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Real networks are finite metric spaces. Yet the geometry induced by shortest path distances in a
network is definitely not its only geometry. Other forms of network geometry are the geometry of
latent spaces underlying many networks, and the effective geometry induced by dynamical processes
in networks. These three approaches to network geometry are all intimately related, and all three
of them have been found to be exceptionally efficient in discovering fractality, scale-invariance,
self-similarity, and other forms of fundamental symmetries in networks. Network geometry is also of
great utility in a variety of practical applications, ranging from the understanding how the brain
works, to routing in the Internet. Here, we review the most important theoretical and practical
developments dealing with these approaches to network geometry in the last two decades, and
offer perspectives on future research directions and challenges in this novel frontier in the study of
complexity.

Many existing analytical and computational tools
for the analysis of complex networks emerged from clas-
sical methods in statistical physics [1]. Over the last
two decades, these tools have proven essential for con-
structing models capable of reproducing the structural
properties observed in many real-world networks [2–4],
and for quantifying the importance of these properties
for collective and critical phenomena in networks [5–8].
Many other complementary approaches have been also
employed to study complex networks from different
perspectives [9–13] leading to novel fundamental in-
sights. One such approach is geometry, the focus of
this review.

The first evidence that complex networks possess
some nontrivial geometric properties appeared with
the discovery of their self-similarity under suitable
scale transformations [14]. Initially, fractal geometry
was a major reservoir of methods and ideas. Besides
boosting the study of transport phenomena in com-
plex media [15, 16], the fractal geometric paradigm
led to the definition of a reversible graph-theoretical
renormalization procedure that helped researchers to
classify networks into universality classes [17, 18], as
well as to better understand the growth mechanisms
underlying their temporal evolution [19].

Following the lines of this initial success, it was later
found [20] that network self-similarity can be explained
at a more fundamental level in terms of latent hyper-
bolic geometry [21]. This hidden metric space approach
was successful in explaining, within a unified frame-
work, the most common structural properties of many
real networks [20, 21], their navigability [22–25], and

∗ Corresponding author: mdedomenico@fbk.eu

their community [26–30] and multiscale [31] structures.
Since the group of symmetries of hyperbolic spaces is
isomorphic to the Lorentz group, the latent hyperbolic-
ity of networks was advocated to explain not only their
structural self-similarity, but also the dynamical laws
of their growth [32–34], establishing certain duality
relations [35] reminiscent of the AdS/CFT correspon-
dence.

In light of these advances, it is not surprising that
the geometric approach led to many useful practical
applications and novel theoretical insights. In the con-
text of information or epidemic spreading, for example,
the adoption of transport-based metrics and of the
corresponding diffusion geometries [36] is helping un-
folding the spatiotemporal evolution of network-driven
dynamical processes [37, 38], opening new research di-
rections [39, 40] in many neighboring areas of science.

Contextual to these lines of research, there have been
many other rapidly evolving research areas related to
network geometry. The overall result of these develop-
ments is unprecedented cross-fertilization among many
diverse fields of the natural sciences. This rapid in-
terdisciplinary progress suggests that now is about a
right time to ground a milestone in network geometry
research, from where to ponder on future challenges.

Here, we review three major research directions in
network geometry: the self-similar fractal geometry of
network structure (Sec. I), the hyperbolic geometry
of networks’ latent spaces (Sec. II), and the geometry
induced by dynamic processes, such as diffusion, in
networks (Sec. III). Distances are all different in the
three geometries, yet intimately related. They are,
respectively, the shortest-path distances, i.e. the hop
lengths of shortest paths in a network, the latent dis-
tances, i.e. the distances between network nodes in a
latent space, and the kinematic distances, e.g. emerg-
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(A) Shortest-path-distance renormalization. a) Demonstration of the box covering technique (reproduced with per-
mission from Ref. [14]). The original network (first column) is tiled with the minimum number of boxes of diameter `B –
using e.g. the Maximum Excluded Mass Burning (MEMB) algorithm [41] – which are contracted into supernodes (second
column) and then connected if at least one link existed between the “parent” tiles. This coarse graining is repeatedly applied
– though for a limited number of steps due to small-worldness – until the network is reduced to a single “ancestral” node. b).
Demonstration of the shortest-path-distance RG with `B = 2 applied to the entire WWW. The network’s structure remains
statistically invariant under the renormalization (see Fig. 1). (B) Degree-thresholding renormalization. a) Subgraphs
are obtained by removing all nodes with degrees below a given threshold kT . This defines a hierarchy of nested subgraphs that
are found to be self-similar in real complex networks. b) Data collapse of the clustering spectrum of the different subgraphs
for the Internet and Border Gateway Protocol graphs (left column) and their randomized versions preserving the degree
sequence (right column), for which the collapse is destroyed. The nice collapse of the clustering spectrum for real complex
networks finds a natural explanation in their underlying geometry [20]. (C) Geometric renormalization. a) Similarly to
A), the renormalization transformation zooms out by changing the minimum length scale from that of the original network to
a larger value, this time in the similarity space [31]. First, non-overlapping blocks of consecutive nodes are defined along the
similarity circle. Second, the blocks are coarse-grained into supernodes. Each supernode is then placed within the angular
region defined by the corresponding block so that the order of nodes is preserved. Finally, two supernodes are connected if
any of their constituents were in the precursor layer. b) Hyperbolic embedding of the human metabolic network and its
renormalized layer l = 2 [31]. The colours of the nodes correspond to the community structure detected by the Louvain
algorithm. Notice how the renormalized network preserves the original community structure despite being four times smaller.

Box: Zooming out on complex networks

ing from some spreading dynamics in a network such as
reaction-diffusion or random search processes. We con-
clude the review with a discussion in Sec. IV of current
advances in network geometry in a broader perspective,
focusing on the most interesting open challenges, both
theoretical and those that arise in applications, with
the aim of emphasizing their rising impacts in physics
and other fields of science.

Understood broadly, network geometry encompasses
a great variety of diverse research directions, many
of which are as important as the ones covered here,
thus deserving separate reviews. Therefore, in a short
review like this one, most of these directions must un-
fortunately be omitted. The most notable omissions
include spatial networks, quantum gravity, graph cur-
vature, geometrogenesis, graph embedding, topological
data analysis, topological graph theory, and Gromov’s
δ-hyperbolicity. However, at the end of Sec. IV we
briefly comment on some of these topics that we find
particularly important, promising, or intriguing.

I. FRACTAL GEOMETRY OF NETWORK
STRUCTURE

Self-similarity is a characteristic of certain geometric
objects, known as fractals [42], expressing the invari-
ance of their forms under rescaling. From snowflakes
and ferns to turbulent flows [43] or critical phenomena
near phase transitions [44, 45], this scale-free property
is ubiquitous among many natural systems, whose scal-
ing factors are typically defined by the distance of the
metric space in which they are naturally embedded.

In the context of complex networks, a similar dis-
covery was made, though referring to the absence of
a characteristic number of links k per node rather
than a length scale, as described by a fat-tailed de-
gree distribution of the form P (k) ∼ k−γ as k � 1,
with γ ∈ (2, 3). If, on one side, this scale-free (SF)
property hinted at the existence of some degree of
structural invariance under a suitable rescaling, the
equally ubiquitous small-world [2] property, i.e. an av-
erage distance ` between nodes growing logarithmically
or slower [49–51] with the system’s size N , contextu-
ally hindered this possibility—implying a diverging
Hausdorff dimension—and led to the common belief
that networks cannot be self-similar. Fortunately, this
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(A) Structural self-similarity (B) Transport theory

Fig. 1. A) Structural self -similarity. a) RG invariance of the WWW degree distribution and of its degree sequence (inset) for
different box diameters `B (courtesy of Ref. [14]). b) Degree-degree correlations measured in terms of E(k) ∼ k−(ε−γ) with ε > 1,
obtained by integrating the degree-degree distribution P (k, q) over q [46]. (Inset) RG invariance of E(k) for the Internet (router level)
with `B = 1 (adapted with permission from Ref. [47]). c) RG-scaling factors of the boxes’ sizes, their degree sequence s(`B) ≡ k′/k
(upper inset) and the hub-hub correlations E(`B) (lower inset), versus the boxes diameter `B (with permission, Ref. [48]). While
fractal networks (e.g. the WWW, open circles) feature well-defined dimensions dB , dk and de, non-fractal ones (e.g. Internet, filled
circles) show an exponential (or faster) decay, i.e. dB , dk →∞ and de → 0 (courtesy of Ref. [19]). d) Classification of self-similar
networks in the (γ, ε)-plane (adapted with permission from Ref. [47]). The lines εrand = γ − 1 and εhier = γ confine respectively
the region I of random models and the area of hierarchical SF graphs; the scaling identity ε = 2 + de/dk distinguishes non-fractal
(ε ≤ 2, region II) from fractal networks (ε > 2, region III). B) Transport theory. e) Data collapse of the resistance (top) and the
diffusion time (bottom) according to Eqs. (2) for the yeast PIN (open symbols) and the SHM model with e = 1 (filled symbols).
Different markers correspond to different ratios k1/k2, and different colors denote different values of k1 (with permission from
Ref. [15]). f) Comparison between Eq. (3) and simulated diffusion times (markers) in the PIN and SHM model with m = 3, e = 1
and x = 1, 2, 3 corresponding to ζ = 1, ln(3/2)/ ln 3, 0, respectively (with permission from Ref. [16]). g) Modularity vs transport in
real-world and SHM model networks in the (dw, dM ) plane (courtesy of Ref. [15]).

apparent contradiction proved to be a very prolific
problem, whose analysis throughout tools of fractal
geometry [52] has disclosed many fundamental insights
in the hidden symmetries, renormalization and univer-
sality classes of complex networks.

Shortest-path-distance scaling and dimensions. In
the graph theoretical sense, the number ` of edges
along any shortest path connecting two nodes is a
well-defined metric [53]. It is known as the shortest-
path distance or chemical distance [54, 55], and it can
be adopted to observe networks at different length
scales. In this respect, in a seminal paper by Song
et al. [14], it was shown that the process of zooming
out on networks can be performed analogously to that
of regular fractals by repeatedly coarse-graining the
structure through optimal coverings of nodes made by
non-overlapping boxes of diameter `B (Box, panel A).
Under this renormalization group (RG) transforma-
tion [56, 57], a surprisingly large variety of real-world
and synthetic networks remain statistically self-similar,
in the sense that their degree distribution [14] and
other mixing patterns [47] are invariant (Fig. 1a,b)
over the available length scales.

