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Introduction
The current COVID-19 pandemic left already more than two million deaths around the 
world and this number will increase in the near future (Dong et al. 2020). As a response, 
almost all countries implemented unprecedented measures to restrict individual mobil-
ity and promote social distancing. Starting by mid-March, several governments adopted 
a number of Non-Pharmaceutical Interventions (NPIs), whose severity rapidly increased 
in time: starting from school and university closures, large social gatherings avoidance, 
closure of non-essential activities, and  finally a national stay-at-home order, or lock-
down (Hsiang et al. 2020). The aim of these NPIs was to reduce and possibly interrupt 
the transmission of the SARS-CoV-2 virus. National lockdowns have demonstrated very 
effective in slowing down the spread of the COVID-19 epidemic (Flaxman et al. 2020; 
Walker et al. 2020), as the time-varying reproduction number of the epidemic—repre-
senting the mean number of secondary infections generated by one primary infected 
individual, over the course of an epidemic (Liu et  al. 2018)—started to significantly 
drop few days after their implementation (You et al. 2020; Starnini et al. 2020). Despite 
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being essential to contain the pandemic, these measures deeply affected the state of 
the economy, triggering a major world recession.1 For this reason, drastic NPIs such as 
national lockdowns have been adopted only for a limited time span. This apparent trade-
off between public health and economy sparkled a heated debate regarding the optimal 
duration and intensity of lockdowns.

The ultimate goal of all NPIs is to decrease the number, duration, and frequency of 
social contacts among individuals, so to reduce the probability of virus transmission. 
The unfolding of social interactions can be represented by social networks, where nodes 
represent individuals and links stand for interactions (Jackson 2010). Network science 
has demonstrated to be a crucial tool to understand, model, and predict phenomena 
of social dynamics (Newman 2010; Castellano et  al. 2009). The theoretical framework 
of network science has been recently enriched by two key concepts: Multi-layer net-
works (Boccaletti et al. 2014; Aleta et al. 2020), whose edges belong to different layers, 
representing different kinds of interactions; and temporal networks, whose edges appear 
and disappear in time, representing interactions switching on and off with given char-
acteristic time scales  (Holme and Saramäki 2012; Holme 2015). Both concepts have 
proved very useful for a deeper understanding of the dynamical processes on top of real 
networks, such as epidemic spreading (Lambiotte et al. 2013; De Domenico et al. 2016; 
Starnini et al. 2017; Estrada 2020).

Within a network perspective, the implementation of lockdowns can be effectively 
considered as link removal processes, in which nodes represent individuals and links 
represent their social interactions operated in different contexts, e.g. “at work”, “home”, 
or “school”. At the same time, the unfolding of the COVID-19 pandemics can be effec-
tively represented as the spreading of an epidemic process on such networks (Pastor-
Satorras et  al. 2015). The aim of this study is to evaluate the effect on the pandemics 
of different (partial) lockdown strategies, all based on splitting the society into discon-
nected components, uniquely identified by a “color”. In network science, this translates 
into removing links. Here, we assume that these links are removed with respect to social 
interactions occurring at workplace, since other options (e.g. splitting households) are 
less feasible. This is associated, however, to an economic cost. In this work, we compare 
different strategies aimed at reducing such economic loss, while at the same time con-
trolling the epidemic spread.

On general grounds, it is obvious that the more stringent the NPIs to halt the disease 
spreading, the larger the damage to the economy. This compromise between reducing 
the burden on the health care system and allowing the preservation of economic activi-
ties has been object of some recent works. For instance, the authors of Ref. de Vlas and 
Coffeng (2020) proposed a strategy to achieve herd immunity at the national level by 
releasing restrictive measures in specific localized areas, while favoring mobility of 
severe patients into other areas with less incidence. From a completely different perspec-
tive, other authors Meidan et al. (2021) proposed an alternating quarantine strategy for 
the whole population, which implies a 50% cut in the economic capacity while the effects 
in the epidemic spreading are encouraging. The comparative predicted effect of this 

1 https:// www. world bank. org/ en/ news/ press- relea se/ 2020/ 06/ 08/ covid- 19- to- plunge- global- econo my- into- worst- reces 
sion- since- world- war- ii or a related post

https://www.worldbank.org/en/news/press-release/2020/06/08/covid-19-to-plunge-global-economy-into-worst-recession-since-world-war-ii
https://www.worldbank.org/en/news/press-release/2020/06/08/covid-19-to-plunge-global-economy-into-worst-recession-since-world-war-ii
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alternating strategy clearly outperforms other measures of half-quarantine that consider 
a fixed half, either in time or in the population.

