
Institut de Recerca en Economia Aplicada Regional i Pública Document de Treball 2022/01, 44 pàg.

Research Institute of Applied Economics Working Paper 2022/01, 44 pag.

Grup de Recerca Anàlisi Quantitativa Regional Document de Treball 2022/01, 44 pàg.

Regional Quantitative Analysis Research Group Working Paper 2022/01, 44 pag.

“An application of deep learning for exchange rate
forecasting”

Oscar Claveria, Enric Monte, Petar Sorić and Salvador Torra

WEBSITE: www.ub-irea.com • CONTACT: irea@ub.edu

Universitat de Barcelona
Av. Diagonal, 690 • 08034 Barcelona

The Research Institute of Applied Economics (IREA) in Barcelona was founded in 2005,

as a research institute in applied economics. Three consolidated research groups make up

the institute: AQR, RISK and GiM, and a large number of members are involved in the

Institute. IREA focuses on four priority lines of investigation: (i) the quantitative study of

regional and urban economic activity and analysis of regional and local economic policies,

(ii) study of public economic activity in markets, particularly in the fields of empirical

evaluation of privatization, the regulation and competition in the markets of public services

using state of industrial economy, (iii) risk analysis in finance and insurance, and (iv) the

development of micro and macro econometrics applied for the analysis of economic

activity, particularly for quantitative evaluation of public policies.

IREA Working Papers often represent preliminary work and are circulated to encourage

discussion. Citation of such a paper should account for its provisional character. For that

reason, IREA Working Papers may not be reproduced or distributed without the written

consent of the author. A revised version may be available directly from the author.

Any opinions expressed here are those of the author(s) and not those of IREA. Research

published in this series may include views on policy, but the institute itself takes no

institutional policy positions.

WEBSITE: www.ub.edu/aqr/ • CONTACT: aqr@ub.edu

http://www.ub-irea.com/
mailto:irea@ub.edu
http://www.ub.edu/aqr/
mailto:aqr@ub.edu

 Abstract

This paper examines the performance of several state-of-the-art

deep learning techniques for exchange rate forecasting (deep

feedforward network, convolutional network and a long short-term

memory). On the one hand, the configuration of the different

architectures is clearly detailed, as well as the tuning of the

parameters and the regularisation techniques used to avoid

overfitting. On the other hand, we design an out-of-sample

forecasting experiment and evaluate the accuracy of three

different deep neural networks to predict the US/UK foreign

exchange rate in the days after the Brexit took effect. Of the three

configurations, we obtain the best results with the deep

feedforward architecture. When comparing the deep learning

networks to time-series models used as a benchmark, the

obtained results are highly dependent on the specific topology

used in each case. Thus, although the three architectures

generate more accurate predictions than the time-series models,

the results vary considerably depending on the specific topology.

These results hint at the potential of deep learning techniques, but

they also highlight the importance of properly configuring,

implementing and selecting the different topologies.

JEL Classification: C45, C58, E47, F31, G17.

Keywords: Forecasting, Exchange rates, Deep learning, Deep neural

networks, Convolutional networks, Long short-term memory.

Oscar Claveria (corresponding author): AQR–IREA, University of Barcelona (UB).
Department of Econometrics, Statistics and Applied Economics, University of
Barcelona, Diagonal 690, 08034 Barcelona, Spain. Tel.: +34-934021825. Email:
oclaveria@ub.edu

Enric Monte: Department of Signal Theory and Communications, Polytechnic University
of Catalunya (UPC). Email: enric.monte@upc.edu

Petar Sorić: Faculty of Economics & Business University of Zagreb. Email:
psoric2@net.efzg.hr

Salvador Torra: Riskcenter–IREA, University of Barcelona (UB). Email: storra@ub.edu

Acknowledgements and funding

This research was supported by the project PID2020-118800GB-I00 from the Spanish Ministry of Science
and Innovation (MCIN) / Agencia Estatal de Investigación (AEI). DOI:
http://dx.doi.org/10.13039/501100011033

mailto:oclaveria@ub.edu
mailto:enric.monte@upc.edu
mailto:psoric2@net.efzg.hr
mailto:storra@ub.edu
http://dx.doi.org/10.13039/501100011033

1

1. Introduction

The exchange rate is a key macroeconomic variable. The fact exchange rates are used to

determine the international competitiveness of a country, has made the forecast of their

movements a relevant factor for both economic agents and policy makers. The

predictability of exchange rates came to the fore since Meese and Rogoff (1983) showed

that a random walk was frequently found to generate better exchange rate forecasts than

economic models. This came to be known as the Meese-Rogoff puzzle. In her seminal

paper, Rossi (2013) provided a critical review of the literature on exchange rate

forecasting and found that the choice of predictor, the forecast horizon, the sample period,

the model and the forecast evaluation method were key factors in determining the

predictability of exchange rates.

Most of the vast literature related to exchange rate forecasting is centred around the

exchange rate models (Jaworski, 2021). Notwithstanding, the results obtained by Meese

and Rogoff (1983) has limited the number of studies focused on univariate time series.

The development of new forecasting techniques in the last few years, especially in the

field of machine learning (ML), and more specifically since the deep learning (DL)

revolution fostered by advances in hardware in recent years, has caused a renewed interest

exchange rate forecasting. This new scenario has led us to consider to what extent state-

of-the-art DL architectures could improve the forecast accuracy of exchange rates

predictions. We have assessed the performance of three different DL neural networks and

compared them to different time-series models used as a benchmark. The three

architectures we evaluate are a deep feed-forward network (DFNN), a convolutional

neural network (CNN), and a long short-term memory (LSTM) network, which can be

regarded as a particular type of recurrent neural network (RNN).

As opposed to most of the previous literature on this topic, which is focused on

exchange rate models, in this paper we adopt a univariate time-series approach. For a

recent assessment of statistical learning models to estimate exchange rate models see

Colombo and Pelagatti (2020). In their study, the authors used regularised regression

splines, random forests and support vector machines to provide a better understanding of

the relationship between the exchange rate and economic fundamentals.

2

The remainder of the paper is structured as follows. Next section reviews the most

recent literature on the application of DL networks with forecasting purposes. Section 3

presents the different DL architectures used in this study, their configuration and how the

parameters are tuned. Section 4 describes the data and the design of the experiment.

Empirical results are provided in Section 5. Finally, some concluding remarks are

presented.

2. Literature review

The advent of DL has rekindled the interest for NN forecasting. The advances over the

past two decades have proven the potential of NNs for time series forecasting, especially

in situations where long series are available (Andrawis et al., 2011; Ben Taieb et al.,

2012; Claveria et al., 2015, 2016, 2017, 2020; Crone et al., 2011; Feng & Zhang, 2014).

In this context, more complex models can be estimated without being prone to overfitting.

As noted by Bandara et al. (2020), recurrent architectures are naturally suited for

modelling problems that need to capture the dependency in a sequential context, and are

able to preserve knowledge while advancing through the subsequent time steps. These

features, as well as their data-driven nature and their ductility for modelling tasks enable

these methods to uncover complex relationships and perform forecasts without imposing

restrictions regarding the underlying data generating process of the data.

As a result, several NN architectures such as multi-layer perceptron (MLP) and

radial basis function (RBF) networks, which can be regarded as a special class of multi-

layer feed-forward architecture with two layers of processing, have been widely used for

economic forecasting (Aminian et al., 2006; Claveria & Torra, 2014; Teräsvirta et al.,

2005; Stasinakis et al. 2014). A variation of RBF architectures are generalised regression

neural networks (GRNNs), which were proposed by Specht (1991) and are also

increasingly used as an alternative to MLP (Yan, 2012; Zimmermann et al., 2012).

Contrary to feed-forward networks, RNNs are models with a bidirectional data flow.

While a feed-forward network propagates data linearly from input to output, RNNs also

propagate temporal feedback from the outer layers to the lower layers. There are many

recurrent architectures: fully recurrent, simple recurrent, bidirectional recurrent, etc. A

special case of recurrent networks, which have been widely implemented are the Elman

networks (Elman, 1990). Recently, LSTMs, are gaining interest, as they have proven

particularly useful for forecasting (He et al., 2021; Hewamalage et al., 2021).

http://en.wikipedia.org/wiki/Recurrent_neural_network

3

DL allows computational models that are composed of multiple processing layers

to learn representations of data with multiple levels of abstraction, discovering intricate

structures in large data sets by using the backpropagation algorithm to indicate how a

machine should change its internal parameters that are used to compute the representation

in each layer from the representation in the previous layer (LeCun et al., 2015). For a

comprehensive review of DL in NNs, see Schmidhuber (2015). The need of long time

series has made DL architectures increasingly popular in domains such as Natural

Language Processing (Hinton et al., 2012; Mikolov et al., 2010), machine translation

(Sutskever et al., 2014), and speech recognition (Graves et al., 2013). These methods are

recently gaining popularity in time series research in different fields related to economics

(Alaminos et al., 2021; Bi et al., 2021), especially in finance (Sezer et al., 2020).

Exchange rates are high-frequency time series data that are easily available.

Forecasting exchange rates has always been a topic of interest, both for researchers and

analysists operating in the market. In her seminal paper, Rossi (2013) reviewed the

methodologies and fundamentals proposed in the literature up to that point, and found

that the predictability of exchange rates was conditional on several aspects. In spite of the

the results of Meese and Rogoff (1983), who found that exchange rates could not be

predicted on the basis of past exchange rate changes, recent advances in predictive

techniques are refining exchange rate forecasts, thereby reopening the debate regarding

the unpredictability of exchange rates (Alvarez-Diaz, 2008; Caporale & Spagnolo, 2004;

Clements & Smith, 2001; Enders & Pascalau, 2015; Fernández-Rodríguez et al., 2004;

Gharleghi et al., 2014; Gradojevic & Yang, 2006; Hong & Lee, 2003; Jamal & Sundar,

2011; Kiani & Kastens, 2008; Kirikos, 2000; Lee & Chen, 2006; Lin et al., 2012).

