
Behavioural Brain Research 405 (2021) 113188

Available online 23 February 2021
0166-4328/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Structural equation models to estimate dynamic effective connectivity 
networks in resting fMRI. A comparison between individuals with Down 
syndrome and controls 
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A B S T R A C T   

Emerging evidence suggests that an effective or functional connectivity network does not use a static process 
over time but incorporates dynamic connectivity that shows changes in neuronal activity patterns. Using 
structural equation models (SEMs), we estimated a dynamic component of the effective network through the 
effects (recursive and nonrecursive) between regions of interest (ROIs), taking into account the lag 1 effect. The 
aim of the paper was to find the best structural equation model (SEM) to represent dynamic effective connectivity 
in people with Down syndrome (DS) in comparison with healthy controls. Twenty-two people with DS were 
registered in a functional magnetic resonance imaging (fMRI) resting-state paradigm for a period of six minutes. 
In addition, 22 controls, matched by age and sex, were analyzed with the same statistical approach. In both 
groups, we found the best global model, which included 6 ROIs within the default mode network (DMN). 
Connectivity patterns appeared to be different in both groups, and networks in people with DS showed more 
complexity and had more significant effects than networks in control participants. However, both groups had 
synchronous and dynamic effects associated with ROIs 3 and 4 related to the upper parietal areas in both brain 
hemispheres as axes of association and functional integration. It is evident that the correct classification of these 
groups, especially in cognitive competence, is a good initial step to propose a biomarker in network complexity 
studies.   

1. Introduction 

There are several options in regard to estimating connectivity net
works from brain signal data. These options are available not only 
because there are different types of signals with varied information and 
behaviors but also because there are numerous techniques that allow, 
with more or fewer limitations, the identification of connectivity net
works, whether they are functional or effective or whether they are 
static or dynamic. The study of brain function from the perspective of 
connectivity networks is a relatively recent approach and is an inter
esting option for investigating the concept of the brain as a complex 
system in which different parts of the brain interact under a certain 

pattern that must be identified. This type of connectivity pattern can be 
associated with different health states or cognitive characteristics that 
allow us to establish much more sensitive and precise brain complexity 
indicators than those used habitually in observational or psychometric 
records. 

In relation to the different brain signals, the one that has been of most 
interest in the last ten years is the functional magnetic resonance im
aging (fMRI) register. The reason for this preference may be because the 
fMRI signal allows for the generation of representational and mathe
matical models of brain function; also, although it is a somewhat 
cumbersome record, it is not as invasive to acquire fMRI data as it is to 
record other signals [1]. 
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It seems clear and indisputable that since Biswal et al. [2] proposed 
the first works in a resting situation and estimated functional connec
tivity networks, we now have many options for application in this field. 
Lv et al. [3] offered a list of choices that adequately summarized the 
state-of-the-art options. A likely important point that the previous work 
likely highlights is, on one hand, the incorporation of dynamic con
nectivity network estimation in a resting situation and, on the other 
hand, the more current expert vision of systems estimation. In fact, the 
assumption that a static network obtained from BOLD signal behavior 
during an established period of time from k brain volumes is stable and 
unique is an assumption that is too banal and simple [4]. The idea of the 
existence of spatial property modifications of the network connection 
between brain areas (regions of interest, ROIs) is much closer to a 
structural and topological brain functioning concept. The effective or 
functional connectivity network presents a temporal evolution of its 
topological properties throughout the period of volume registration. 
This assumption, which brings us much closer to the conception of 
complex system models, must be taken into account to estimate much 
more realistic connectivity networks. 

Certain aspects of dynamic connectivity have been studied in 
different populations, both in their functional and effective versions. It is 
true that most of the works have been proposed from the functional 
connectivity perspective and very few have been conducted involving 
effective dynamic connectivity. Some examples related to this are the 
work of Díez-Cirarda et al. [5], which showed differences in connectivity 
patterns between Parkinson’s patients and a control group. Lin et al. [6] 
used dual signal pathway fMRI and EEG to study dynamic and static 
connectivity and to determine connectivity patterns in healthy control 
people. Chen et al. [7] went a step further and established the possibility 
that dynamic connectivity patterns could be considered a biomarker for 
discriminating between different levels of cognitive competence. Similar 
results were shown in the work of Threlkeld et al. [8], suggesting that 
consciousness recovery in patients with acute and severe traumatic 
brain injury (TBI) is associated with partial preservation of DMN cor
relations. Moreover, Ramani [9] showed that in patients with a genetic 
predisposition to Alzheimer’s disease (AD), there is a connectivity 
alteration in the DMN from very early ages and before the appearance of 
any cognitive alteration. 

There are a variety of options for solving this issue. The best-known 
model is the so-called dynamic causal model (DCM) described by Friston 
[10] and described by Park et al. [11] in a resting state situation. An 
excellent example of this approach can be found in Sharaev et al. [12] or 
Ye et al. [13]. The second option is the dynamic graphical model (DGM) 
defined by Schwab et al. [14], which proposes an algorithm for 
detecting a directed functional connectivity relationship between ROIs, 
using the mobile window technique to identify parent-child ROIs (ac
cording to the authors’ terminology). 