The structure of the paper we present here is as follows. In “Modelling social interac-
tions as a multiplex network” section we describe the social network that models the 
substrate responsible for the virus transmission. In “Strategies for network partition” 
section we propose different partition strategies, which mainly correspond to differ-
ent possible partial lockdowns. In “Epidemic spreading” section we show the results of 
numerical simulations of the epidemic spreading, while in “Effect of social interactions” 
section we address the effects of the inclusion of social interactions. Finally,  the last sec-
tion is devoted to conclusions.

Modelling social interactions as a multiplex network
The spreading of a disease like COVID-19 requires close contacts during certain time. 
For instance, along a normal working day, people engage in different social interac-
tions that can potentially infect other people. These contacts are usually modelled by 
networks, where different activities can be represented as different layers of a multiplex 
network (Kivelä et al. 2014). Multiplex networks have a long tradition in the modeling 
of epidemic spreading. Just to cite a few examples, in Chen et al. (2020), the multiplex 
network refers to alternative traffic routes between locations; in Soriano-Paños et  al. 
(2018), the nodes are metapopulations and the different layers correspond to different 
social levels, or in Granell et  al. (2013), one layer corresponds to the spreading of the 
epidemics and the other to the spreading of the awareness of the disease. Finally, several 
papers work on settings where the two layers correspond to different pathogens that can 
eventually trigger interactions (Wu and Chen 2020) or even multilayers corresponding 
to different agents, and therefore, contagions among nodes in different layers must also 
be considered (Cozzo et al. 2013; Wei et al. 2016).

For the sake of simplicity, here we consider individuals to have three kinds of inter-
actions, similarly to what is proposed in Aleta et  al. (2020), which are represented by 
three layers: Household, Work, and Social. According to the multiplex construction, 
individuals are the same across layers. Work and Household layers represent the strong-
est and well characterized fixed sets of connections in our daily life. A third Social layer 
is introduced to take into account the random and time-dependent social interactions 
that represent activities such as shopping, using public transportation, going to the gym, 
meeting friends, and so on. However, in our model the Social Layer takes into account 
the context of pandemics and containment of social interactions. For that reason the 
daily interactions in the Social Layer are modelled with a constant and low average con-
nectivity, as we will see in “Effect of social interactions” section. We will show that if 
connections are dynamical, i.e. they change from day to day, the epidemic outbreak is 
larger than for constant connections, i.e. connections within the same pairs of nodes.

In our model, all individuals who work in the same company or department (from now 
on, workplace) are connected in a clique (a complete subgraph) in the Work layer, which 
is disconnected from cliques corresponding to other companies. A fraction of individu-
als is considered to work from home (or unemployed), thus being represented as iso-
lated nodes in the Work layer, because they do not have close contact to other working 
people. On the other hand, as proposed in Aleta et al. (2020), we introduce household 
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interactions by means of cliques, of smaller size, within the household layer. Note that 
the introduction of different types of interactions is not restricted to multiplex networks, 
but this construction permits to do it in a very intuitive way. In other works instead, net-
works are constructed with different structures, cliques, representing household interac-
tions, together with some out of the clique links, representing all sort of work and/or 
social interactions, generating networks with a high degree of clustering (Ball et al. 2010; 
Britton et al. 2008; Mistry et al. 2021).

Individuals can also interact in the Social layer, according to different hypotheses 
described in “Effect of social interactions” section. Although Work and Household layers 
are formed by isolated cliques, it is the superposition of all the layers what generates a 
large connected component where a disease can easily spread. This basic multiplex con-
struction (excluding the Social layer) is visualized in Fig. 1. This will be our initial setting 
that can be changed by containment measures. A connected component is not initially 
observed in any of the layers, but if layers are merged, a very large connected component 
(not necessarily spanning the whole network) shows up. Intuitively, this connected com-
ponent shows how the epidemics can spread and reach most of the population.