A primary consequence of this discovery was the
characterization of networks featuring self-similarity
through a set of fractal dimensions [58] intimately re-

lated to their multi-scale organization and functioning.
In what follows we review an essential selection of these
network dimensions and of their significance.

We start from two crucial quantities, i.e. the number
of boxes (supernodes) N ′ optimally covering a network
and their degree sequence {k′i}i=1,...,N ′ , where each
k′ corresponds to the degree of the hub contained in
the “parent” box. Performing an RG step, RB , these
quantities have power-law scaling

N
RB−−→ N ′ ∼ `−dBB N, k

RB−−→ k′ ∼ `−dkB k, (1)

where the exponents (dB , dk), called respectively the
box and degree dimensions, characterize the (RG-
invariant) SF degree distribution through the scaling
identity γ = 1 + dB/dk [14]. Besides unveiling a fun-
damental connection between SF and RG-invariant
properties, the fractal analysis above yields a bird-
eye view over the spectrum of different organization
mechanisms underlying self-similar networks, by iden-
tifying two limiting cases [59, 60]: i) fractal structures
when dB , dk are both finite and non-zero (e.g. biolog-
ical systems, the WWW or social networks), and ii)
small-worlds when dB , dk → ∞ (e.g. the Internet at
the router level, or synthetic networks), implying an
exponential decay (Fig. 1c) instead of Eq. (1).
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A more comprehensive picture is reached after an-
alyzing structural fractality in terms of the different
profiles of networks’ degree-degree correlations [14, 61].
Fractal networks, in fact, feature a strong “hub-hub
repulsion” which leads to disassortative structures,
with hubs spread uniformly instead of being crum-
pled in a core as in pure small-worlds. In light of
their RG-invariance [47], these correlation patterns
can be bridle by a hub-hub dimension de defined
by the scaling factor E(`B) ∼ `−deB which accompa-
nies the probability that two RG-boxes are connected
through their hubs (Fig. 1c, lower inset). Scaling
arguments analogous to those adopted for the triple
(dB , dk, γ) allow here to bridge the correlation expo-
nent ε > 1—defined by the degree-degree distribu-
tion P (k, q) ∼ k−γ+1q−ε—to the hub-hub dimension
through the identity ε = 2 + de/dk [47]. These results
allow to classify a large variety of networks according
to RG-invariant properties related to their large-scale
organization, as shown in the (γ, ε) phase diagram in
Fig. 1d.

One last, yet essential feature of networks’ fractal ge-
ometry is the existence of a larger group of self-similar
symmetries leaving their meso-scale organization invari-
ant. The RG transform, in fact, identifies a hierarchy
of modular configurations into which networks can be
optimally partitioned at increasing length scales. The
scale-invariance of this tiling can be quantified via the
power-law scaling Q(`B) ∼ `dMB [15, 62], where dM is
called the modular dimension and Q(`B) is a modu-
larity factor [63, 64] maximized by the box covering.
In particular, the value dM = 1 (characterizing regu-
lar lattices) identifies the borderline case separating
modular structures (dM > 1, typical of e.g. biological
network) from non-modular ones (dM < 1), signaling
increasing levels of small-worldness for decreasing val-
ues of dM . We will see in what follows that dM , unlike
the other “structural” dimensions, is directly connected
to other dynamical exponents (Fig. 1g) characterizing
transport in complex media.

Networks’ functionality and evolution. If on the
one hand the shortest-path-distance RG enabled to
place on more fundamental grounds the networks’ mix-
ing patterns, on another one it raised several puzzles
of interpretation [65]. Besides questioning the func-
tional significance encoded in the modules detected
by the RG, it soon proved impossible to understand
their emergence in terms of popular mechanisms of net-
work growth [66] like e.g. the “rich-get-richer” principle
of preferential attachment (PA), or the “democratic”
wiring of Erdős-Rényi (ER) networks, which are gen-
erally dominated by small-worldness.

The first issue was soon clarified by analyzing di-
verse biological networks [15, 19, 62], where the RG
transform has led to identify hierarchies of modules
closely related to their known biochemical annotations,
with a resolution as accurate as that of other clus-
tering algorithms [4, 63, 64]. This is probably best
manifested in Ref. [62], where the RG analysis has
enabled researchers to develop the very first integrated
multiscale-view of the network of human cell differen-
tiation, raising the possibility of identifying hitherto
unknown functional relations between previously unre-

lated cellular domains.
The problem of growth, instead, has been elegantly

solved by rooting on the observation that modular net-
works are also fractal (though the converse is not nec-
essarily true). Building on this property, Song, Havlin
& Makse (SHM) formulated [15, 19] a multiplicative
process of network growth whose dynamics follow the
inverse of the shortest-path-distance RG transform
(Fig. 2a, b), where hubs acquire new connections by
linking preferentially with less connected nodes under
the noisy appearance (as exemplified in the Watts-
Strogatz model) of randomly placed shortcuts. The
net result is that hubs are deep buried into modules
whose low-degree nodes are the inter-module connec-
tors, resulting into SF networks which are fractal and
modular up to a cut-off scale above which they become
global small-worlds (Fig. 2e). The SHM model repre-
sents a theoretical benchmark for understanding the
self-similar patterns observed in real-world systems in
terms of the microscopic growth rates controlling their
dynamics [46], and it has raised important evolution-
ary implications. Besides highlighting the evolutionary
drive of many biological networks [19] towards fractal
modular structures—which maximize their robustness
against random failures [67]—the SHM model has led
to uncover the inherently fractal geometric nature
of the duplication-divergence mechanisms, suggesting
that fractality and multiplicative growth are essential
features of biological network evolution. A notable
result in this respect has appeared in Ref. [68], where
the present day structures of different protein-protein
interaction networks (PINs) have been successfully
reconstructed (Fig. 2c) starting from their primitive
ancestors identified via the shortest-path-distance RG
technique.

Transport in self-similar media. Discovering the
fractal geometry of networks has also had significant
implications in the study of transport in complex me-
dia, a notoriously hard theoretical problem [70]. The
existence of an underlying self-similar symmetry, in
fact, allows to circumvent (at least at first glances) the
search for exact solutions and to attack the problem
by means of scaling arguments. A first result in this
direction was presented in Ref. [15], where Gallos et
al. raised evidences about the scale-invariant forms
featured by the mean-diffusion time, T ∼ `dw , and the
average resistance, R ∼ `ζ , experienced by a blind ant
traveling a shortest-path-distance `, where dw and ζ
are respectively called the walk and conductivity di-
mensions [71] of the underlying media. Combining
these relations with Eqs. (1), the observables T and
R re-scale respectively as T ′/T ∼ (N ′/N)dw/dB and
R/R′ ∼ (N ′/N)ζ/dB under RG transformations. A
direct evaluation of dw and ζ in biological and syn-
thetic (SHM) networks with finite box dimension dB ,
reveals [15] that the triple (dB , dw, ζ) obeys the Ein-
stein identity [72] ζ = dw−dB , elegantly relating static
and dynamic properties of transport in complex media.
Thanks to this insight, it proved possible to predict
the dependence of T and R on microscopic network
features—e.g. nodes’ degrees and chemical distance
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(A) Evolution (B) Shortest-path-distance RG flow & Complex network universality classes

Fig. 2. A) Evolution. a) Demonstration of network evolution as inverse of the shortest-path-distance RG procedure (Box A); the
arrow of time increases from right to left. b) Seeds of the SHM model for network growth [19]. At each step and for every link, a
node produces m offsprings. The original link is then removed with probability e, and x new links between randomly selected nodes
of the new generation are added. Illustration: m = 3, e = 1. While e tunes between pure fractals (e = 1) and pure small-worlds
(e = 0), x rules the degree of modularity, so that x = 1 yields tree-like structures and shortcuts among modules appear for x > 1.
c) Phylogenetic tree showing the evolutionary path of the S. cerevisiae PIN network, reconstructed by combining the SHM model
with the RG process (adapted with permission from Ref. [68]). Nodes’ colors represent different functional categories. B) RG flow
and universality. d) Fractal to small-world transition, obtained by randomly rewiring a fraction prev of the total number of links.
While modularity is rapidly lost, small-worldness is rapidly gained, emphasizing the trade-off between these network phases (courtesy
of Ref. [69]). e) Crossover from the power-law scaling in Eq. (1) to an exponential decay in fractal networks upon the random
addition of shortcuts according to the probability P (`) = A`−α. f) RG-flow diagram in the space of configurations (reproduced with
permission, Ref. [18]). In the stable phase (s ≡ α/dB > 2) the RG flows towards the fractal fixed point, while in the unstable phase
(s < 2) it flows towards a complete graph. For s ' 2 the scaling has an exponential cut-off at a characteristic scale (reflected in
e)) indicating that the network is a global small-world and a fractal at small length scales. g) Phase diagram and universality.
The stability analysis of the RG-flow (enshrined in the stability exponent λ) leads to Eqs. (4)–(5), in terms of which a navigability
(s = 1) and a fractal to small-world (s = 2) thresholds are identified, leading to a classification of real-world complex networks in the
space of network configurations (courtesy of Ref. [18]).

between them—leading to the scaling relations

T (`; k1, k2) = k
dw/dk
2 fT

(
`/k

1/dk
2

)
,

R(`; k1, k2) = k
ζ/dk
2 fR

(
`/k

1/dk
2

)
,

(2)

where fT,R are scaling functions, finding excellent agree-
ment with the collapse of real–world networks data
(Fig. 1e). A more complete scenario with respect to
the above has appeared in Ref. [16], where a general
theory of transport in complex media was developed
based on the assumption of self-similarity, culminating
in the exact, finite-size expression

T (`) ∼
{
N
(

a + sgn(ζ)b`ζ
)
, ζ ≷ 0,

N
(

a + b ln `
)
, ζ = 0,

(3)

where a, b are positive constants. Eq. (3) describes
a universal scaling law for transport in complex me-
dia [73] having a finite box-dimension (Fig. 1f).

