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Abstract
The presence of social networks has increased in our daily lives and have become platforms
for sharing information. But, it also can be used for sending hate messages or for
propagating false news. Users can take advantage of their anonymity to provide these toxic
interactions. Furthermore, some groups of people (minorities) get disproportionately more
targeted than the rest. This raises the problem of how to detect if a message contains hate
speech. A solution could be the use of machine learning models that would be in charge of
this decision. In addition, it could handle the enormous amount of texts interchanged daily.
However, there are many approaches to tackle the problem, which are divided mainly into
two groups. The first one is through the use of classical algorithms to extract information from
the text. The other one is through the use of deep learning models that can understand some
context that allows for better predictions.

The main objectives of the project are the exploration and comparison of different types of
models and techniques. The diverse models are trained with three distinct toxicity datasets,
of two natural language processing competitions. Generally, the best performing model is
BERT or SBERT, both models based on the deep learning approach, with metric scores
much higher than any model based on the traditional methods. The results show the vast
potential of Natural Language Processing for the detection of hate speech. Although the best
models did not have a very high perplexity, a more reliable model could be trained with more
training data or new architectures. Even at the current state, the models could be used as an
external font for helping humans in the decision-making process. Moreover, these models
could filter the most confident predictions while leaving the rest for the reviewer team.
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Resumen

Las redes sociales cada vez tienen más presencia en nuestra vida y se han transformado en
plataformas donde se comparte información, pero también puede utilizarse para mandar
mensajes de odio o contaminar con noticias falsas. Los usuarios pueden aprovechar el
anonimato para realizar interacciones tóxicas. Además algunos grupos de personas
(minorías) reciben desproporcionadamente más odio que el resto. Esto nos lleva al problema
de cómo detectar si un mensaje contiene odio o no. Una posible solución es a través del uso
de modelos de aprendizaje automático, los cuales serían capaces de encargarse del
proceso de decisión. También, tendrían la capacidad para poder procesar las grandes
cantidades de datos intercambiados diariamente. Hay muchas maneras de abordar este
problema, pero se pueden dividir principalmente en dos grupos. El primero es a través del
uso de algoritmos clásicos capaces de extraer información básica del texto. El otro está
basado en modelos de aprendizaje profundo (deep learning), los cuales son capaces de
entender algo del contexto para realizar mejores predicciones.

Los principales objetivos del proyecto son la exploración y comparación de diferentes tipos
de modelos y algoritmos. Todos los modelos han sido entrenados utilizando tres conjuntos
de datos sobre toxicidad, basados en dos competiciones de procesamiento del lenguaje
natural. Generalmente los modelos que han obtenido mejores resultados han sido BERT y
SBERT, los dos basados en el enfoque del aprendizaje profundo (deep learning), con unos
resultados mucho más altos que los modelos basados en el enfoque tradicional. Los
resultados muestran el gran potencial del procesamiento del lenguaje natural para la
detección de odio en los mensajes. Aunque los mejores modelos no tenían una perplejidad
muy alta, un modelo más eficaz podría haber sido entrenado con mayores datos o una
nueva arquitectura. Incluso en el estado actual, los modelos podrían ser utilizados como
fuente externa para ayudar a humanos durante la toma de decisiones. Además, los modelos
podrían servir como filtro para las predicciones más seguras, dejando el resto a un equipo de
revisores.
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Resum

Les xarxes socials tenen cada vegada més presència en les nostres vides i s'han transformat
en plataformes on es comparteix informació, però també poden utilitzar-se per a enviar
missatges d'odi o contaminar amb notícies falses. Els usuaris aprofiten l'anonimat per
realitzar interaccions tòxiques. A més, alguns grups de persones (minories) reben
desproporcionadament més odi que la resta. Això ens planteja el problema de com detectar
si un missatge conté odi. Una possible solució és l'ús de models d'aprenentatge automàtic,
els quals es poden encarregar del procés de prendre decisions. També, seria capaços de
processar les grans quantitats de missatges que són intercanviats diàriament. Hi ha moltes
maneres d'atacar aquest problema, però es poden principalment dividir en dos grups. El
primer és a través de l'ús d'algoritmes clàssics capaços d'extreure informació del text. L'altre
grup està basat en l'ús de models d'aprenentatge profund (deep learning), els quals són
capaços d'entendre un poc el context per fer millors prediccions.

Els principals objectius del projecte són l'exploració i comparació de diferents tipus de
models i algorismes. Tots els models has sigut entrenats utilitzant tres conjunts de dades
sobre toxicitat, basats en dues competicions de processament del llenguatge natural.
Generalment els models que han tingut millors resultats has sigut BERT i SBERT, els dos
basats en l'enfocament de l'aprenentatge profund (deep learning), amb puntuacions molt
més altes que els models basats en l'enfocament tradicional. Els resultats mostren el gran
potencial del processament del llenguatge natural per la detecció d'odi. Encara que els
millors models no tenen una perplexitat molt alta, un millor model podria ser entrenat amb
major quantitat de dades o amb una nova arquitectura. Inclús en l'estat actual, els models
poden ser utilitzats com una font externa als humans la presa de decisions. A més, els
models poden ser utilitzats per filtrar les prediccions més fiables, deixant el resta per un
equip de revisors.
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1. Introduction
This chapter describes the problem this project will focus on and the motivation for choosing
this specific project. Also, it explains the principal and secondary objectives that are
considered to be accomplished. Finally, there is a brief explanation of the focus of each
chapter.

1.1. Problem framework

In the recent decade, there has been an increased presence of technology in our daily lives,
to the point that we are constantly surrounded by it, from mobile phones to smartwatches.
Therefore also allowed accessible communication between people across the globe through
the World Wide Web. Furthermore, social media applications allow you to express your
thoughts anonymously, such as Facebook or Twitter.

In fact, this social relationship on the web brought the problem where people can behave
negatively without or with almost no repercussions (e.g. close account). Furthermore, people
tend to have high difficulties changing their beliefs even if it is factually incorrect. Also,
research (Lenhart et al., 2016) has shown that some groups of people are disproportionately
targeted with abuse online. Including women, people of colour, lesbian, gay, bisexual,
transgender, queer, intersex, asexual individuals, marginalized and historically
underrepresented communities.

The above-mentioned fact brings us to the current problem of detecting if a message
contains hate speech or not. First of all, a reporting system can be implemented, where the
users of social media can choose to report a message if they consider it inappropriate,
reducing by a large margin the number of texts that would be needed to be analyzed. Then,
several teams of people could be dedicated to just reviewing reported messages and
deciding the verdict. However, this is not feasible, at least for popular social media
companies, due to the enormous number of texts sent per second (e.g. 6,000 for Twitter).

The solution to the aforementioned problems is the usage of machine learning classifiers for
identifying it. However, this brings a new set of questions ranging: from how to train a model
for Natural Language Processing to which model is the most optimal for accomplishing this
task. Exploring these questions will be the main focus of this paper.

1.2. Motivation

Since I started the computer science degree, artificial intelligence, especially machine
learning, has been one of the disciplines in which I was most interested. I am fascinated with
the topic of self-learning algorithms. Also in how a machine learning model can be used
across all disciplines of science. For example, in psychology, the use of a model to interpret
thoughts through an MRI scanner.

The recent publication of the model of GPT-3 (B. Brown et al., 2020) of OpenAI, caught my
interest in the Natural Language Processing discipline. The model was very capable of
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accomplishing different types of tasks without being previously trained. Even the model was
able to create articles that were not differentiable from a human-written one. Furthermore, the
model learned how to solve simple mathematical operations. Even though it has never been
trained specifically for this task. At the time, I thought it was the nearest humans have been
to creating a general artificial intelligence and that it had an immense amount of potential.

Moreover, during the time I was selecting the topic of this bachelor thesis, I did not have any
practical knowledge of machine learning. So, I thought it would be an excellent opportunity to
introduce myself to machine learning through natural language processing. While also
learning the different technologies used in this discipline.

1.3. Project objectives

The main objective of this paper is the investigation, implementation, recreation, competition
and comparison of different Natural Language Processing models through the use of
datasets of two competitions (Task 5 of SemEval-20191 and DETOXIS2), that are centred on
the detection of hate speech on messages. In particular, the specific objectives of this final
grade project are:

The first objective was a basic study of the most relevant papers published on natural
language processing with an emphasis on models and architectures based on neural
networks.

The second objective was to implement a basic statistical analysis of the datasets. Where
statistics about the features to predict and the input text are displayed. Facilitating decisions
down the road, such as the techniques of preprocessing to be applied.

The third objective was to implement a preprocessing pipeline where the text of the dataset is
filtered and transformed into tokens. The process can range from lowercasing all text to
replacing contractions with the original word.

The fourth objective was to encode the preprocessed text of the datasets through the use of
Term Frequency-Inverse Document frequency. Then, the encoded data is used for training
several basic machine learning algorithms.

The fifth objective was the optimization of the hyperparameters of all models through the use
of grid search cross-validation. Once they are found, models are re-trained with the best
parameters.

The sixth objective was creating the framework to train and evaluate specialized neural
networks. After training and evaluating the datasets with the different versions of BERT
(Devlin et al., 2018) and GPT-2 (Radford et al., 2019).

The seventh objective was to recreate the model that the team Atalaya created for the
competition of SemEval 2019. Once trained, the results their team got are compared against
the recreation.

2 "Welcome | DETOXIS-IberLEF 2021 - Wix.com." https://detoxisiberlef.wixsite.com/website.

1 "SemEval-2019 Task 5: Multilingual Detection of Hate Speech ...."
https://www.aclweb.org/anthology/S19-2007.
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The eighth objective was to encode the preprocessed text by using SBERT (Reimers &
Gurevych, 2019). It is similar to Universal Sentence Encoder (Cer et al., 2018), allowing
comparison with the best participants of the English subtask 1 of the SemEval competition.

The ninth objective is the creation of a flexible framework to store and retrieve predictions
from the disk. Afterwards, create a new notebook to join all predictions while calculating the
scores.

The tenth objective is the selection, training and submission of the 5 best models for the
DETOXIS competition to be submitted.

1.4. Project organization

The paper is divided into six chapters.

The first chapter (the current one) is a general introduction to the project, where the
problems, motivations, objectives, and organization are described.

The second chapter contains an explanation of some of the most popular models used in
natural language processing. Dividing into two subsections, one with the classical approach,
while the other explains some of the current state-of-the-art models.

The third chapter is an analysis of the environment, the datasets, the preprocessing and the
implementation, which will explain how the project was developed.

In the fourth chapter, the results of all models are compared across the datasets. Also, the
model's results and methodology will be explained. Moreover, the final results of the
DETOXIS competition are also shown.

The fifth chapter is an economic analysis of the entire project and a breakdown of the work
done.

The sixth chapter contains the conclusions of the project, where a personal evaluation of the
accomplishments is made, while expressing some facts learned during the entire duration of
the project.
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2. State of Art
This chapter explains two different approaches for tackling the problem of natural language
processing, while also analyzing and comparing some of the best models used across the
field in deep learning. However, firstly an explanation on how most tasks were tackled and
the inner workings of some classification models is provided. Furthermore, almost all
mentioned models that are going to be described are used throughout the project.

2.1. Traditional

The traditional approach tries to tackle the problems of Natural Language Processing (Basile
et al., 2019) by using classical algorithms. The main difference with the deep learning
approach is that it can only extract static information without context. Whereas the deep
learning approach may make more complex predictions through the interactions of words.
However, most success has been brought in Natural Language Processing tasks through the
use of deep learning models (B. Brown et al., 2020; Cer et al., 2018; Devlin et al., 2018; Liu
et al., 2019; Mikolov et al., 2013; Peters et al., 2018; Radford et al., 2019; Reimers &
Gurevych, 2019; Vaswani et al., 2017). One of the main differences is that the model can use
the context from the text, whereas traditional approaches can not. Some of the most
commonly used techniques are:

Bag Of Words (Zhang et al., 2010) is a statistical measure that counts the number of times
words appear in a document. This technique is one of the most simple techniques in
information retrieval that does not consider the term ordering nor rareness of the term.

Term Frequency-Inverse Document Frequency (Robertson, 2004) is a statistical measure
that evaluates the relevance of words in a collection of documents. The information retrieval
technique is an improvement in comparison to Bag Of Words. Instead, the values are a
combination of the term frequency with the inverse document frequency. Similarly to the Bag
Of Words, Term Frequency-Inverse Document Frequency does not account for the term
order.

Table 1: Variants of term frequency weight.
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The term frequency(tf) measures how frequent is a term within a document. There are
several variants (see Table 1) for the term frequency tf(t,d), where t is a term and d is a
document, the most commonly used is term frequency:

- Binary: 1 if a term t appears at least once on document d, 0 otherwise.
- Raw count: Number of times the term t appears on document d. (ft, d)
- Term frequency: The raw count scaled with the document length.
- Log normalization: The raw count adjusted logarithmically.
- Double normalization K: To prevent a bias towards longer documents, the raw count is

divided by the most occurring term in the document

Table 2: Variants of Inverse Document Frequency weight.