Nonetheless, an aspect that previous studies do not mention is the 
one linked to the use of structural equation models (SEMs) for the 
estimation of effective dynamic connectivity networks. There are mul
tiple examples of the use of SEMs for effective static estimation that have 
been employed to establish the directionality of the relationships in the 
selected ROIs. Most of these contributions have been made, leaving 
aside the dynamic connectivity vision. For example, Guàrdia-Olmos 
et al. [15] showed effective connectivity networks in diabetic patients, 
and in the first meta-analysis, Guàrdia-Olmos et al. [16] showed the 
parameters estimated by an SEM in connectivity networks without dy
namic components. 

However, the idea of effective dynamic connectivity has still not 
been diligently explored, with even less work having been conducted in 
the field of SEMs. The recent appearance of the Group Iterative Multiple 
Model Estimation library (GIMME, 2020) opens an interesting option in 
the use of SEMs in effective dynamic connectivity [17,18]. The initial 
background on this issue can be identified as the one proposed by Zhang 
et al. [19] in the field of dynamic networks and language based on a 
previous mapping by Beltz & Gates [20]. However, the R library authors 

propose to understand dynamic network components from the estimable 
impact study of the number of short effects that are available to identify. 

However, the concepts proposed by the authors of that library consist 
of understanding the dynamic component of the network from the study 
of the estimable impact of identifying the number of short effects, 
deemed lag 1 in the conception of the models. With this, it is possible to 
estimate the impact of an ROI at moment t on other ROIs at moment t +
1, which incorporates the dynamic effect in the estimation of the model. 
The effect of this concept is very limited, and the computational diffi
culties that SEM models have in this type of work must be taken into 
account. Inman et al. [21] argued these difficulties when highlighting 
the advantages of the GIMME option. The limitations of the GIMME 
option are also evident and focus on the impossibility of using a high 
number of ROIs as well as a short number of lag effects. Even so, the 
improvements are, in our opinion, evident. 

From an application point of view, there are some works in dynamic 
connectivity that are important to mention. Pertinently, Chen et al. [7] 
with mild cognitive impairment (MCI) patients; Threlkeld et al. [8] with 
traumatic brain injury (TR) patients; Park et al. [11] showing a pro
cedure for baseline estimation in dynamic connectivity studies; Sharaev 
et al. [12] with control subjects and study of small networks; Xu et al. 
[22] by studying the effect of methylphenidate in healthy subjects; Tang 
et al. [23] studying the effect of tobacco use in healthy subjects; Li et al. 
[24] with depressed patients; and finally, Xu et al. [25] studying dy
namic connectivity in twins. 

All the studies mentioned above and the knowledge about functional 
connectivity has become the basis of our work and can be summarized as 
follows: (a) there is evidence of a relationship between the topological 
properties of complex, basically functional brain networks and certain 
measures of cognitive performance [26–31]); (b) functional connectiv
ity of the default mode network (DMN) is associated with the cognitive 
brain function [32–34]; (c) functional brain network connectivity is not 
a static process over time [35–47] (d) emerging evidence suggests that 
dynamic functional brain connectivity may indicate changes in the 
neuronal activity patterns that underlie critical aspects of cognition or 
clinically relevant information [38,40,46–50]; (e) dynamic connectivity 
is associated with the internal mental state both at rest and during the 
execution of a task [51]; and f) there is evidence of variability in dy
namic functional connectivity networks. This variability is associated 
with the undirected tracking strategies that people often perform at rest 
[34]. Subregions of the DMN show decreasing variability activity when 
there is better resolution of cognitive tasks [52,53]. Thus, an increase in 
such undirected tracking would be linked to poorer task performance 
when responding to task stimuli, and it would be expected that this 
would translate into greater connectivity network complexity, whether 
dynamic or static. 

The simplest comparison in cognitive terms lies in the analysis of the 
dynamic functional connectivity networks of healthy subjects in com
parison with people with compromised cognitive functioning, for 
example, the Down syndrome (DS) population. These studies must 
strictly control the selection of the participants’ age to avoid the pres
ence of Alzheimer’s disease (AD) or other cognitive diseases. The use of 
fMRI in individuals with DS has provided notable data that justify more 
in-depth studies of brain functioning in this population. Basically, pre
vious works have shown that in people with DS, there is increased 
internetwork connectivity (i.e., hyperconnectivity) characterized by 
positive connectivity even in regions that are negative in control groups; 
as a consequence, there is a clear decreasing anti-correlation [54–56]. 

Taking the cited studies into consideration, the current work aimed 
to establish the dynamic effective connectivity networks of a DS group 
and another control, paired by age and sex, using SEMs. This was studied 
in a resting-state paradigm and only in part of the DMN (6 ROIs). It also 
aimed to determine if there is a different pattern between both groups 
and, finally, to assess the possibility of using those patterns to discrim
inate between groups. 