Besides the theoretical importance, these results
have offered new methods of fractal geometry to relate

the kinetics of transport-limited processes in real-world
systems to their interaction topologies. Eqs. (2), in
particular, allows bridging the degree of modularity of
networks to their efficiency of transport [15]. This is
best epitomized by the identity dw = 1 + dM (Fig. 1g)
which shows how high levels of modularity (dM > 1)
generally result into sub-diffusive dynamics (dw > 2).
This simple result has had significant implications
in e.g. the characterization of the flux responses of
metabolites [15], the community detection in global
small-world social networks [74], and it has provided
intriguing ideas for addressing the long-standing co-
nundrum of the highly modular yet globally optimal
organization of functional brain networks [69, 75]. We
will return to this topic in Sec. II and later in the dis-
cussions, when addressing the problem of the geometric
routing and organization of the human brain.

RG-flow. The repeated application of the shortest-
path-distance RG transformation, Rb, identifies a flow
in the space of graph configurations which, much like
the case of critical phenomena [56, 57, 76], enables a
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classification of network topologies into universality
classes. Scale-invariance and self-similarity, in fact, are
natural symmetries featured by the fixed points of the
RG flow, whose stability against small perturbations
enshrines universal features.

A preliminary study aiming at exploring this direc-
tion was carried out by Radicchi et al. in Ref. [17]. In
this work, a generalization of finite-size scaling meth-
ods was introduced for analyzing the RG-flow beyond
the limiting constraint of a few RG-steps due to the
networks’ small-worldness. Scrutinizing a large set of
real-world and artificial networks [77], a coherent pic-
ture about their stability under the RG flow emerged
after looking at their fluctuation (γ′) and correlation
length (ν) critical exponents [78]. While ν = γ′ = 2
in every small-world network (say, ER graphs, Watts-
Strogatz networks, the PA model, etc.), different val-
ues of the couple (ν, γ′) were shown to be featured
by different fractal structures (e.g. the SHM model,
Apollonian networks, percolating clusters, etc.). For
the SHM model, in particular, one can prove [77] that
ν = γ′ = 1 for every SF exponent, while ν = γ′ = 2
after any arbitrarily small random rewiring, suggest-
ing that fractal topologies are indeed unstable fixed
points of the shortest-path-distance RG flow. For in-
creasing fractions of randomly drawn shortcuts, in
fact, fractal networks rapidly crossover to more and
more compact architectures (Fig. 2d) having weaker
and weaker modularity. This leads to networks whose

fractal scaling ¯̀ ∼ N0
1/dB is observed only up to a

certain cut-off length-scale before a global small-world
behavior ¯̀∼ lnN0 is found, as depicted in Fig. 2e.

These promising results have prepared the ground
for the firm RG theory presented in Ref. [18], which ele-
gantly elucidates the universal features underlying the
fractal to small-world transition in complex networks.
In this work, Rozenfeld et al. have showed that adding
shortcuts to a fractal network G0 with a probability
p(`) = A`−α, where A is a normalization constant,
brings the RG trajectories either to converge towards
G0 or to transform it into a complete graph—a trivially
stable fixed point of the RG-flow—depending on the
value of the exponent α > 0. To quantify these ideas,
the authors focused on the renormalized distribution
of shortcuts after one RG step which, in the formal
limit of `B →∞, leads to the fixed point equation

p∗(`) ≡ 1− lim
x→∞

exp
[
− C(`)x2dB/α−1

]
, (4)

where C(`) ≡ A2dB/α`−2dB and x ≡ A−1(`B`)
α.

Eq. (4) has three distinct solutions (Fig. 2f), depending
on the value of the parameter s ≡ α/dB :

• if s > 2, then p∗(`) = 0 and the RG-flow con-
verges again towards the fractal network G0;

• if s < 2, then p∗(`) = 1 and the RG-flow con-
verges towards the complete graph fixed point;

• if s = 2, then the RG-flow has one non-trivial sta-
ble fixed point G′, consisting of G0 dressed with
shortcuts following p∗(`) = 1− exp(−A`−2dB ).

To gain further insights into these three network
phases, the authors analyzed the flow of the differ-
ence zb − z0 between the average degrees in G0 and in

the renormalized network Gb = Rb(G′). They found
that zb − z0 = (z′ − z0)D(xb) where, in the thermody-
namic limit, the function D(xb) scales with the relative
network size as D(xb) ∼ xλb and the RG exponent λ
depends on the shortcut exponent α as

λ =

{
1, if s ≤ 1,

2− s, if s > 1.
(5)

As summarized in Fig. 2g, Eq. (5) identifies two tran-
sitions in the space of network configurations: i) a
small-world to fractal transition at s = 2, equivalently
at α = 2dB , separating the stable (λ < 0, s > 2) phase
of compact topologies from the unstable phase (λ > 0,
s < 2) of modular structures; ii) a navigability transi-
tion at s = 1, equivalently at α = dB, identifying the
network analogue of Kleinberg’s optimal point [79].

Besides raising theoretical questions regarding the
characterization of these configurational transitions,
the RG theory sketched above provides an indirect
method for extracting information about the distribu-
tion of shortcuts in fractal real-world networks – a cru-
cial ingredient for understanding information flow and
optimal search [80] – and to determine their approxi-
mate location in the space of network configurations.
The results of this analysis applied to the WWW, the
metabolic network of E. coli, a yeast protein interac-
tion network (PIN), the actors network of IMDB, and
the protein homology network (PHN), are depicted
in Fig. 2g. The results show, in particular, that the
WWW (Fig. 1c) is fractal up to a given length scale,
but it is also sufficiently randomized for hosting an op-
timal flow, as manifested by its proximity in the (λ, s)
plane to the navigability threshold. As we will see in
the next section, a profound discovery unveiling the
latent geometricity of complex networks has further
deepened our understanding about their navigability
and optimal routing, providing unfamiliar perspectives
in the study of networks’ structure and function.

II. HYPERBOLIC GEOMETRY OF
NETWORK LATENT SPACES

The previous section deals with self-similarity and
fractal properties of the structure of real-world net-
works. There exist deep connections between self-
similarity and hyperbolic geometry that have been
well explored in mathematics [81–83]. One connection
goes via the observation that any Gromov-hyperbolic
space has a boundary at infinity which is always a
self-similar metric space [83]. Another connection is
that self-similar groups can be always represented as
the groups of automorphisms of trees, which are the
simplest example of discrete hyperbolic spaces [82].
The connections between hyperbolicity and self-similar
sets, fractals, and similar objects goes also through
the idea that rescaling is (approximately) an isometry
transformation in (coarse) hyperbolic geometry [84].

Yet hyperbolic geometry turned out to be not the
geometry of the observable structure of real-world
networks discussed in the previous section, but the
geometry of their latent spaces that we discuss next.
The two geometries turned out to be intimately related
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because network paths that follow hyperbolic geodesics
in the latent space are shortest paths in the network
with high probability [21, 22, 85, 86]. Whenever this
happens, we say that the network is congruent with
its underlying latent geometry.

Models. Latent spaces have been employed for
nearly a century to model homophily in social net-
works [88–90]. In these models, nodes are positioned
in a similarity space, while connections between them
are random, but they are the more likely, the closer
the two nodes in the space, i.e. more similar nodes are
more likely to be connected.

These models are known as (soft) random geometric
graphs in mathematics, where they have been exten-
sively explored [91]. In the simplest random geometric
graph model, n nodes are placed uniformly at random
on the interval [0, n] with periodic boundary condi-
tions, i.e. the circle S1. The node pairs are then con-
nected if the distance between them on the circle is
less than a parameter µ > 0 controlling the average
degree (〈k〉 = 2µ). The model yields networks with
non-vanishing clustering (〈c〉 = 3/4) and average short-
est path length that scales linearly with network size.
These networks are thus large worlds.

From the statistical physics perspective, this sim-
plest possible latent-space network model is the zero-
temperature (β →∞) limit of a more general entropy-
maximizing probabilistic mixture of grand canonical
ensembles with the Fermi-Dirac probability of connec-
tion between nodes i and j:

pij =
1

eβ(εij−µ) + 1
. (6)

In this ensemble, edges are fermions with energies

εij = f(xij), (7)

where f(xij) can be any function of distances xij be-
tween nodes on the circle, β is the inverse of the temper-
ature fixing the average energy, and µ is the chemical
potential controlling the expected number of particles-
edges and thus the average degree.

A choice of f(x) defines network properties in the
ensemble, and it was shown in [92] that the necessary
and sufficient conditions for networks in the model
to be sparse small-worlds with non-vanishing cluster-
ing, are f(x) ∝ lnx and β ∈ (1, 2). More precisely, if
f(x) ∝ lnx, then clustering in the n→∞ limit is zero
for β ≤ 1, but an increasing positive function of β > 1,
while networks are small-worlds whenever β < 2.

The distribution of node degrees in such models
is homogeneous, but it can be modified to yield any
degree distribution. This modification sets the edge
energy given in Eq. (7) to

εij = ln
xij
κiκj

, (8)

and hence the connection probability in Eq. (6) to

pij =
1

1 + χβij
=

1

1 +
(

xij
µ̂κiκj

)β , (9)

where κi is the expected degree of node i = 1, . . . , n in
the ensemble [20], known as the S1 model (Fig. 3a) and

µ̂ a constant fixing the average degree. The values of
parameters κi can be either fixed or random, sampled
from any desired distribution. If they are sampled
from the Pareto distribution ρ(κ) = (γ − 1)κγ−1

0 κ−γ ,
the resulting degree distribution is Pareto-mixed Pois-
son [93], which for k � 1 is a power-law P (k) ∼ k−γ
observed in many real-world networks [94]. Clustering
is still zero for β ≤ 1 and an increasing positive func-
tion of β > 1. The definition of edge energy in Eq. (8)
combines the popularity (degrees κi) and similarity
(distances xij) dimensions into a single measure, while
the connection probability takes the gravity law form
in Eq. (9) decreasing with the similarity distance xij
and increasing with the popularity product κiκj .

The map

κ 7→ y = κ2 (10)

places all nodes i at coordinates (xi, yi), xi ∈ R, yi >
κ2

0, in the upper half-plane model of the hyperbolic
plane H2 [95] that has a long history in relation to
networks [81, 96–101]. If ρ(κ) is Pareto with γ = 3,
then nodes are distributed uniformly on the hyperbolic
plane where the metric is ds2 = (dx2 + dy2)/y2. The
group of distance-preserving isometries of the half-
plane is isomorphic to the Lorentz group SO(1, 2).
The Lorentz boosts, i.e., hyperbolic rotations in the
3-dimensional Minkowski space, act on the upper half-
plane as space-rescaling transformations x 7→ x′ = ξx,
y 7→ y′ = ξy, where ξ > 0 [102]. The energies

εij = ln
xij
κiκj

= ln
xij√
yiyj

(11)

are thus manifestly invariant, and so is the model,
with respect to rescaling Lorentz boosts, which form
a noncompact subgroup of all isometries of the hy-
perbolic plane. However, the model is not invariant
with respect to all isometries of the full Lorentz group
since energy is not exactly a function of the hyperbolic
distance, and so neither is the connection probability.