The inverse document frequency (idf) measures how much information the word provides by
how common the term across the documents is. Also, there are several variants (described in
Table 2) for the inverse document frequency idf(t,d), where t is a term and d is a document,
the most commonly used is the inverse document frequency:

- Unary: Always 1.
- Inverse document frequency: Number of documents divided by the number of times a

term appears at least once on the document adjusted logarithmically.
- Inverse document frequency smooth: Similar formula to the previous but smoothed by

adding two additions.
- Inverse document frequency max: Instead of the number of documents uses the

maximum amount of times a term appears across all documents.
- Probabilistic inverse document frequency: Similar to base formula but subtracting to

the number of documents, the number of times a term appears across all documents.

The combination of techniques allows transforming a list of input texts into a floating matrix.
Then, the matrix can be used for training machine learning models to predict the objective
task. However, to further increase the performance, a preprocessing of the text is needed.
The preprocessing of data consists of transforming the inputs to improve the quality of the
data.
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Some of the most common preprocessing techniques consist in the removal or modification
of some words that do not bring extra information (e.g. links, numbers, emojis). Another is
the standardization of words to avoid splitting similar terms so that the term value is higher
(e.g. lowercasing, lemmatization, spelling errors). Also, the removal of the most commonly
used terms (e.g. stopwords).

Machine learning models are a family of algorithms that, after being trained with a labelled
dataset, can predict the labels from never-seen data. The dataset consists of a numerical
matrix of features (columns), with the number of inputs (rows). Labels are the features that
the models need to learn to predict. An example of a dataset is the Term Frequency-Inverse
Document Frequency (TF-IDF) matrix, where the columns are the words and the rows are
the entries of the original text.

Training a model using the traditional approach has two stages. First, transforming the text
data using one of the previously mentioned techniques. Second, training a machine learning
model to predict an output using the transformed text. Similarly, in the prediction phase, the
new text is also converted using the same transformation. Finally, the model predicts using
the new matrix. There are two types of supervised model predictions: regression, where the
model tries to predict a number, and classification, where the model tries to predict a class.

Some of the most well-known classifiers used to predict the classes in NLP are:
- Naive Bayes classifier (Hand & Yu, 2001): a family of probabilistic classifiers, based on

Bayes’ theorem. The model tries to minimize the probability of misclassification, by
assuming strong independence between features. Also, it can be trained in linear time
by evaluating a closed-form expression. The kernel used can be changed to any
distribution. The ones used in the project are the multinomial and Bernoulli naive
Bayes classifiers.

- Ridge classifier (Singh et al., 2016): a method of classification based on linear
regression adding an extra parameter for regularization of features and dividing the
classes to predict in two (-1 and 1). The model can be trained in linear time by the use
of ordinary least squares.

- Random Forest (Breiman, 2001): an ensemble learning method that operates by
constructing a multitude of decision trees and selecting the class through an average
of all individual trees. A decision tree is based on a tree-like structure where the leaves
are the predictions and the rest of the nodes are questions to be asked to the data.

- Adaboost (Freund & Schapire, 1996): another ensemble learning method similar to
Random Forest, but instead of the input being the same for all the decision trees, the
inputs are processed sequentially through the decision trees called “weak learners”.
The standard weak learner is a Decision Tree Classifier with a max depth of one.

- Support Vector Machine (Hearst et al., 1998): a family of supervised learning methods
that tries to find the best hyperplanes that divide distinctively the data points. The used
kernel can be modified, which allows mapping any linear function.
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2.2. Deep Learning

The deep learning approach uses complex artificial neural networks to solve Natural
Language Processing problems. As in other subfields of computer science (e.g. computer
vision), it seems to bring the most success in almost all types of task objectives. Furthermore,
nearly all the investigation in Natural Language Processing is through the use of deep
learning models.

There are currently three techniques to solve a problem using neural networks. The first
option, create a task-specific architecture from the ground up. The second option, create a
fixed model that is pre-trained with a vast dataset of unlabeled data (e.g. BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019)). After that, the model is fine-tuned by training it with
the labelled data from the specific task. This option allows the transfer of knowledge gained
during the first phase to the second. Third, is creating a general model also pre-trained with
unlabeled data, but without the fine-tuning step (e.g. GPT-2 (Radford et al., 2019) and GPT-3
(B. Brown et al., 2020)). These types of models try to solve multiple Natural Language
Processing tasks. Moreover, a context window can be used to allow some examples before
generation.

Artificial Neural Networks are inspired by the biological neural networks that can be found in
our brains. The concept is based on a collection of connected nodes that represent the
neurons, connected through connections, like synapses in the biological brain. The input from
the network is converted into a signal that propagates to all nodes until the output. Normally,
a neural network is divided into a sequence of layers, composed from an input layer, hidden
layers and an output layer. Each layer connection has a weight and bias. The bias is unique
to the neuron and the weight to the connection between two neurons. That is each layer has
a matrix of weights and a vector of biases. Also, the node has a function that maps from the
nodes of the previous layer through weights and biases.

Word embedding is the technique to transform a word into a vector with a fixed
dimensionality. The most basic strategy is to use one-hot-encoding with the size of a
vocabulary. This approach consists of mapping a word to a fixed position on the vector.
However, in this option, the words with similar meanings have the same distance as words
without any relationship. A solution is to create another neural network model to generate a
fixed size embedding, which can learn complex relationships between terms (e.g. word2vec
(Mikolov et al., 2013) or SBERT (Reimers & Gurevych, 2019)).

2.2.1. Transformer

Transformer (Vaswani et al., 2017) is an architecture based on encoder-decoder (seq2seq)
that tries to solve the constraints of sequential computation by allowing bidirectionality. The
model relies entirely on the self-attention mechanism without using any sequential recurrent
or convolution layers. Self-attention is a mechanism for mapping the importance of input in
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comparison to the rest. The model is auto-regressive because it consumes previously
generated symbols as additional input when generating the next.

Figure 1: The model architecture of the Transformer. The left half is the encoder, and the right
half is the decoder.

Both the encoder and the decoder use six layers but changing the number of sublayers (see
Figure 1). The encoder has a multi-head attention layer and a feed-forward layer, followed by
normalization. Meanwhile, the decoder has a masked multi-head attention layer, a multi-head
attention layer with the results of the encoder and a feed-forward layer. Furthermore, a
regularization is added with a dropout layer in each sublayer and also label smoothing.
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Multi-head attention consists of several attention layers running in parallel. Meanwhile, the
basic attention layer consists of scaled dot-product attention. The queries come from the
previous decoder layer, while the keys and values come from the encoder, allowing the
model to attend to all positions in the input text. The masked version weights the attention to
solve the problem of allowing the model to interact from distant positions. The feed-forward
layers consist of two linear transformations with a ReLU in between.

As previously mentioned, due to the model not having an order, positional information is
needed to be added to the input of both the encoder and decoder. The original paper opts to
use sine and cosine functions to add this. Furthermore, the model has an increase in
performance due to the parallelisms and reduced complexity per layer in comparison to
recurrent or convolutional neural networks.

2.2.2 Bert

Bidirectional Encoder Representations from Transformer (Devlin et al., 2018) is a language
model based on multi-layer bidirectional encoder transformer architecture (Vaswani et al.,
2017), with improvements on the constraints of unidirectionality by using a technique called
Masked Language Model (MLM). The model achieved state-of-the-art results during its
publication in eleven Natural Language Processing tasks, beating even task-specific models.
Moreover, the team trained different sizes of the model and confirmed the well-known
hypothesis that increasing the model size will lead to continual improvements in downstream
tasks. The largest model trained was BERT large with a parameter size of 340 million.

Figure 2: BERT input representation. The input embeddings are the sum of the token
embeddings, the segmentation embeddings and the position embeddings.

The technique MLM randomly masks tokens from input with a special token, a random token
or leave it unchanged. Also, this technique allows the model during pretraining to learn to
predict the original text using only the context of both directions. BERT has two steps in its
framework: First, the pretraining phase where the model is trained to predict from the input
the output with a large unlabeled dataset (a cloze task) and with a very simple binary Next
Sentence Prediction task. Second, the fine-tuning phase in which the model is trained with
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the task objective using a labelled dataset. The first step can be reused for any time a
specific task is needed.

The word embedding is WordPiece with a 30,000 vocabulary size. The text is tokenized using
the embedding, while also adding some special tokens. Finally, the token embedding can be
passed to the model along with segment embedding (indicating to which pair the text
corresponds) and a position embedding (indicating the position of the token, similar to the
original transformer). Which are combined to generate the input for the model (see Figure 2).

2.2.3. RoBERTa

A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019) presents some
modifications to the original BERT (Devlin et al., 2018) model, starting with increasing the
amount of data and time the model is pre-trained using longer sentences. Moreover, the
model is not pre-trained with the Next Sentence Prediction task. Also, the technique “Masked
Language Model” is modified, to change dynamically the pattern that is applied to the input,
instead of being fixed. Furthermore, they tried changing the text encoder to a Byte-Pair
Encoding (BPE) with a size of 50,000 tokens.

First of all, the authors considered that BERT was significantly under fitted and therefore,
trained with larger batches improving perplexity3 for the Masked Language Model (MLM)
objective, as well as end-task accuracy. Second, they found that removing Next Sentence
Prediction (NSP) objective matches or slightly improves downstream task performance.
Third, modifying MLM to be dynamic allows avoiding the duplication of data to generate
different masking patterns. Finally, the change in text encoder resulted in slightly worse
performance, but the authors believe that the universal encoding outweighs it.

2.2.4. GPT-2

Generative Pre-trained Transformer 2 (Radford et al., 2019) is based on the decoder
transformers architecture (Vaswani et al., 2017), which is very similar to GPT with a few
modifications. The largest model has a 1.5 billion parameters size and was trained without
any task-specific dataset. The authors demonstrate that a general model can learn to perform
tasks without the need to create training datasets, nor change the parameters, nor the model.
The model achieved state-of-art performance in 7 out of 8 tasks when it was published.

The authors predict that the model will need to learn to use the unsupervised data to achieve
specific tasks, resulting in better predictions. In a way, the model manages to perform
unsupervised multitask learning. The dataset for training had 40 GB of size, where overlaps
with the task datasets were checked, to avoid the possibility of the model scoring highly
through memorization. Overlaps were checked through bloom filters and n-gram overlaps.

3 Measurement of how well a probability model predicts a sample.
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The average overlap was only 6% and considered that it provides small but consistent
benefits to the results. Moreover, it is shown that the models were underfitted, due to the
constant increase of perplexity as the model size increases. When a large language model is
trained on a sufficiently large and diverse dataset it can perform well across many domains
and datasets.

The word embedding used had a size of 50,000 tokens and is a mix between Byte-Pair
Encoding (BPE) and word-level using Unicode strings. Also, they use a greedy approach to
avoid merging character categories with byte sequence (e.g. only “dog” instead of “dog.”)

2.2.5. GPT-3

Generative Pre-trained Transformer 3 (B. Brown et al., 2020) is based on the same
architecture as GPT-2 (Radford et al., 2019). The largest model is two orders of magnitude
larger than the previous biggest model with a 175 billion parameters size. This time, the
authors focused on few-shot performance, where a context of some examples is inputted,
before trying to make the prediction. The process does not update any weight as it passed as
input. This methodology sometimes even reaches competitiveness with prior state-of-the-art
fine-tuning approaches.

The objective of creating a general model is the same as in GPT-2. The first reason is to
reduce the need to build large datasets that could be complex to collect depending on the
task. The second one is to avoid the model learning potential exploits in the training data, due
to having similar expressiveness as the testing. The final reason is that humans do not
require an enormous supervised dataset to learn most language tasks.

GPT-3 was evaluated in 3 conditions: zero-shot (no examples are provided before making
the prediction), one-shot (one example is provided) and few-shot (10-100 examples are
provided depending on the task). As expected, the more examples are provided the better
the perplexity is. The examples are passed through a context window of 2048 tokens.
Furthermore, 8 different models with different sizes were trained. The model performance
followed a power-law with the size.

A dataset of fewer than 500 billion tokens was used for the training phase, which is also two
orders of magnitude bigger than the one for GPT-2. Furthermore, they observed that the
largest model did not overfit due to the immense amount of data. Overlaps with the tasks
dataset were filtered, but during the late stages of training the model, they found a bug on the
detection algorithm, which only detected partially. Even though the contamination was likely
to be frequent, the authors reasoned that its effect may not be as large as feared. A study on
the data contamination concluded that the problem caused a minimal effect on the
performance. They came up with this conclusion by comparing the results of a new clean
dataset for all benchmarks with 13-gram overlaps removed. However, a possible problem is
that these new clean datasets were not drawn from the same distribution.
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The authors observed some limitations the model had. First of all, the text synthesis
generated through GPT-3 had an overall high quality. However, sometimes, the model would
repeat itself semantically, make contradictions and write some sentences or paragraphs that
do not make sense (non-sequitur). Secondly, the model in discrete language tasks lacked
common sense with basic physics. Thirdly, due to model structure, it had some limitations in
some tasks better fitted for bidirectionality, such as cloze tasks. Fourthly, scaling the model
could eventually run into the limits of the pre-training objectives. Fifthly, the model had a poor
sample efficiency because it required too much text to train in comparison to a human.
Sixthly, it is unknown if the model learned from scratch with few-shots or simply recognized
and identified the task that it had learned during training. Seventhly, distillation could have
been explored, which consists of training a smaller model through the predictions of a larger
one as a ground truth. Lastly, as with all neural network models, it is difficult to interpret the
decisions the model makes. Furthermore, the model was shown to have some biases as in
gender, race and religion.
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3. Development
This section explains the development process of the implementation and explains the
reasons for the different decisions taken. First, starting, with an explanation of the
environment, continuing with a description and analysis of the datasets. Also, explaining the
diverse preprocessing techniques applied depending on the model. Finishing with a general
explanation of all the implementation.