Because of the results and the evidence of the abovementioned 
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works, we hypothesized that a) people with DS would show connectivity 
patterns at rest in a DMN network that would be much more complex 
than those that characterized in the control group and b) the SEM 
models for each group would show these effects, and it would be 
confirmed as a possible biomarker. 

2. Material and method 

2.1. Participants 

The initial sample was composed of a total of 35 persons with DS (all 
participants had trisomy 21) between 16 and 35 years of age (M = 24.7 
and SD = 5.49), and 26.5 % were women (nw = 9). Accidental sampling 
was used, and recruitment took place through contact with different 
associations dedicated to DS in the state of Jalisco (México) (54.3 % of 
participants) and in Spain (45.7 %). The following inclusion and 
exclusion criteria were applied: a) age between 16 and 35 years and b) 
formal diagnosis of DS. The exclusion criteria were a) evidence of other 
comorbid diagnoses implying cognitive dysfunction (for example, the 
presence of dementia symptoms), b) inability to obtain consent from 
legal tutors, and c) the presence of medication affecting cognitive 
functions (specifically, for example, medication for mood regulation). 

The intellectual disability diagnostic (out of 29 participants; the rest 
could not be accredited) revealed that 3.4 % had limited intellectual 
disability, 55.2 % had mild intellectual disability, 37.9 % had moderate 
intellectual disability and 3.4 % had profound intellectual disability. 
This classification appeared in the official report that each DS person 
presented at the time of incorporation into the study; limited intellectual 
disability is connected with the borderline zone, so this category does 
not appear in the ICD-10 categories (Codes F70-F79). A total of 84.4 % of 
the participants were right-handed, and 6.3 % of the participants were 
ambidextrous (n = 32). Laterality was directly assessed by a simple 
Praxis test during registration and confirmed with information from 
caregivers. 

After recording the fMRI signal, data from ten of the 35 subjects were 
eliminated due to excessive movement during the recording, and some 
of them were even removed for the same reason after having repeated 
the recordings. Records with movement greater than ±2 degrees (or 
greater than half voxel size) were eliminated. Thus, the final sample for 
which fMRI was analyzed was composed of a total of 22 persons with DS, 
with the following observed age distribution: M = 25.55 and SD =
5.119. The distribution of the sample by sex indicated 22.7 % women. 
Whether any of the previous variables could be associated with failure to 
complete the fMRI record was analyzed. The relationship of the vari
ables age, sex, and severity with whether the fMRI registry was 
completed was evaluated, and no statistically significant relationship 
was found. 

A control group (n = 22) was included for comparison with the DS 
population. These subjects were obtained from the Human Connectome 
Project (http://www.humanconnectomeproject.org/), specifically from 
the open access dataset Autism Brain Imaging Data Exchange I (ABIDE 
I). ABIDE I is an image repository comprised of 17 international sites and 
collects structural and rest fMRI scans from people with autism spectrum 
disorder and healthy control groups. All data, including the phenotypic 
datasets and the protocol of acquisition parameters, are available at 
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I. Only the con
trol group of the ABIDE I dataset was used, and the subjects were 
selected to be matched with the DS sample by chronological age (M =
24,68; SD = 4.90; maximum 2-year difference in some subjects) and sex 
(22.7 % were women). No significant differences were found in relation 
to age (t = 0.568; df = 42; p = .573). To avoid any distortion in the 
image registry, only those registered in the control group with exactly 
the same technical characteristics as the registries used in the DS group 
were selected. 

2.2. Instruments 

The data from this work are part of a larger protocol in which the 
relationship between the brain signal (fMRI) and various variables 
connected with cognitive performance, quality of life and physical ac
tivity are being studied. In this case, only ad hoc questionnaires were 
used to assess the clinical and educational history, and the following 
variables were collected: age, sex, place of residence and degree of in
tellectual disability. 

2.3. Procedure 

Informed consent was obtained from each participant prior to the 
first neuropsychological screening session in accordance with the 
Declaration of Helsinki. Each of the three different protocols was 
approved by the Ethics Committee of the Bioethics Committee of the 
University of Barcelona. In accordance with this document, informed 
consent was obtained from the legal guardians of each person with DS 
and from the participants themselves. In addition, a medical report was 
obtained for each participant to rule out incompatibilities with image 
acquisition. 