This problem is fixed in a slightly different but
asymptotically equivalent model [21] defined by the
map

κ 7→ r = R− 2 lnκ, (12)

where R = 2 ln (n/c) and c is the parameter controlling
the average degree. This map places nodes i at polar
coordinates (ri, θi), θi = 2πxi/n, on the hyperbolic
disc of radius R in the hyperboloid model of the hy-
perbolic plane with metric ds2 = dr2 + sinh2 r dθ2 [95]
(Fig. 3b). The edge energy becomes

εij =
1

2

(
ri + rj + 2 ln

θij
2

)
≈ 1

2
dij , (13)

where θij and dij are the angular and hyperbolic dis-
tances between the two nodes. The approximation
holds for a fraction of node pairs that converges to 1
in the n→∞ limit [21]. With this approximation the
connection probability reads

pij =
1

1 + e
β
2 (dij−R)

. (14)
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tion between nodes i and j:

pij =
1

e�("ij�µ) + 1
. (7)

In this ensemble, edges are fermions with energies

"ij = f(xij), (8)

where f(xij) can be any non decreasing function of
distances xij ⌘ |xi � xj | mod n/2 (xi, xj 2 [0, n])
between nodes on the circle, � is the inverse of the
temperature fixing the average energy of the networks,
and µ the chemical potential controlling the expected
number of particles-edges. A choice of f(x) defines
network properties in the ensemble [? ]. Specifically,
if function f(x) grows faster than logarithmically, the
networks are large worlds with nonzero clustering for
any value of �, including � ! 1 corresponding to
standard random geometric graphs [77]. If f(x) grows
slower than logarithmically, the networks are small
worlds, meaning the average shortest path lengths
in them grows logarithmically with n, but they have
vanishing clustering in the limit n ! 1, as in the
Erdős-Rényi random graphs. Only if f(x) / ln x and
� 2 (1, 2), the networks are sparse small worlds and
have non-vanishing clustering at the same time [? ].

The distribution of node degrees in such models is ho-
mogeneous, but it can be modified to yield any degree
distribution—in particular, power-law distributions
ubiquitous in real-world networks. This modification
adjusts the edge energy to

"ij = ln
xij

ij
, (9)

and hence the connection probability to

pij =
1

1 + ��
ij

=
1

1 +
⇣

dij

µij

⌘�
, (10)

where i is the expected degree of node i = 1, . . . , n
in the ensemble, known as the S1 model [78], Fig. 4.
The values of parameters i can be either fixed or
random, sampled from any desired distribution. If
they are sampled from the Pareto distribution ⇢() =
(� � 1)��1

0 �� , the resulting degree distribution is
Pareto-mixed Poisson, which is asymptotically a power
law P (k) ⇠ k�� for k � 1 [79]. The definition of edge
energy in Eq. (9) combines the popularity (degrees i)
and similarity (distances xij) dimensions into a single
measure, while the connection probability in Eq. (7)
takes a gravity law form with masses i,j—the prob-
ability of connections decreases with the similarity
distance xij , and increases with the popularity prod-
uct ij . Notice that introducing degree heterogeneity
preserves the maximum-entropy property, so that the
S1 model is the only entropy maximizing ensemble that
can produce sparse heterogeneous networks with the
small world property, nonzero clustering, and degree-
degree uncorrelated [? ].

The average clustering in the model is a monoton-
ically growing function of � and its limiting behav-
iors are also described in [? ]. For any �  1, the
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Fig.4: Models of networks in latent geometries (figure
from [? ]). a— Model S1.The similarity distances da between
pairs of nodes A1-A2, B1-B2 and C1-C2 –given by their angular
separation along the circle– have been highlighted. The size
of a node is proportional to its hidden degree . b— Model
H2 in the hyperbolic plane. Nodes in the di↵erent pairs are
separated by the same hyperbolic distance. Nodes are equally
sized but nodes with higher hidden degree are positioned closer
to the centre. The similarity distance is the same in the two
representations.

clustering is zero in the thermodynamic limit. For
� � 1, the clustering grows from zero at � = 1 to
its maximal possible value (allowed by the degree
distribution constraints) at � ! 1, i.e., zero tem-
perature T = 1/�. In the opposite � ! 0 limit
of infinite temperature, the model loses any depen-
dence on distances xij since the connection probabil-
ity in Eq. (7) with energy in Eq. (9) converges to
pij = 1/(hin/ij + 1) ⇡ min(1,ij/hin). The
model thus converges to the hypersoft version of the
configuration model [80–82], which defines maximum-
entropy random graphs with a given degree distribu-
tion [79], and which is asymptotically equivalent to
a soft version of preferential attachment admitting a
Hamiltonian dynamics formulation with energy defined
by is [22]. If ⇢() is Pareto, then the � ! 1 limit
corresponds to the reduction of energies in Eq. (9) back
to ln xij , recovering homogenous geometric networks.
If both exponent � and temperature T = 1/� tend to
infinity, the limit is the Erdős-Rényi graphs. Degree
heterogeneity, that is, finite values of �, has an impor-
tant e↵ect on the small-world property: the networks
are small worlds whenever � < 2 or 2 < � < 3 [78].
Real-world networks are typically in the range of � < 3.
The corresponding networks in the model are thus
small worlds regardless of the value of �, which can
be set to any value to match the observed cluster-
ing. All these results have been extended to arbitrary
compact manifolds of arbitrary dimension as a simi-
larity space, as long as their curvatures vanish in the
thermodynamic limit [? ].

If � > 1 and ⇢() is Pareto, the map  7! y = 2

places all nodes i at coordinates (xi, yi), xi 2 R,
yi > 2

0, in the upper half-plane model of the hy-
perbolic plane [83]. If � = 3, then nodes are dis-
tributed uniformly there according to the hyperbolic
metric ds2 = (dx2 + dy2)/y2. The group of distance-
preserving isometries of the half-plane is isomorphic to
the Lorentz group SO(1, 2). The Lorentz boosts, i.e.,
hyperbolic rotations in the 3-dimensional Minkowski
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where f(xij) can be any non decreasing function of
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between nodes on the circle, � is the inverse of the
temperature fixing the average energy of the networks,
and µ the chemical potential controlling the expected
number of particles-edges. A choice of f(x) defines
network properties in the ensemble [? ]. Specifically,
if function f(x) grows faster than logarithmically, the
networks are large worlds with nonzero clustering for
any value of �, including � ! 1 corresponding to
standard random geometric graphs [77]. If f(x) grows
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worlds, meaning the average shortest path lengths
in them grows logarithmically with n, but they have
vanishing clustering in the limit n ! 1, as in the
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in the ensemble, known as the S1 model [78], Fig. 4.
The values of parameters i can be either fixed or
random, sampled from any desired distribution. If
they are sampled from the Pareto distribution ⇢() =
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0 �� , the resulting degree distribution is
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law P (k) ⇠ k�� for k � 1 [79]. The definition of edge
energy in Eq. (9) combines the popularity (degrees i)
and similarity (distances xij) dimensions into a single
measure, while the connection probability in Eq. (7)
takes a gravity law form with masses i,j—the prob-
ability of connections decreases with the similarity
distance xij , and increases with the popularity prod-
uct ij . Notice that introducing degree heterogeneity
preserves the maximum-entropy property, so that the
S1 model is the only entropy maximizing ensemble that
can produce sparse heterogeneous networks with the
small world property, nonzero clustering, and degree-
degree uncorrelated [? ].
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separated by the same hyperbolic distance. Nodes are equally
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clustering is zero in the thermodynamic limit. For
� � 1, the clustering grows from zero at � = 1 to
its maximal possible value (allowed by the degree
distribution constraints) at � ! 1, i.e., zero tem-
perature T = 1/�. In the opposite � ! 0 limit
of infinite temperature, the model loses any depen-
dence on distances xij since the connection probabil-
ity in Eq. (7) with energy in Eq. (9) converges to
pij = 1/(hin/ij + 1) ⇡ min(1,ij/hin). The
model thus converges to the hypersoft version of the
configuration model [80–82], which defines maximum-
entropy random graphs with a given degree distribu-
tion [79], and which is asymptotically equivalent to
a soft version of preferential attachment admitting a
Hamiltonian dynamics formulation with energy defined
by is [22]. If ⇢() is Pareto, then the � ! 1 limit
corresponds to the reduction of energies in Eq. (9) back
to ln xij , recovering homogenous geometric networks.
If both exponent � and temperature T = 1/� tend to
infinity, the limit is the Erdős-Rényi graphs. Degree
heterogeneity, that is, finite values of �, has an impor-
tant e↵ect on the small-world property: the networks
are small worlds whenever � < 2 or 2 < � < 3 [78].
Real-world networks are typically in the range of � < 3.
The corresponding networks in the model are thus
small worlds regardless of the value of �, which can
be set to any value to match the observed cluster-
ing. All these results have been extended to arbitrary
compact manifolds of arbitrary dimension as a simi-
larity space, as long as their curvatures vanish in the
thermodynamic limit [? ].