3.1. Environment

The chosen language for the implementation of the project was Python4, for several reasons,
starting with the great popularity it has. Also, it provides an extensive collection of libraries
and packages, for all types of machine learning applications with a multitude of functions for
visualization, processing and implementation. Another reason is code readability since
Python is an interpreted language, which allows creating concise and readable code that
accomplishes while still being clear. Also, for similar reasons, Python allows to easily create
flexible code that can be modified for any situation.

The integrated development environment (IDE) used is Jupyter Notebook5. Allowing to run
the project through Google Colab. This IDE is especially useful for data science because it
allows splitting the code across different cells, where each cell returns a different result.
Furthermore, these results are also saved along with the code, allowing us to visualize the
results of previous executions, avoiding the need to rerun everything. Moreover, markdown
cells can also be used to write text, providing the tools to further increase the readability of
the project. For example, by dividing different parts of the code into sections.

Another feature that Jupyter brings is the ability to create different environments for the
execution of a project with a specific configuration of package versions. This project ended
up having to use two different environments because of the need to use two versions of
TensorFlow. One for almost all code and another for running a specific model. This situation
was caused during the recreation of the model Atalaya (Pérez & Luque, 2019), resulting in
the need for using the ELMO model (Peters et al., 2018), which can only be executed on a
different version of the rest of the project. Moreover, to ease the creation process of the
environments, two shell scripts were created on the folder of requirements.

All the project was executed using an i7-7700k CPU (5 GHz), 16 GB of RAM (DDR4) and
NVIDIA 1080 (8 GB RAM). Which brought several limitations, especially for deep learning
where some models could not be stored. For example, BERT large (Devlin et al., 2018) or
RoBERTa large (Liu et al., 2019), which had better performance than the smaller versions
and could have resulted in better results. Also, some models were able to be stored, but not
the data, which resulted in a need for reduction in the batch size, which could have
decreased the performance. This was a problem especially for datasets with larger maximum
character length as Detoxis, which resulted in not being able to train even with a batch size of
1, while HatEval did not have any problem.

5 "Jupyter Notebook." https://jupyter.org/.
4 "Python.org." https://www.python.org/.
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3.1.1 Modules

As previously mentioned, Python allowed the use of a diversity of packages and modules for
the execution of the project. Which has some libraries already built-in for a diversity of tasks.
For example, the module “re” provides regular expression matching operations or “random”
that implements pseudo-random number generators for various distributions. The main
libraries used during the project are the following:

Numpy is one of the most well-known libraries in Python for scientific use, that provides
efficient support for large, multi-dimensional arrays and matrices, through the use of
high-level mathematical functions. Which can bring a performance increase of x50, in
comparison to traditional Python lists, through the use of optimized memory location. The
library works as a base for other packages that will later be explained. The library is used
across the project, whatever there is the need to interact with arrays, such as the features of
the text.

SciPy is a library that expands the previously mentioned module with the addition of more
optimized and new functions that are frequently used in Data Science. The SciPy ecosystem
includes general and specialised tools for data management and computation, productive
experimentation, and high-performance computing. However, this module is mainly employed
for managing sparse arrays. Which is a type of data that is more suited for storing large
quantities of data with the value zero. Such as the Term Frequency-Inverse Document
Frequency matrix, reducing the amount of memory needed for storing, in comparison to a
dense array.

Pandas is a package that provides fast, flexible, and expressive data structures for managing
big data, through the use of functions for analyzing, cleaning, exploring, and manipulating
data. The library is crucial in data science because it facilitates the process of managing and
evaluating data. Pandas, in the project, is used across as the central data structure for
storing the datasets. Even all the predictions of all models are stored and loaded in disk
through this module.

Matplotlib is a low-level graph plotting library for creating static, animated, and interactive
visualizations in Python. The module is utilized across all the notebooks, for generating all
the graphs. Such as the ones in the basic statistical analysis or the results of training.

Seaborn is another library for making high-level statistical graphics in Python, that is built on
top of matplotlib and is closely integrated with pandas data structures. This module is
sometimes used instead of the previous one because it generally tends to generate
better-looking graphs. However, depending on the task, sometimes it is not possible to
substitute with matplotlib.

Scikit-learn (or sklearn) is a machine learning library for Python that features a multitude of
basic models. Such as classification models, regression models, clustering models,
dimensionality reduction techniques, model selection and even preprocessing. The module
implements almost all machine learning models, excluding deep learning neural networks.
The package is mainly used, in the project, for the implementation of Term
Frequency-Inverse Document Frequency and SBERT (Reimers & Gurevych, 2019).
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Tensorflow is another machine learning that allows the creation of flexible neural network
architectures that can be trained across a variety of platforms (CPUs, GPUs, TPUs),
originally developed by Google. The library is mainly used as a base package for other
libraries, excluding the Atalaya model, which is designed entirely on TensorFlow.
Furthermore, this was the module that caused the need to create two Jupyter environments,
due to the incompatibilities between versions 1.x and 2.x.

TensorFlow Hub is a module related to TensorFlow, that allows downloading trained machine
learning models that are ready for fine-tuning. The package is only used for downloading the
ELMO model (Peters et al., 2018) for the recreation of the architecture the team Atalya
(Pérez & Luque, 2019) used in the SemEval-2019 competition (Basile et al., 2019).

PyTorch is a machine learning framework similar to TensorFlow, that is used in applications
such as computer vision and natural language processing, developed by Facebook. It also
allows the modules to be trained through a variety of platforms (CPUs, GPUs, TPUs).
Similarly, the package is mainly used as a base for other libraries. Also, to modify small parts
of the BERT (Devlin et al., 2018) model and training and validating models.

Transformers is a machine learning library that provides general-purpose architectures for
Natural Language Understanding and Natural Language Generation with pre-trained models
and deep interoperability between PyTorch and TensorFlow. This is the main module used for
getting the different pre-trained deep learning architectures that are fine-tuned for the
competition.

SentenceTransformers is a Python package for state-of-the-art sentence, text and image
embeddings. The concept is based on the paper of SBERT (Reimers & Gurevych, 2019)
which generates fixed size embeddings through the use of BERT, similar to Universal
Sentence Encoder (Cer et al., 201). In the project, it is used for generating the embeddings of
the text inputs of the datasets.

Optuna is a python hyperparameter optimization module for deep learning, which uses
state-of-the-art algorithms for efficient search space while pruning unpromising results. The
library is used for hyperparameter search for the deep learning model of BERT.

Pure Python Spell Checking is a library for simple spell checking, that uses Levenshtein
Distance algorithm to find the best permutations that would result in a word of a frequency
list. Resulting in the word that is more likely to be the correct spelling. The library is used on
the project during the preprocessing.

Pycontractions is a python library for expanding and creating common English contractions in
the text through the use of deep learning models. By using the context and simple
replacement rules for English contractions. Another library is used for the preprocessing of
the project. The project uses the word2vec model of Google (Mikolov et al., 2013).

SMOTE-variants is a package that implements 85 variants of the Synthetic Minority
Oversampling Technique (Chawla et al., 2002) for Python. That allows it to generate new
entries from the data to get the same ratio between negatives and positives, reducing the
unbalancedness of the feature. The project uses this module on SBERT embeddings to try to
train a better model.

Pickle 5 is a Python module that backports all features and APIs added in the pickle module
in Python 3.8.3. This package only is used to allow compatibility between the two
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environment versions of Jupyter, allowing the Atalaya environment to store and read results
as the main environment.

3.2. Analysis of the dataset

This subsection explains a basic analysis of both datasets. Such as the targeted features and
information related to the input text. Additionally, it mentions basic information on how the
dataset was constructed and other relevant information.

The main framework for the different models first started with only the English dataset of
SemEvel-2019 Task 5 (Basile et al., 2019) for accomplishing subtask 1. After the addition of
some more models to the framework, it was modified for the use of both English and Spanish
datasets, at the same time. Finally, nearly at the end of the project, the framework was
modified for the use of the DETOXIS6 dataset. However, due to the lack of time (only two
weeks instead of several months the competition had), the priority ended up being trying new
technologies for better scores, at the expense of not analysing the dataset during the time.
Which ended up being completed after the competition finished. However, fortunately, the
analysis did not bring any major changes that would result in any performance increase.

Fortunately, both datasets have similar targets, which allowed the reuse of almost all
functions, with little modification. As previously mentioned, due to the lack of time, some extra
features of DETOXIS could not be taken advantage of during the competition. Such as the
extra binary features for training and information related to the comment thread.

3.2.1 HatEval

There are two datasets used on task 5 of the SemEval-2019 competition (Basile et al., 2019),
one in English and another in Spanish. The dataset is a compilation of messages extracted
from Twitter where the task is divided into two classification subtasks: a main for detecting
the presence of hate speech (evaluated with macro-averaged F1-score) and a finer-grained
one devoted to identifying hateful content if there is an aggressive attitude, and if the target
being harassed is a specific individual or a generic group (also evaluated with
macro-averaged F1-score).

The dataset was collected from July to September 2018, with targeted categories being
immigrants and women. This last category was collected from previous misogyny
identification challenges. The tweets were collected from potential victims of hate accounts,
history of identified haters and filtering through streams of keywords (i.e. hashtags,
keywords).

The entire dataset is composed of 19600 tweets, 13000 for English and 6600 for Spanish.
Also, the targets are distributed across 9091 immigrants and 10509 women. Furthermore, the
provided datasets are split into three parts for both languages: train, development and test.
The first one will be used for training all models, while the second one will be used to
evaluate the trained models for the user and the last one will be evaluated for the
competition. This division of datasets allows for a comparison of the different models before

6 "Welcome | DETOXIS-IberLEF 2021 - Wix.com." https://detoxisiberlef.wixsite.com/website.
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submitting them to the competition. However, as the competition has ended, it will allow for
more data points of comparisons between the scores of the recreation and the original team.

The datasets are split into:
- Train: 9000 entries for English and 4500 entries for Spanish.
- Dev: 1000 entries for English and 500 entries for Spanish.
- Test: 3000 entries for English and 1600 entries for Spanish.

In the combined English dataset of all subsets, there is not any case where a Target Range
(TR) or Aggressiveness (AG) feature is true while Hate Speech (HS) is false. This indicates
that the second task can be solved as a multiclassification problem of five groups.
Furthermore, the distribution of features does not seem to be very unbalanced with only a
38% on Target Range (as seen in Figure 3). As the distribution of other features is dependent
on Hate speech, the percentage is calculated using hate speech as the divider. Indicating
that positive Hate speech and the rest of the features negative is the most common for the
second task.

Figure 3: English HatEval feature distribution.

Some hashtags and user mentions seem to have some correlation with the features.
Especially with target range, where most mention of a top hashtag or top user results in a
negative target range (as seen in Figure 4 and 5). Another observation is that users and
hashtags are relatively common in the texts. This would indicate that these special words
could be used on the Term Frequency-Inverse Document Frequency. Oppositely, the same
links do not seem to appear enough, with the most common only appearing 24 times (as
seen in Figure 6). Also, there is some usage of Unicode characters, where we can especially
observe the presence of emojis and non-standardized punctuation (as seen in Figure 7). That
should be treated appropriately on the pretraining.

Figure 4: Information related to mentions of Twitter users on the English HatEval 2019
dataset.
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Figure 5: Information related to the mentions of Twitter hashtags on the English HatEval 2019
dataset.

Figure 6: Information related to mentions of links on the English HatEval 2019 dataset.

Figure 7: Information related to mentions of non-ASCII characters on the English HatEval
2019 dataset.

18



The tweets have a mean of 141 characters, a minimum of 10 and a maximum of 851, as
depicted in Figure 8. We observe that it surpasses the limitation of 240 characters that Twitter
has, but that is due to how Twitter counts complex Unicode characters such as emoji, which
can be composed of several characters but are visually displayed as one. Also, the tweets
contain an average of 21 words with an average length of 6, so there should not be any
problem for a basic TF-IDF model to find some significantly important features on the tweet.

Figure 8: Distribution of words and characters on the English HatEval 2019 dataset.

The ten most common words excluding stopwords are: bitch, like, women, illegal, get, #build,
refugees, immigrant, -, hoe. We can observe clearly that the dataset was specially selected
for the targets of women and immigrants (as seen in Figure 9). Furthermore, it can also be
observed that the presence of a hashtag could be useful for identifying hate. The most
common bigrams are links (https and co) and a combination of contractions, as mentioned
links should be removed. Similar to the most common words, we can observe that the
dataset is chosen with specific targets.

All English sub-datasets more or less have the same distribution of features, with a deviation
of less than 1% in the Hate Speech feature and 15% in the other two. Furthermore, the
distribution of the most common users and hashtags change a bit between sub-datasets but
is more or less consistent across all the sub-datasets. However, an interesting observation is
that the test sub-dataset uses more emojis than the rest.