Building on this premise that exchange rates exhibit pronounced mean-reversion,

Ca’ Zorzi and Rubaszek (2020) applied a battery of models both in a univariate time series

setup and in a panel framework, finding that calibrated model and gradual adjustment

autoregressive specifications produced more accurate predictions than the random walk

or standard multi-step iterative autoregressive methods. Tripathi et al. (2021) used

ensemble modelling for forecasting exchange rates of major currency pairs. Their model

allowed combining univariate forecasts based on mean forecasting, NN and ARIMA

modelling. The obtained results outperformed univariate specifications in most cases.

ML strategies for time series forecasting, which are particularly indicated for

dealing with non-linearities, have opened up new possibilities for refining the prediction

of exchange rates. Parot et al. (2019), Sermpinis et al. (2012, 2013), Ni and Ying (2009),

4

Yu et al. (2005), Nag and Mitra (2002), Zhang and Berardi (2001), and Lisi and Sciavo

(1999) made exchange rates predictions using different types of NN architectures.

Notwithstanding, as noted by Yilmaz and Arabaci (2021), the number of formal

comparative studies in terms of exchange rate forecasting with DL models is quite limited.

To cover this deficit the authors compared different time-series models and DNNs to

predict three major exchange rate returns, finding evidence against the Meese-Rogoff

puzzle by combining a linear time-series model with a LSTM recurrent network.

Chen et al. (2021) recently applied a LSTM network for exchange rate forecasting

and obtained better forecasting results than with other ML procedures such as SVR and

genetic algorithms. The authors developed a two-stage ML model for exchange rate

prediction by introducing a preselected set of predictors in a LSTM exchange rate model

to predict the Bitcoin exchange rate regardless of the previous exchange rate.

Similarly, Lara-Benítez et al. (2021) undertook a thorough comparison of different

DL configurations for different datasets, including the ExchangeRate dataset, which

records the daily exchange rate of eight countries of the OECD. The authors obtained the

most accurate results with LSTM architectures.

Dautel et al. (2020) examined the potential of DL for exchange rate forecasting by

systematically comparing LSTM networks and gated recurrent units (GRUs) to traditional

recurrent architectures as well as feedforward networks in terms of their directional

forecasting accuracy and the profitability of trading model predictions. Empirical results

indicated the suitability of deep networks for exchange rate forecasting in general but also

evidenced the difficulty of implementing and tuning corresponding architectures.

It is this last finding that led us to evaluate the performance of LSTM and other two

DL techniques for exchange rate forecasting, making especial emphasis on the

configuration of the architectures. Thus, in order to facilitate the implementation of the

selected DL networks, in the next section we explicitly explain how the architectures have

been designed, tuned and estimated.

3. Deep Learning Neural Networks

In this study we used three types of DL architectures, and several specifications of

autoregressive moving average (ARMA) models used as a benchmark. The selected

architectures were:

5

a) Deep Feed-forward Neural Network (DFNN) – This network is a multilayer

perceptron. It is a densely connected network of several layers, where a set of

past samples are used as the input vector of the network. This kind of network

would be analogous to a moving average (MA) architecture. See section 3.1

for a detailed analysis of DFNNs.

b) Convolutional neural network (CNN) – This type of network is based on a

layered structure of convolutions that act as a hierarchy of memories. The first

layer performs a linear convolution over the input vector that comprises a

window of the input time series, the second layer subsequently performs again

a linear convolution over the outputs of the first layer, and so on until the last

layer, being the last layer the forecast, denoted as r. The input vector is

constructed from the input sequence by rearranging the observation sequence

as a matrix, i.e., as a sequence of windowed inputs with overlap. The linear

combination is implemented as a convolutional kernel that is applied to the

input vector, as a sliding filter. This is further explained in subsection 3.2,

which is dedicated to this particular type of DNN.

c) A long short-term memory recursive network (LSTM) – This is a type of

RNN architecture based on LSTM cells in which the temporal dynamics of

the input are modelled by means of recursive connections. This type of

connections are characterised by the fact that the output of a unit, after a delay,

can be the input of the same unit, along with the external inputs or the inputs

of the lower layers. In particular the memory related to the input time series

was structured in such a way that the units of the network observed a set of

past samples including a set of past delayed outputs. See section 3.3 for a

detailed analysis of LSTMs. For a comprehensive study on RNNs see

Hewamalage et al. (2021).

These three architectures are particularly suited for time-series forecasting (Bandara

et al., 2020; Lara-Benítez et al., 2021). Although the topologies are different and they

also differ in the way they deal with the data, they have in common the use of a past

window, and an internal representation of the temporal evolution of the time series in

order to compute the forecast. For the sake of comparability, we used the same learning

algorithm except for the LSTM, which uses a different algorithm due to the special

properties of the units.

6

3.1. Deep Feedforward Neural Network (DFNN)

This is a type of DNN, in which there is a hierarchy of layers of neurons. The input vector

connects to the first hidden layer, and the output of each hidden layer connects to

subsequent layers, such as shown in Figure 2. In our application, the network consists of

a window over the input time series and selects a subset of consecutives samples, that

consist of the current observation x(t) and 𝑁𝐿𝐴𝐺 past observations. Note that different

windows might overlap.

The input vector is denoted as 𝑥0 = [𝑥(𝑡), 𝑥(𝑡 − 1), … . , 𝑥(𝑡 − 𝑁𝐿𝐴𝐺)] . The

vector will be the input to a first hidden layer of size 𝐿1, i.e., the number of units in the

first hidden layer. In Figure 2 there is an overview of how the network works.

The DFNN consists of a sequence of layers, with a connectivity that flows from the

input at the bottom, to the output. The connections between layers are complete. These

connections, which are represented in Figure 2 as a link, consist of a real number that

weights the input from the lower layer, and is combined at each unit, represented as a

circle, with all the other values of the output of the lower layer by means of a linear

combination with the weights of the links.

Each unit performs of a dot product of the of the output vector of the previous layer

(the one immediately below) with a set of weights, which are the links to the lower layer

of units, and are denoted as w. The vector of weights is of the same dimensionality as the

input vector. Note that in practice, the model of a neuron has a bias term, which means

that the input vector is extended by adding a coordinate that has a constant, normally ‘1’,

and the vector w, which is variable has a bias term of 0 added at the same coordinate of

the extended value of the input vector. Therefore, the bias term is incorporated into the

model.

The weights are estimated iteratively by means of gradient search from the training

data. That is, given an input vector x, the output of a given unit will be a scalar 𝑧 = 𝑤𝑇𝑥.

The dot product is processed by a non-linearity which we will denote g(z). A summary of

typical non-linearities is shown in Table 1.

7

Figure 2. Diagram of a Deep Feedforward Network

Table 1. Summary of typical non-linearities

Non-Linearity Expression

Sigmoid 𝑔(𝑧) =
1

1 + 𝑒𝑧

Tanh 𝑔(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

Rectified Linear Unit (ReLu)
𝑔(𝑧) = {

𝑧 𝑧 > 0
0 𝑧 ≤ 0

}

For notational convenience, we group the process performed in each layer by a

matrix product with the input vector to the current layer, which is either the external input

or the output of the previous layer. As a result, we will stack the weights 𝑤𝑘,𝑖
𝑇 of the unit

“i” in layer “k” as rows in a matrix, and then we will apply the non-linearity to each

element of the vector resulting from the product.

Thus, we define the matrix 𝑊𝑘 of weights at layer 𝐿𝑘 as,

𝑊𝑘 = [
𝑤1

𝑇

⋮
𝑤𝐿𝑘

𝑇
] (1)

8

Where 𝑊𝑘𝑥𝑘−1 is the product of the output of the layer k-1 with the matrix 𝑊𝑘,

which gives a vector of dimension equal to the number of units at layer k. In addition,

each unit has a bias term, that is a constant term that does not depend on the input. This

bias term will be denoted as 𝑏𝑘 and is a vector with a dimensionality equal to the number

of units at layer k.

Therefore, the basic equation computed in layer k is the following,

xk = g(𝑊𝑘𝑥𝑘−1 + 𝑏𝑘
) (2)

Where g(.) is a non-linearity. In this research we used the ReLu, since it showed

preferable properties regarding the computation of the gradient used to estimate the

parameters 𝑊𝑘 and 𝑏𝑘. The process for computing the output for a network of N+1 layers

(including the input layer) consisted in a sequential application of Equation (2) for layer

k=1 to layer k=N.

Equations of a DFNN

As an illustration of how the forecast is computed by means of this network, we

show the procedure following the diagram shown in Figure 3. The DFNN described

below consists of one input, three hidden and one output layer, with a topology defined

as [10->100->100->100->1].