Here, we focus on modelling a typical urban area, in which social interactions are 
more frequent and disease transmission easier. Note that the interplay between several 
urban and rural areas could be modelled through the adoption of a meta-population 
structure (Colizza and Vespignani 2008). We set a working scenario with the following 
distribution of household sizes: 1 member 0.38, 2 : 0.38, 3: 0.14, 4: 0.08, 5: 0.015, 6: 0.005. 
This data has been taken from the empirical distribution of the city of Barcelona.2 The 
distribution of workplace size is assumed to be a Gaussian with mean 15 and standard 

Fig. 1 Multiplex construction of the two basic and fixed sets of connections. Top layer corresponds to the 
Work construction formed by cliques of relative large size. Bottom layer corresponds to the Household 
construction formed by cliques of very small size. Dashed lines are drawn just to recall that the nodes in the 
two layers correspond to the same individual. Merging these two layers into a single one results in a larger 
component, as shown in the single merged layer in the bottom of the panel

2 Percentages obtained from the study of the Barcelona municipal register 2019: https:// www. bcn. cat/ estad istica/ catala/ 
dades/ tpob/ llars/ padro/ a2019/ edat/ t23. htm.

https://www.bcn.cat/estadistica/catala/dades/tpob/llars/padro/a2019/edat/t23.htm
https://www.bcn.cat/estadistica/catala/dades/tpob/llars/padro/a2019/edat/t23.htm
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deviation 5. Other choices for the household and workplace size distribution are shown 
in the Additional file 1: Sect. I of the Supplementary Material. We also consider that 25% 
of the population is not part of any workplace (these people either work from home or 
are unemployed). Notice that we consider that the maximum possible number of people 
who work from home is included already in this group. In the following simulations, the 
size of the network is set to N = 5000.

Strategies for network partition
The aim of this study is to evaluate different (partial) lockdown strategies, which con-
sist in splitting the society into disconnected components, identified by a “color”. The 
goal of this procedure is to make barriers to stop the disease spreading. We first assign 
colors to the workplaces. As individuals live in households, it can happen that individu-
als of the same household have different colors assigned. This situation would produce 
a conflict, namely a possible path of transmission to other companies, and hence to 
other families and so on, if there are infected individuals. In order to cut these potential 
paths of disease transmission, we solve the conflict by removing the node(s) from the 
Work layer and assigning all household members the same color. This has, however, an 
associated economic cost: individuals removed from their workplace cannot work from 
home (since we have already included the maximum percentage of work from home in 
the model). The aim of the strategies is to minimize the number of conflicts in order to 
reduce the economic loss but balancing it with a low disease transmission rate.

A strategy consists in assigning one color Cj to each node j = 1, . . . ,N  , from a set 
{ci , i = 1, . . . ,Nc} , where Nc is the total number of colors. Nc is a free parameter of the 
model; its limiting values are 1, corresponding to the original merged network which is 
the most fragile case in terms of the epidemic spread, and the number of workplaces, 
which is a complete segregation representing the worst economic scenario.

For the color assignment, we would ideally like to reach two (opposite) objectives: 
From one side, we would like to limit the fraction of conflicts ( χ ); from the other side, we 
want to make sure that the assignment is as effective as possible in limiting the spreading 
of the virus. The effectiveness of a network segregation in slowing down the spreading 
is related to the size distribution of its components. This is because the larger a compo-
nent is the more vulnerable to the disease (Newman 2002). We propose two magnitudes 
to quantify this vulnerability. On the one hand, the fraction of nodes that are part of 
the largest connected component of the network, G. On the other hand, we propose the 
entropy of the color distribution, which measures how much the color distribution is 
homogeneous. If pci is the fraction of nodes in the network with color ci , the normalized 
entropy S

(

{pci}
)

 of the color distribution is:

We consider four strategies for the color assignment, with a fixed number of colors Nc . 
They can be divided in strategies based on Aggregation (Random, Maximal and Mini-
mal) and a strategy based on the Segregation of the network. In the Aggregation based 

S
(

{pci}
)

=
1

logN−1
c

Nc
∑

i=1

pci log pci .
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strategies, we start by assigning a different color to each workplace (corresponding to a 
clique). Then we iteratively merge pairs of colors, until we reach the desired total num-
ber of colors Nc . We finally solve conflicts (household members with different colors) by 
removing nodes from the Work layer. In the Segregation strategy instead, we start with 
all nodes having assigned the same color. Then, we remove nodes from the Work layer, 
up to obtaining a number of disconnected components equal to the desired number of 
colors. 