Similar to feature distribution, the character count, word count and average word length is
consistent across sub-datasets with differences of less than 1. While the top most common
words change between sub-datasets, it is also consistent across. Although, the usage of the
top most common word bitch is more than three times used than the second #buildthatwall.
This could indicate that the test sub-dataset contains a larger distribution of women targets
than immigrants. Also, decreasing the performance of the models due to observing fewer
examples than expected during training. This observation correlates with the score decrease
across all teams during the competition.
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Figure 9: The ten most common words on the English HatEval dataset.

While the Spanish dataset contains a similar ratio of hate speech (41.5%) as the English
dataset (42%), the other two features have a much higher percentage. Where if hate speech
is positive there is a 60.8% that target range is also true. Similarly, there is a 80.9% for
Aggressiveness (as seen in Figure 10). Almost double the English dataset for both features.
Moreover, nearly half of the data has all three features positive at the same time. This could
indicate that the data is very unbalanced and oversampling should bring benefits for the
second task.

Figure 10: Spanish HatEval feature distribution.
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Similar to the English dataset there are 46.4% of tweets that mention at least a user and
could be used to find a correlation with the features. For example, the tweets that mention the
most mentioned user (as seen in Figure 11) have only 3.8% hate speech. However, hashtags
are not as mentioned as the English dataset with just 10.3% (as seen in Figure 12). Although
they probably are as relevant as in English, some hashtags can contain relevant information
such as #ceuta, #otgala7, #inmigrantes, for identifying the target range. Furthermore, similar
to the English dataset, the links are very distinctive, with the most common only used twice
(as seen in Figure 13). Also, the Spanish dataset contains emojis (as seen in Figure 14).

The tweets have a mean length of 130 characters with a minimum of 6 and a maximum of
846, as depicted in Figure 15. Which could mean that the text was extracted from a direct
message, where there is not any word limit or that Twitter counts words differently. The
tweets have an average length of 21.3 words with a length of 5.4 words. So there should not
be any problems with creating a vocabulary using Term Frequency-Inverse Document
Frequency.

Figure 11: Information related to mentions of Twitter users on the Spanish HatEval 2019
dataset.

Figure 12: Information related to the mentions of Twitter hashtags on the Spanish HatEval
2019 dataset.
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Figure 13: Information related to mentions of links on the Spanish HatEval 2019 dataset.

Figure 14: Information related to mentions of non-ASCII characters on the Spanish HatEval
2019 dataset.

The most common words (excluding stopwords) indicate that the dataset was extracted from
a toxic environment of the targeted categories, with words such as puta, callate, perra,
inmigrantes, valla (as seen in Figure 16). Even the most common bigrams and trigrams are
mainly negative words, excluding the bigram for links (https co). The increase in the presence
of these words could be attributed to the large increase in the features of target range and
aggressiveness. Also, almost half of the top 10 bigrams are contained in the top 10 trigrams.

The distribution of features of the Spanish dataset is almost the same across all the
sub-datasets. With a deviation of less than 3% for hate speech, target range and the
combination of target range and aggressiveness, and less than 7% for aggressiveness.
Similarly, the most common mentions are almost the same, with some small changes in
order. Same for the most common words, bigrams and trigrams. Also, the average number of
characters, number of words and word length is more or less the same with similar
differences.
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Figure 15: Distribution of words and characters on the Spanish HatEval 2019 dataset.

Figure 16: The ten most common words on the Spanish HatEval dataset.
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3.2.2 DETOXIS

The DETOXIS dataset7 is a Spanish dataset based on NewsCom-TOX corpus, which
consists of 4354 comments posted in the response section of different Spanish online
newspapers (ABC, elDiario.es, El Mundo, NIUS, etc.) and discussion forums (such as
Menéame) from August 2017 to July 2020. The articles were chosen through keyword-based
search with topics related to immigration. The articles then were filtered by how controversial
the subject was, the potential toxicity and the number of comments posted (with a minimum
of 50). The number of comments selected ranges from 65 to 359 per article, with toxicity of
approximately 30%.

The dataset contains two objective features, toxicity and toxicty_level, which correspond to
different tasks. The first one, is a binary classification (scored using the standard F1 score),
while the second, is a multitask classification (scored using Closeness Evaluation Metric).
Which is composed of 4 levels:

● toxicity_level_0: not toxic
● toxicity_level_1: mildly toxic
● toxicity_level_2: toxic
● toxicity_level_3: very toxic

Furthermore, the dataset contains extra binary features that could be useful for training:
argumentation, constructiveness, stance, target, stereotype, sarcasm, mockery, insult,
improper language, aggressiveness and intolerance. Also, includes information related to the
conversation, such as the topic of discussion, the thread_id, comment_id, reply_to.

Each entry was annotated with at least 3 annotators from two expert linguists and two trained
annotators who are students. In case of disagreements, the annotations are discussed until
an agreement is reached.

The dataset is composed of 4354 comments which are divided into 80% (3463) for training
and 20% (891) for the test. However, I split 20% (693) of the training dataset for validation,
leaving just 2770 for training. Allowing the use of the same framework constructed for the
HatEval datasets.

The combined dataset has only toxicity of 31.8%, which indicates that the dataset is
unbalanced and using oversampling could result in a performance increase (as seen in
Figure 17). Also, the dataset seems to contain some errors with the labels, because the
percentage between the cases of toxicity level 0 and toxicity negative is 100.03%. Similarly,
the sum of percentages of all levels (excluding 0) between the number of cases of the toxicity
level and positive toxicity is only 99.93 %. Moreover, the toxicity level is unbalanced, because
level 1 has three fourths of the total.

7 "Welcome | DETOXIS-IberLEF 2021 - Wix.com." https://detoxisiberlef.wixsite.com/website.
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Figure 17: DETOXIS feature distribution.

Although in the HatEval dataset the texts were extracted from Twitter, which has special
words such as user and hashtags, in DETOXIS there no special patterns. So, the only pattern
searched was Unicode characters, as depicted in Figure 18. There are some words with
accents and the character ñ. These words could be standardized during the preprocessing
for the Term Frequency-Inverse Document Frequency. Furthermore, it seems that the texts
do not contain emojis.

Figure 18: Information related to mentions of non-ASCII characters on the DETOXIS dataset.

The comments have a mean of 210.4 characters, with a minimum of 1 and a maximum of
3270 (as seen in Figure 19). The average number of words is 37.3, with a mean word length
of 4.8. The maximum of words (556) is too big and could bring problems to a neural network
model with a size limit (i.e. BERT). Also, the bigger the model, the more limitations on data
due to the amount of GPU RAM I have available (8 GB). Although, the Term
Frequency-Inverse Document Frequency should not have problems extracting relevant
words.
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Figure 19: Distribution of words and characters on the DETOXIS dataset.

Figure 20: The ten most common words on the DETOXIS dataset.
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The most common words (excluding stopwords) are commonly used and do not seem to
allow identifying the dataset targets (as seen in Figure 20). This could be a consequence of
the lower percentage of the dataset targets, the opposite of the HatEval dataset. Similarly,
bigrams and trigrams do not reveal much information about the dataset and are mainly
composed of combinations of prepositions.

The training and development dataset contains a higher toxicity level than the test dataset
with 31.8%, 32.5% and 26.8% respectively. This is a relevant difference taking into account
how unbalanced the data is already. Furthermore, the test dataset does not seem to contain
incorrect labels problem, having the same number of entries for where toxicity is negative
and where the toxicity level is 0. However, the toxicity levels are more or less the same
across the dataset for training and development, whereas the test has bigger differences.
Finally, the most common words, bigrams and trigrams are more or less similar, mainly
composed of prepositions.

3.3. Data Preprocessing

Data preprocessing is the step in which data gets transformed to facilitate the process of
interpreting the features. In our case, the features are the input text of the datasets, where we
will apply some transformations (replacement and removal) to facilitate the different
tokenizations.

Three different types of preprocessing are applied to the datasets depending on the model
type. Starting with the one for Term Frequency–Inverse Document Frequency which uses all
the techniques. Another for generally all neural networks that apply only some techniques
(i.e. the removal of users, links and hashtags). The last one, only for GPT-2 (Radford et al.,
2019), where some word groups are replaced instead of removed. The main cause is that
GPT-2 due to its architectural design can not predict with an empty input string. Some of the
following techniques are applied depending on the preprocessing.

First, all characters have been lowercased, to avoid during the use of Term
Frequency–Inverse Document Frequency, the same word, but with different combinations of
lowercase and uppercase, being counted as distinct words. As the latter case does not
usually bring extra meaning, it should increase downstream task performance. Also, some
models such as BERT (Devlin et al., 2018) has a version for just lowercase.

Second, as mentioned in the dataset analysis, links seem to be very different from each
other, decreasing their meaning. So for all models, excluding GPT-2, all links are removed.
Instead, in GPT-2, links are replaced with the word “link”. The main reason is that this model
does not accept an empty input after the filter.

Thirdly, some emojis are replaced with the meaning that it represents, using two dictionaries8:
simple_emojis.json and complex_emojis.json. In case the emojis are not found in the
dictionaries, they are removed from the text, allowing all models to gain from this step.
Furthermore, neural networks could benefit more, being able to use the description of the
emojis for extracting more context.

Fourthly, the words that are contained inside the stopword list of the respective language are
removed. Stopwords are usually the most common words in a language. Normally these
words are so common in a text that the feature correlation with the number of times the word

8 "Full Emoji List, v13.1 - Unicode." https://unicode.org/emoji/charts/full-emoji-list.html.
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appears is very small. However, later this probably became not as relevant in Term
Frequency–Inverse Document Frequency, due to a filter of words that appear more than
65%. Furthermore, it is worth mentioning that neural networks use context information even
from stopwords. Although, a study (Qiao et al., 2019) has shown that even though the
stopwords receive as much attention as non-stopwords, the performance is similar. However,
just in case, the stopwords were not removed so the neural networks could get all the
context.

Fifthly, correcting small spelling mistakes of words through the usage of Levenshtein
distance. The grammatically correct word and the misspelt word would end up in the same
group. Contributing to performance increases in general into the traditional approach. Just in
case the correction is not applied on the deep learning preprocessing to avoid possible errors
of wrong spell correction. While on the traditional approach, even in the worst-case scenario,
all wrongly corrected words will end up going in the same group. This should result in a
marginal decrease in downstream task performance that it is easily compensated with good
corrections.

Sixthly, removing numbers from the text because semantically, they do not bring extra
meaning. All models can benefit from this, except GPT-2. Similarly to the second, instead of
removing the number, it is replaced with the word “number”.

Seventy, replace “&” with “and” and standardize contractions and other special characters,
mainly punctuation. The first replacement is mainly useful for Term Frequency–Inverse
Document Frequency due to joining groups of words with the same meaning. While the rest
of replacements are not as useful, since it only processes words, users and hashtags. On the
contrary, the deep network models can benefit more from the standardization of punctuation,
because they can use it for extracting some extra context. For example, Unicode characters
such as “…” can be replaced with dot characters instead. This is mainly done because of the
limitation of the number of characters of the deep learning tokenizers. The cause of the
characters is that some Twitter users use these special Unicode characters to be able to
write more.

Eighthly, all English contractions are expanded through the use of Google word2vec (Mikolov
et al., 2013). The model uses the context and some of the basic rules to predict what the
original abbreviated word was. Similar to the previous preprocessing, allow grouping for both
cases where the word was contracted and when it was not. Furthermore, avoids the word
which received the contraction to not be counted as the same group as the word without it.
The change is not as significant for the deep neural approach because they are already
trained for it. So it is not used for the preprocessing of the deep learning models.

Ninthly, a lemmatization is applied to all words to allow the grouping of words from the same
family. Similar to previously mentioned, the Term Frequency–Inverse Document Frequency
can benefit from grouping words with very similar meaning, allowing downstream task
classifiers to find correlations with the features more easily. However, neural networks will not
use it as it removes some context that could be key.

Tenthly, some abbreviations are replaced with the original through a self-made dictionary (the
entire dictionary can be found in Appendix A), mainly designed from common abbreviations
used on Twitter. All models can benefit from understanding the meaning. This technique is
used for similar reasons to the emojis (the third technique)
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Eleventhly, for the Spanish datasets, all accents are removed. Facilitating the aggrupation of
words with and without accents. This is more targeted to the HatEval dataset, due to being
extracted from Twitter where people usually do not write using accents. While DETOXIS is
probably the opposite because the comments are extracted from online newspapers.

3.4. Implementation

The implementation of the code has been written through the use of Jupyter Notebook. Also,
it has been divided into two different files. The main notebook (“Main”), in which all datasets
are investigated and the different models are trained. The other (“Results”), where the results
of all models can be easily seen, facilitating comparisons. Moreover, the main notebook is
divided into 15 sections. However, before that, some imports are made to modify some
settings and make the results prettier.