The output vector 𝑥1 of the units in the first layer is computed by means of the

following equation:

𝑥1 = g (𝑊1𝑥0 + 𝑏1
) (3)

The input vector consists of a sliding window on the input time sequence defined

as 𝑥0 = [𝑥(𝑡), 𝑥(𝑡 − 1), … . , 𝑥(𝑡 − 𝑁𝐿𝐴𝐺)] with 𝑁𝐿𝐴𝐺 = 9. The weight matrix 𝑊1 ∈

ℛ10𝑥100 connects the input vector x0 (of dimension 𝑁𝐿𝐴𝐺 + 1 = 10) to the units (of

dimension 𝐿1=100) of the first hidden layer. Therefore, 𝑊1 ∈ ℛ10𝑥100 can be expressed

as

𝑊1 = [
𝑤1

𝑇

⋮
𝑤𝐿𝑘

𝑇
] = [

𝑤1,1 … 𝑤1,𝑁𝐿𝐴𝐺

⋮

𝑤𝐿1,1 … 𝑤𝐿1,,𝑁𝐿𝐴𝐺

] (4)

And the offset vector of size equal to the number of units in the first layer 𝑏1 ∈

ℛ100

9

𝑏1 = [
𝑏1

⋮

𝑏𝐿𝑘

] (5)

The output vector x2 of the units in the second hidden layer are computed in an

analogous manner:

x 2= g(W2x 1+b2) (6)

Where 𝑊2 ∈ ℛ100𝑥100 and 𝑥2, 𝑏2 ∈ ℛ100. The output of the third layer is computed as

x3=g(W3x2+b3), where 𝑊3 ∈ ℛ100𝑥100 and 𝑥3, 𝑏3 ∈ ℛ100. And the final output of the

DFNN is computed as x4=g(W4x3+b4), where 𝑊4 ∈ ℛ1𝑥100 and 𝑥4, 𝑏4 ∈ ℛ100.

Figure 3. Diagram of a DFNN of 5 layers

Note: The input is a sliding window of length 10, and the output is the forecast of the value of the

next sample

Estimation of the parameters of a DFNN

The estimation of the parameters is done by means of the Adam (Adaptive Moment

Estimation) algorithm, which is a variant of backpropagation. This procedure computes

the gradient of the complete set of weights 𝑊𝑘 and 𝑏𝑘 (for layers k=1 to k=N) with

respect to a cost function. For ease of notation, we group all the parameters 𝑊𝑘 and 𝑏𝑘

into one unique variable which we will denote as W, which now incorporates a new

column which is 𝑏𝑘. The gradient agitates the parameters so that the value of the cost

function is decreased. The selected cost function was the mean square error (MSE):

10

MSE 𝑇𝑟𝑎𝑖𝑛(𝐖) =
1

𝑇
∑ (𝑥(𝑡 + 1) − 𝑥𝑜𝑢𝑡(𝑡))2

𝑡 (7)

This cost function is the MSE between the output of the network 𝑥𝑜𝑢𝑡(𝑡) at time t,

and the desired value at 𝑡 + 1. The mean is computed over an interval of T samples. The

gradient is computed for all the parameters of the network, and basic updating equation

is as follows:

𝐖𝑛+1 = 𝐖𝑛 − 𝜇∇𝑊MSE 𝑇𝑟𝑎𝑖𝑛(𝐖𝑛) (8)

Where the index ‘n’ corresponds to the number of updates, and the estimation of the

gradient ∇𝑊MSE 𝑇𝑟𝑎𝑖𝑛(𝐖𝑛) at each moment is done over a subset of the training database

of T samples. Given that the training is done on Graphical Processing Units (GPU) with

a limited memory, the training database is divided in batches that are feed to the GPU in

order to do this sequential update. Note that the estimation of the gradient based on a

limited amount of training data can give rise to a noisy estimation.

The Adam algorithm used for training the DFNN shows better convergence properties

than the backpropagation algorithm, as it reduces the estimation error of the gradient

∇𝑊E𝑇𝑟𝑎𝑖𝑛(𝐖𝑛) by performing an exponential window averaging of the current gradient

and the second moment of the gradient. Furthermore, the Adam algorithm is implemented

with a forgetting factor that allowed for the shrinking of weights associated with low

gradients. The shrinking of weights improves the generalisation performance. A summary

of the backpropagation algorithm and its variants, as well as the strategies to make a

correct training is presented in Goodfellow et al. (2016).

Explored topologies for the DFNN

The design of the experiment is done in such a way that the effects of the architecture on

the forecast performance can be assessed. The different structures of the architecture that

were explored were:

i. Memory on the time series, which is determined by the number of past samples

used for the forecast (LAG).

ii. The depth of the network, defined by the number of layers.

iii. The number of units at each layer.

11

Note that the complexity of the network, i.e., layers and units per layer, determines

the flexibility of the topology to approximate a given function. As mentioned in Bengio

et al. (2013), at the same degree of complexity in terms of number of units in the network,

a topology with a greater number of layers has better capabilities in terms of

generalisation, understood as the performance in terms of unused data to train the network

parameters, The topologies explored in this paper were the had the following

combinations:

 Inputs (i.e., NLAG+1): [5, 10]

 Number of layers: [3, 4, 5, 12]

 Units at the hidden layers: [10, 50, 100]

Note that the vector is defined from 𝑥(𝑡) 𝑡𝑜 𝑥(𝑡 − 𝑁𝐿𝐴𝐺). The number of layers,

were explored for reasonable sizes, i.e., from 3 to 5, with a value of 12 in order to test if

an extremely deep architecture provided better performance. The number of hidden layers,

were explored from a size comparable to the size of the input to an extremely wide value

of 100. The actual combinations are shown in Table 2.

Table 2. Combinations of DFNN architectures

3 layers 4 layers 5 layers 12 layers

1 input, 1 hidden and 1

output layers

1 input, 2 hidden and 1

output layers

1 input, 3 hidden and 1

output layer

1 input, 10 hidden and 1

output layer

[5->10->1] [5->10->10->1] [5->10->10->10->1]
[5->100->100->100-

>100->100->100->100-

>100->100->100->1]

[5->50->1] [5->50->50->1] [5->50->50->50->1]

[10->10->1] [10->10->10->1] [10->10->10->10->1]

[10->50->1] [10->50->50->1] [10->50->50->50->1]
[10->100->100->100-

>100->100->100->100-

>100->100->100->1]

[5->100->1] [5->100->100->1] [5->100->100->100->1]

[10->100->1] [10->100->100->1] [10->100->100->100->1]

12

3.2. Convolutional Neural Network (CNN)

CNNs can be regarded as a particular type of DFNN, where the estimation of the input

vector to each of the layers is processed by means of a convolution operation, i.e. the

input vector or output of the previous layers is sequentially processed by a convolution

which creates the new output. This is a type of network that was introduced in the 90s for

image recognition (Goodfellow et al. 2016), and can be employed with time series by

using a 1D convolutional operator instead of the usual 2D convolution used in image

recognition.

This approach has several advantages. First, instead of a complete matrix of

dimensions 𝐿𝑘 × 𝐿𝑘−1, as it was the case with DFNNs, we assign to each unit a vector of

smaller length, therefore the size of the parameters is 𝐿𝑘 × 𝐿𝑤,𝑘 , which is typically a

smaller value than the completely connected matrix. This effect is illustrated in the

diagram of Figure 5. In addition, the estimation of the parameters of the convolution to

takes into account the sequential structure of the input and therefore captures time

properties of the time series.

Formal specification of the CNN

Next, we explain how we specify a CNN in five consecutive steps. Given a time series

𝑋 = [𝑥(0), 𝑥(1), … . , 𝑥(𝑇)],

a- First, we rearrange the elements to form an extended 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 matrix of the

following form:

𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = [

x(0)
x(1)

⋮
x(NLAG)

x(1)
x(2)

⋮
x(NLAG − 1)

…

⋱

x(T − NLAG − 1)
x(T−NLAG − 2)

⋮
x(T − 1)

x(T − NLAG)
x(T − NLAG − 1)

⋮
x(T)

] (9)

This process is illustrated in Figure 4.

13

Figure 4. First Step. Rearrange the input time series into a time series of vectors of length

𝑁𝐿𝐴𝐺+1

b- Next, we group the elements of 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 into a sequence of input matrices as

illustrated in Figure 5 where the length of the input to the CNN is defined as

L_𝐶𝑁𝑁. Thus, we create a matrix of dimensions 𝑁𝐿𝐴𝐺 × 𝐿_𝐶𝑁𝑁, defined for the

time ‘n’ as follows,

𝑋𝑛
𝑖𝑛𝑝𝑢𝑡

= [

x(n)

x(n + 1)
⋮

x(n + NLAG)

x(n + 1)

x(n + 2)
⋮

x(n + NLAG − 1)

…

⋱

x(n + 𝐿_𝐶𝑁𝑁 − 1)

x(n + 𝐿_𝐶𝑁𝑁 − 2)
⋮

x(n+NLAG + 𝐿_𝐶𝑁𝑁 − 1)

x(n + 𝐿_𝐶𝑁𝑁)

x(n + 𝐿_𝐶𝑁𝑁 − 1)
⋮

x(n + NLAG + 𝐿_𝐶𝑁𝑁)

] (10)

c- Third, we create a sequence of input matrices 𝑋1
𝑖𝑛𝑝𝑢𝑡 … 𝑋𝑇

𝑖𝑛𝑝𝑢𝑡
. Each matrix is

part of the CNN input.

d- Next, the network scans each of the 𝑋𝑛
𝑖𝑛𝑝𝑢𝑡 matrices using as input in each

timestamp a row of length 𝑁𝐿𝐴𝐺 as shown in Figure 6. Note that the equation that

gives the output of the m-th unit in the first layer in this case is of the form

𝑥1(𝑚) = 𝑤𝑚
1 ∗ 𝑋𝑛

𝑖𝑛𝑝𝑢𝑡
= ∑ 𝑤(𝑛)𝑚

𝑘𝐿𝐶𝑁𝑁
𝑛=0 𝑥𝑖𝑛𝑝𝑢𝑡(𝑚 − 𝑛) (11)

Where 𝑥𝑖𝑛𝑝𝑢𝑡 is the vectorisation of the segment of the matrix 𝑋𝑛
𝑖𝑛𝑝𝑢𝑡 under the

convolution operation.