If � > 1 and ⇢() is Pareto, the map  7! y = 2
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Fig. 3. Networks in latent geometry. a–b) Models. a) Model S1 (one-dimensional sphere). The S1 distances da between
pairs of nodes A1-A2, B1-B2 and C1-C2 are highlighted. The size of a node is proportional to its expected degree κ. b) Model H2

(two-dimensional hyperbolic disk). All the shown pairs of nodes are at the same hyperbolic H2 distance, highlighted. Higher-degree
nodes are positioned closer to the centre. The angular S1 distances between the corresponding node pairs are the same in a and b.
c) Critical Gap Method (CGM). Nodes are partitioned into different groups separated by void angular gaps. The modularity
of the partition is computed by comparing the number of links within the communities (purple links) to the number of links
between nodes in different communities (green links). The partition with the highest modularity is selected. d–f) Embeddings of
real networks and their community organization. d) Metabolic network of bacterium E. coli [87]. Yellow circles represent
reactions whereas blue squares are metabolites. The name of a pathway is located at the average angular position of all the reactions
belonging to it. e) Internet at the Autonomous Systems level [86]: The name of each country is located at the average angular
position of its Autonomous Systems. f) World trade map in 2013 [27]: Different node colors correspond to different communities
detected by the CGM method. g–i) Geometric routing. g) Finding a path from A to F in the network is done step-by-step. The
source node A first checks which one of its neighbors in the network, B or C, is closer to the destination node F in the underlying
geometry, where the geodesics are shown by the dashed curves. Node C is closer, so that it is the next hop on the path from A to F .
Node C then performs similar calculations to find that D is closest to F among its network neighbors A,B,D, so that D is the
next hop after C, and also a penultimate hop because it is a neighbor of F . h) Proximity of shortest paths in hyperbolic networks
to hyperbolic geodesics. The blue arrows show the paths that geometric routing finds between a couple of source-destination
pairs in a hyperbolic network. The found paths are also the shortest paths in the network in terms of the number of hops. The
hyperbolic geodesics between the corresponding sources and destinations in the hyperbolic plane are shown as the dashed red curves.
i) Navigation skeleton of the human brain [23]. The structural network of the human brain with links colored depending on whether
they belong (magenta) or do not belong (cyan) to the minimal network that enables maximal navigability in the brain.

If ρ(κ) is Pareto with γ = 3 and β →∞, the model
has the simplest formulation: sprinkle n points uni-
formly at random over a hyperbolic disc of radius R,
and then connect all pairs of points located at distance
dij < R from each other. Fig. 3b shows the equiva-

lence between the S1 model and this H2 representation.
Since energy is a function of the distance in Eq. (13),
the model is fully Lorentz-invariant in the n → ∞
limit for any β.

The latent space in the model does certainly not
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have to be the circle S1. It can be any compact homo-
geneous space of any curvature and dimension D [92].
The higher the dimension, the lower the clustering
for the same value of β [31, 103]. Upon the hy-
perbolizing change of variables in Eqs. (10,12) these
D-dimensional spaces turn into hyperbolic spaces of
dimension D + 1, while the edge energy becomes
εij = ln

xij
(κiκj)1/D

≈ dij/2 [92].

The models have been also adapted to growing net-
works [32], in which case the latent space is not hyper-
bolic but de Sitter space dS1,D with the same Lorentz
group SO(1, D + 1) of symmetries [104], as well as to
weighted networks [105], multilayer networks [106, 107],
and to networks with community structure [26, 29, 108].
The model has yet to be extended to directed networks,
as it is not clear how to reconcile the intrinsic symme-
try of metric distances with asymmetric interactions
among nodes.

The equivalence between the two models in
Eqs. (8,13) is a reflection of the isomorphism between
the Lorentz group SO(1, D+ 1) and the Möbius group
acting on sphere SD as the group of its conformal trans-
formations. This isomorphism is a starting point of
the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence in string theory [109].

It is important to reemphasize that the latent space
in the described models can indeed be any compact
homogeneous space of any dimension D [92]. This
space can also be flat, or either positively or negatively
curved. However, the effective space of the higher
dimension D + 1 is always hyperbolic, i.e. negatively
curved. What makes this space hyperbolic is the sim-
ple change of variables in Eqs. (10,12), mapping the
expected degrees of all nodes to their D+ 1’th (radial)
coordinates. Upon this change of variables, the proba-
bility of connections is always a function of hyperbolic
D + 1-dimensional distances only, Eqs. (13,14). How-
ever, the nodes are distributed uniformly according
to the metric in this D + 1-dimensional hyperbolic
space, only if the degree distribution is a power law
with exponent γ = 3, i.e. only if ρ(κ) is Pareto with
γ = 3.

Another very important observation is that, as
was shown recently in [92], the described models are
unique latent-space network models that satisfy cer-
tain maximum-entropy requirements and that produce
sparse heterogeneous uncorrelated small-worlds with
non-zero clustering. At present, these models are also
the only currently known class of network models that
capture all the following properties of many real-world
networks: sparsity, self-similarity, small-worldness, het-
erogeneity, nonvanishing clustering, and community
structure.

Hyperbolic maps of real-world networks.
Given a real-world network, how to infer the coor-
dinates of its nodes in its latent space? A collection of
methods have been developed for this task.

Many generative-model-based methods perform sta-
tistical inference using Monte Carlo sampling and max-
imum likelihood estimation [86, 110–112]. Data-driven
methods vary in flavor, ranging from unsupervised ma-
chine learning used, as in coalescent embedding [113]
implementing nonlinear dimension reduction [114], to

methods relying on the network community struc-
ture [28, 115]. Mechanistic-model-based methods rely
on growing network automata to map the network
while unfolding the similarity space [116]. If a gener-
ative model is a good description of a real network,
and if Bayesian statistical inference based on such a
model is done properly, such model-based methods
tend to be accurate but slow, whereas data-driven
methods tend to be faster but less accurate, so that
hybrid methods have been also developed [117, 118].
They get initial coordinate estimates using machine
learning techniques, and then refine the results via
maximum likelihood estimation. In general, the main
challenge that hyperbolic network mapping methods
face is the abundance of numerous local maxima in
highly nonconvex likelihood landscapes. An efficient
way to escape from these maxima thus boosting the
inference accuracy is to shake up the system by adding
to it decreasing levels of noise [119], a method concep-
tually similar to simulated annealing.

The application of these methods to real-world net-
works allowed to investigate them at different reso-
lutions using the latent-space renormalization group
that unfolds the network in a self-similar multilayer
shell of coexisting scales and their interactions [31].
The maps of real networks (Fig. 3d–f) also revealed
the existence of geometric communities [27, 87], and
helped to decode mechanisms that govern network
evolution, such as globalization, localization, and hi-
erarchization driving the evolution of international
trade [27]. Such maps have also shed light on many
dynamical processes in real-world networks, showing,
for instance, that cooperation in social networks is
controlled more strongly by the latent-space organiza-
tion than by highly-connected hubs in the system [120].
Yet another class of applications of hyperbolic maps of
real networks is link prediction. Since the connection
probability in the described models is a decreasing
function of the latent hyperbolic distance, the mod-
els predict that links are more likely to exist between
hyperbolically closer pairs of nodes. Link prediction
using hyperbolic geometry has been analyzed from
different angles [116, 119, 121, 122]. It appears to be
particularly powerful when it comes to predicting links
that are really difficult to predict [119]. Finally, one of
the most practical applications of mapping real-world
networks to their latent geometries is the design of
efficient routing protocols for the Internet [86] and for
emerging Internet-of-Things telecommunication net-
works [123]. In the next few sections, we discuss some
of the applications mentioned above.

Geometric communities. The angular distribu-
tion of nodes in the described models is uniform. How-
ever, nodes in maps of real networks are clustered
in regions defining geometric communities that were
observed in many real networks, including the In-
ternet [86], metabolic networks in cells [87], trade
networks [27], and brain connectomes [124]. Non-
overlapping communities can be detected in the geo-
metric domain using purely geometric methods. One
definition considers soft communities as groups of
nodes in similarity space separated from the rest by
angular gaps that exceed a certain critical value [87].
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Fig. 4. Multiscale unfolding of networks’ structure and function by geometric renormalization. Self-similarity of
the structural and dynamical properties of the multiscale 5-layered geometric renormalization shell of the Internet (a–g), and
renormalizability of the S1 model (h–i) (courtesy of Ref. [31]). a) Degree distribution. b) Clustering spectrum. Inset: average
nearest neighbors degree. c) Topological community structure. d–f) Simulation of the Ising dynamics, SIS epidemic spreading
dynamics and Kuramoto model for synchronization in the different layers of the shell. Results averaged over 100 simulations. d)
Magnetization 〈|m|〉 (l) of the Ising model as a function of the inverse temperature 1/T . e) Prevalence 〈ρ〉 (l) of the SIS model as a
function of the infection rate λ. f) Coherence 〈r〉 (l) of the Kuramoto model as a function of the coupling strength σ. g) Empirical
connection probability in the Internet and the renormalized layers measured as the fraction of connected pairs of nodes as a function
of χij

(l) = R(l)∆θij
(l)/(µ̂(l)κi

(l)κj
(l)). h) The same as in g), now for a synthetic S1 network with N ≈ 225000 nodes, γ = 2.5 and

β = 1.5. The black dashed line shows the theoretic curve given in Eq. (9). Inset: invariance of the mean local clustering along
the flow. i) Real networks in the connectivity phase diagram of the S1 renormalization flow. The synthetic network above is also
shown. Darker blue (green) in the shaded areas represent higher values of the exponent c controlling the flow for the average degree
〈k〉(l+1) = rc〈k〉(l). The dashed line separates the γ-dominated region from the β-dominated region. In phase I, c > 0 and the
network flows towards a fully connected graph. In phase II, c < 0 and the network flows towards a one-dimensional ring. The red
thick line c = 0 indicates the transition between the small-world and non-small-world phases. In region III, the degree distribution
loses its scale-freeness along the flow. The inset shows the exponential increase of the average degree of the renormalized real
networks 〈k(l)〉 with respect to l.

An alternative, known as the Critical Gap Method
(CGM) [27], finds the communities by changing the gap
and selecting the soft community partition that maxi-
mizes the standard modularity measure [63], Fig. 3 c,f.
These distance-based communities show strong cor-
relation with groups defined by metadata, like ge-
ographical location of the Autonomous Systems in
the case of the Internet [86], biochemical pathways
of reactions in metabolic networks [87], or anatomi-
cal brain region in structural brain networks [24, 125].
Geometric-based communities also show a significant
overlap with topological-based communities, making
the geometric nature of complex networks even more
evident [27, 126].

Geometric communities affect degree-degree correla-
tions and clustering spectrum in the network ensemble.
These properties are not tunable but fixed by struc-

tural constraints in the vanilla version of the model
described above with the homogeneous distribution of
angular coordinates [127, 128]. However, if these coor-
dinate are not homogenously random but fixed to their
heterogeneous values inferred in a real network with
communities, the ensemble of random networks gener-
ated by the model using these heterogeneous inferred
coordinates reproduces accurately the degree corre-
lations and clustering in the real network [118, 119].
This observation suggests that, to a great extent, de-
gree correlations are a consequence of latent geometry
coupled with inhomogeneous distributions of nodes in
it.