2.4. MRI image acquisition and preprocessing 

After the administration of the scales, the participants underwent the 
fMRI recording sequence in the following order: T1-weighted, T2- 
weighted, FLAIR and 6-minute resting-state. Data were collected from 
March 2018 to July 2019. Two system models 3 T Philips Ingenia 
scanners (Phillips Healthcare) were used (one located at the Clinical 
Laboratory, Integral Medical Diagnostic Center of Guadalajara’s RIO 
Group Center in Jalisco and the other at the Pasqual Maragall Founda
tion in Barcelona). A T1-weighted turbo field echo (TFE) structural 
image was obtained for each subject with a 3-dimensional protocol 
(repetition time [TR] =2300 ms, echo time [TE] =2980 ms, 240 slices, 
and field of view [FOV] = 240 × 240 × 170). Image acquisition was 
performed in the sagittal plane. For the functional images, a T2*- 
weighted (BOLD) image was obtained (TR =2000 ms, TE =30 ms, 
FOV = 230 × 230 × 160, voxel size = 3 × 3 × 3 mm, and slices = 29). 
Image acquisition was performed in the transverse plane. As previously 
mentioned, these technical characteristics correspond exactly to the 
records used in the control group. 

During scanning, the participants were instructed to relax, remain 
awake, and keep their eyes open and fixed on a cross symbol on the 
screen. To avoid excessive movements, the necessary time was allocated 
for each person to get used to the registration situation. For this, the 
people who accompanied the members of the DS group were always 
visible, and during the habituation part of the session, they were able to 
be in the registration room. Obviously, at the beginning, there was no 
one in the registration room. 

The structural imaging data were analyzed using an FSL 
(http://www.fmrib.ox.ac.uk/fsl/, RRID:SCR_002823) preprocessing 
pipeline adapted under authorization from Diez et al. [57], with its 
parameters adjusted to fit our experimental data, including a motion 
correction procedure to resolve the undesired head movements in the 
fMRI sessions. 

In relation to fMRI data, the first 10 volumes were discarded for 
correction of the magnetic saturation effect, and the remaining volumes 
were slice-time corrected for temporal alignment. All voxels were 
spatially smoothed with a 6 mm FWHM isotropic Gaussian kernel, and 
after intensity normalization, a bandpass filter was applied between 
0.01 and 0.08 Hz [58], which was followed by the removal of linear and 
quadratic trends. Finally, the functional data were spatially normalized 
to the MNI152 brain template. 

T1-weighted images were reoriented to match the same axes as the 
templates, and a resampled AC-PC aligned image with six degrees of 
freedom (df) was created. All nonbrain tissue was removed to obtain an 
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anatomical brain mask that would be used to parcel and segment the T1- 
weighted image data. The use of DARTEL templates was ruled out since 
some previous analyses did not identify significant differences when 
using general templates. The final step involved registering our struc
tural imaging data to normalized space using the Montreal Neurological 
Institute reference brain based on the Talairach and Tournoux coordi
nate system [59]. Finally, during the sessions, a caregiver of the person 
evaluated focused on helping the participants avoid unnecessary 
movements, aberrant behaviors or lack of adherence to the instructions 
that could lead to exclusion. 

2.5. ROI’s 

The automated anatomical labeling (AAL) atlas [60] was used to 
define the ROIs. This atlas contains 45 cortical and subcortical areas in 
each hemisphere (90 areas in total), which are alternatively interspersed 
(available by request). To acquire the full signal of a given ROI, it was 
necessary to compute an average over the entire time series of all the 
voxels of a given brain area following the AAL atlas. In relation to the 
objective of the present study regarding the brain connectivity patterns 
in people with DS, we identified only the DMN. The posterior DMN 
subnetwork included the lateral parietal and middle temporal gyrus [61, 
62], as indicated in Table 1. This selection was justified based on two 
criteria. The first criterion is that this network represents the most basic 
functioning of the DMN; therefore, it should be the most sensitive 
structure of all the subareas that comprise the most extensive DMN 
network (Farràs-Permanyer et al., 2019). The second criterion refers to 
the computational difficulties derived from estimating such a large 
number of possible structural models, which imposes a series of re
strictions regarding the number of ROIs and networks to consider. 

2.6. Statistical analysis 

Once the images were preprocessed, correlation matrices were ob
tained between the 6 ROIs mentioned in Table 1 for each subject eval
uated. To avoid the aberrant effect of values in some especially high or 
low ROIs (outliers), the jackknife correlation was estimated. There are 
other simulation possibilities for estimating statistical significance, but 
for small samples, jackknife correlation is still recommended. This 
technique consists of calculating all the correlation coefficients between 
all the possible ROI pairs, and one of the observations is excluded on 
each occasion. The average of all the correlations for each ROI pair at
tenuates the effects of the outliers. Each jackknife correlation coefficient 
was estimated using the following expression: 

θ(ROIi,ROIj) = Jackknife Correlation Mean (ROIi,ROIj) =
1
n

∑n

k=1
ri  

where ri is Pearson’s correlation between each pair of ROIs and n is the 
sample number in which the correlations in each pair have been esti
mated by extracting the record (volume) i. The SE of each average was 
also estimated from the expression: 

SE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

n
∑n

i=1
(ri − θ)2

√

This allowed confidence interval estimation for each correlation 
coefficient. Selecting either the correlation coefficient obtained with the 
whole sample or the one obtained through jackknife estimation depen
ded on the bias value obtained. Bias was defined by the following 
expression: 

Bias = (n − 1) ∗ (θ − r̂)

For each correlation between ROIs, the bias value was obtained, and 
when it was close to 0, the average jackknife value was used. In cases in 
which bias was different from 0, the lower limit value of the confidence 
interval was used to avoid the probability of a type I error. To perform 
these analyses, the dist R library (3.6.3) was used. The different corre
lation matrices were used as input for the estimation of each SEM for 
each subject in both groups. 