Random Aggregation  We start by assigning a different color to each workplace. 
The number of colors is reduced by randomly merging pairs 
of workplaces, without any rule. In this way we completely 
break up the network, but at the cost of a high number of 
removed nodes.

Maximal Aggregation  Similar to the previous one: we start with a different color for 
each workplace; then we iterate by merging colors together. 
The first color ci to be merged is selected at random, while, 
differently from the random case, the second color cj  = ci 
corresponds to (one of ) the most popular colors among the 
neighbours node of cj . That is the reason why we call this 
strategy Maximal, we choose the color with the maximum 
frequency. After some colors are joined together, they easily 
become more popular than others, and they are frequently 
found as neighbors of other colors. Therefore, the most pop-
ular is likely to attach more colors and so it becomes even 
more popular. Thus, this approach will tend to produce one 
large cluster and many small ones.

Minimal Aggregation  This strategy works similarly but it aims at a more homo-
geneous color distribution, thus it merges first those colors 
assigned to the smallest set of nodes. The algorithm is the 
same as for Maximal Aggregation, with the difference that 
the first color ck to be merged is not selected at random, but 
as the rarest between the colors available. That is the reason 
why we call this strategy Minimal, we choose the color with 
the minimum frequency. This difference proves to be suffi-
cient to get a much uniform color distribution compared to 
the Maximal Aggregation.

Segregation  In this strategy, differently from the Aggregation based strat-
egies, we start with all nodes having assigned the same color. 
Then, we remove nodes from the Work layer in descendent 
order of their betweenness centrality (Freeman 1977), up to 
obtaining a number of disconnected components equal to 
the desired number of colors Nc . The betweenness centrality 
is computed on the network corresponding to the collapse of 
the two layers (Sole-Ribalta et al. 2014), and it is recomputed 
after each node removal.

Figure 2 shows the multiplex network introduced in Fig. 1 as broken into two inde-
pendent components. Sizes of the components are very similar and the node removal 
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from the Work layer has been minimized. Individuals who work from home have 
assigned the color that corresponds to their household.

Figure  3 shows a representation of the network partitioned according to different 
strategies. The nodes represent the workplace cliques, or alternatively, single individu-
als who work from home. The links connect two nodes if there is at least one pair of 
members sharing a household. The colors identify separate connected components in 
the networks. We can see how the Random Aggregation strategy has a more uniform 
color distribution but clearly disconnects the network into many small components, 
while at the other extreme the Maximal Aggregation and Segregation strategies show the 
predominance of one color corresponding to one big connected cluster. The Minimal 
Aggregation strategy is somehow a balance between these two behaviours.

In Fig. 4 we compare the performance of the different strategies for the network par-
tition. For each strategy, we show the fraction (with respect to the whole population) 
of conflicts in the network χ , the relative size of the largest connected component G, 
and the entropy S of the color distribution, as a function of the number of colors Nc . As 
expected, an increasing number of colors gives a more disconnected network (smaller 
G) and a more homogeneous color distribution (higher S), while the number of con-
flicts χ increases. For the Random Aggregation and Maximal Aggregation strategies, the 
entropy is almost constant for the interval of colors considered. Coherently to what we 
notice in Fig. 3, the Random Aggregation method is the one that gives the best perfor-
mance in term of breaking the connectivity of the network (smallest size of the largest 
connected component) and has a more homogeneous color distribution, as assessed by 
the entropy. But the Random Aggregation method is also the one with the highest per-
centage of conflicts, as expected. Maximal Aggregation and Segregation have the oppo-
site trend: a low number of conflicts, but a very high proportion of the nodes are still 
connected, while the color distribution is not very homogeneous. Finally, the Minimal 
Aggregation method can provide an intermediate number of conflicts, while being able 
to disrupt the network connectivity with a relatively low number of colors ( Nc ≈ 10).