Navigability. One of the main strengths of the
discussed latent-geometric network models lies in an
explanation of the efficiency of this structure with re-
spect to one of their most common functions, which is
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transport of information, energy, or other media, with-
out the global knowledge of the network structure [22].
Latent space guides navigation in the network based
on distances between nodes in the space [22]. That
is, instead of finding shortest paths in the network—a
computationally intensive combinatorial problem in a
network that changes dynamically, such as the Inter-
net [129]—a transport process can be geometric, rely-
ing only on geodesic distances in the space (Fig. 3h).
Such processes are the more efficient and robust [25],
so that the network is the more navigable, the smaller
the γ, and the larger the β, defining a navigable pa-
rameter range to which many real-world networks be-
long [22]. Networks in the hyperbolic model described
above are nearly maximally efficient for such geometric
navigation [21], which has recently been proven rigor-
ously [130].

The main reason behind this phenomenon is the
existence, for any pair of nodes in hyperbolic networks,
of shortest paths close to the corresponding geodesics
in the underlying hyperbolic geometry (Fig. 3h). An-
other critical factor is the existence of superhubs in-
terconnecting all parts of the network, present as soon
as γ < 3 [21], in which case the networks are known
to be ultrasmall worlds [50]. It was demonstrated in
Ref. [85] that navigation in hyperbolic networks with
γ < 3 can always find these ultrashort paths, and thus
navigation in these networks is asymptotically optimal.
The other way around, networks that are maximally
navigable by design turned out to be similar to hyper-
bolic networks, and many real-world networks were
found to contain large fractions of their maximum-
navigability skeletons [23], the human brain example
shown in Fig. 3j. Assuming that real-world networks
evolve to have a structure efficient for their functions,
these findings provide an evolutionary perspective on
the emergence of latent geometry leading to structural
commonalities observed in many different real-world
networks.

Renormalization and self-similarity. Since
networks in the discussed models are purely scale-
invariant in the thermodynamic limit, they contain
an infinite hierarchy of self-similar nested subgraphs
induced by nodes with degrees exceeding a given thresh-
old, as illustrated in Box B. This observation also ap-
plies to many real networks, where the average degree
of the subgraphs increases as a function of the degree
threshold [131]. This property allows to prove easily
the absence of percolation or epidemic thresholds in
these networks [131], independently of the commonly
used tree-like or scale-free assumptions [132]. The
proof is general and is solely based on a symmetry
principle. Thus, it also applies to any phase transition
whose critical point is a monotonic function of the av-
erage degree [131], like in SIS type epidemic spreading
or in the Ising model, that in scale-free networks lack
a healthy phase [133] or a disordered phase [134–136],
respectively.

Self-similarity is also observed in the multiscale
organization of networks, that can be explored at
different resolutions by applying a geometric renor-
malization transformation [31] inspired by concepts
from the real-space renormalization group in statistical

physics [56, 57, 137]. The method takes a different
approach as compared to the shortest-path-distance
RG discussed in Sec. I, as it relies on distances in
the similarity subspace to coarse-grain neighboring
nodes into supernodes defining a new rescaled map,
see Box C. The iteration of the transformation unfolds
a network into a multiscale shell that progressively
selects longer range connections revealing the coexist-
ing scales and their interactions. Self-similarity under
geometric renormalization is an ubiquitous symmetry
in real-world networks, in good agreement with the
prediction given by the renormalizability of the under-
lying S1 model [31], Fig. 4. This result suggests that
the same connectivity law rules short and long range
connections and operates at different length scales.
From a practical point of view, applications include
scaled-down network replicas and a multiscale navi-
gation protocol that takes advantage of the increased
navigation efficiency at higher scales. Interestingly, the
structure of the human brain remains self-similar when
the resolution length is progressively decreased by hi-
erarchical coarse-graining of the anatomical regions,
a symmetry that is well predicted by the geometric
renormalization [124].

III. DYNAMIC GEOMETRY OF NETWORK
PROCESSES

Evidence for the existence of self-similarity and
fractal properties characterizing the topology of
empirical networks provided a solid ground for
exploring the latent geometry of their structure in the
hyperbolic space. The existence of a hidden geometry
of network structure naturally led to question if a
hidden geometry of network dynamics was plausible,
aiming at identifying the latent space due to system
function arising from the interplay between structure
and dynamics. Note that network dynamics is broadly
defined, including the dynamics of vertex and edge
creation or destruction—exemplified by, e.g., networks’
growth processes or time-varying topologies [138]—as
well as the dynamics of processes on the network.
The hidden geometry induced by dynamics has been
mostly explored for the latter, except for a few
notable cases [139], with geometric tools finding fertile
grounds also for unraveling hidden patterns lurking the
complex behaviors of diverse network-driven processes.
However, since it is possible to define multiple different
dynamical processes on the network—e.g., epidemics
spreading (Fig. 5) or random searches (Fig. 6)—one
expects not to find a unique latent geometry for
the system’s functioning: in principle, there could
be as many hidden geometries as the number of
plausible network-driven processes. In this universe
of dynamical processes, the dynamics of information
exchange has been mostly modeled through diffusive
processes, where the amount of matter being diffused
is conserved, and spreading processes, in which the
amount of matter being diffused is duplicated at each
step (as in the spreading of viruses or ideas) and,
consequently, it is not conserved. Such dynamics have
been successfully exploited to define novel metric or
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Spreading dynamics: induced (top) and natural (bottom) geometry 
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Fig. 5. (Top panel) Geometry induced by spreading dynamics. (A) Network representation of passenger flows along
direct connections (edges) among airports (nodes) worldwide, with node color encoding geographic regions according to modularity
maximization. The natural geometry of the network is given by its embedding into the physical space, with geodesic distance
Dg. (B) The same nodes are embedded into a latent geometric space defined by effective distance Deff (see the text for details)
accounting for the spreading dynamics on the top of the network. The center of this space is a node of the system, usually the one
where the spreading originates from. (C) Evolution of a simulated disease spreading originating in Hong Kong (HKG): red symbols
encode the prevalence. The top panels sketch the evolution in the latent, whereas the bottom panel shows the same dynamics in
the natural space. When the spreading dynamics is depicted by exploiting the induced geometry, complex spatial patterns are
mapped to homogeneous wave fronts propagating at constant effective speed. The relation between epidemic arrival times (Ta)
and the two distances is shown for two real case studies, namely the spreading of H1N1 (D–F) and SARS (E–G). The relation
is nonlinear when geographic distance is used (D–E) whereas it is nicely reproduced by a straight line when effective distance is
considered. Reproduced with permission from Ref. [37]. (Bottom panel) Geometry induced by universal temporal distance.
(H) A signal travels from vertex j to the rest of the system exhibits different spreading patterns, captured by the universal temporal
distance L(j → i), (I) impacting different nodes (e.g., 1 and 2) in different ways depending on the type of dynamics (distance-limited,
i.e. θ = 0; degree-limited, i.e. θ > 0; composite, i.e. θ < 0). (L–N) The homogeneous propagation of concentric wave fronts emerge
from the analysis of a broad spectrum of synthetic and empirical systems. (O–Q) Propagation times T (j → i) of real-world signals
are in agreement with the temporal distances L(j → i). Reproduced with permission from Ref. [40]

quasi-metric measures to probe the corresponding
latent geometry, the difference being that, in the
latter, the symmetry axiom is relaxed.

Remarkably, these classes of network geometry,
induced by kinematic distances, provide results about
a system’s function that can not be obtained by
geometric approaches discussed in the previous sec-
tions. An emblematic example concerns the mesoscale
organization of interconnected components which
exchange information during collective phenomena—
say, coupled oscillators trying to synchronize or

people with social relationships attempting to reach
consensus—which can be characterized by mapping
the interplay between structure and function to a
geometric space induced by diffusion dynamics [39].
The resulting functional modules differ from the
ones obtained by other geometric techniques such
as functional modularity maximization [62], since
the latter finds an optimal partition of the system
while minimizing the possible number of modules
of given topological size `, which in turns defines
the characteristic distance between nodes within



13

modules. Conversely, modules identified on the
diffusion manifold at time τ , determining the scale of
dynamics, are characterized by groups of nodes which
easily exchange information—for instance, in terms of
random searches—within Markov time τ , as we will
see in the following.

Geometry induced by resistance. In first ap-
proximation, one can model information exchange in
a network similarly to how currents flow in a circuit.
This approach is probably among the first historical at-
tempts to quantify a distance between nodes in terms of
a (simple) dynamics. This resistance distance [141] be-
tween two nodes p and q of a network is defined as Rpq
and it is calculated by assuming fixed resistors on each
network edge: the corresponding circuit—under the
further assumption that p and q are directly connected
by a battery to allow electric currents to flow—allows
for the calculation of effective resistances as

Rpq = Ωpp + Ωqq − Ωpq − Ωqp, (15)

where Ω = L† + N−1U, being N the size of the
network, U a matrix with all entries equal to 1 and L†
the Moore–Penrose inverse of the Laplacian matrix of
the network. On the one hand, this metric has been
successfully used, for instance, to analyze specific
isomers [142] and genetic differentiation [143]. On the
other hand, it has been also shown that, for some
classes of graphs, the resistance distance converges to
the trivial thermodynamic limit k−1

p + k−1
q , where k

indicates the node degree [144], making this metric
less useful for the analysis of most empirical systems.

Geometry induced by communicability. One
of the first metrics based on dynamics is the com-
municability distance [145, 146]. This metric can be
introduced by starting from the concept of communica-
bility between two nodes i and j of a network, which is
defined as Gij = exp(A)ij , where A is the underlying
adjacency matrix. From a mathematical point of view,
communicability quantifies how well a pair of nodes
exchanges information by all possible walks between
them, giving more weights to the shortest ones, as it
can be understood by considering the Taylor expansion
of the communicability matrix G [145, 146].