In essence, the adjustment of all structural models was performed by 
minimizing the matrix (R − Σ). This expression involves the reproduc
tion (Σ) of the initial matrix of correlations (R) between ROIs observed 
distributions. In other words, the result shows the best possible model 
for each subject, taking into account the incorporation of the recursive 
and nonrecursive effects between ROIs and incorporating the lag effects 
already described. A much broader description of SEMs applied to this 
context can be found in Guàrdia-Olmos et al. [16], and thus, under 
certain conditions, the SEM is exactly the same as the DCM. The dif
ference in the current case, as already mentioned, is the incorporation of 
the dynamic effect. 

3. Results 

Table 2 shows the results of the adjustment models for each of the 
subjects analyzed according to the previously defined groups. It is 
important to highlight that this targeted classification offered a modu
larity value of 0.0139, which would indicate the nonexistence of other 
communities that were different from the two proposals, a group of DS 
persons and another group of control persons. 

Tables 3a and 3b show the number of parameters with statistically 
significant effects in each of the six ROIs considered and differentiated 
for each group—persons with DS and controls. Fig. 1 summarizes these 
results and presents the total number of statistically significant 
parameters. 

Table 1 
Relationship of ROIs for the construction of the DMN according to the AAL90 atlas and their spatial localization.  
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Given these results, concordances between the two groups were 
verified, especially regarding the variations in differential functioning of 
the effects related to ROI numbers 3 and 4 (Parietal_Left and Parie
tal_Lower_Right). Fig. 2 shows the characteristic SEM models of each 
group, taking into account the 22 subjects in each group at the same 
time. 

Given these results, two subjects from each group with better-fitting 
SEMs were selected as examples. These four models are shown in Fig. 3. 

Concerning the second proposed objective, the analysis described 
above was reproduced but without any directed classification. That is, 
we estimated the matrix of similarities among the 44 models to establish 
the number of detectable communities. The results showed a total of two 
communities, consistent with the number of groups defined (a control 
group and a DS group). Also, the modularity obtained in the nondirected 
classification was 0.0468, which would again indicate several commu
nities no greater than those found. 

Table 2 
Fit indexes of each SEM model.  