14

Figure 5. Segmentation of the time sequence of vectors of length Lag+1, into arrays of

dimension 𝑵𝑳𝑨𝑮+1 times L_CNN
Note: This is done by a stacking the values of a sliding window into an array and afterwards

selecting subsets of the array of a shape Lag times the longitude of the CNN window

e- Finally, since the connectivity and the outputs of the network is dynamical, in

the sense that the input is not totally connected to the first layer units, the input

is sequentially scanned in order to create a sequential representation of the input

at the hidden layer. This is illustrated in Figure 6, where a sliding array of size

𝐿𝑘 ∗ 𝑁𝐿𝐴𝐺 moves from left to right with increments of one column.

15

Figure 6. Illustration of the convolution operation, the weights of a given unit at the first hidden

layer, the array is explored sequentially by a subarray of dimensions 𝐿0 times 𝑁𝐿𝐴𝐺 . The

convolution at the external sides of the subarray is computed by zero padding

The idea behind CNNs is to substitute a matrix operation 𝑊 𝑘𝑥𝑘−1such as shown

in Equation (2), by a convolution that computes each of the elements of the output vector

𝑥𝑘 sequentially in time. Thus, the output vector at layer k, is computed as follows:

The m-th element of the vector 𝑥𝑘 is computed as a convolution with elements of

the k-1 layer. That is the output of unit ‘m’ is computed from the linear combination of

the 𝐿𝑘−1 outputs of the previous layer, combined linearly with the vector of weights 𝑤𝑚
𝑘

of length 𝐿𝑤,𝑘 of the unit m at the layer k. Note that the length of the vector 𝑤𝑚
𝑘 is

typically lower than the number of units at the lower layer, i.e. 𝐿𝑤,𝑘 ≤ 𝐿𝑘−1.

The vector 𝑤𝑚
𝑘 represents the convolution kernel. The convolution process will be

denoted by the ‘*’ symbol as 𝑥𝑘 (𝑚) = 𝑤𝑚
𝑘 ∗ 𝑥𝑘−1 and is computed as follows:

 𝑥𝑘(𝑚) = 𝑤𝑚
𝑘 ∗ 𝑥𝑘−1 = ∑ 𝑤(𝑛)𝑚

𝑘𝐿𝑘−1
𝑛=0 𝑥𝑘−1(𝑚 − 𝑛) (12)

Finally, the vector at layer k is created by the concatenation of the 𝐿𝑘 convolutions

at layer k, therefore:

𝑥𝑘 = [𝑥𝑘 (0), … , 𝑥𝑘 (𝐿𝑘)] (13)

16

The process described above is summarised in the diagram of Figure 7.

Figure 7. Third Diagram. The output of the CNN

Other comments related to CNNs

CNNs make a trade-off between the complexity of a matrix product per vector for a

distribution over time of a vector product per vector in a sliding window. This dynamic

aspect of the vector slider product allows the network to detect time patterns. These time

patterns are also represented in a hierarchical way.

An aspect related to the convolution operator is the treatment of the extreme

elements of the input vector to each layer and the step (stride) in the convolution. In this

article we took a stride of one for all the layers and zero padded the extreme elements of

the input vector to each layer.

17

Estimation of the parameters

The estimation of parameters is done by gradient search as explained before for DFNNs

(see Section 3.1). That is the change in the weights is proportional to the derivative of

MSE 𝑇𝑟𝑎𝑖𝑛(𝐖) with respect to each of the weights of the network, along with a smoothing

term. Since the task at hand consists of time series prediction, it becomes a problem of

function approximation. Hence, the cost function consisted of the quadratic

approximation error in the training data base. That is,

MSE 𝑇𝑟𝑎𝑖𝑛(𝐖) =
1

𝑇
∑ (𝑥(𝑡 + 1) − 𝑥𝑜𝑢𝑡(𝑡))2

𝑡 (14)

The net used for non-linearities the ReLu, and the stopping criterion relied also on

the change on the performance on the validation database, and the regularization terms

were applied in a similar way to that of the DFNN.

Topologies for the CNNs

The design of the experiment is done so that the effects of the architecture on the forecast

performance can be assessed. The dimensions of the architecture that we explored were:

a- Memory on the time series, that is defined by the lag value NLAG+1, i.e., the

number of past samples used for the forecast, including the current one.

b- Window length L_𝐶𝑁𝑁 used to create the matrix 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑

c- Value of 𝐿𝑘 used for performing the convolution.

d- The depth of the network, defined by the number of layers.

e- The number of units at each layer.

The topologies explored in this paper were the had the following combinations:

 Inputs (i.e., NLAG+1): [10]

 Window (i.e., L_𝐶𝑁𝑁): [10,15,20],

 Values of 𝐿𝑘−1 :[5,10]

 Number of layers: [3,4]

 Units at the hidden layers: [100,200]

18

The coding of the architectures is “𝑁𝐿𝐴𝐺 + 1 , L_CNN input Layer, [Units per

layers], 𝐿𝑘”. Therefore, the code “9, 10, [100,100], 5” refers to 𝑁𝐿𝐴𝐺=9 and L_CNN=10,

two hidden layers of 100 units each, and the values 𝐿𝑘 for all the layers is 5. The

combinations used in the paper are listed in Table 3.

Table 3. Topologies for the CNNs

3-layer architectures 4-layer architectures

10->100->1 10->100->100->1

9, 10, [100], 5 9, 10, [100], 10 9, 10, [100,100], 5 9, 10, [100,100], 10

9, 15, [100], 5 9, 15, [100], 10 9, 15, [100,100], 5 9, 15, [100,100], 10

9, 20, [100], 5 9, 20, [100], 10 9, 20, [100,100], 5 9, 20, [100,100], 10

10->200->1

9, 10, [100], 5 9, 10, [100], 10

9, 15, [100], 5 9, 15, [100], 10

9, 20, [100], 5 9, 20, [100], 10

3.3. Deep Recurrent Neural Network (DRNN) – Long short-term memory (LSTM)

RNNs are a family of layered networks that are composed of units that have feedback

connections. As a result, the output of the unit is fed back with a delay and concatenated

either with the external input or with the output of the lower layer units (see left part of

Figure 8).

Figure 8. Left, network of one input and three layers, in where we present the form of the feedback.

Right, the same network temporarily unfolded. i.e., the states at each time stamp are depicted as columns

19

The possible set of feedback connections include not only feedback in the same unit

but also from units at higher layers to units at lower layers. This type of architecture

captures the dynamical aspects of the input time series, since the feedback of each unit

keeps a track of the past features of the time series and is used for computing the future

values depending on a window over the past samples. These cycles allow the network to

have memory of the past.

We decided to restrict ourselves to the structure summarised in Figure 8, and

discarded the option of allowing feedback connections from one unit to any of the lower

ones. This decision is justified for two reasons, the first being that the possible

combinations of feedback in one unit with units in the lower layers results in an excessive

number of configurations that makes comparisons between architectures unfeasible,

computationally wise. Secondly, since the architecture we propose has been successfully

used in language translation systems, in which the temporal sequence consists of

sentences formed by words, and in which there is temporal dependence of the current

observation with observations from the past (Sutskever et al., 2014).

This type of application shares with that of prediction the fact that the value to be

estimated depends conditionally on values from the past. This dependence with the past

in is not fixed in any case, since the sample from the past with the greatest influence on

the current sample is not at a fixed distance.

We did not introduce an attention mechanism (Bahdanau et al., 2014), because the

size of the temporal windows employed in this paper does not allow for a correct

implementation of this mechanism. Attention mechanisms are useful when the time

dependency between the output and a given term in the past is unknown and can have a

wide span of temporal variation.

Finally, as explained in Siegelmann and Sontag (1991), the structure we use is

equivalent to a universal Turing machine and therefore has the capacity of a universal

function approximator. The best way to understand the way RNNs process information is

by taking the point of view of the unfolding in time of a dynamical system. By unfolding

in time the internal states of the network, we obtain a repetition of the network at each

moment in the temporal evolution of the series. In Figure 8, we show the unfolding of the

network. For computational purposes, the network is replicated as many times as we have

samples in the input series, and then operations are applied. As for the gradient calculation,

we apply what is known as backpropagation through time. This process of network time

unfolding justifies the database partition shown in Figures 9a and 9b.

20

Dynamics of RNNs in terms of units

Next, we explain how to generate the network input vector 𝑋𝑛
𝑖𝑛𝑝𝑢𝑡

. We start by describing

the structure of the network and its temporal dynamics in terms of input/output of units,

and we will leave for later the internal details of each unit. Since the dynamics of the

recursive part may give rise to instabilities and problems related to the exponential growth

or vanishing of the gradients, the units in RNNs are more complex than those in DFNNs

or CNNs (see Equation 2). The type of units used in this article are the LSTM (Hochreiter

& Schmidhuber, 1997), which are described below.

The use of a special type of unit is justified in order to prevent problems that were

found in topologies that had recursive connections but conventional units. The use of

these units gave rise to instabilities, vanishing gradients and exploding gradient.

To prevent these phenomena, LSTM were proposed as gated networks in which the

inner connections prevent the gradient from vanishing or exploding, and also allowed

information to be accumulated. The flow of information will be described first at the unit

level and then at the structure level. Note that the fact that there is a feedback term in each

unit provides a memory mechanism that allows dealing with the dynamic aspects of the

time series.

Temporal structure of the outputs of a single unit

Each unit is a function ‘h’ that computes the output from past outputs and the current

input. This function ‘h’ will correspond to the LSTM described in more detail later in this

section. The output 𝑜(𝑛) of a given unit in the network depends on a function ℎ(. ; 𝑊)

through the values of the current input 𝑥(𝑛), the delayed output 𝑜(𝑛 − 1) and with the

weights W. Thus, the form of the function can be expressed as:

𝑜(𝑛) = ℎ(𝑥(𝑛), 𝑜(𝑛 − 1); 𝑊) (15)

which in turn can be unfolded according to the output of the preceding moment as,

𝑜(𝑛) = ℎ(𝑥(𝑛), ℎ(𝑥(𝑛 − 1), 𝑜(𝑛 − 2); 𝑊); 𝑊) (16)

This feedback can be unfolded using the past values of the input time series until

the initial value x(0). Thus, the feedback in turn can be extended to the initial sample:

21

𝑜(𝑛) = ℎ(𝑥(𝑛), ℎ(… … … ℎ(𝑥(0), 𝑜(−1); 𝑊); 𝑊); 𝑊) (17)

where the initial output 𝑜(−1) is set to zero.