We also study the dependence of these results on the workplace and family size distri-
bution (see of Additional file 1: Sect. I, Figs. S1 and S2). As a matter of fact, societies hav-
ing different structural characteristics, and implementing different distributions allow us 
to identify which characteristics have implications for our results. We therefore consider 
company size distributions with different average and variance, and we conclude that the 
influence of the company size distribution is minimal (Fig. S1). For the household size dis-
tribution instead, we included more and less skewed version compared to the original one, 
to consider cases in which is more or less common to have a higher number of people shar-
ing the same house. We found that the household size distribution, indeed, has an influence 

Fig. 2 The merged network that gives rise to a single connected component in Fig. 1 is now splitted into 
two components (red and green) by removing some work links
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on our results (Additional file 1Fig. S2): the inclusion of household with more members 
gives rise to a higher number of conflicts, and hence more economic cost, and larger con-
nected components.

The theoretical problem of finding a division in colors of the network that leads to the 
segregation of the largest connected component reminds the work of Kundu and Manna on 
colored percolation (Kundu and Manna 2017). In their work though the links are possible 
only between nodes of different colors, while in our case links are possible within the same 
colors. Future theoretical work can focus on the difference between these two scenarios.

Epidemic spreading
In order to assess the effectiveness of the lockdown strategies presented in the previ-
ous section, we simulate the Susceptible-Infected-Recovered (SIR) model (Kermack and 
McKendric 1927) on the multiplex network. Briefly, in the SIR model, agents can be in 
one of three states: Susceptible, Infected, or Recovered. Upon contact with an Infected 

Fig. 3 Network of workplaces. Each node represents a different workplace, whose size is proportional to 
the number of people working in that workplace. If the workers of two workplaces are part of the same 
household, the workplaces are connected by a link. The link width is proportional to the number of common 
housemates. The smallest dots represent people who work from home or do not work (workplace of size 1). 
The nodes are colored according to the strategy (different for each panel from a–d). The number of colors 
chosen is Nc = 10
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agent, a Susceptible agent becomes Infected with probability β at each time step. Infected 
agents spontaneously become Recovered with probability γ , at each time step. Therefore, 
at each time step, infected agents may infect susceptible agents in contact with them, 
until no more infected agents are present in the population and the infection dies out. 
The final fraction of recovered agents, R∞ , indicates how many agents became infected 
over the course of the infection and thus measures its intensity: the larger R∞ , the more 
the disease spread in the population.

We consider here a multiplex network formed by Work, Household, and Social layers. 
We simulate the epidemic spreading in this multiplex network by following a synchro-
nous SIR-like process. To this aim, we consider the merged network composed by aggre-
gating all layers onto a single one, where the infection probability β is different for each 
layer. This choice reflects the idea that in different environments, the infection can be 
more or less probable upon contacts, because of different behaviors. For instance, at 
home people may be less prone to enforce social distancing and wear masks, with 
respect to work or social environments. This translates into considering the infection 
probability as a node variable: we assume the infection probability of node i in layer L, 
βL
i  , to depend on the layer L and on the node’s degree in the corresponding layer, κLi  

(Aleta et al. 2020; Perez et al. 2020). The infection probability is thus defined as βL
i =

βL

κLi
 , 

where βL is the infection probability in layer L. In particular, we choose βhousehold = 0.50 , 
βwork = 0.30 , βsocial = 0.20 , so that we assume, without loss of generality, 

∑

L β
L = 1 . In 

this way, we assume the infection probability to be larger in households compared to 
work places, and even lower in social environment, as previously explained. Further-
more, we assume that the infection probability is inversely proportional to κLi  . In this 

a

b

c

Fig. 4 Fraction of conflicts χ (a), relative size of the biggest connected component G (b), and entropy of the 
color distribution S (c) as a function of the number of colors in the network Nc , for the different containment 
strategies



Page 10 of 15Plazas et al. Appl Netw Sci            (2021) 6:27 

way, we consider that individual behavior changes as a function of the size of the gather-
ing. The larger the gathering (e.g. in. the office or within a social context), the more peo-
ple may be willing to enforce social distancing and wear masks. That is, we assume that 
the bigger the number of interacting people, the larger is the average distance among 
them (see for example Nunn et al. (2015)). Conversely, in small gatherings (e.g. at home) 
people may be less prone to change their behavior. Finally, we set γ = 0.30 and the initial 
fraction of randomly chosen infected agents to be equal to 1%.