SUBJ χ2 df Ratio 
χ2/df 

Parameters estimated p value RMSEA SRMR NNFI CFI BIC AIC Log L Group 

1 191.8731 27 7.11 63 <.001 0.167 0.023 .910 .963 3414.03 3200.52 − 1537.26 PWDS 
2 218.4414 27 8.09 63 <.001 0.179 0.018 .899 .959 3274.80 3061.29 − 1467.64 PWDS 
3 241.6815 25 9.67 65 <.001 0.198 0.022 .897 .961 2376.82 2156.53 − 1013.26 PWDS 
4 168.9308 26 6.50 64 <.001 0.158 0.033 .919 .968 3377.41 3160.51 − 1516.25 PWDS 
5 225.2993 27 8.34 63 <.001 0.183 0.027 .884 .952 3763.02 3549.51 − 1711.75 PWDS 
6 227.5189 29 7.85 61 <.001 0.176 0.027 .922 .965 2058.62 1851.88 − 864.94 PWDS 
7 302.5942 28 10.81 62 <.001 0.211 0.036 .888 .952 2171.63 1961.51 − 918.75 PWDS 
8 218.4397 29 7.53 61 <.001 0.172 0.021 .922 .966 2365.59 2158.85 − 1018.42 PWDS 
9 231.1276 26 8.89 64 <.001 0.189 0.021 .889 .956 3263.38 3046.48 − 1459.24 PWDS 
10 338.1405 32 10.57 58 <.001 0.209 0.025 .873 .938 3036.03 2839.47 − 1361.73 PWDS 
11 174.5769 22 7.94 68 <.001 0.178 0.033 .909 .969 2857.04 2626.58 − 1245.29 PWDS 
12 340.9745 33 10.33 57 <.001 0.206 0.023 .903 .951 1651.15 1457.97 − 671.98 PWDS 
13 193.8546 31 6.25 59 <.001 0.154 0.030 .922 .963 3453.65 3253.70 − 1567.85 PWDS 
14 280.8342 31 9.06 59 <.001 0.191 0.019 .894 .950 2922.68 2722.73 − 1302.36 PWDS 
15 271.0832 30 9.04 60 <.001 0.191 0.034 .913 .960 1827.89 1624.55 − 752.27 PWDS 
16 299.5114 26 11.52 64 <.001 0.219 0.022 .892 .957 1589.88 1372.98 − 622.49 PWDS 
17 276.2692 32 8.63 58 <.001 0.186 0.016 .905 .954 2555.82 2359.26 − 1121.63 PWDS 
18 263.6547 28 9.42 62 <.001 0.196 0.021 .894 .955 2727.12 2517 − 1196.5 PWDS 
19 291.7739 25 11.67 65 <.001 0.220 0.017 .876 .953 2336.86 2116.57 − 993.28 PWDS 
20 275.042 35 0.79 55 <.001 0.177 0.036 .914 .954 2634.48 2448.08 − 1169.04 PWDS 
21 319.3598 37 8.63 53 <.001 0.186 0.024 .911 .950 2261.42 2081.80 − 987.90 PWDS 
22 417.0518 34 12.27 66 <.001 0.273 0.017 .796 .925 2847.41 2623.73 − 1245.86 PWDS 
23 197.524 28 0.71 62 <.001 0.166 0.044 .913 .963 3275.26 3065.14 − 1470.57 Control 
24 202.0626 32 6.31 58 <.001 0.155 0.024 .932 .967 2725.41 2528.84 − 1206.42 Control 
25 348.7178 36 9.69 54 <.001 0.199 0.024 .909 .950 1668.12 1485.11 − 688.55 Control 
26 209.3197 31 6.75 59 <.001 0.162 0.022 .905 .955 3883.22 3683.27 − 1782.63 Control 
27 334.9779 35 9.57 55 <.001 0.197 0.018 .906 .950 1986.09 1799.69 − 844.84 Control 
28 264.1082 36 7.34 54 <.001 0.170 0.014 .938 .966 1075.90 892.89 − 392.44 Control 
29 273.0015 35 7.80 55 <.001 0.176 0.036 .921 .958 2250.01 2063.61 − 976.80 Control 
30 232.3735 33 7.04 57 <.001 0.166 0.022 .922 .961 2763.95 2570.77 − 1228.38 Control 
31 192.4308 37 5.20 53 <.001 0.138 0.017 .940 .966 3204.28 3024.66 − 1459.33 Control 
32 254.8419 33 7.72 57 <.001 0.175 0.035 .928 .964 1754.87 1561.69 − 723.84 Control 
33 295.6647 35 8.45 55 <.001 0.184 0.018 .909 .952 2548.80 2362.41 − 1126.20 Control 
34 253.6002 35 7.25 55 <.001 0.168 0.022 .928 .962 2154.40 1968.00 − 929.00 Control 
35 263.7589 31 8.51 59 <.001 0.185 0.033 .921 .963 1679.04 1479.09 − 680.54 Control 
36 244.5833 39 6.27 51 <.001 0.155 0.014 .946 .968 1411.35 1238.51 − 568.25 Control 
37 322.3649 39 8.27 51 <.001 0.182 0.014 .916 .950 2215.97 2043.12 − 970.56 Control 
38 275.5027 35 7.87 55 <.001 0.177 0.017 .910 .952 2875.64 2689.24 − 1289.62 Control 
39 193.1305 31 6.23 59 <.001 0.154 0.028 .931 .968 2827.17 2627.21 − 1254.60 Control 
40 291.5398 39 7.48 51 <.001 0.172 0.027 .926 .956 2122.56 1949.71 − 923.85 Control 
41 307.095 31 0.99 59 <.001 0.201 0.028 .898 .952 2200.34 2000.38 − 941.19 Control 
42 291.1519 29 10.04 61 <.001 0.203 0.025 .889 .951 2597.86 2391.12 − 1134.56 Control 
43 334.1892 34 9.83 56 <.001 0.200 0.018 .905 .951 1843.28 1653.50 − 770.75 Control 
44 260.0007 39 6.67 51 <.001 0.160 0.049 .926 .956 2827.91 2655.07 − 1276.53 Control 

χ2 = chi square estimation; df = degree of freedom; a ratio of χ2/df > 3 indicates good fit; RMSEA = root mean square error adjusted (RMSEA ≈ 0 indicates a better fit); 
SRMR = standardized root mean residual (SRMR ≈ 0 indicates a better fit); NNFI = nonnormed fit index (NNFI > .90 indicates a better fit); CFI = comparative fit index 
(CIF > .90 indicates a better fit); BIC = Bayesian information criteria (smaller indicates a better fit); AIC = Akaike information criteria (smaller indicates a better fit); 
Log L = logarithm of maximum likelihood (ML) function (smaller indicates a better fit); PWDS = person with DS. 

Table 3a 
The number of statistically significant parameters in group number 1 of persons with DS.   