The general pipeline of the project can be divided into three branches (as seen in Figure 21)
depending on the model/technique used. The blue and green rectangles represent the input
(a dataset) and the output (a prediction), respectively. The yellow boxes represent
transformations to the data, where the encoder in the implementation can be Term
Frequency-Inverse Document Frequency (Robertson, 2004) or SBERT (Reimers &
Gurevych, 2019). Furthermore, the preprocessing varies depending on the model used, as
described in Section 3.3. The red rectangles are the different models used for classification,
where the deep learning models can be any version of BERT (Devlin et al., 2018) or GPT-2
(Radford et al., 2019). Also, the machine learning classifier refers to traditional machine
learning models. Finally, the orange rectangle refers to the technique used for searching the
best hyperparameters for a model. Although this technique also uses the encoded data and
the model, the figure was simplified to facilitate the comprehension of the pipeline.

First, all paths are preprocessed depending on the type of model used, as described in
Section 3.3. The leftmost route encodes the input text into a fixed-size representation through
a transformation that can be based on classical methods (i.e. TF-IDF or BOW (Zhang et al.,
2010)) or deep learning encoders (i.e. SBERT or USE (Cer et al., 2018)). Then the encoded
data can be passed directly to the classifier or be oversampled using SMOTE (Chawla et al.,
2002). After the machine learning model is trained with the training sub-dataset, the models
can make predictions for all the sub-datasets. Moreover, these models can use grid search
cross-validation for finding the best hyperparameters. As mentioned, this method uses both
the encoded data and the model.

The middle path is for the recreation of the model of the Atalaya team (Pérez & Luque, 2019),
which accepts two inputs, one directly from the preprocessed data and the other after being
encoded through Term Frequency-Inverse Document Frequency. Then the model combines
both inputs to generate a prediction through a neural network. Similarly, the model can make
predictions of the different sub-datasets only after being trained.

The rightmost path is for the deep learning models that have the capacity for a sequence to
classification. Furthermore, they have been pre-trained with large amounts of data, and some
extra layers are added to allow the classification of data. However, the models do not directly
use the preprocessed data. Instead, they use a tokenizer, which is a transformation of the
data. After the model is trained, it makes predictions through the neural network without
updating the weights and biases of the different layers.
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Figure 21: General pipeline of the different types of models implemented.
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3.4.1 Load datasets

The first section is where the three datasets are loaded (two of HatEval and one of
DETOXIS). All datasets are stored using comma-separated values (CSV) files, in which each
feature of an entry is separated by commas. Also, each entry is in a different line. Also, all
datasets are separated into different sub-datasets.

The HatEval dataset is composed of three parts (train, development and test) and two
languages (English and Spanish). The train part, as its name suggests, is the data that will be
used for training the different models. The development part can be considered to form part
of the training dataset for the final training of models. However, it is used as a way to check
the performance of the models (a validation) with data that has never been seen. Finally,
there is the test section, where normally during the competition, the provided dataset does
not contain the features that we are trying to predict (“HS”, “TR”, and “AG”). Then the
participants can be evaluated through the prediction of this unbiased data. The ranking is
made through how better the predictions were to the rest of the competitors using a metric
(F1 macro). However, because the competition has ended, the organizers already provided
the dataset with the labels (features trying to predict).

The DETOXIS dataset is currently composed of three parts (train, test and test with labels).
Differently from the previous one, the train data was not already split into two. So, once
loaded the data is separated into two different datasets: one for training and another for
development. The new training dataset contains only 80 % of the original data, while the
development dataset contains 20%. Furthermore, the datasets were chosen to be split
randomly without any strategy because it seemed that the test dataset did not have a similar
distribution as the train, which ended up being true. Similar to HatEval, during the
competition, the only other dataset available was the test, which did not contain any features
that had to be predicted or the extra features. Once the competition ended, the organizers
released the test dataset with labels.

During the competition, the scores obtained on the development dataset did not influence
any decision of parameters. To find the best parameters any model was made through the
use of cross-validation on the training dataset. The only exception was at the time of
choosing the models for the competition. Mainly to avoid adding biases on the validity of the
scores obtained of development.

All parameters that use the datasets will contain the words: English, Spanish or DETOXIS.
Even though the DETOXIS dataset is also Spanish, the first two would be from HatEval
datasets of the corresponding language. The main reason was that the implementation of the
code was made using only the HatEval datasets.

3.4.2 Basic statistical analysis

In the second section, a small statistical analysis of the data is performed on all datasets. The
analysis will be performed on the combination of three parts (train, development and test) of
each dataset. Also, the process will be performed on each sub-dataset separately. Also, for
the HatEval datasets, an extra analysis was made to check if there are differences between
data with only positive hate speech.
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The analysis applies a small preprocessing of lowercasing all characters, before starting
printing the statistics. Also, in some sections of the analysis, changes a bit depending on the
dataset.

Firstly, information printed is the feature distribution in which the distribution of the features
predicted is shown. It is useful for getting an understanding of how unbalanced the labels are.
Also, because in both competitions the second task (multi-class classification) features are
dependent on the first one (toxicity classification) feature, the second tasks features are
displayed as the percentage of the total positive of the first feature. This is because the rest
of the features can not be positive if the first feature is not.

Secondly, prints information of a specified pattern, which contains the number of mentions
per entry (min, max and average), the number of entries that at least mention once and a
table containing the most common mentions of the pattern. The table has the columns: the
total quantity of time the word appears and the correlation it has with the different features of
the dataset. Allowing to find correlations between a pattern and a specific feature. The
common pattern searched across all datasets are non-ASCII characters.

Thirdly, shows basic information related to the text feature. Starting with printing the
minimum, maximum and mean of the number of characters, several words and the average
word length of a comment. Also, it displays a histogram of the previously mentioned
statistics.

Fourthly, displays four sorted horizontal bar graphs that are grouped in a grid of 2x2. The
graphs contain the most common stopwords, the most common non-stopwords, the most
common bigrams and the most common trigrams.

The main difference between the two datasets (DETOXIS and HatEval) is that the features
are different. The second-task HatEval features are the combination of the three binaries.
While DETOXIS are stored using a single multivalue feature. Another change is the patterns
searched, whereas the HatEval text is extracted from Twitter where there are special words,
such as users (words starting with a @) and hashtags (words starting with #), while the
DETOXIS dataset does not contain any special words.

3.4.3 Term Frequency–Inverse Document Frequency

This section contains the methods for preprocessing the data, the pipeline for transforming
the data and a method to manage to store the first time Term Frequency–Inverse Document
Frequency matrix and loading the rest of the times. Also, contains the different methods to
preprocess the text (as explained in Section 3.3).

Two auxiliary methods were constructed to track the progress of any type of recurring call
that has a fixed amount. These methods can be considered a generic version of the package
tqdm9, which tracks the number of executed iterations, the remaining number of iterations,
the estimated time remaining and the time that has transcurred from execution. The methods
were created to keep track of the progress of the fitting and transforming of the pipelines.

In addition, there is a pipeline for each dataset that applies the different preprocessing
techniques and finishes with the Term Frequency–Inverse Document Frequency vectorizer.

9 "tqdm documentation." https://tqdm.github.io/.
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Additionally, the pipeline is a bit different if the dataset is Spanish or English because the
Spanish contain some extra arguments specifying which is the language that is passed as
arguments to the preprocessing functions.

The vectorizer needs to first be fitted before being able to transform the data to generate the
matrix. The vectorizer will keep track of the 3500 words that appear the most during training.
While also excluding the words that appear in more than 65 % of the documents. The reason
is that these are the words that have the highest significance (on term frequency) for the
training model. Also, the reduction of dimensionality can facilitate the learning process of the
models, which should result in a downstream task performance increase. Similarly, the most
common words are removed because of the low weight (high inverse document frequency),
providing less information to the classification model. Also, the special words of hashtags and
users will be treated as other words, from the reasons explained in the analysis of the
HatEval dataset, in Section 3.2.2.

The process of fitting and transforming the data can take up to 10h for all the datasets. To
avoid the need to retransform the data into the same output each execution. A method to
manage the pipeline was implemented. The method is designed to be the most optimal in
time usage while also being robust enough, such as when the training data is loaded from
disk but the development is not. Also, if the pipeline has already been fitted, it will only
transform it, reducing the total time. Finally, once the text data is transformed, it will be stored
on the disk. Allowing for the next execution to just load the data from the disk.

Some extra information that could have been useful was also stored on the disk. The data
consisted of: the most common words of the vocabulary of the vectorizer and the names of
the columns of the matrix. Similarly, this information can only be obtained from the vectorizer
once fitted. The solution was that this information is stored on the disk, so that it can be
loaded in posterior runs.

A method for adding extra features to the matrix was implemented but not used, such as the
number of uppercase words, which could correlate with toxicity. The main reason was that it
did not bring any relevant performance increase to the models. This could be caused due to
the already high dimensionality of the Term Frequency–Inverse Document Frequency matrix.
The code showing the relevance of these extra features is written as a comment before
Section 5, which mainly consisted of checking the importance of these features on two
different models: ridge classifier and random forest tree.

3.4.4 Save results

This section defines two auxiliary methods for managing predictions of all models. The
method allows the storage of a prediction and some extra information at a disk through a
metadata file.

The first extra information that can be stored, is the name of the model. The second is which
language the model uses. The third is the task name. The fourth is the dataset type which
can have three values: train, development and test. The fourth is the group, an optional
parameter to indicate the type of algorithm it uses. The fifth is a description, another optional
parameter explaining extra information, such as the parameter values used on the model.
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The sixth is the ground truth, a binary parameter indicating if the list of values is the gold
standard or a prediction for the dataset. There should be a maximum of one entry with a
positive ground truth of the group of dataset type, task and language.

The method will store the results following a tree structure. Through the use of some of the
specified parameters. All predictions and metadata will be stored in the folder of results. This
method will allow in the notebook of Results to generate the scores of all the predictions.

There is another method for removing an entry from both the disk and the metadata. It also
allows you to remove all files that are not in the metadata. This facilitates the removal of data
by first removing the data of the metadata data frame and then calling the function.

Finally, this section also stores the ground truth of all datasets (HatEval English, HatEval
Spanish and DETOXIS) and sub-datasets (train, development and test). The only exception
is the dataset of DETOXIS that checks if the labels are included. This was because during
the implementation of the code for this dataset the labels of the test were not released.

These methods were implemented to facilitate the comparison between a large number of
models for each dataset. Allowing the creation of another notebook to unify all results, which
will be explained in Section 3.4.16.

3.4.5 Classification models

This section tests some base models that use the Term Frequency–Inverse Document
Frequency matrix as input. Furthermore, some methods to print scores are defined.

The defined functions include one for scoring a prediction, which returns the accuracy score,
the F1 score and a classification report. The F1 score is different depending on the dataset,
for HatEval uses F1 macro, while DETOXIS uses F1 binary. The classification report is a
string table containing all relevant metrics from precision, recall, F1-score and accuracy
across all labels. There is another function for printing these scores.

There are three other auxiliary functions for fitting a dictionary of items with the same data.
The models are stored in a dictionary with pairs of the model and the model name. There is
another method for predicting the same data and returning the scores and the predictions.
Finally, there is a third for joining two dictionaries of models intercalated, which will be used in
later sections.

The used models are a Dummy Classifier, Multinomial Naive Bayes classifier, Bernoulli Naive
Bayes classifier, Ridge Classifier, Random Forest classifier, Support Vector Classification,
AdaBoost classifier, and Multi-layer Perceptron classifier. All models are created with the
default parameters, excluding the random state, which will be set to seed value of the
notebook, to make it consistent across runs. Also, the Multi-layer Perceptron classifier model
has early stopping enabled to avoid extreme overfitting, it has otherwise.

The same models are fitted each time for each of the different datasets. The models are not
duplicated for each dataset as fitting resets the model. Once the models are fitted, the scores
are printed for training and development (just to check for possible errors). Also, a compact
version of the scores is printed to facilitate the comparison of results.
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3.4.6 Searching the best hyperparameters

This section is devoted to finding the best parameters for all the previously mentioned models
and datasets through grid search cross-validation.

The grid search cross-validation is an exhaustive search over all parameters specified of a
parameter grid. Which will search for all the combinations of parameters several times. The
method works by splitting the data into different training and validation sets several times.
The data is split into the number of times (folds) in each iteration, where the validation will be
composed by one of the folds, while the training dataset will contain all remaining folds. Once
finished, the search will allow you to rank a parameter combination through the mean on the
validation.

Two common methods were refactored, due to the high similarity between searches.
Furthermore, the values were ranked differently depending on the competition. The HatEval
datasets used F1 macro, while for DETOXIS dataset used F1 binary.

The search only uses the data of the training dataset. Allowing later, to validate the scores
through the development dataset. Also, depending on the estimated time that the grid search
cross-validation will take, the number of folds used is different (5 or 10). The higher the folds
the better the precision on ranking results, but it will take much longer. Furthermore,
parallelism on the CPU is enabled to accelerate the total search time.

The section defines two general methods for visualizing the results of the grid search
cross-validation. In case the parameter grid only contains one parameter, a two-dimensional
graph displaying the parameter values on the X-axis and scores on the Y-axis. The plotted
data is the mean scores (both test and validation) as a line and the standard deviation of
validation as an orange area. Also, returns a table sorted by average validation score that
allows getting all the relevant data of the ten best scores. Which contains the parameter
values, the mean scores and the standard deviation of both train and validation.