Therefore, the structure makes the current value depend on the whole previous

history of observations [𝑥(𝑛), 𝑥(𝑛 − 1), … . , 𝑥(0)]. Note that in the case of units in layers

above the first, the input x(n) can be substituted by the outputs of the lower layer.

Temporal structure of the outputs in a several layer network

a- Case of one unit per layer. In Figure 9a we show a network of one input and three layers,

in where each unit is represented with a one-unit delay feedback. While in Figure 9b we

show how the network unfolds in time. That is, each column corresponds to a snapshot at

a given moment, which depends on the outputs of the previous snapshot. Note that the

time unfolding is a display of the dynamics of the network, and the network continues to

be the layered layout shown in Figure 9a.

Figure 9a. Network of one input and three layers, and several units at each.

b- Case of 𝒎𝒌 units per layer. RNNs can have more than one unit at each layer, and a

similar diagram is shown in Figure 9b, where we show the diagram of a three-layer

network with more than one unit per layer, and at the right the time unfold of the network.

22

RNNs are based on a recursive diagram such as shown in Figures 8 and 9, where

each unit has an input either from the original time series or from a lower layer and

feedback of its own output after a delay of one sample. As it can be seen in Figure 9a,

each unit has two inputs, the current observation vector at time n. For a given output of

the unit j of layer k, 𝑜𝑘,𝑗(𝑛), the inputs of the unit are:

 In the case of the first layer: 𝑋(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … . , 𝑥(𝑛 − 𝑁𝐿𝐴𝐺−1)]

 In the case of the hidden layer k: [𝑜𝑘−1,1(n), 𝑜𝑘−1,2(n), … . , 𝑜𝑘−1,𝑚𝑘−1
(n)], where

𝑚𝑘−1 denotes the number of units at the layer k-1, i.e., at the previous layer.

 In any of the above cases, the output value delayed one unit, that is 𝑜𝑘,𝑗(n − 1),

is appended to the input vector of the unit.

Figure 9b. Output of a neuron in the first layer. Time series of the output for one neuron

time series unfolded in time

Procedure for calculating the output of the first layer

The original time sequence is organised as described in Figure 4, generating a sequence

of vectors of dimension 𝑁𝐿𝐴𝐺 + 1 by means of the following steps:

23

a- First, rearranging the elements to form an extended 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 matrix of the

form:

𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = [

x(0)

x(1)
⋮

x(NLAG)

x(1)

x(2)
⋮

x(NLAG − 1)

…

⋱

x(T − NLAG − 1)

x(T−NLAG − 2)
⋮

x(T − 1)

x(T − NLAG)

x(T − NLAG − 1)
⋮

x(T)

] (18)

b- As shown in Figure 5, the array 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 is subdivided into a time sequence of

matrices 𝑋𝑛
𝑖𝑛𝑝𝑢𝑡 of dimension NLAG × 𝐿_𝐿𝑆𝑇𝑀 indexed by the time stamp n. The

variable 𝐿_𝐿𝑆𝑇𝑀 is the size of the input window that is used for computing the

output at the current moment. Thus, the neuron sequentially scans the input

vector sequence of the form:

𝑋𝑛
𝑖𝑛𝑝𝑢𝑡

= [

x(n)

x(n + 1)
⋮

x(n + NLAG)

x(n + 1)

x(n + 2)
⋮

x(n + NLAG − 1)

…

⋱

x(n + 𝐿_𝐿𝑆𝑇𝑀 − 1)

x(n + L_𝐿𝑆𝑇𝑀 − 2)
⋮

x(n+NLAG + 𝐿__𝐿𝑆𝑇𝑀 − 1)

x(n + 𝐿__𝐿𝑆𝑇𝑀)

x(n + 𝐿__𝐿𝑆𝑇𝑀 − 1)
⋮

x(n + NLAG + 𝐿__𝐿𝑆𝑇𝑀)

] (19)

c- Next, as shown in Figure 10, the input vector 𝑋𝑛
𝑖𝑛𝑝𝑢𝑡 is explored sequentially by

each neuron, and generates for instance in the case of the first neuron a sequence

[𝑜1,1(n), 𝑜1,1(n + 1), … . , 𝑜1,1(n + 𝐿__𝐿𝑆𝑇𝑀)]. The combination of the output of all

the units 𝑚1 of the first layer gives rise to a matrix 𝑂1 that consists of the

concatenation of the outputs of each unit. This matrix is of size (L𝐿𝑆𝑇𝑀 + 1) × 𝑚1

and is of the form:

𝑂1 = [

𝑜1,1(n)

𝑜1,2(n)
⋮

𝑜1,𝑚1
(n)

𝑜1,1(n + 1)

𝑜1,2(n + 1)
⋮

𝑜1,𝑚1
(n + 1)

…

⋱

𝑜1,1(n + 𝐿_𝐿𝑆𝑇𝑀 − 1)

𝑜1,2(n + L_𝐿𝑆𝑇𝑀 − 1)
⋮

𝑜1,𝑚1
(n + 𝐿__𝐿𝑆𝑇𝑀 − 1)

𝑜1,1(n + 𝐿__𝐿𝑆𝑇𝑀)

𝑜1,2(n + 𝐿__𝐿𝑆𝑇𝑀)
⋮

𝑜1,𝑚1
(n + 𝐿__𝐿𝑆𝑇𝑀)

] (20)

Procedure for calculating the output of the upper layers

The procedure follows the diagram illustrated in Figure 10, in which in layer k there is an

input array 𝑂𝑘 of size (L𝐿𝑆𝑇𝑀 + 1) × 𝑚𝑘 , where 𝑚𝑘 is the number of units at layer k.

24

Figure 10. Internal structure of a LSTM unit. Four neurons compute an internal state st

and the output of the unit ot , which are feed back with a delay of one unit of time

Estimation of the parameters via back propagation through time

Parameter estimation is performed by backpropagation, which is an algorithm that

computes the gradient for a single input value. This method can be extended for the case

of feed-forward networks, where unfolding is done over time. This unfolding consists of

creating as many replicas of the network as values of the input sequence. In the case of

sequences of large length or indefinite duration, it is customary to create a maximum

horizon, i.e., a maximum number of replicas. Once the replicated version of the network

has been constructed, connections between networks associated with consecutive points

in time are made at feedback points. Therefore, the inputs of each network will consist of

the external input and the output of the network associated with the previous interval.

Once the structure has been completed, the entire structure is trained simultaneously, so

that the structure associated with the unfolding in time will have the entire time sequence

as input, together with the outputs associated with each network of the replica. In this

sense, the backpropagation algorithm is applied globally to determine the gradient

associated with the set of weights.

25

Summary of the LSTM units

We selected the LSTM as unit for the recurrent term of the network. An alternative type

of unit is the GRU, which has a similar structure. Empirically, it has been found that both

types of recurrent units yield similar performance in applications with complex temporal

structure such as translation. These properties are mentioned in Jozefowicz et al. (2015),

where a comprehensive set of experiments were done.

The LSTM units are designed in order to avoid problems associated with RNNs

which are due to the fact that the gradient either vanishes or explodes during the training

phase, giving rise to nets that suddenly suffer what was known as ‘catastrophically

forgetting’. The idea of these units is to allow paths for passing the gradient through time,

and also allowing for the preservation of the past events that might be useful for the

computation of future outputs. The interesting feature of this kind of units is that the

weights that control these two mechanisms are learned from examples. A diagram of this

kind of units is depicted in a diagram shown in Figure 11, where we show the external

form, and in Figure 12, where we show the internal components of the unit.

Figure 11. Internal connections of the four units that make up the LSTM.

Note: Note that the vectors 𝑥t and 𝑜t−1 are concatenated and copied as input of the four internal

neurons of the LSTM unit. Also, note that the weights and non-linearities associated with each of the

neurons are detailed in the text.

In order to be able to model the dynamics of a recurrent unit and be able to compute

the gradient of the backpropagation algorithm through time, the LSTM unit has an inner

structure that is made up of four individual neurons and an internal state, as shown in

Figure 11. These four internal neurons have the structure of a conventional artificial

neuron:

𝑜𝑢𝑡𝑝𝑢𝑡_𝑢𝑛𝑖𝑡 = 𝑁𝑜𝑛_𝑙𝑖𝑛𝑒𝑎𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊 𝑢𝑛𝑖𝑡𝑖𝑛𝑝𝑢𝑡_𝑢𝑛𝑖𝑡 + 𝑏𝑖𝑎𝑠) (21)

26

Three of these units, i.e., the forgetting, the gate and the state unit, control de

internal state of the LSTM unit. The output of the unit, as shown below, is itself controlled

by the internal state. Note that all weights of the three units are computed from examples

by gradient search, through the back propagation through time.

The diagram in Figure 12, shows the connection of the inner units of the LSTM.

Note that the vectors 𝑥t and 𝑜t−1 are concatenated and copied as input of the four

internal neurons of the LSTM unit. Also note that there are ‘product’ and ‘addition’

modules, which operate at a vector level.

The forgetting unit at time ‘t’, denoted as 𝑓t , multiplies the value of the previous

state st−1 and therefore functions as a regularization mechanism, that modulates the

influence of the previous state. As the non-linear function associated with this unit is a

sigmoid, the output of this unit will be in the range [0,1].

