), and height/width ratio (ISI) (D) of the Raskyella peckii var. caliciformis population (50 gyrogonites measured), from sample G-2.5 in the bauxite cover-sequence of the Gánt section.

384x248mm (300 x 300 DPI)



Figure 6. Raskyella peckii vadaszii gyrogonites from the Gánt bauxite cover-sequence (A–S, samples G-6a and G-6b, HNHM-PBO 1517–1534). A–K, lateral view. L–P, apical view; Q, basal view; R–S, inside wall of a gyrogonite showing the crenate undulation of the cellular sutures in contact with the spiral cells and the apical cells.

461x634mm (300 x 300 DPI)



Figure 7. Frequency distribution of the height (A), width (B), number of convolutions (C), and height/width ratio (ISI) (D) of the Raskyella peckii var. vadaszii population (50 gyrogonites measured), from samples G-6a and G-6b in the bauxite cover-sequence of the Gánt section.

384x247mm (300 x 300 DPI)



Figure 8. Gyrogona caelata gyrogonites from the Gánt bauxite cover-sequence. A–G, Gyrogona caelata forma caelata (samples G-2.2, G-2.3, G-2.4, and G-2.5), HNHM-PBO 1535–1553. A–B, D–E, basal view C, detail of the ornamentation pattern; F, basal view; G, apical view. H–K, Gyrogona caelata forma bicincta (samples G-6a and G-6b). H, lateral view; I, detail of the ornamentation pattern; J–K, apical view. L–M, Gyrogona caelata forma monolifera (samples G-2.2, G-2.3, G-2.4, and G-2.5). L, lateral view; M, basal view. N–Q, Gyrogona caelata forma baccata (samples G-2.5, G-6a, and G-6b). N–O, lateral view; P, basal view; Q, apical view. R–V, Gyrogona caelata forma fasciata (samples G-6a and G-6b). R, lateral view; S–T, apical view; U–V, detail of the simple (unipartite) basal plate.

412x681mm (300 x 300 DPI)



Figure 9. Frequency distribution of the height (A), width (B), number of convolutions (C), and height/width ratio (ISI) (D) of the Gyrogona caelata population (50 gyrogonites measured), from samples G-2.2, G-2.3, G-2.4, G-2.5, and G-6a in the bauxite cover-sequence of the Gánt section.

384x248mm (300 x 300 DPI)



Figure 10. Gyrogona tuberosa gyrogonites from the Gánt bauxite cover-sequence (sample G-6b), HNHM-PBO 1554–1563. A–G, lateral view; H, apical view; I–J, basal view.

643x441mm (300 x 300 DPI)





Figure 12. Frequency distribution of the height (A), width (B), number of convolutions (C), and height /width ratio (ISI) (D) of the Psilochara polita population (50 gyrogonites measured), from sample G-6a in the bauxite cover-sequence of the Gánt section.

381x244mm (300 x 300 DPI)



Figure 13. Frequency distribution of the height (A), width (B), number of convolutions (C), and height /width ratio (ISI) (D) of the Nitellopsis (Tectochara) aff. palaeohungarica population (50 gyrogonites measured), from samples G-2.3 and G-2.5 in the bauxite cover-sequence of the Gánt section.

387x252mm (300 x 300 DPI)





Figure 15. Frequency distribution of the height (A), width (B), number of convolutions (C), and height /width ratio (ISI) (D) of the Chara media population (50 gyrogonites measured), from samples G-2.5 and G-6a in the bauxite cover-sequence of the Gánt section.

384x248mm (300 x 300 DPI)



Figure 16. Frequency distribution of the height (A), width (B), number of convolutions (C), and height/width ratio (ISI) (D) of the Chara subcylindrica population (50 gyrogonites measured), from sample G-6b in the bauxite cover-sequence of the Gánt section.

385x248mm (300 x 300 DPI)







413x587mm (300 x 300 DPI)

| A g e (Ma)                 | Epoch       | Stage       | alcareous nannofossil<br>(Martin, 1971) | ity Geomagnetic polarity<br>time scale<br>ns (Gradstein et al., 2004) |      | European Charophyte biozonation<br>according to Riveline et al. (1996),<br>modified par Martin-Closas et al.<br>(1999a) and Sanjuan et al. (2014) |          | n<br>), New proposal of Eocene charophyte<br>) biozonation in Hungary |                    |                 |  |  |
|----------------------------|-------------|-------------|-----------------------------------------|-----------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|--------------------|-----------------|--|--|
|                            |             |             | U                                       | Polar                                                                 | Chro |                                                                                                                                                   |          | I                                                                     |                    | Age             |  |  |
|                            |             | z           | ND20                                    |                                                                       | C13  | Lychnothamnus vectensis                                                                                                                           |          |                                                                       |                    |                 |  |  |
| 35-                        | Ð           | NIA         | NP20                                    | NP20                                                                  | NP20 |                                                                                                                                                   | C15      | Harrisichara tuberculata<br>superzone                                 | zone               | Disease         |  |  |
| E                          | a t         | IABC        | NP19                                    |                                                                       | C16  | Harrisichara lineata                                                                                                                              | ber      | Biozones                                                              |                    |                 |  |  |
|                            | _           | R           | NP18                                    |                                                                       |      | Gyrogona tuberosa                                                                                                                                 | SL       |                                                                       |                    |                 |  |  |
| 40<br>40<br>45<br>50<br>50 | _           | IAN         |                                         |                                                                       | C17  | Raskvella vadaszi                                                                                                                                 |          | Raskyella peckii                                                      | P p vadaszii       |                 |  |  |
|                            |             |             | NP17                                    |                                                                       |      |                                                                                                                                                   |          | vadaszii                                                              |                    | မ<br>ပ          |  |  |
|                            | ш           | BARTON      |                                         |                                                                       | C18  | Chara friteli                                                                                                                                     | c k i    | Raskyella peckii<br>caliciformis                                      | R. p. caliciformis | d n e u         |  |  |
|                            | •<br>ح_     |             | NP16                                    |                                                                       | C19  |                                                                                                                                                   | b e      |                                                                       |                    | r - s e         |  |  |
|                            | E<br>™<br>C | LUTETIAN    | NP15                                    |                                                                       | C20  | Raskyella pecki                                                                                                                                   | askyella | Raskyella peckii peckii                                               |                    | nt bauxite cove |  |  |
|                            | 0           |             | NP14                                    |                                                                       |      |                                                                                                                                                   | R        |                                                                       | R. p. peckii       | Gá r            |  |  |
|                            | ш           | A N         | NP13                                    |                                                                       | C22  | Nitellopsis(Tectochara) thaleri                                                                                                                   |          |                                                                       |                    |                 |  |  |
|                            | E a r       | Y P R E S I | NP12                                    |                                                                       | C23  |                                                                                                                                                   |          |                                                                       |                    |                 |  |  |
|                            |             |             | NP11                                    |                                                                       |      |                                                                                                                                                   |          |                                                                       |                    |                 |  |  |

Figure 18. Charophyte Biostratigraphy, age and correlation of the bauxite cover-sequence from the Gánt section.

457x532mm (300 x 300 DPI)