Finally, all models have a different grid of parameters to be searched for all the datasets.
Sometimes, to accelerate the search process, the grid search process is split into two. The
first performs a partial search of some of the parameters, whereas the second uses the best
parameters of the first to search for the remaining. Furthermore, the final results of the
Multi-layer Perceptron classifier were stored on the disk because it was the model that took
the longest time. This was done to ensure that if there was a power outage, once the search
was completed, the results could be recovered even if the notebook was not saved properly.

3.4.7 Best Models

This section is where all models are built with the best parameters found previously through
grid search cross-validation. The new dictionary of models is combined with the base models.
Then the combined models are fitted. Finally, the models are asked to make predictions for
all sub-datasets (train, development and test). The process is repeated for each of the
datasets.

The values of the chosen parameters are generally a rounded value of the best or second
result obtained in the previous section. The parameters were manually written, instead of
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dynamically passed through a parameter value. This allows the execution of the section
without the need to run the previous one.

The combination of models is intercalated between the base model and the model with the
best parameters found. This allows for the base models to be near the optimized ones. Once
combined all models are fitted with the training dataset, then predictions for all the
sub-dataset are made (train, development and test). Next, the main scores are printed for all
dataset types and models. Finally, all predictions are stored on results in the two different
groups. The first one for the base models, called “traditional”. While the other stores the
models with the best parameters called “best traditional”. Moreover, the name of the model
will use the other pair of the dictionary. The difference between the base models names and
the optimized models names will be that the second will add an extra  “ (best)” to the name.

The process is repeated for all three datasets (HatEval English, HatEval Spanish and
DETOXIS), which end up storing the predictions of all models that used Term
Frequency-Inverse Document Frequency matrices.

3.4.8 Neural Networks

This section defines a lot of methods that will be used for neural network models. Including
the preprocessing data for neural networks, training and evaluation for neural network
models based on the library of transformers. Also, will define modified BERT classes, to try
experimental modifications on models. Furthermore, will end up generating the base datasets
for neural networks, excluding the one for GPT-2 (Radford et al., 2019).

The first two methods define the preprocessing for both all neural network models and for
GPT-2, which will be mainly the removal of hashtags and users for neural networks. While for
GPT-2 will be replaced with words and also replace the links with a word. Further explained
in Section 3.3.

There is also the definition of two modifications to the original BERT architecture. One of the
modified models uses the mean of the last two layers, instead of the first token. The concept
is based on the paper (Li et al., 2020) of the model called BERT “last2avg”. Furthermore,
several versions to calculate the average differently were implemented. Another experiment
was the use of SMOTE (Chawla et al., 2002) oversampling during the training, by
oversampling the results of first position (corresponding to the special token [CLS]). The
results of these models are further discussed in Section 4.3.

Next, there are several refactored functions for training and validating data of neural network
models. The first method is for printing an example of tokenization to check that everything is
working properly. The second method is used to find the max length of tokens after
tokenization of the model. This will determine the horizontal size of the models. The third
method generates the datasets containing all the information needed for the training and
predicting. Also, there are methods for training the model and validating the predictions.
There is also a method for visualizing the training progression tracked on training. Finally,
there is an implementation of cross-validation, which uses different training and prediction
methods. Finally, there is a method to create a table with the results of the cross-validation.

The generation of the dataset is designed to add the special tokens if needed (e.g. BERT),
add padding to have consistent inputs and truncate the text if it occupies longer than the
specified max length. The max length was calculated as the minimum between the maximum
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size the model can have and how long the largest input text is. Using the function the
tokenizer should not truncate the text if the maximum token size is not larger than the model
limit.

The training method starts with setting all the seeds of the random generators to the same
value, to get consistent results across runs. Every 40 batches, displays the elapsed time from
the beginning of the epoch. Also, at the end of every epoch, a validation will be run by
printing some information. There is also an extra function that creates a graph of the
validation loss and test loss across epochs. Also returns the statistics in a table format for
easier visualization.

The evaluation works very similarly, however, the processed data does not train the model
and is only repeated one time. The method will construct the prediction and truth of the
model, which will be returned.

The cross-validation method performs stratified cross-validation on a specified dataset.
Where the data is divided evenly into a specified number of folds, then one fold is used for
validation and the rest for training. Later, the model is trained and both datasets are validated
to obtain the predictions the model does. Next, both predictions are scored against the truth
and are stored in a list. The process is repeated the number of folds and returns the scores of
training and validation of each fold. As mentioned there is a function to combine the data of
the list of both scores. The list of scores is transformed into the mean and standard deviation.

The cross-validation instead of accepting as parameters a model and an optimizer uses a
generator function that should create a new copy of both each time it is called. The reason is
that in each iteration the cross-validation needs a brand new copy of the model. Otherwise,
the model would end up memorizing the dataset. Moreover, the optimizer also needs to be
reconstructed, because the learning rate will be different after training.

3.4.9 BERT

This section loads the pre-trained BERT model and tokenizer from a checkpoint, then
fine-tunes the loaded model by training with the data, evaluates the trained model to get the
predictions and stores the results on disk. The process is repeated for each dataset. The
checkpoint is different for the English version and Spanish since there are two versions one
for English and another for multilingual which includes Spanish.

The chosen model can be the original or one of the modified versions that have been
implemented. Also, the tokenizer should be loaded using the same checkpoint as the model.

Then an example is printed allowing us to compare the tokenization of a specific entry on the
preprocessed and original text. This is a sanity check to ensure the preprocessing was
properly applied. Next, the max length is searched through the preprocessed text inputs to
decide the input and output model size. The DETOXIS dataset will return the value of the
maximum length that BERT can have, which will result in the inputs longer than this size
being truncated, leaving only the beginning of the text. Then the sub-datasets (train,
development and test) for the model are created. Finally, the optimizer is built using,
generally, the recommended parameters for pre-training. Also, the parameters batch size,
epochs and device are defined.
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Afterward, the model is trained with all the specified parameters using the training and
validation datasets. Once finished, the scores are printed and the predictions for all the
sub-datasets are made. Finally, the predictions are saved on disk. A description is also added
to understand the parameters used to achieve the results. Each time the model is changed,
the parameters on save should also be modified. All results are stored in the group
“deep_learning”.

Finally, the process is repeated for three datasets (HatEval English, HatEval Spanish and
DETOXIS). There is an extension on DETOXIS where cross-validation was made for
choosing the best parameters for the competition.

The subsection starts by creating a combined set of the training and validation datasets, to
check if the performance of the model increases with more data. Then the learning rate and
epsilon of the optimizer are saved as a global. The model and optimizer are removed and the
cache of Cuda is cleaned to ensure the creation of a model fits in the memory. Then a
method to generate the model and the optimizer, which will use the saved values, is
constructed.

Different tests are conducted from changing the number of epochs to comparing results with
or without all training data, testing other models and testing the other models with an
optimizer that has two learning rates. The best performing one seemed to be two epochs and
the default optimizer parameters.

Another subsection is implemented for searching the best parameters for learning rate,
epsilon on the optimizer and also the number of epochs. For more reliable results, the search
should be done using cross-validation of the training data instead of the score of the
development sub-dataset. However, due to the lack of time for the competition, instead it
uses the results of the validation. Even though it results in adding a certain bias, the results
were similar to the cross-validation. Furthermore, the best parameters end up being very
similar to the recommended values by the authors of BERT (Devlin et al., 2018).

3.4.10 GPT-2

This subsection is very similar to the previous one because all methods have been
refactored. When the model is first loaded, the next different variables are created. Then, the
model is trained and evaluated, finishing with saving the results. The process is repeated for
all datasets (excluding DETOXIS). However, it uses a different preprocessing technique in
comparison to the rest of the neural network models. Also, the model is loaded a bit
differently, where some settings are needed to be changed.

As mentioned, the GPT-2 tokenizer has problems tokenizing empty text, which results in
errors. To prevent this, instead of removing words, they are replaced. The error only seemed
to happen on the HatEval dataset, because some tweets only contained links, hashtags and
users. The solution that was implemented was to replace the keywords for users, hashtags
and links with a fixed word.

The process of initialization of the model is different. Starting with the need to define some
settings to the tokenizer such as the padding side of the token used for padding. Similarly, the
model needs to set the padding token id. This is because GPT-2 is not designed for direct
model classification and instead for the next sentence prediction. Also, the official model was
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only pre-trained for English. So for the Spanish datasets the pre-trained model used was
datificate/gpt2-small-spanish10.

Once the model is loaded, the rest of the execution is the same as in BERT. However,
differently to BERT, the model for GPT-2 does not have a limit for the number of tokens.
Allowing to train the model with all the data. Also, the base model generally needs more
memory than BERT. Forcing the need to reduce the batch size for all datasets. This resulted
in the DETOXIS dataset being unable to be trained, even with a batch size of 2. Even though
a fixed token limit could have been manually set, it was discarded as it had a worse
performance than BERT. All results are stored in the group “deep_learning” and the name
"GPT2 base".

3.4.11 Atalaya

This subsection tries to recreate the model that the team of Atalya (Pérez & Luque, 2019)
used in the 2019 SemEval competition. As mentioned in Section 3.1, to be able to run the
code, you need to use the other environment (tf-gpu-1.15) because of incompatibilities with
TensorFlow.

The module of pickle5 allows storing the predictions in the same format between
environments. This is due to the modification of the pickle protocol between the two versions
of Python. Also, some warnings for TensorFlow are removed, because this section is
designed to run for only 1.X versions. Then the ELMO model (Peters et al., 2018) is
downloaded from the internet or loaded from disk. The model is converted into a layer
function that transforms the input text into an embedding.

Furthermore, there are definitions of some auxiliary functions that will be used for all
datasets. The first one is a function that creates the model from zero, following the
architecture described in the Atalaya paper. Also, the same optimizer parameters are used.
Then there is a function for training the model. The training process uses early stopping with
patience of 5. Once the model is trained, a prediction for all sub-datasets (train, development
and test) is made. The last function creates a graph plotting both the loss and the accuracy of
the model across the epochs.

The main process for each dataset consists of: first creating the model, then training and
getting the predictions, next displaying the training history through a graph to check if
everything is working properly. Concluding with storing the predictions on disk. The
description model is the same for all datasets because there are no changes between
models. The process is repeated for all datasets. All results are stored in the group
“deep_learning” with the name of “Atalaya”.

3.4.12 SBERT

This section uses the SBERT (Reimers & Gurevych, 2019) model to generate embeddings
for all the datasets. These embeddings can be used as inputs for the machine learning
models. Similarly to Section 3.4.5, some base models are trained to ensure that everything is
properly working.

10 "datificate/gpt2-small-spanish · Hugging Face." https://huggingface.co/datificate/gpt2-small-spanish.
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First of all, the dataset indexes needed to be reset, to avoid a problem with the sentence
transformers package, where it gets confused if indexes do not describe the position on the
dataframe. Furthermore, two different checkpoints for the encoder are used. One that is
trained only for English and another that is multilingual, which includes Spanish. Once the
models are loaded, all the datasets are encoded into a fixed size embedding.

Then the base models are loaded, which consist of Ridge Classifier, Random Forest
classifier, Support Vector Classification, AdaBoost classifier and Multi-layer Perceptron
classifier. Similarly to Section 3.4.5, the only parameters changed are the random state, to
get consistent results and enabling early stopping on the Multi-layer Perceptron classifier to
avoid overfitting. The missing models are due to the incompatibility with the data, e.g. the
Bayes Classifiers can not work with negative numbers.

All models are trained and evaluated with training and development datasets, to test if there
are any problems. Also allowing to test how much better the performance is compared to
using Term Frequency-Inverse Document Frequency. All score information is printed during
the scoring process. However, to facilitate the comparison, two tables were constructed.
Then the process is repeated for each dataset.

3.4.13 Searching the best hyperparameters (SBERT)

This section tries to find the best parameters for the previously mentioned models through
grid search cross-validation. This is practically the same as Section 3.4.6, except the data
used is from the encoded data through SBERT. The other change is that some parameter
grids have been extended or modified. Moreover, some models are missing due to
incompatibilities of data. This section uses the same methods like the ones defined at the
beginning of Section 3.4.6. For example, the models with more parameters are split into two
cross-validations. Also as in all sections, the process is repeated for all datasets.

3.4.14 Best Models (SBERT)

This subsection creates the models with the best parameters found in the previous section.
This section is also very similar to 3.4.7, where the only notable difference being the model
parameters values, and that two models are missing. The models are stored as the new
group called “sbert“ and “sbert_best” with the same naming strategy..

3.4.15 Oversampling

This section tries to use different Synthetic Minority Oversampling Technique (Chawla et al.,
2002) over the SBERT embedding. The common objective is to generate new data to
balance a feature. As observed in Section 3.2, both datasets are unbalanced and using
SMOTE could result in an improvement.

The main method of this section trains a list of models with a list of oversampling techniques.
Each oversampler, if possible, is created with a fixed random state to get consistent results
across runs. Also, parallelism is enabled to fasten the oversampling process. Once the input
data is expanded, the models are cloned (which allows them to maintain the parameters) and
fitted with this oversampled data. Returning a dictionary of new fitted models, which are

40



combinations of the original list of models and the oversampled data of different smote
techniques.