Figure 12. Internal structure of a LSTM unit. Four neurons compute an internal state st

and the output of the unit ot , which are fed back with a delay of one unit of time.

Note in Figure 13 that this unit is complementary of the gate unit that controls the

influence of the estimation of the new state. The output of the forgetting unit at time t, is

denoted as 𝑓𝑡 and is computed by means of a neuron with a sigmoidal non-linearity,

σ(z)=1/(1+𝑒𝑧) and the weights are 𝑊𝑓. The final equation for computing the forgetting

term can formalized as:

𝑓𝑡 = 𝜎(𝑊𝑓[𝑥𝑡 𝑜𝑡−1] + 𝑏𝑓) (21)

27

Figure 13. Internal connections of the four units that make up the LSTM.

Note: Note that the vectors 𝑥t and 𝑜t−1 are concatenated and copied as input of the four internal neurons

of the LSTM unit. Note that the weights and non-linearities associated with each of the neurons are

detailed in the text.

The gate unit, denoted as 𝑔t , controls the flow of the estimation of the new internal

state of the LSTM unit. This estimation of the new internal state is denoted as �̃�𝑡. Both

are computed with a neuron with a non-linear function, in the case of the gate unit is a

sigmoid with a range in [0,1], which regulates the extent to which the value of the estimate

of the new internal state is retained:

𝑔𝑡 = 𝜎(𝑊𝑔[𝑥𝑡 𝑜𝑡−1] + 𝑏𝑔) (23)

On the other hand, the estimate of the new internal state uses a hyperbolical tangent

(tanh) function define as 𝜏(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧, and a set of weights 𝑊𝑠 and bias 𝑏𝑠:

�̃�𝑡 = 𝜏(𝑊𝑠[𝑥t 𝑜t−1] + 𝑏𝑠) (24)

The tanh function gives an output in the range [-1,1], which afterwards is used to

control the level and sign of the estimated output 𝑜t .

The link between the gate output and the estimate of the new internal state output

is multiplicative, as shown in Figure 13. The value of the new internal state is computed

as follows:

st = st−1 ∗ ft + gt *�̃�𝑡 (25)

This equation allows for controlling the output by means of two estimated values,

the first is a local in time forgetting weight ft , which determines up to which point the

28

past state of the unit has to be preserved, and the other is the gate weight gt which

controls if the estimated new state is allowed to be preserved. The parameters of the three

terms are trained from examples by means of a gradient search algorithm, therefore the

estimation is done in such a way that the resulting new state is useful for the computation

of the output at the current output.

The output of the unit is computed by a set of independent weights and a sigmoid

non-linearity as,

�̃�𝑡 = 𝜎(𝑊𝑜[𝑥𝑡 𝑜𝑡−1] + 𝑏𝑜) (26)

The key point in the working of the neuron that allows controlling the flow of

information in time when the computation is unfold, is the fact that the output is

multiplied by the internal state, multiplied by a tanh non-linearity, which in turn allows

scaling and a possible change of sign. Therefore, the final output is

 𝑜t = õ𝑡 ∗ τ(st) (27)

Note that the feedback term related to the state of the unit st allows conveying to

the future information that may be relevant to determine a value several time units later,

and the decision of whether this information is used is determined by the two terms ft

and gt .

Explored topologies for the LSTM network

The dimensions of the architecture that we explored were:

i. Memory on the time series, that is defined by the Lag value NLAG+1, i.e., the

number of past samples used for the forecast, including the current one.

ii. Window length 𝐿__𝐿𝑆𝑇𝑀 used to create the matrix 𝑋𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑

iii. The number of units at each layer.

The structure of the networks are of three layers, with only one hidden layer. The

combination of parameters explored were the following:

 NLAG+1= [10, 15, 20]

 𝐿__𝐿𝑆𝑇𝑀= [5, 10]

 Units in the hidden layer = [100, 200]

29

4. Design of the experiment

In this study, we use the daily US/UK foreign exchange rate provided by the Federal

Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/DEXUSUK). Data is not

seasonally adjusted. The motivation for focusing in this particular variable is twofold. On

the one hand, the increase in uncertainty and the consequent volatility in investment

markets associated with the days leading up to Brexit, made it an ideal setting for the

analysis. On the other hand, since DL models require long time series the daily price of

the dollar in relation to the pound is one of the longest time series available. In Figure 14

we graph the evolution of the exchange rate from January 4, 1971 to Januray 31, 2020,

the day before Brexit.

Figure 14. Daily US/UK foreign exchange rate

To evaluate the performance of the three types of DL architectures against a

benchmark, we have chosen several specifications of autoregressive moving average

(ARMA) models that mirrored the orders of the input (MA) term and the order of the

recursive term (AR) used in the other DL architectures. See Figure 15.

The criterion for deciding the orders of the ARMA model was to have a benchmark

with similar memory structure of the DL architectures. The similarity is in the sense of

size of input values, i.e., MA component and size of the feedback, and AR component.

The combinations that were explored were M = [1, 6, 11] and K = [0, 5, 10, 15].

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 1975 1980 1985 1990 1995 2000 2005

ex
ch

an
ge

 r
at

e
U

S
/U

K

https://fred.stlouisfed.org/series/DEXUSUK

30

Figure 15. Diagram showing the terms in the ARMA structure

Since we are interested in the performance of DL techniques, we have designed an

out-of-sample forecasting experiment, using 35 working days after Brexit, until March

20, 2020. Given that the computational effort of training the networks is high, we opted

for a sequential partition of the dataset with a validation sub-sample with a fixed size and

an increasing segment used for training.

The design of the partition of the dataset was done in such a way that the final

experiment was as close as possible to a recursive out-of-sample forecasting exercise.

With that aim we applied a four-fold partition of the data (see Figure 15). Each partition,

had a fixed size validation part, and an increasing segment for training. As explained

before, the justification for this approximation is related to the computational

requirements to train these types of networks.

Figure 15. Partition of the data base into 4 time segments and sub partitions of each segment

into Train, validation, test and the post- Brexit period.

31

Table 4. Summary of the partition intervals with the number of days used in the experiments.

 Partition
1:

Days
interval

Partition
2:

Days
interval

Partition
3:

Days
interval

Partition
4:

Train Begin 25/1/71 25/1/71 25/1/71 25/1/71

 End 22/3/79 2978 25/5/87 5964 26/7/95 8948 26/9/03

Validation Begin 30/3/79 2/6/87 3/8/95 6/10/03

 End 25/5/87 2978 26/7/95 2976 26/9/03 2976 29/11/11

Test Begin 2/6/87 3/8/95 6/10/03 7/12/11

 End 30/1/20 11930 30/1/20 8946 30/1/20 5960 30/1/20

Note: Note that a fourth interval was used for the post Brexit interval, from 2020-01-31 to 2020-03-27 with

a total of 40 samples.

Although the three DL architectures have a different number of units, the number

of inputs is common to all three, which allows comparing the observed memory.

Additionally, the updating of parameters in all the structures is done by gradient search

computed from a loss function. We have used both generalisation terms and early

stopping to avoid overfitting (i. e. the model adjusts extremely well the performance on

the training data but has a poor performance on unseen data). See, for instance,

Goodfellow et al. (2016) or Bishop (2006).

The estimation of the parameters of a DL networks can be a complex task due to

the fact that the ratio of the number of observations to the number of free parameters can

be extremely low. Therefore there is a need for regularising the gradient estimation. The

procedures we used to implement the regularisation were:

 Batch normalization – done after each layer, which consists on subtracting the

mean of the outputs and normalising at each batch. The effect is an improvement

of the estimation of the gradient.

 Dropout procedure – Which consists of a random selection of the units to be used

to calculate the output of each layer during training. We used a probability of 50%.

 Early stopping of the training – The early stopping criterion is based on detecting

the point on which the performance on the validation partition ceases to improve

(see section Partition of the database). That is at each updating moment ‘n’ the

validation error MSE 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐖) is computed, and the stopping criterion is the

point at which the validation MSE stops decreasing. On the experiments we have

detected that the validation MSE has a convex behaviour, that consists of a first

phase of decreasing values, afterwards a flat phase, which for the experiments at

32

hand could be as long as the decreasing phase, followed by a phase where the

validation MSE increases.

 L2 penalizations on the weights – Consists on changing the performance index by

adding a term on the norm of the weights so that there is trade-off between the

accuracy on the training data and the norm of the weights. This is because a small

L2 norm on the weights, prevents overfitting and is equivalent to having an

effective lower number of degrees of freedom, that is

MSE 𝑇𝑟𝑎𝑖𝑛(𝐖) =
1

𝑇
∑ (𝑥(𝑡 + 1) − 𝑥𝑜𝑢𝑡(𝑡))2

𝑡 + 𝜆‖𝐖‖2 (28)

 The Adam algorithm – By applying an exponential window on the gradient and

moment estimation also implements an indirect regularisation effect, because the

parameters of small absolute value and noisy reduced to zero.

All models were implemented in the pytorch framework (Paszke, 2019), and the

experiments were done in a i7 workstation with 24 G of RAM with a Nvidia GPU

NVIDIA Quadro K5200 8GB. Some of the experiments were done in the google colab

(Bisong, 2019).

5. Empirical results

In this section, we analyse the accuracy of the out-of-sample forecasts obtained with the

proposed DL architectures and the ARMA models used as a benchmark: 20 DFNNs, 30

CNNs, 10 LSTM NNs, and 11 ARMA models. We have computed the mean absolute

percentage error (MAPE) during the out-of-sample period. Results are presented in

Tables 5 to 8. Table 9 contains the MAPE of the best model for each architecture.

While the lowest MAPE was obtained with a DFNN of 3 layers of size 100 and 4

lags, overall, the MAPE values obtained with DFNNs and LSTM NNs are the ones

showing the highest dispersion, as opposed to ARMA models, and CNNs to a lower

extent.