We start our exploration of the effect of different lockdown strategies without consid-
ering the Social layer, namely by setting βsocial = 0 . Figure 5 shows the final fraction of 
recovered individuals R∞ , averaged over 1000 runs. As expected, the more colors the 
less infected individuals, due to a more disconnected network. With that in mind, the 
Random Aggregation strategy is the best to contain the spread of the epidemic, because 
of the smaller size of the largest connected component, followed by the Minimal Aggre-
gation strategy, the Segregation strategy and finally the Maximal Aggregation strategy, 
in consonance with the results presented in Fig. 4. Note that these strategies are ranked 
precisely in the reverse order with respect to the number of conflicts χ (see Fig. 4).

Effect of social interactions
We now explore the effects of social interactions, by adding the Social layer that 
accounts for all interactions that do not occur at work or in households. This layer is 
built as an Erdos Reny graph with average connectivity κsocial , in order to simulate (in a 
simplified way) the limitation of the number of contacts imposed by different NPIs. In 
other words, each node in the Social layer will randomly connect, on average, to a given 
number of nodes κsocial assumed to be 4. In the Additional file 1: Sect. II, Fig. S3, we veri-
fied that for different values of κsocial the results will not significantly change. Moreover, 
we considered four different situations about how the links can be formed in the Social 
layer. Links can indeed be added by respecting color (i.e. within the same partition), that 
is, two nodes can be connected in the Social layer only if they share the same color, or 
without respecting it. Furthermore, links can be generated with or without memory, that 
is, at every time step the links are rewired or not, respectively. 

Fig. 5 Final fraction of recovered agents R∞ for the considered strategies as a function of the number of 
colors Nc . The purple line represent the corresponding value for the original case with no color. Error bars are 
not plotted for being negligible
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Unconstrained (no memory, no color)  the Social layer is time-dependent, chang-
ing at each time step, and links are ran-
domly formed between nodes regardless of 
the color.

Color  the Social layer is time-dependent, chang-
ing at each time step, and links are ran-
domly formed only between nodes of the 
same color.

Memory  the Social layer is static, without time-
dependence, and links are randomly formed 
between nodes regardless of the color.

Fully constrained (memory and color)  the Social layer is static, without time-
dependence, and links are randomly formed 
only between nodes of the same color.

From here on, we will include the Social layer in the multiplex representation and 
consider the four possible forms of social interactions described above. Of course, by 
increasing the overall degree of the network, we expect the epidemic outbreak to 
increase as well. However, our aim in this Section is to study how different kinds of 
social interactions with different degree of severity (with memory, respecting the parti-
tions in different colors, etc.) impact the epidemic spreading with respect to the different 
partition strategies adopted.

First, we analyze the effects of including a Social layer whose interactions do not follow 
any restriction: the unconstrained case (no memory, no color). In Fig. 6 we compare the 
consequences of including the Social layer in the worst case scenario (unconstrained), 
compared to the original setting (without the Social layer) for the case of 10 colors. Fig. 6 
shows that with the addition of the Social layer the unconstrained case results in a much 
larger fraction of infected individuals, regardless of the strategy employed for the net-
work partition. We conclude that the inclusion of an unconstrained Social layer destroys 
the effectiveness of the colored strategies to contain the epidemic.

Fig. 6 Fraction of recovered agents, R∞ , for different strategies. Here we compare a multiplex with only Work 
and Household layers (without Social layer) and a multiplex which includes also an unconstrained Social layer. 
The color strategies are for the case of 10 colors. Error bars are not plotted for being negligible
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In the following we explore more restricted forms of social interactions. Figure  7 
shows the fraction of avoided infections for the different forms of social interactions 
compared to the previously studied unconstrained situation, for a case with a small 
number of colors (6) and a case with a large number of colors (14). Several comments 
are in order. First, the greater the number of colors, the better the containment of the 
epidemic. Second, the best strategies are the ones that return a more disconnected 
network, namely the Random Aggregation and Minimal Aggregation strategy. Finally, 
for a small number of colors, forcing social interactions with memory (within a fixed 
set of individuals) is more effective than imposing colored social interactions (among 
individuals sharing the same color). At the opposite, for a larger number of colors, it 
is more effective to constrain social interactions within individuals sharing the same 
color instead of social interactions with memory. In both cases, fully constrained 
social interactions with both colors and memory is the most effective strategies to 
avoid additional infections.