GROUP NUMBER 1  

ROI1 Lag ROI2 Lag ROI3 Lag ROI4 Lag ROI5 Lag ROI6 Lag ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

ROI1 22 0 22 3 2 5 0 0 22 3 2 6 
ROI2 22 22 5 22 1 3 22 0 5 22 2 4 
ROI3 2 3 22 22 7 1 2 2 0 22 7 2 
ROI4 2 0 1 22 1 0 1 0 1 0 1 0 
ROI5 1 6 6 1 22 22 4 5 6 2 0 22 
ROI6 1 0 2 22 4 22 1 0 4 22 2 0  
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These results imply that a total of 36 subjects (81.82 %) were 
correctly classified into two different groups: group number 1 consisting 
of individuals with DS (17) and group number 2 consisting of controls 
(19). In this case, the percentages of correct classification for each group 
were 77.27 % for the DS group and 86.36 % for the control group. 
However, 3 subjects in the control group were classified in the DS group, 
and 5 members in the DS group were classified in the control group. In 
addition, whether any of the sociodemographic variables could be 
related to the correct or incorrect classification was investigated. No 
statistically significant relationship was found that would allow us 
identify a systematic factor that would explain the correct or incorrect 
classification. Furthermore, it seems interesting that the percentage of 
correct classification was higher in the control group than in the DS 
group. We believe that the 9.09 % difference in correct classification 
between groups could be attributed to the fact that in the DS group, 
there is more intersubject variability that may make it difficult to 
recognize typical patterns for that group. However, the sample sizes do 
not allow for stronger explanations. 

The differences in the SEM structure for each group can be com
plemented with the analysis of the statistically significant effect values 
found in each subject. Each of the 44 adjusted models was analyzed 
(Table 2) and the concrete values of the parameters between ROIs were 
studied; consequently, some evidence on the density of effects in each 
subject and group was obtained. For this purpose, all the values of the 
standardized parameters were positive, and the following results were 
obtained. In the group of DS persons, 251 significant effects were ob
tained, whereas in the group of control persons, only 98 were obtained, 
which implies an OR = 2.56. This clearly indicates a greater number of 
effects in the DS group. In relation to the value of the estimated pa
rameters, in the DS group, the mean value was M = 3.49 (SD = 0.293), 
and in the control group, the mean value was M = 4.21 (SD = 0.296). 

The comparison between both means indicates a statistically significant 
effect [t = 2.054; df = 347; puni = .0205; 95 % CI difference = 1.41–3.05; r 
= .11], although with a smaller effect size. In relation to the charac
teristics of the effects, the values of the estimates were compared to 
evaluate synchronous effects and dynamic effects. The results indicated 
a total of 179 synchronous effects and 170 dynamic effects in lag 1. In 
this case, no statistically significant differences were found between 
these two types of effects in terms of parameter values (positivized) [t =
0.972; df = 347; p = .332]. In the case of synchronic effects, the average 
was M = 3.54 (SD = 0.28), and in the case of dynamic effects, M = 3.85 
(SD = 0.23). Finally, the possible interaction between groups and types 
of effects was analyzed by simple factorial ANOVA. The results indicated 
that there was no statistically significant effect on the interaction be
tween groups (F = 0.045; df = 1, 345; p = .832), so we must rule out 
differential effects between groups and effects. Therefore, between the 
two groups, differences were shown in the synchronous and dynamic 
effects associated with ROIs 3 and 4 and in the number of significant 
effects, which was greater in the case of the DS group, and that differ
ence was not related to the synchronous or dynamic effects that were 
similar between the two groups. Finally, the parameter values in the 
control group were somewhat higher than those in the DS group, with a 
much lower number of significant effects but a somewhat higher value. 
Fig. 4 shows the most distinctive effects of all those shown in Fig. 2 but 
identifies the brain areas included in the dynamic effects. The effects 
that are more repeated in each group were selected to facilitate the 
identification of the best effects. Fig. 4 shows the most frequent effects in 
both groups. 

4. Conclusions 

In this paper, we compared the results obtained in the adjustment of 

Table 3b 
The number of statistically significant parameters in the group of control persons.   

GROUP NUMBER 2  

ROI1 Lag ROI2 Lag ROI3 Lag ROI4 Lag ROI5 Lag ROI6 Lag ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

ROI1 22 2 2 1 2 2 0 1 2 1 3 2 
ROI2 22 22 1 3 1 1 22 0 0 3 1 1 
ROI3 2 1 22 22 3 2 3 3 0 22 4 2 
ROI4 1 2 1 22 5 3 1 3 2 0 4 4 
ROI5 0 1 2 1 22 22 0 1 1 2 0 22 
ROI6 4 1 1 2 0 22 4 1 0 2 0 0  

Fig. 1. The total number of statistically significant parameters detected in each of the two groups. Each column assumes the number of effects that each ROI receives, 
regardless of the original ROI, in a synchronous situation or lag 1. 
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dynamic SEMs (including the effects associated with lag 1) in two groups 
of people. One of them focused on DS persons, and the other focused on 
control persons. Both groups were paired by age and sex. The results 
were obtained with the GIMME library. Although the DS group showed 
more statistically significant effects (almost four times more effects of 
the control group), the impact effect was higher in the control group. 
There were no differences between the two groups concerning the 
number of synchronous or dynamic effects. Nevertheless, the structural 
differences between the global models of the two groups were associated 
with the presence of more effects between ROI numbers 3 and 4 in the 
DS group rather than the effects in the control group. These two ROIs 
imply the areas of the upper parts on the left and right, which indicates 

an asymmetrical effect in the synchronic estimation that is also man
ifested in the dynamic range defined in lag 1. 