33

Table 5. Forecast accuracy of DFNNs

Model Lags Layers
Size of

layers
MAPE

DFNN(5,10,1) 4 3 10 7.065

DFNN(5,10,10,1) 4 4 10 4.241

DFNN(5,10,10,10,1) 4 5 10 3.409

DFNN(5,50,1) 4 3 50 2.781

DFNN(5,50,50,1) 4 4 50 1.296

DFNN(5,50,50,50,1) 4 5 50 2.718

DFNN(5,100,1) 4 3 100 1.243

DFNN(5,100,100,1) 4 4 100 3.118

DFNN(5,100,100,100,1) 4 5 100 3.218

DFNN(5,100,...,100,1) 4 12 100 17.706

DFNN(10,10,1) 9 3 10 2.947

DFNN(10,10,10,1) 9 4 10 1.828

DFNN(10,10,10,10,1) 9 5 10 4.178

DFNN(10,50,1) 9 3 50 2.660

DFNN(10,50,50,1) 9 4 50 1.415

DFNN(10,50,50,50,1) 9 5 50 2.528

DFNN(10,100,1) 9 3 100 1.722

DFNN(10,100,100,1) 9 4 100 2.223

DFNN(10,100,100,100,1) 9 5 100 6.358

DFNN(10,100,...,100,1) 9 12 100 14.977

34

Table 6. Forecast accuracy of CNNs

Model Lags Layers
Kernel

size
Window MAPE

CNN(10,100,1) 9 3 5 10 2.636

CNN(10,100,1) 9 3 10 10 3.221

CNN(10,100,1) 9 3 5 15 9.125

CNN(10,100,1) 9 3 10 15 2.920

CNN(10,100,1) 9 3 5 20 5.727

CNN(10,100,1) 9 3 10 20 4.373

CNN(10,100,100,1) 9 4 5 10 1.990

CNN(10,100,100,1) 9 4 10 10 3.092

CNN(10,100,100,1) 9 4 5 15 2.879

CNN(10,100,100,1) 9 4 10 15 5.254

CNN(10,100,100,1) 9 4 5 20 3.354

CNN(10,100,100,1) 9 4 10 20 6.329

CNN(10,200,1) 9 3 5 10 5.778

CNN(10,200,1) 9 3 10 10 3.886

CNN(10,200,1) 9 3 5 15 8.600

CNN(10,200,1) 9 3 10 15 3.844

CNN(10,200,1) 9 3 5 20 9.129

CNN(10,200,1) 9 3 10 20 5.612

CNN(11,100,1) 10 3 5 10 4.362

CNN(11,100,1) 10 3 10 10 3.545

CNN(11,100,1) 10 3 5 15 7.855

CNN(11,100,1) 10 3 10 15 2.604

CNN(11,100,100,1) 10 4 5 10 2.324

CNN(11,100,100,1) 10 4 10 10 4.161

CNN(11,100,100,1) 10 4 5 15 5.434

CNN(11,100,100,1) 10 4 10 15 4.308

CNN(11,200,1) 10 3 5 10 4.207

CNN(11,200,1) 10 3 10 10 5.504

CNN(11,200,1) 10 3 5 15 4.851

CNN(11,200,1) 10 3 10 15 4.947

35

Table 7. Forecast accuracy of LSTM NNs

Model Layers Input size MAPE

LSTM(10,100,1) 3 5 11.651

LSTM(10,200,1) 3 5 25.435

LSTM(15,100,1) 3 5 9.146

LSTM(15,100,1) 3 10 7.991

LSTM(15,200,1) 3 5 12.948

LSTM(15,200,1) 3 10 2.007

LSTM(20,100,1) 3 5 9.101

LSTM(20,100,1) 3 10 8.438

LSTM(20,200,1) 3 5 7.256

LSTM(20,200,1) 3 10 1.966

Table 8. Forecast accuracy of ARMA models

Model MAPE

ARMA(1,0) 3.645

ARMA(1,5) 3.672

ARMA(1,10) 3.672

ARMA(1,15) 3.670

ARMA(6,0) 3.673

ARMA(6,5) 3.666

ARMA(6,10) 3.687

ARMA(6,15) 3.671

ARMA(11,0) 3.673

ARMA(11,5) 3.631

ARMA(11,10) 3.660

36

Table 9. Best topology for each architecture

Model MSE MAPE

DFNN(5,100,1) 0.001 1.243

CNN(10,100,100,1) 0.077 1.990

LSTM(20,200,1) 0.002 1.966

ARMA(11,5) 0.070 3.631

These results somehow hint at the potential of DL techniques, but also highlight the

importance of properly configuring the different architectures as well as implementing

them appropriately. Our results are in line with those obtained by Chen et al. (2021),

Dautel et al. (2020), Dodevski et al. (2018), Lara-Benítez et al. (2021), Qu and Zhao

(2019), Ranjit et al. (2018), Sun et al. (2018), Yilmaz and Arabaci (2021) and Zhang

(2018), who obtained the most accurate exchange rates predictions with variations of the

LSTM architecture. Similarly, Galeshchuk and Mukherjee (2017) obtained a similar

result with CNNs. In that sense, Byrne et al. (2018) showed that models embedding a

high degree of coefficient variability yield forecast improvements at horizons beyond one

month.

In spite of the fact that deep networks seem particularly suitable for exchange rate

forecasting, Dautel et al. (2020) and Pascanu et al. (2013) have already noted the

difficulty of implementing and tuning corresponding architectures.

5. Concluding remarks

This study examined the performance of several state-of-the-art deep learning techniques

for exchange rate forecasting: deep feedforward networks, convolutional networks and a

long short-term memory architecture. The main aim was to clearly explain how to

configure the different architectures, as well as the tuning of the parameters and the

regularisation techniques used to avoid overfitting. With that purpose, we designed an

out-of-sample forecasting experiment and evaluated the accuracy of different topologies

to predict the US/UK foreign exchange rate in the days after the Brexit took effect.

37

All three deep learning networks provided better forecasts that time-series models

used as a benchmark, nevertheless the accuracy of the predictions varied remarkably

depending on the chosen topology in each case. Thus, these results hint at the potential of

deep learning techniques, but they also highlight the importance of properly configuring,

implementing and selecting the different topologies.

Acknowledgements and funding

This research was supported by the project PID2020-118800GB-I00 from the Spanish

Ministry of Science and Innovation (MCIN) / Agencia Estatal de Investigación (AEI).

DOI: http://dx.doi.org/10.13039/501100011033

References

Alaminos, D., Salas, M. B., & Fernández-Gámez, M. A. (2021). Quantum computing and deep

learning methods for GDP growth forecasting. Computational Economics, Forthcoming.

Alvarez-Diaz, M. (2008). Exchange rates forecasting: Local or global methods? Applied

Economics, 40(15), 1969–1984.

Aminian, F., Dante, E., Aminian, M., & Waltz, D. (2006). Forecasting economic data with neural

networks. Computational Economics, 28(1), 71–88.

Andrawis, R. R., Atiya, A. F., El-Shishiny, H. (2011). Forecast combinations of computational

intelligence and linear models for the NN5 time series forecasting competition.

International Journal of Forecasting, 27(3), 672–688.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using

recurrent neural networks on groups of similar series: A clustering approach. Expert

Systems with Applications, 140, 112896.

Ben Taieb, S., Bontempi, G., Atiya, A. F., & Sorjamaa, A. (2012). A review and comparison of

strategies for multiple-step ahead time series forecasting based on the NN5 forecasting

competition. Experts Systems with Applications, 39(8), 1950–1957.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new

perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),

1798–1828.

Bi, J. W., Li, H., & Fan, Z. P. (2021). Tourism demand forecasting with time series imaging: A

deep learning model. Annals of Tourism Research, 90, 103255.

Bishop, C. M. (2006). Pattern recognition and machine learning (Information science and

statistics). Springer.

Bisong, E. (2019). Building machine learning and deep learning models on Google Cloud

platform. Apress, Berkeley, CA.

Byrne, J. P., Korobilis, D., & Ribeiro, P. J. (2018). On the sources of uncertainty in exchange rate

predictability. International Economic Review, 59(1), 329–357.

Ca’ Zorzi, M., & Rubaszek, M. (2020) Exchange rate forecasting on a napkin. Journal of

International Money and Finance, 104, 102168.

http://dx.doi.org/10.13039/501100011033
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=yOobxY4AAAAJ&sortby=pubdate&citation_for_view=yOobxY4AAAAJ:YOwf2qJgpHMC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=yOobxY4AAAAJ&sortby=pubdate&citation_for_view=yOobxY4AAAAJ:YOwf2qJgpHMC

38

Caporale, G. M., & Spagnolo, N. (2004). Modelling East Asian exchange rates: A Markov-

switching approach. Applied Financial Economics, 14(4), 233–242.

Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate

prediction using economic and technology determinants. International Journal of

Forecasting, 37, 28–43.

Claveria, O., & Torra, S. (2014). Forecasting tourism demand to Catalonia: Neural networks vs.

Time series models. Economic Modelling, 36(1), 220–228.

Claveria, O., Monte, E., & Torra, S. (2015). Common trends in international tourism demand:

Are they useful to improve tourism predictions? Tourism Management Perspectives, 16,

116–122.

Claveria, O., Monte, E., & Torra, S. (2016): Modelling cross-dependencies between Spain's

regional tourism markets with an extension of the Gaussian process regression model.

SERIEs, 7(3), 341–357.

Claveria, O., Monte, E., & Torra, S. (2017). Data pre-processing for neural networks-based

forecasting: Does it really matter? Technological and Economic Development of Economy,

23(5), 709–725.