The new models are also a dictionary composed of pairs of model and name, can use
previously implemented methods for scoring the predictions. Similarly, once the models have
printed all the information related to scores, a more compact table is also printed. However,
due to the high quantity of models (twenty-seven), not all scores are printed. However, the
predictions can be stored properly on disk, allowing comparison on the other notebook
("Results"). The predictions are stored under the group of “sbert_oversampling”. Also, the
name is composed of the model name and the oversampler name.

All models and oversamples that were used were using default parameters. Excluding the
random state for consistent results and the number of jobs for faster processing. This could
have been further explored through grid search cross-validation of both the model and the
oversampler.

3.4.16 Results

This section describes the "Results" notebook, which allows the comparison of all the stored
predictions. The notebook displays several options for comparing the different models
through the use of tables. The metrics that will be used are F1 score, accuracy, precision and
recall. The F1 score will change depending on the task, where it will be F1 macro for task 1 of
SemEval 2019 and F1 binary for task 1 of DETOXIS. Further explained in Section 4.2.

The notebook starts by importing some files and loading the auxiliary functions explained in
Section 3.4.4. There are two modifications to these methods. First, the addition of a method
to load all metadata and results from the disk. Second, the dataset types enum has been
modified, to allow comparison between elements. Also, has a new method to shorten the
names for the table names.

There are also three more methods for scoring depending on the task. The main method,
which scores the prediction using the previously mentioned metrics, only if a ground truth
exists, otherwise returns null. The other two are auxiliary methods for each dataset task, both
of them call the main scoring method.

The results are loaded from the disk and split between predictions and ground truth. Then all
predictions are scored with their respective truth depending on the task, only if it exists. Once
the prediction has been scored, the extra data from the metadata file is added. Also, the
metadata is formatted to be more readable. Finally, once all predictions have been scored,
they are grouped on a base table containing all the information. Finally, different formats for
displaying the results are printed.

The first option for displaying data is one where all metadata is used as the index, while the
scores are the columns. The data is sorted using the F1 score. However, this option is the
one that is the least compact. Furthermore, with the huge quantity of tested models and
datasets, it is very hard to compare results.

The second option aggregates the data, so the score and the dataset type are displayed as
multiple levels on the columns, where the score is at the top and the dataset types (train,
development and test) are below. This view allows for a more easy comparison between
dataset types. Furthermore, the data is grouped by the task, language and group, which
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allows for easy comparison between models of the same group. Also, the generated table is
more compact. Moreover, the data in each group are sorted by the F1 test score or F1
development score, in case the first does not exist.

The third option is based on the previous one, but without grouping by the column of the
group. Allowing to visualize the best models for the specific task and language. Especially
useful for comparing results between all models.

The fourth option is the same as the second one but limiting the number of models to the top
of each group. These options can facilitate the comparison process between groups, allowing
to find which group is the best.

Similarly, the fifth option is the same as the third one but limiting the number of models to the
top of each group. This table allows for easier comparison between the best models.
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4. Evaluation
This section describes how the results of each model were obtained and how they were
evaluated. In addition, it shows some of the model results of each dataset to allow for
comparison. For the visualization of all the results, see the “Results” notebook.

Model/Technique Name Implemented/Modified? Reference

TF-IDF Yes Robertson, 2004

Dummy Classifier No

Multinomial Naive Bayes
Classifier

No Hand & Yu, 2001

Bernoulli Naive Bayes
Classifier

No Hand & Yu, 2001

Ridge Classifier No Singh et al., 2016

Random Forest Classifier No Breiman, 2001

Support Vector Classification No Hearst et al., 1998

AdaBoost classifier No Freund & Schapire, 1996

Multi-layer Perceptron
classifier

No Marius et al., 2009

BERT No Devlin et al., 2018

BERT Average Yes Li et al., 2020

BERT SMOTE Yes

GPT-2 No Radford et al., 2019

Atalaya Yes Pérez & Luque, 2019

SBERT No Reimers & Gurevych, 2019

SMOTE No Chawla et al., 2002
Table 3: Models and Techniques used in the project.

The result analysis is one of the most important parts of the project problem. Consisting on
finding which models are better suited for the detection of hate speech because it allows
understanding how capable the models are, while also allowing a way to compare between
them, especially through the test dataset, which should be data that the model has not seen.
Providing a way to evaluate without bias a model. This is the same principle applied to the
validation dataset. All results that will be shown have been trained using only the training
sub-dataset.
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Nearly 60 models were trained across the three different datasets (HatEval Spanish, HatEval
English and DETOXIS) and have predicted all the sub-datasets (train, development and test).
These models the majority were combinations between different techniques and models (as
seen in Table 3). This extensive quantity of models will be evaluated and compared later on
through the specified metrics.

4.1 Methodology

The methodology implemented consisted of using the different datasets (HatEval and
DETOXIS) to allow all models to be fitted with the training data of a specific dataset. Then,
the models were asked to make predictions for all the sub-datasets (train, development and
test). All the predictions were then stored on a disk, along with the ground truth. The process
was repeated for almost all models, where they were trained three times for each dataset
(HatEval English, HatEval Spanish and DETOXIS). This process is further explained in
Section 3.4.

The predictions then were compared with the ground truth, allowing us to score the
predictions through the different metrics. Next all scores were combined in a table where they
were grouped according to the task and language. Finally, the table was reordered and
reorganized in different ways to facilitate different investigations. The most relevant (options 2
and 3) allowed for easy comparisons between models of the same group, while the other
allowed for easy comparisons between models of all groups. The main difference was that
the first grouped models with the same group name, while the other did not. However, due to
the abundant number of models, more compact tables (as seen in Table 4, 5 and 7) were
created (options 4 and 5).

4.2 Metrics

The first task of both competitions was a binary classification, reducing the scope of possible
metrics. The principal metric, which both datasets used for ranking participants, was the F1
score. However, the specific formula changes between the two datasets. Whereas SemEval
2019 (Basile et al., 2019) uses F1 macro (average F0 score and F1 score), DETOXIS uses
F1 binary (standard F1 score). Other metrics for extra information were used during the
analysis and competition, such as accuracy, precision and recall.

All the metrics were calculated through the following formulas. “tp” stands for true positive,
which means the number of outcomes where the model predicted correctly positive class. “fp”
stands for true negative, which represents the number of times where the model predicted
incorrectly the positive class. Oppositely, “tn” (true negative) and “fn” (false negative) are the
same as true positives and false positives but instead targeting the negative class. All these
values are computed through the comparison of the prediction and the truth.

𝐹
1
 𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑡𝑝

𝑡𝑝 + 1
2  (𝑓𝑝 + 𝑓𝑛)

𝐹
1
 𝑚𝑎𝑐𝑟𝑜 = 1

2
𝑡𝑝

𝑡𝑝 + 1
2  𝑓𝑝 + 𝑓𝑛( )

+ 𝑡𝑛
𝑡𝑛 + 1

2  𝑓𝑝 + 𝑓𝑛( )( )
44



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝
𝑡𝑝+𝑓𝑝

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝
𝑡𝑝+𝑓𝑛

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝+𝑡𝑛
𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛

4.3 Discussion

This section analyzes some of the results of the models using the explained methodology
and metrics. While also explaining some observations of the results of the models in all the
datasets. There are some general traits across the results of the three different datasets.

First, in all datasets, the models that use deep learning have higher performance, by a large
margin, against almost all the models that used the Term Frequency-Inverse Document
Frequency. This could be attributed to the fact that deep learning models can understand the
complex relationships between words.

Second, generally, a version of the BERT model was always the best across the group of
deep learning. Probably due to the fact that the GPT-2 model has not been designed for
direct sequence classification. Whereas the Atalaya model, excluding ELMO, was too small
for learning complex patterns between embeddings. Another possibility is due to the ELMO
architecture, which does not use Transformers.

Third, the different implementations of the modification of the model BERT called BERT
Average did not seem to bring any relevant increase or decrease to the original version. The
model was based on the model called BERT last2avg (Li et al., 2020). Different ways to
calculate the average were tested, which resulted in similar results. The tested average
methods were: mean of the two first tokens (the position of the special token [CLS]) of the
last two layers, the average of the last tokens (last word token and special token [SEP]) of
the last layer and the average of the entire two last layers. This last one was the one that the
BERT Average ended up representing because it seemed to be the most similar to the one
described on the paper.

Fourthly, the F1 scores were very similar between BERT and SBERT across all datasets.
Whereas BERT seemed to be the best model for the Spanish datasets (HatEval and
DETOXIS), SBERT was the best model for the English dataset (HatEval). However, most
SBERT models beat BERT on the English dataset with a larger margin than the Spanish
counterpart. A possible explanation for this difference is that there is a simpler correlation
between features of the embedding on the English model and hate speech. Another possible
cause is that the SBERT works better if trained with a single language because a multilingual
model has to be able to interpret texts of multiple languages with the same embedding size.
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4.3.1 HatEval

The best models for the English test dataset were models that use SBERT embeddings, the
random classifier and support vector classification with f1 scores of nearly 0.65 (as seen in
Table 4). Furthermore, it seems that the oversampling did not end up increasing the
performance enough, with only an f1 score of 0.63. Finally, the traditional models were the
worst-performing, with the best model only scoring 0.51.

However, if the models are ranked by the development score instead of the test score.
Instead, the best models are the different versions of the BERT average with scores of 0.75.
Furthermore, the 4th best result in development is based on the Term Frequency-Inverse
Document Frequency using the model of Random Forest Classifier, with a score of 0.75.
Strangely this last model decreases its performance by a lot on the test sub-dataset. This
probably caused by some big difference in the data between train and development in
comparison to the test. A possibility that the distribution of data is different between datasets.
For example, the first two dataset types have more data that targets immigration, while the
test contains more data that targets misogyny.

The best models on the first task of the SemEval 2019 competition scored 0.65 for the
English dataset. The best model used a Support Vector Classifier with sentence embeddings
from Google’s Universal Sentence Encoder, which was presented by the Fermi team (Indurthi
et al., 2019). This strategy is very similar to the usage of SBERT on the project. Even both
implementations got nearly the same f1 macro score.

The recreation of the model the team Atalaya (Pérez & Luque, 2019) created, which was
composed of what they called LSTM-ELMo+BoW, had very similar results to the ones they
reported. The F1 macro scores they obtained were 0.743 for validation and 0.461 for the test,
whereas our implementation resulted in 0.740 for and 0.470, respectively. Similarly, the other
metric they reported was accuracy. They reported 0.738 for validation and 0.502 for the test,
whereas the recreation got 0.743 for and 0.508, respectively. The small differences can be
attributed to the random sampling during training. Also, it could be attributed to the number of
epochs and batch size, which they did not specify.

The Spanish dataset got the best results with BERT, specifically the base model, which
ended up scoring a bit higher than the rest with f1 scores of 0.76 (as seen in Table 5). The
second model was BERT oversampled which was unexpected, considering it was an
invention. All three models are then followed by different versions of SBERT with the best
one scoring 0.72. Similarly, the models based on the traditional approach are generally the
ones that scored the worst. However, the difference is much lower than in the English
dataset, with the best model scoring 0.7. A possible cause could be that the development
sub-dataset was more similar to the test. This hypothesis would also explain why the results
between development and test are more or less similar. Furthermore, the difference is
constant across both sub-datasets, where the ranking has almost the same order.

Furthermore, the best models in the Spanish competition were a tie with an f1 score of 0.73.
Our current best model, BERT, performs a bit better. Both teams used Support Vector
Machines but focused on different traditional techniques. Indicating that deep learning models
have more potential for hate speech detection.
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The worst-performing deep learning model on the Spanish dataset was GPT-2, which had a
similar difference as the English version. However, differently from the English checkpoint,
which was an official, the Spanish was made by a user11. The results show similar
performance, pointing that the pre-training was of the same quality as the original.

Differently from the English dataset, the results the team Atalaya reported are not the same
as the results of our recreation. However, this only happens on the development sub-dataset,
where they got an f1 macro score of 0.821 and an accuracy score of 0.824, while our model
only got 0.775 and 0.778, respectively. Unexpectedly, on the testing data, the scores were
very similar. While they got 0.712 for f1 and 0.719 for accuracy, our model got 0.713 for f1
and 0.715 for accuracy. This situation is strange, the only reason for this discrepancy is that
the development sub-dataset they used is different from ours. Otherwise, the testing results
should not be so similar on both metrics. For example, the entire dataset was mixed.

4.3.2 DETOXIS

The best models for the DETOXIS end up being the different versions of BERT, with the best
model scoring 0.56 on the F1 score (as seen in Table 7). These models are closely followed
by different models that used SBERT and oversampling, with the best one scoring 0.53.
Differently from the other datasets, several parameter configurations were stored to allow
comparison between them. Furthermore, similar to the rest of the datasets, the models based
on Term Frequency-Inverse Document Frequency perform generally much worse than the
rest, with the best one only scoring 0.42.

Also, similarly to the HatEval Spanish dataset, the ranking based on the f1 score is more or
less the same between the development and test dataset. Indicating that the decision for
splitting the training data was useful for the decision making process during the competition.
Furthermore, the oversampling on the models that SBERT used, brought a general
performance increase across all of them, with at least a boost of 0.05 for the best model.

All models that used Term Frequency-Inverse Document Frequency benefited from the
parameter optimization done through grid search cross-validation. Increasing the
performances of some models up to 0.3 in f1 scores, such as the AdaBoost classifier model.