In Table 1 we summarize the fraction of recovered individuals R∞ for different com-
positions of the multiplex network and with different constraints in building the Social 
layer. One can see that the implementation of a Minimal Aggregation partition strategy 
is extremely effective in reducing the impact of the disease, of about two thirds. At the 
same time, the economic burden of such strategy is relatively limited, with 14% of indi-
viduals forced to stay home and temporarily lose their job. However, the inclusion of a 
Social layer dramatically alter this picture: the epidemic outbreak increases from 32% 
to 81% of the population. This is due to the fact that, in a network formed by interact-
ing cliques, the presence of a small number of random interactions can dramatically 
worsen the effect of an epidemic. Finally, one can see that such epidemic outbreak can 

Fig. 7 Fraction of avoided infected agents considering different forms of social interactions compared to the 
scenario of no memory and not respecting the colors for the original network. Top panel: strategies are with 
Nc = 6 ; bottom panel: Nc = 14 . Error bars are not plotted for being negligible
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be reduced by imposing constraints to social interactions. The most effective one is the 
joint application of color and memory constraints in building the Social layer.

Conclusions
In this work, we proposed a network approach to model the implementation of differ-
ent strategies for a partial lockdown. Our model is composed by two main ingredients: 
a multiplex network including social interactions within different contexts, and numeri-
cal simulations of a SIR process to mimic the epidemic spreading. We proposed differ-
ent strategies to segregate the network into disconnected components (partitions) with 
a twofold goal: halting the epidemic spreading, whose effectiveness can be measured by 
the reduction in the number of infected individuals, and minimizing the economic bur-
den of the partial lockdown, that can be quantified by the removed links in the Work 
layer, that represent job losses. We found that the best partition strategy for contain-
ing the epidemic is a Random Aggregation strategy, but this comes with the larger job 
loss. A good compromise is the so-called Minimal Aggregation strategy, which is able 
to create a good segregation in the network while also minimizing the link removal. We 
showed that the inclusion of unconstrained social interactions dramatically increased 
the spreading of the disease. As a consequences, we studied different constraints to be 
applied specifically to the links in the Social layer: only within the same partition (join-
ing nodes with the same color) and/or with memory (individuals interact with the same 
peers over time). With a number of color high enough, imposing color on the social 
interactions is more effective than maintaining memory, while clearly the two methods 
together would be the best combinations to reduce the epidemic outbreak.

Our work comes with limitations. For instance, we did not include schools in the net-
work modelling, assuming that schools can stay temporarily closed during partial lock-
downs. In future work, schools could be included in the model by adding another layer 
in the multiplex network, as in the reference Aleta et al. (2020). Another way of taking 
schools into account is to consider the work layer as a work/school/nursing layer, adjust-
ing the group size distribution. Another limitation of our work is that the multiplex net-
work that models social interactions is built on several assumptions and not directly by 
using empirical data regarding contact matrix within work or household contexts. How-
ever, data such as the precise composition of households or workplaces are not readily 
available. Furthermore, we adopted a very simple model for the epidemic spreading—the 

Table 1 Fraction of recovered agents R∞ for different compositions of the multiplex network: work 
and Household only, and with the inclusion of a Social layer

We compare the cases with no restrictions and with different combinations of constraints. We consider here the Minimal 
Aggregation strategy with ten colors, whose fraction of conflicts is χ = 14%

Network layers Constraints R∞ (%)

Work & Household – 32

Color (Minimal Aggregation) 12

Work & Household & Social – 81

Memory 78

Color (Minimal Aggregation) 71

Color (Minimal Aggregation) + Memory 64



Page 14 of 15Plazas et al. Appl Netw Sci            (2021) 6:27 

SIR model—, which is not realistic. This choice is however motivated to keep the num-
ber of parameters of the model, which is quite large, as low as possible. In future works, 
it would be interesting to explore the effects of the proposed partition strategies and 
restriction for social interactions on empirical data, regarding both the network recon-
struction and the disease propagation. Finally, it would be interesting to include mobility 
data to test if the proposed partition strategies could be realistically implemented.
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