Claveria, O., Monte, E., & Torra, S. (2020). Time series features and machine learning forecasts.

Tourism Analysis, 25(4), 463–472.

Clements, M. P., & Smith, J. (2001). Evaluating forecasts from SETAR models of exchange rates.

Journal of International Money and Finance, 20(1), 133–148.

Colombo, E., & Pelagatti, M. (2020). Statistical learning and exchange rate forecasting.

International Journal of Forecasting, 36(4), 1260–1289.

Crone, S. F., Hibon, M., Nikolopoulos, K. (2011). Advances in forecasting with neural networks?

Empirical evidence from the NN3 competition on time series prediction. International

Journal of Forecasting 27(3), 635–660.

Dodevski, A., Koceska, N., & Koceski, S. (2018). Forecasting exchange rate between

Macedonian denar and euro using deep learning. Journal of Applied Economics and

Business, 6(2), 50–61.

Enders, W., & Pascalau, R. (2015). Pretesting for multi-step-ahead exchange rate forecasts with

STAR models. International Journal of Forecasting, 31(2), 473–487.

Fernández-Rodríguez F., Sosvilla-Rivero S., & Andrada-Félix J. (2004) Nearest-neighbour

predictions in foreign exchange markets. In: Chen SH., Wang P.P. (eds.) Computational

Intelligence in Economics and Finance. Advanced Information Processing. Springer,

Berlin, Heidelberg.

Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for predicting direction of change in

foreign exchange rates. Intelligent Systems in Accounting, Finance and Management, 24(4),

100–110.

Gharleghi, B., Shaari, A. H., & Shafighi, N. (2014). Predicting exchange rates using a novel

“cointegration based neuro-fuzzy system”. International Economics, 137, 88–103.

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT press, Cambridge.

Gradojevic, N., & Yang, J. (2006). Non-linear, non-parametric, non-fundamental exchange rate

forecasting. Journal of Forecasting, 25(4), 227–245.

Graves, A., Mohamed, A., & Hinton, G. (2013). Speech recognition with deep recurrent neural

networks. 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, 6645–6649

He, K., Ji, L., Wu, C. W. D., & Tso, K. F. G. (2021). Using SARIMA–CNN–LSTM approach to

forecast daily tourism demand. Journal of Hospitality and Tourism Management, 49, 25–

33.

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series

forecasting: Current status and future directions. International Journal of Forecasting,

37(1), 388–427.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V.,

Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. IEEE Signal

Processing Magazine, 29(6), 82–97.

javascript:void(0)
javascript:void(0)

39

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),

1735–1780.

Hong, Y., & Lee, T. H. (2003). Inference on predictability of foreign exchange rates via

generalized spectrum and nonlinear time series models. The Review of Economics and

Statistics, 85(4), 1048–1062.

Jamal, A. M. M., & Sundar, C. (2011). Modeling exchange rates with neural networks. Journal

of Applied Business Research (JABR), 14(1), 1–5.

Jaworski, K. (2021). Forecasting exchange rates for Central and Eastern European currencies

using country-specific factors. Journal of Forecasting, 40(6), 977–999.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent

network architectures. Proceedings of the 32nd International Conference on Machine

Learning, Lille, France. JMLR: W&CP volume 37.

Kiani, K. M., & Kastens, T. L. (2008). Testing forecast accuracy of foreign exchange rates:

Predictions from feed forward and various recurrent neural network architectures.

Computational Economics, 32(4), 383–406.

Kirikos, D. G. (2000). Forecasting exchange rates out of sample: Random walk vs Markov

switching regimes. Applied Economics Letters, 7(2), 133–136.

Kuan, C., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural

networks. Journal of Applied Econometrics, 10(4), 347–364.

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An experimental review on

deep learning architectures for time series forecasting. International Journal of Neural

Systems, 31(3), 2130001.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lee, H. Y., & Chen, S. L. (2006). Why use Markov-switching models in exchange rate prediction?

Economic Modelling, 23(4), 662–668.

Lin, C., Chiu, S., & Lin, T. (2012). Empirical mode decomposition-based least squares support

vector regression for foreign exchange rate forecasting. Economic Modelling, 40, 76–80.

Lisi, F., & Schiavo, R. A. (1999). A comparison between neural networks and chaotic models for

exchange rate prediction. Computational Statistics and Data Analysis, 30(1), 87–102.

López-Suárez, C. F., & Rodríguez-López, J. A. (2011). Nonlinear exchange rate predictability.

Journal of International Money and Finance, 30(5), 877–895.

Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit

out of sample? Journal of International Economics, 14(1–2), 3–24.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent neural

network based language model. Interspeech, 2(3), 1045–1048.

Nag, A. K., & Mitra, A. (2002). Forecasting daily foreign exchange rates using genetically

optimized neural networks. Journal of Forecasting, 21(7), 501–511.

Ni, H., & Yin, H. (2009). Exchange rate prediction using hybrid neural networks and trading

indicators. Neurocomputing, 72(13–15), 2815–2823.

Nikolsko-Rzhevskyy, A., & Prodan, R. (2012). Markov switching and exchange rate

predictability. International Journal of Forecasting, 28(2), 353–365.

Park, C., & Park, S. (2013). Exchange rate predictability and a monetary model with time-varying

cointegration coefficients. Journal of International Money and Finance, 37, 394–410.

Parot, A., Michell, K., & Kristjanpoller, W. D. (2019). Using artificial neural networks to forecast

exchange rate, including VAR-VECM residual analysis and prediction linear combination.

Intelligent Systems in Accounting, Finance and Management, 26(1), 3–15.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural

networks. 30th International Conference on Machine Learning, ICML (3), 1310–1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E. DeVito, Z., Raison, M.,

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S. (2019). Pytorch: An

imperative style, high-performance deep learning library. Advances in Neural Information

Processing Systems, 32, 8026–8037.

Qu, Y., & Zhao, X. (2019). Application of LSTM neural network in forecasting foreign exchange

price. Journal of Physics: Conference Series, 1237, 042036.

40

Ranjit, S., Shrestha, S., Subedi, S., & Shakya, S. (2018). Comparison of algorithms in foreign

exchange rate prediction. In Proceedings on 2018 IEEE 3rd international conference on

computing, communication and security, ICCCS 2018 (pp. 9–13), Institute of Electrical and

Electronics Engineers Inc.

Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4), 1063–1119.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61,

85–117.

Sermpinis, G., Dunis, C., Laws, J., & Stasinakis, C. (2012). Forecasting and trading the EUR/USD

exchange rate with stochastic Neural Network combination and time-varying leverage.

Decision Support Systems, 54(1), 316–329.

Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E. F., & Dunis, C. (2013).

Forecasting foreign exchange rates with adaptive neural networks using radial-basis

functions and particle swarm optimization. European Journal of Operational Research,

225(3), 528–540.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with

deep learning: A systematic literature review: 2005–2019. Applied Soft Computing, 90,

106181.

Shen, F., Chao, J., & Zhao, J. (2015). Forecasting exchange rate using deep belief networks and

conjugate gradient method. Neurocomputing, 167, 243–253.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied

Mathematics Letters 4.6 (1991): 77–80.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems, 27, 3104–3112.

Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks. Applied

Artificial Intelligence, 10(6), 567–582.

Teräsvirta, T., Van Dijk, D., & Medeiros, M. C. (2005). Linear models, smooth transition

autoregressions, and neural networks for forecasting macroeconomic time series: A re-

examination. International Journal of Forecasting 21 (4), 755–774.

Tripathi, M., Kumar, S., & Kumar Inani, S. (2021) Exchange rate forecasting using ensemble

modeling for better policy implications. Journal of Time Series Econometrics, 13(1), 43–

71.

Sun, S., Wei, Y., & Wang, S. (2018). AdaBoost-LSTM Ensemble Learning for Financial Time

Series Forecasting. In: Shi Y. et al. (Eds.) Computational Science – ICCS 2018. ICCS 2018.

Lecture Notes in Computer Science, vol 10862. Springer, Cham.

Yilmaz, F. M., & Arabaci, O. (2021). Should deep learning models be in high demand, or should

they simply be a very hot topic? A comprehensive study for exchange rate forecasting.

Computational Economics, 57(1), 79–98.

Yu, L., Wang, S., & Lai, K. K. (2005). A novel nonlinear ensemble forecasting model

incorporating GLAR and ANN for foreign exchange rates. Computers & Operations

Research, 32(10), 2523–2541.

Zhang, B. (2018). Foreign exchange rates forecasting with an EMD-LSTM neural networks

model. Journal of Physics: Conference Series, 1053, 12005.

Zhang, G. P., & Berardi, V. L. (2001). Time series forecasting with neural network ensembles:

An application for exchange rate prediction. Journal of the Operational Research Society,

52(6), 652–664.

https://scholar.google.com/citations?view_op=view_citation&hl=es&user=-PmdP8IAAAAJ&alert_preview_top_rm=2&citation_for_view=-PmdP8IAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=-PmdP8IAAAAJ&alert_preview_top_rm=2&citation_for_view=-PmdP8IAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=-PmdP8IAAAAJ&citation_for_view=-PmdP8IAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=-PmdP8IAAAAJ&citation_for_view=-PmdP8IAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KtRoG7gAAAAJ&alert_preview_top_rm=2&citation_for_view=KtRoG7gAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KtRoG7gAAAAJ&alert_preview_top_rm=2&citation_for_view=KtRoG7gAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KtRoG7gAAAAJ&alert_preview_top_rm=2&citation_for_view=KtRoG7gAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=P524gM8AAAAJ&alert_preview_top_rm=2&citation_for_view=P524gM8AAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=P524gM8AAAAJ&alert_preview_top_rm=2&citation_for_view=P524gM8AAAAJ:u-x6o8ySG0sC

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