Buckner et al. [32]Bonnelle et al. [33] and Kucyi & Davis [34] found 
that DMN functional connectivity is associated with cognitive brain 
function. These areas integrate the association cortex related to the 
processing of all spatially oriented and fine motor stimuli that arrive 
through visual information. This connection is evident when we see that 
there are more effects between ROIs 3 and 4 in the DS group than in the 
control group. This is to be expected in task-involved studies such as in 
Garrett et al. [52] and Liang et al. [53]; these authors inferred that an 
increase in such undirected tracking would be linked to poorer task 
performance during task stimuli and that a greater complexity 

Fig. 2. Path diagram representation of each group. Black paths are at the group level, green paths are at the subgroup level, and gray paths are at the individual level; 
the thickness of the line represents the count. 
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connectivity network, whether dynamic or static, would be expected. 
Through this study, we demonstrate that the same outcome is 

evident in a resting situation when comparing the DS group with a 
control group. This finding alludes that the connectivity patterns are 
different and that DS networks are more complex than control networks. 
Both of these characteristics are due to the existence of more significant 
effects in the DS group but with a lower value compared to that of the 
control group; the control group presents fewer effects but with a greater 
value than that of the DS group. Therefore, there is no difference con
cerning the synchronous effects following the dynamics. The difference 
between the DS group and the control group does not seem to be in the 
dynamic component; it seems to be more evident in the complexity 
component. 

By taking into account the models of each person with DS and the 
control group using the SEM technique, we demonstrated that the 
network pattern could be a biomarker that clarifies and helps to 
discriminate the different levels of cognitive competence. In this case, 
the differences were very extreme given the conditions between both 
comparison groups. It is important to take into account that this study 
was conducted with two comparison groups with large differences be
tween them. Therefore, it is important to initiate new studies with two 
groups that are not as different, mainly at the cognitive level. From our 
data, the very evident capacity to correctly distinguish between persons 
with DS and controls should be considered a good first step for the 
proposal of a biomarker based on the study of network complexity. The 
81.82 % of correctly classified individuals found in our data is a good 
principle, but only that. 

Furthermore, there was a sample percentage that was incorrectly 

classified (18.18 %), and we do not know what variables could explain 
this behavior. We should pay attention to these subjects in future studies 
to identify the cognitive properties and any other that could adequately 
describe the behavior of that blurred area between both groups. 

The limitations we encountered were evident in the type of analysis 
that the SEM technique is based on. On the other hand, it is difficult to 
compare brain structures between persons with DS and controls, not 
only for morphological reasons but also for functioning. The sample size 
was small, and this must be taken into account in excessive general
izations. Moreover, the control group was not a group registered using 
the same protocol. It was a group extracted from the Connectome project 
and was a possible source of noise. In this sense, it seems reasonable to 
ask whether the use of a control group matched by mental age (not by 
chronological age) could offer interesting results in relation to the type 
of dynamic connectivity studied here. Our experience is that the gen
eration of control groups matched by mental age implies, in general, 
such reduced mental ages that the comparison in neurofunctional and 
structural neural systems becomes difficult and is scarcely clarifying. 
However, this question should be addressed as soon as possible, and we 
expect to conduct a study between persons with DS and a control group 
matched by mental age that would confirm the results found here, since 
we understand that the question, in the case of people with DS, con
nectivity processes may be innately affected. 

Similarly, the 6 ROIs evaluated showed limited connectivity and 
therefore had a very small scope. We must solve computer-related 
problems to carry out larger studies with complete brain atlases. 

Apart from the above considerations, our data allowed us to identify 
the first results in the estimation of dynamic connectivity networks in a 

Fig. 3. Only two models from each group were selected to show the differences between adjusted SEMs. Red paths represent positive weights, and blue paths 
represent negative weights. Dashed lines denote lagged relations (lag 1), and solid lines are contemporaneous (lag 0). 
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sample of DS people. Furthermore, there was enough evidence to affirm 
that there is a differential pattern of dynamic connectivity between a 
sample of DS people compared to a sample of controls, and that this 
pattern suggests that DS persons show a more complex connectivity 
network than that of the control group. These results, in addition, sug
gest that the complexity of a connectivity network could be an efficient 
biomarker for discrimination between these groups. Obviously, these 
statements should be reserved for the people evaluated, and studies with 
a greater number of ROIs are required, with a much more exhaustive 
analysis of the mediating variables that can occur in a complex popu
lation such as in people with DS (attention levels, mood, other comorbid 
structures, etc.). Finally, although the sample in this study was small, it 
was in line with other papers published with similar and even lower 

sample sizes. 

Significance statement 

This work shows, for the first time, that the structure of a dynamic 
connectivity network can discriminate between a group of people with 
compromised cognitive functions and a group of controls. 
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