Communicability can be also well understood from a
physical perspective. Consider a network where nodes
are quantum harmonic oscillators and links are springs,
and the system is submerged into a thermal bath with
inverse temperature β = 1/kT , being k the Boltzmann
constant. Then communicability provides a represen-
tation for the thermal Green’s function of the system,
indicating how a thermal oscillation propagates be-
tween nodes. The difference between the absorbed and
transmitted excitation between two nodes due to such
thermal disturbances is quantified by the communica-
bility distance [146]

ξpq(β) = Gpp(β) +Gqq(β)− 2Gpq(β), (16)

which allows to build an hyperspherical embedding
of a complex network [147] at different temperatures.
This graphical embedding allows to represent a
geometry which is able to capture, for instance, spatial

efficiency of networks [148], traffic flows in cities [149]
and constrained diffusion in coupled networks [150]
such as multilayer systems [151]. Since the topic
in this respect is vast and beyond the scope of
the present work, we refer the interested reader to
Ref. [152] for a thorough review of the mathematical
and physical properties of communicability distances
in complex networks. Let us also stress that, as
the communicability distance, other important
generalizations of the traditional shortest-path dis-
tance have been investigated in mathematics [153, 154].

Geometry induced by reaction-diffusion. An-
other important class of geometry induced by network
dynamics is obtained by considering a quasi-metric as
effective distance can be used to gain insights about
reaction-diffusion processes such as the spreading of
infectious diseases through mobility networks [37, 155].
Given a network of geographic areas (e.g., airports) and
edges encoding direct air traffic—in units of passengers
per day—from node i to node j, let Fji indicate the cor-
responding mobility flow. Let also Pij = Fij/

∑
i Fij to

quantify the fraction of this flow originating from node
j directed towards node i, defining the components of
the connectivity matrix P. Despite the structural com-
plexity of the network, involving multiple and often
redundant pathways for the transmission of contagion
phenomena, the effective distance defined by

δij = 1− logPij , (17)

reveals hidden geometric patterns where the dynamics
of epidemics spreading is elegantly mapped into the
propagation of wavefronts with an effective speed. This
latent dynamic geometry can be used to better predict
the arrival times of empirical contagion processes in
distinct geographic areas and to reconstruct, with rea-
sonable accuracy, the origin of outbreaks (Fig. 5).

Similarly, the collective dynamics of different signal
spatio-temporal propagation on networks can also be
unraveled by looking at the geometry induced by their
dynamics upon the definition of the universal temporal
distance [40]

L(j → i) = min
Π(j→i)





∑

p∈Π(j→i),p6=j
Sθp



 . (18)

In Eq. 18, Π(j → i) = j → q → ... → i indicates the
shortest-path from the origin j to the destination i,
while the delay τp in signal propagation occurring on
each node p ∈ Π(j → i) is assumed to scale as τp ∼ Sθp ,
where Si =

∑
k Aik a node weighted degree and

θ = −2−Γ(0) a parameter determined by the system’s
dynamics. As shown in Ref. [40], this metric yields
excellent predictions about the actual propagation
times T (j → i) for a range of nonlinear dynamic
models (Fig. 5h,i), further showing that, despite their
diversity, disparate propagation patterns actually
condense into three highly distinctive dynamic regimes
(highlighted in blue, red and green in Fig. 5l–q)
characterized by the interplay between network paths,
degree distribution and the interaction dynamics.

In the same spirit, spreading processes on noisy
geometric networks [156, 157] have been recently
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London Multimodal Transport

Noordin Top Terrorists

Fig. 6. (Top panels) Diffusion geometry of complex networks. (A) Euclidean embedding of a network with four clusters,
corresponding to the latent diffusion geometry with Markov time τ = 1. (B–C) In the diffusion space, two nodes from the same
functional cluster are (and keep) closer across time, τ , than nodes belonging to different clusters. Diffusion-distance matrices
corresponding to different times are shown in the bottom and allow to identify the underlying functional organization at different
scales. (D) The functional modules maximizing the average diffusion distance define the mesoscale structure which favors the
overall information exchange. The significance of this structure can be quantified by comparing against the result obtained from
a configuration model preserving the degree distribution of the original data while destroying other correlations. (E) Diffusion
geometry analysis of the anatomical connectivity (335 visual, 85 sensorimotor and 43 heteromodal) from 30 visual cortical areas and
15 sensorimotor areas in the Macaque monkey. Clusters identified by structural analysis of the connectome using the spin-glass
approach are different, as the anatomical organization and the mesoscale organization obtained from the configuration model.
(Bottom panels) Diffusion geometry of multilayer networks. (F) Diffusion distance matrices (top) obtained from a two-layers
synthetic network and a diffusive random walk dynamics. Colors in the dendrograms encode the original layer assignment of each
node (only two colors, one for each layer): hierarchical clustering highlights the reorganization of nodes according to their function in
the diffusion manifold. The main panel shows how the Frobenius norm of the supra-distance matrices changes for different regimes:
from left to right, when two layers are not coupled together, when they are coupled by just one inter-layer link, when they form
an interconnected multiplex connecting state nodes of the same physical node and when they tend to form a fully interconnected
multilayer system. (G) As for (F), in the case of two empirical systems, the London public transportation network and the multiplex
social relationships of Noordin Top terrorists. Multidimensional scaling applied to the distance matrices obtained from different
random walk dynamics (here, multilayer maximum-entropy and physical walks with relaxation, see [140] for details) allows to project
the corresponding diffusion manifolds into R3. We show the surface on a place and encode the third dimension with colors to get
a physical intuition about the functional organization of systems’ units in the diffusion space. Reproduced with permission from
Ref. [39, 140].

investigated to understand how contagion dynamics is
driven by the underlying topology [38]. Noisy geomet-

ric networks provide a suitable framework to model
systems characterized by both short (i.e., large-world)
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and long-range (i.e., small-world) interactions among
nodes. Contagion maps, whose manifold structure
reflects the interplay between local and non-local
structure with the epidemic spreading process, provide
a suitable tool to recover the geometric features of a
network’s underlying manifold and describe wavefront
propagation in the corresponding geometric space.
This geometric framework allows to gain physical
insights on contagions by exploiting computational
topology and to identify low-dimensional structure in
complex networks [38].

Geometry induced by random search. More
recently, random walk dynamics has been proposed to
define a diffusion distance between pair of nodes. Let
L = I−T indicate the normalized Laplacian matrix,
with Iij the Kronecker delta and Tij the probability for
the random walker to move from node i to node j. Let
ei ≡ (0, 0, ..., 1, ..., 0) be the i–th canonical vector in
the Euclidean space with dimension N , the size of the
system. The evolution over time τ of the probability
to find the walker in any node is described by a master
equation [73], whose solution is given by p(τ |i) =
ei exp (−τL) when the initial condition is p(0) = ei,
i.e., the walk’s origin is in node i with probability 1.
The hidden geometric space induced by the random
walker’s Markov dynamics [39] is characterized by the
diffusion distance between nodes i and j, defined by

di,j(τ) = ‖p(τ |i)− p(τ |j)‖ , (19)

providing, among others, the starting point to build
diffusion maps which are widely adopted for low-
dimensional embedding of high-dimensional data [36].
Two nodes are close in their latent diffusion space if
connected by multiple pathways which facilitate in-
formation exchange in less than τ steps. As a direct
consequence, the mesoscale functional organization
of the network is mapped into spatial clusters in the
corresponding diffusion manifold, with Markov time
playing the role of a multi-resolution parameter, i.e. a
temporal length scale playing the dynamic analogue
of the shortest-path-distance in Sec. I or the similarity
metrics of Sec. II. Increasing values of τ , in fact, allow
to identify functional hierarchies at multiple temporal
resolutions, whose persistence across time identifies the
mesoscale structure which favors the overall informa-
tion exchange, providing the best coarse-groaning of
the system in functional modules (Fig. 6(A–E)). Micro-
, meso- and large-scale structures can be probed for
small, increasing and large τ , respectively. Geometry
induced by diffusive processes allows to gain physical
insights about collective phenomena in structured pop-
ulations, by establishing a formal relationship with
complex dynamics responsible for synchronization in
the metastable state and emergence of consensus.

The recent application to anatomical connectivity
within and between visual cortical and sensorimotor
areas in Macaque brain reveals a hierarchical func-
tional organization of cortical units, not identified by
existing methods and not compatible with null mod-
els [39]. The network embedding in a geometric space
induced by diffusion distance, together with statistical
data depth, allows for the statistical and most natural

generalization of the concept of median to the realm of
complex networks, with the advantages for defining the
centre of the system and percentiles around that centre
to identify vertices which are socially or biologically
relevant [158].

More recently, the framework has been extended to
the realm of multilayer networks [140], capitalizing on
the generalization of different random walk dynam-
ics to multilayer systems [151, 159, 160]. In fact, it
has been show that layer-layer topological correlations
might alter information exchange among state nodes,
while the presence of different inter-layer connectivity
patterns might lead to distinct geometric regimes: i)
when the fraction of inter-links is small, flow is segre-
gated within layers and the diffusion manifold consists
of two well separated sub-manifolds, corresponding to
the functional organization of each layer separately,
connected by weak geometric pathways; ii) when the
fraction is sufficiently high the flow is integrated, new
geometric pathways are made available to information
to be exchanged across layers and those sub-manifolds
mix up. Different multilayer diffusion manifolds have
been used to better understand the functional orga-
nization of multimodal transportation and multiplex
social systems (Fig. 6(F–G)).

IV. DISCUSSION AND OUTLOOK

Network geometry provides tools and methods
complementary to those inspired by classical statistical
mechanics in network science. Despite its relatively
recent inception, network geometry has already served
as a remarkably successful pathway to harness the
observable and hidden forms of symmetries in many
real-world systems, leading to a wealth of discoveries
of both theoretical and practical importance. The
selection of milestones presented in Sections I–III
offers a mature viewpoint from where to ponder on
some emerging research directions and challenges
ahead.

Fractal geometry of network structure has
enabled the study of many relevant aspects related
to the self-similarity observed in various complex
networks, casting their understanding under the three
pillars [76] of scaling, universality and renormalization.
If on the one hand the simplicity of this approach
has helped disclosing fundamental insights about
notoriously hard problems on complex media—such
as transport [16, 47], functional modularity [62, 161]
or evolution [19, 68]—on the other one it has raised
profound questions to ponder on.