The competition allowed the submission of 5 models for each subtask. The models were
chosen by their performance on the development set and also that they were different
architectures. Increasing the chance that one of those models performed much better than
the rest. Furthermore, the models were trained with the combined dataset of train and
development to further increase the performance with more data. Also, the chosen SBERT
models had the optimized hyperparameters found through grid search cross-validation. The
chosen models were:

1. Bert base (2 epochs)
2. Bert average
3. Sbert Ridge SMOBD
4. Sbert MLP SMOTE_TomekLinks
5. Ensemble (bagging) of all previous methods

11 "datificate/gpt2-small-spanish · Hugging Face." https://huggingface.co/datificate/gpt2-small-spanish.
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Table 6: Results of submitted models for DETOXIS Task 1

The best performing model was the one that used bagging, where the prediction was made
using the other four models. The process consisted of finding which label had more votes,
and in case of a tie, the positive would win. The tie was solved using positive in consideration
of the formula used for ranking the competition, where predicting negative does not change
the score (if right). Whereas in the case of predicting the positive the score will increase (if
guessed correctly). Also, the penalty for guessing wrong is the same for both cases.

This combination of models with a score of 0.56 ended up 8th on the ranking of 31
participants of the DETOXIS competition12 (as seen in Table 6). The score obtained could be
considered to be the bottom of the top-ranking teams. This is because there is less distance
between the 2nd team (0.60) and our model than our model and the 9th team (0.49).
Furthermore, the 6th and 7th teams (0.56 and 0.57) only have a difference of less than 0.1.
Indicating that a better exploration of parameters could result in a better ranking position.

12 "evaluation measures - DETOXIS-IberLEF 2021 - Wix.com."
https://detoxisiberlef.wixsite.com/website/evaluation-results.
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5. Economic analysis
This chapter describes how the time was spent for the realization of the project and an
estimation of the total economic cost of the entire project. Also, explains a breakdown of the
individual task for accomplishing the current project.

5.1 Time
An estimated 450 hours (700 hours counting training) were spent to accomplish this project,
between the 1st of February of 2021 to the 20th of June of 2021. The project was divided into
different primary tasks:

1. Research: Study of the different state-of-the-art models in Natural Language
Processing and other alternatives.

2. Analysis: The process of extracting meaningful information from the data of the
project.

3. Implementation: Creation of a framework to allow to run different types of models and
also be able to compare them.

4. Documentation: Writing of the actual report for the bachelor's thesis.
5. Training: Time spent training the different models or running other code. The Gantt

diagram implementation tasks also count this task.

First of all, the documentation was mostly written during the interval outside of the
implementation, with some exceptions. The task that most time was inverted was the
implementation. A big cause was the time it took to run some code. This resulted in the
implementation taking up to 75% more. Especially in the case where bugs were found,
forcing the need to rerun the affected section. Furthermore, the implementation of most
models brought the complications of learning new technologies from scratch, which is
time-consuming. Also, the analysis was made across long periods with lower work density, to
allow to come up with new ideas.

As seen in Table 8 and Figure 22, the project was mainly centred around the implementation,
which was the task that took the most time (250h). Followed by the training (150h) as a
consequence of the long time it took to run some sections, especially the cross-validation
ones. The next one was the documentation (80h) of the current paper. The last two had the
same amount of time (60h), which were the analysis and research tasks.
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5.2 Cost

The project did not need to buy any product, material or licenses because all applications and
modules used were open-sourced. Almost all costs were related to manual labour, excluding
the cost of running the code (training task), which were electrical costs. All values used are
approximations of the estimated prices for the services.

The total cost of the project is 7.738€. As expected, the main cost was the implementation
which correlates with being the most important part of the project. It ends up costing
two-thirds of the total costs. Almost the rest is from the other services, excluding the
implementation. The physical costs are nearly negligible because of how small is the setup
used for executing the code. However, this cost could end up being higher, if instead of using
the current one, the hardware was rented.
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6. Conclusions
The project studied different Natural Language Processing models and techniques for hate
speech detection on messages, which can be divided into two categories: the traditional
approach and the deep learning approach. The former uses algorithms to extract static
information from the texts. While the latter group are models that have been trained with
huge amounts of data. These models can extract more complex information through the
context for better predictions. Furthermore, all the implemented models have been tested on
three different datasets with two distinct languages.

All objectives of the project were accomplished, starting first through research on the current
state of the natural language processing discipline. Proceeding with the implementation of a
framework that would allow running all types of models, while also having a more compacted
representation of all the results. Finishing with analysis and documentation of the current
report.

The main focus of the project was the implementation of different models. Which allowed
learning new technologies from scratch. However, the toughest part was the research of the
current state-of-art for Natural Language Processing (NLP). This was caused by how difficult
it was to understand the new concepts and lexicon. Also by how highly interconnected the
different research papers were.

Some deep learning model versions could not be tested due to hardware limitations.
Generally, with the same architectures but with more layers, the performance should have
increased in downstream tasks. An example of this could be the version BERT large or
RoBERTa large, which occupied more than the 8 GB of RAM available on the GPU.
Furthermore, it could have been interesting to see the results that GPT-3 could obtain, the
most recent state-of-the-art model. Additionally, the framework could have been expanded to
also test the different models for the second task of all datasets, which instead of being
binary classification is multiclass. Moreover, a combination of the Spanish datasets for
training could have resulted in performance increases on all tasks. Furthermore, the best
parameters for both the models and the oversamplers that used SBERT embeddings could
have been explored, which should have resulted in a further performance increase. Also, the
oversampling could have been tested on the Term Frequency-Inverse Document Frequency
matrix, which could have increased the perplexity on unbalanced datasets. Moreover, a deep
learning model pre-trained purely on the language, could have better performance than a
multilingual version (i.e. BETO). Additionally, an investigation could be conducted to analyze
the performance between the different multilingual checkpoints. As future work, we plan to
analyze all the above-mentioned issues that remained open in the current work.

In conclusion, the current state of the different tested machine learning models has immense
potential for hate speech detection, especially for deep learning models. Furthermore, they
can process the large amounts of data interchanged in social media. Although the best
models did not have a very high perplexity, a more reliable model could be trained with more
training data or new architectures. Even at the current state, the models could be used as an
external font for helping humans in the decision-making process. Moreover, these models
could filter the most confident predictions, while leaving the rest for the reviewer team.
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Appendix

A Abbreviations Dictionary

The abbreviations dictionary was constructed from the most common abbreviations on
Twitter. The abbreviations that could have several meanings were generally not included,
excluding cases where there was a very clear winner. Also, most abbreviations were not
translated directly to Spanish because of the difference in languages (i.e. ayfkmwts). The
dictionary is a JSON with two levels to get the meaning: the first is the abbreviation and the
second is the language. The dictionary created is the following:

{"cc": {"en": "carbon-copy", "es": "con copia"},
"cx": {"en": "correction", "ex": "correcion"},
"ct": {"en": "cuttweet"},
"dm": {"en": "direct message", "es": "mensaje directo"},
"mt": {"en": "partial retweet"},
"prt": {"en": "please retweet"},
"rt": {"en": "retweet", "es": "retweet"},
"em": {"en": "email marketing"},
"fb": {"en": "facebook", "es": "facebook"},
"li": {"en": "linkedin"},
"seo": {"en": "search engine optimization"},
"sm": {"en": "social media"},
"smm": {"en": "social media marketing"},
"smo": {"en": "social media optimization"},
"sn": {"en": "social network"},
"ugc": {"en": "user generated content"},
"yt": {"en": "youtube", "es": "youtube"},
"ab": {"en": "about"},
"abt": {"en": "about"},
"afk": {"es": "ausente"},
"afaik": {"en": "as far as i know"},
"ayfkmwts": {"en": "are you fucking kidding me with this shit?"},
"b4": {"en": "before"},
"bfn": {"en": "bye for now"},
"bgd": {"en": "background"},
"bh": {"en": "blockhead"},
"br": {"en": "best regards"},
"brb": {"es": "ahora vuelvo"},
"btw": {"en": "by the way"},
"cd9": {"en": "code 9, parents are around"},
"chk": {"en": "check"},
"cul8r": {"en": "see you later"},
"dam": {"en": "don't annoy me"},
"dd": {"en": "dear daughter"},
"df": {"en": "dear fiancé"},
"dp": {"en": "used to mean 'profile pic'"},
"ds": {"en": "dear son"},
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"dyk": {"en": "did you know, do you know"},
"em": {"en": "email"},
"eml": {"en": "email"},
"ema": {"en": "email address"},
"f2f": {"en": "face to face"},
"ftf": {"en": "face to face"},
"ff": {"en": "follow friday"},
"ffs": {"en": "for fuck's sake"},
"fml": {"en": "fuck my life"},
"fotd": {"en": "find of the day"},
"ftw": {"en": "for the win"},
"fubar": {"en": "fucked up beyond all repair"},
"fwiw": {"en": "for what it's worth"},
"gmafb": {"en": "give me a fucking break"},
"gtfooh": {"en": "get the fuck out of here"},
"gts": {"en": "guess the song"},
"hagn": {"en": "have a good night"},
"hand": {"en": "have a nice day"},
"hotd": {"en": "headline of the day"},
"ht": {"en": "heard through"},
"hth": {"en": "hope that helps", "es": "espero que sirva de ayuda"},
"ic": {"en": "i see"},
"icymi": {"en": "in case you missed it"},
"idk": {"en": "i don't know"},
"iirc": {"en": "if i remember correctly"},
"imho": {"en": "in my humble opinion"},
"irl": {"en": "in real life", "es": "en la vida real"},
"iwsn": {"en": "i want sex now"},
"jk": {"en": "just kidding", "es": "es broma"},
"jsyk": {"en": "just so you know"},
"jv": {"en": "joint venture"},
"kk": {"en": "okey"},
"kyso": {"en": "knock your socks off"},
"lhh": {"en": "laugh hella hard"},
"lmao": {"en": "laughing my ass off", "es": "me parto el culo de risa"},
"lmk": {"en": "let me know"},
"lo": {"en": "little one"},
"lol": {"en": "laugh out loud", "es": "reirse a carcajadas"},
"mm": {"en": "music monday"},
"mirl": {"en": "meet in real life"},
"mrjn": {"en": "marijuana"},
"nbd": {"en": "no big deal"},
"nct": {"en": "nobody cares, though"},
"nfw": {"en": "no fucking way"},
"njoy": {"en": "enjoy"},
"nsfw": {"en": "not safe for work", "es": "no es seguro para el trabajo"},
"nts": {"en": "note to self"},
"oh": {"en": "overheard"},
"omg": {"en": "oh my god", "es": "oh dios mio"},
"omfg": {"en": "oh my fucking god"},
"oomf": {"en": "one of my friends"},
"orly": {"en": "oh, really?"},
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"plmk": {"en": "please let me know"},
"pnp": {"en": "party and play"},
"qotd": {"en": "quote of the day"},
"re": {"en": "in reply to"},
"rlrt": {"en": "real-life re-tweet"},
"rtfm": {"en": "read the fucking manual"},
"rtq": {"en": "read the question"},
"sfw": {"en": "safe for work"},
"smdh": {"en": "shaking my damn head"},
"smh": {"en": "shaking my head"},
"snafu": {"en": "situation normal, all fucked up"},
"so": {"en": "significant other"},
"sob": {"en": "son of a bitch"},
"srs": {"en": "serious"},
"stfu": {"en": "shut the fuck up"},
"stfw": {"en": "search the fucking web"},
"tftf": {"en": "thanks for the follow"},
"tftt": {"en": "thanks for this tweet"},
"tj": {"en": "tweetjack"},
"tl": {"en": "timeline", "es": "linea temporal"},
"tldr": {"en": "too long, didn't read"},
"tl;dr": {"en": "too long, didn't read"},
"tmb": {"en": "tweet me back", "es": "contestame"},
"tt": {"en": "trending topic", "es": "marcan tendencia"},
"ty": {"en": "thank you"},
"tyia": {"en": "thank you in advance"},
"tyt": {"en": "take your time"},
"tyvw": {"en": "thank you very much"},
"w": {"en": "with"},
"w/": {"en": "with"},
"w/e": {"en": "whatever"},
"wtv": {"en": "whatever"},
"ygtr": {"en": "you got that right"},
"ykwim": {"en": "you know what i mean"},
"ykyat": {"en": "you know you're addicted to"},
"ymmv": {"en": "your mileage may vary"},
"yolo": {"en": "you only live once"},
"yoyo": {"en": "you're on your own"},
"yw": {"en": "you're welcome"},
"zomg": {"en": "oh my god to the max"},
"gtg": {"en": "got to go", "es": "me tengo que ir"},
"imo": {"en": "in my opinion", "es": "en mi opinion"},
"omw": {"en": "on my way", "es": "estoy de camino"},
"pls": {"en": "please", "es": "por favor"},
"plz": {"en": "please", "es": "por favor"},
"rofl": {"en": "rolling on floor laughing", "es": "revolcarse por el suelo de risa"},
"rpg": {"en": "role playing game", "es": "juego de rol"},
"thx": {"en": "thanks", "es": "gracias"},
"wtf": {"en": "what the fuck", "es": "¿que demonios es esto?"},
"xd": {"en": "happy face", "es": "cara sonriente"}
}
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