A pragmatic example involves the very same notion
of self-similarity and fractality in complex networks.
Although the traditional fractal theory does not
distinguish between fractality and self-similarity, these
two properties can be considered to be distinct under
the lens of the shortest-path distance RG [48]. In fact,
while both fractal and pure small-world structures
are statistically self-similar under the shortest-path
distance RG (see, e.g. Fig. S6 in Ref. [19] and
discussions therein), only the former family features
a well defined set of (finite) fractal exponents. The
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divergence of the box-counting dimension dB in
small-world networks (Fig. 1c) can be then interpreted
(using a field-theory jargon) as an “ultraviolet” limit
above which the fractal geometric approach based
on the shortest-path RG fails in quantifying their
self-similar symmetry. In this perspective, identifying
suitable embeddings or duality transformations [162]
capable of regularizing this “small-world divergence”
is a theoretical open challenge that could raise
the opportunity of designing a unified geometric
framework for the study of fundamental problems
like transport [70], evolution [34], navigability [22]
or RG-based classification of networks’ universality
classes [18]. In this respect, latent-geometric ap-
proaches or the adoption of generalized topological
metrics and embeddings [145] could offer hints
for solutions. Hyperbolic geometry, in particular,
shares profound connections with self-similar metric
spaces [81, 82, 163], suggesting the possibility that
the fractal exponents featured by self-similar networks
may have suitable counterparts in their corresponding
latent spaces and could further be extended to pure
small-world structures.

On a more fundamental level, understanding how
the dynamical properties of network growth processes
influence their asymptotic self-similar patterns is an
intriguing and yet unexplored territory in the study
of network geometry. The process of zooming-out
induced by the network RG transform finds its (statis-
tically equivalent) inverse in dynamics [19, 34], so that
the varying structures observed at increasing length
scales correspond to the evolution of certain dynamical
variables (Fig. 2a). A profound bridge between
self-similarity and ergodicity has been well explored in
mathematics [164], showing that the notions of fractal
dimensions and self-similarity can be interpreted in
terms of ergodic averages of some appropriate measure
preserving dynamical systems [165]. In the simple
case of growing trees, it has further been proved [164]
that this connection is a consequence of the explicit
dependence of the fractal dimension on the growth
rates ruling the system’s evolution. A perfectly
analogue result was reported in Ref. [19], where
the fractal exponents dB , dk, dM , . . . characterizing
the self-similar structure of the SHM model in the
thermodynamic limit were proven to depend only
on the process’ growth rates (Fig. 2b). A relevant
and highly challenging question, in this respect, is
to understand weather the SHM model and/or other
more popular growth processes [19, 34, 166], can be
themselves interpreted as ergodic dynamical systems
with respect to some suitable invariant measure.
Besides its theoretical relevance, finding viable
directions to tackle this overarching problem could
help establishing fundamental connections among the
static and the dynamic facets of network geometry.

Hyperbolic geometry of network latent spaces
impacted areas as diverse as mathematics, neuro-
science, and machine learning. Random graphs have a
long research history in graph theory, probability, and
adjacent areas in applied mathematics and theoretical
computer science (TCS). Given that hyperbolic
networks turned out to be the first popular ensemble

of random graphs reproducing not only inhomogeneous
degree distributions but also nonvanishing clustering,
small-worldness, self-similarity, and modularity
observed in many real-world networks, this ensemble
attracted significant research attention in mathematics
and TCS, where many basic and advanced properties
of random hyperbolic graphs have been (re)derived
rigorously, see for instance [130, 167–177].

In neuroscience, geometric navigation discussed in
Sec. II offers a possible explanation and a mechanism
for the routing of information in the brain. This
hypothesis has been investigated at different depths
and from different angles [178–187]. Yet, geometric
navigation is effective only when the network topology
is congruent with the underlying latent geometry so
that following geodesic paths in the latent space is
equivalent to navigating through topological shortest
paths. This seems to be the case for structural brain
networks whose many structural and navigability
properties were shown to be well described by the
S1/H2 geometric network model [24, 125], where the
same connectivity laws apply both to short- and
long-range connections and at different scales [124].
This suggests that simplicity might be one of the
main organizing principles of human structural brain
networks at least at the macroscale level that has
been found to display a self-similar architecture
across different anatomical length scales in good
agreement with the discussed geometric models [124],
as opposed to traditional approaches that describe
brain connectivity using Euclidean geometry [188–
190]. Euclidean distances do certainly play a role
in the brain. However, they are not the only factor
determining similarity, and thus connectivity, between
brain regions [24, 124]. More recently, data-driven
dimensional reduction techniques [125, 191] and
local curvature measures [192] have been proposed
as alternative geometric descriptions that avoid the
definition of connectivity laws. It still remains an open
question how the hyperbolic geometry of the brain
relates to the optimization principles that Ramón
y Cajal hypothesized about 100 years ago as the
two forces ruling the evolution of mammalian brain
connectivity: minimizing wiring costs and maximizing
conductivity speed [193].

At the same time, primarily after Ref. [194],
hyperbolic spaces have ignited vigorous research
activity in machine learning in many different settings
and tasks including embedding graphs and other data,
such as images and texts, as well as in the design
of neural networks, attention networks, knowledge
graphs, and matters alike, with applications ranging
from data classification, image recognition, and
natural language processing, to link prediction and
scalable recommender systems [195–205]. Overall,
the main flavor of these results confirms one of the
main points in Ref. [21]: compared to Euclidean
geometry, hyperbolic geometry appears to be a better
(embedding space) model for highly heterogeneous
networks and other data.

In terms of open questions, perhaps one of the
most common ones is how to tell whether a given
(real-world) network has a latent (hyperbolic) space.



17

This question is a variant of the more general question
of how to tell whether a given model is a good model
for a given network. Such questions can never find
positive answers since one can never know for sure
whether any given network has typical values of
all possible network properties in any given model,
simply because the number of such properties is
infinite [206]. One can always check if any finite
collection of properties of the network have the
typical values in the model, and as soon as an
atypical property is found, one may raise doubts how
good the model is for the network at hand. Such
a finding does not always render the model useless.
For instance, clustering is zero in stochastic block
models, and it is nonzero in real-world networks,
but this fundamental mismatch does not appear
to diminish much the interest to stochastic block
models, thanks to their simplicity and tractability.

As mentioned in Sec. II, the latent-space models
described there reproduce most of the important
properties of real-world networks. What this means
is that any network that has these properties can be
mapped to a latent space of any dimension, yielding
some nontrivial results. What space dimension one
should choose for the embedding [113, 207], is an
interesting open problem. It calls to identify a network
property that would depend on the space dimension in
a known way. At present, it is known that clustering
is a decreasing function of dimension [31, 103], but it
is also a decreasing function of temperature [20, 21],
so that the value of clustering by itself cannot tell
us the likely value of the space dimension. In the
lack of such understanding, and given that space in
hyperbolic geometry expands exponentially fast in any
dimension so that the “crowding problem” is never
a problem there, there are no reasons not to choose
the simplest case D = 1 for the embedding, unless
overparametrization may be beneficial, as in deep
learning [208].

Another important open problem is to identify a
collection of network properties that are not only
necessary but also sufficient conditions for latent
geometricity. This problem is not about any given
network, in which case it can never be solved for
the reasons above, but about network models. For
instance, the question about whether clustering is
such a property can be formulated as follows: does
a model that reproduces clustering but produces
otherwise maximally random networks is equivalent
to a latent-space model? Such questions cannot be an-
swered without additional stringent assumptions and
requirements, such as the requirement of maximum
entropy. The first steps in this directions have been
made in [92, 209].

Other open problems, which are very interesting
from the practical perspective, are to study the
coupling of dynamical processes with the latent
space and to generalize latent space network models
to temporal networks [138]. It has been observed
that clusters in the underlying metric space emerge
in evolutionary games on scale-free networks [120].
Other processes could present geometric patterns in
their dynamical states as well. A key point here is

that essentially all real-world networks are highly
dynamic at different timescales, suggesting that the
positions of nodes in the latent space cannot be really
fixed but must constantly change. The development
of dynamic latent space models is, however, very
challenging, because there is no consensus or even
general understanding concerning the exact set of
requirements to such models. The main high-level
problem here is that there are too many “degrees of
freedom” in designing these models, that is, arbitrary
choices can be made, and there are no generally agreed
guiding principles concerning what choice is better or
worse.

At a more fundamental level, the fact that
hyperbolic networks are Lorentz-invariant in the
thermodynamic limit suggests to re-examine the role
of probabilistic symmetries [210] in the theory of
graph limits [211]. Traditionally the main symmetry
of interest there has been exchangeability [212]. This
is the requirement that the probability of a graph in
an ensemble does not depend on how nodes in the
graph are labeled, reminiscent of gauge invariance
in physics. This requirement is really stringent for
deep statistical reasons [212], but it is also easy to
appreciate intuitively: if node labels 1, . . . , n are
just random “coordinates” used to represent an
otherwise unlabeled graph as an adjacency matrix,
then the probability of the graph in the ensemble
cannot depend on these meaningless coordinates. The
problem is the Aldous-Hoover theorem [213, 214],
stating that the thermodynamic limit of any exchange-
able sparse graphs is exactly empty. This is why
different notions of exchangeability-like probabilistic
symmetries have been recently investigated for sparse
graph limits [215–218]. Because of the Aldous-Hoover
theorem, they all depart from the 1, . . . , n “coordinate
system” for node labels, and rely on different systems
of node or edge labels. The Lorentz invariance of
hyperbolic networks suggests that the labels of nodes
can be indeed their coordinates in a latent space,
with exchangeability replaced by invariance with
respect to the space isometries. The hope is that such
ensembles may have some interesting and tractable
thermodynamic limits.

Dynamic geometry of network processes.
While the results on observable and latent geome-
tries of networks are well established, the geometry of
network-driven processes is in its infancy, with promis-
ing theoretical developments and important applica-
tions to different fields. From the global spread of
rumors and opinions in socio-technological systems to
the global spread of innovations and epidemics, combin-
ing dynamics with the self-similar structure of complex
networks and their latent geometry results in hetero-
geneous processes which cannot be easily understood
when investigated in the Euclidean space where they
are often embedded. However, when the same dynam-
ical processes are analyzed through the lens of the
geometries they induce, one often discovers simple and
elegant arguments to better understand the complex
spatio-temporal patterns observed in a broad spectrum
of complex systems. These results make the geometry
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induced by network-driven processes perhaps the most
suitable framework for several practical applications,
ranging from predicting the time course of dynamics
for forecasting and control of spreading processes to lo-
cating their origin. Indeed, diffusion geometry defines
a class of models that have the desirable advantage
of being mathematically tractable and can be easily
interpreted.

The research program for the future is broad, with
many open challenges of theoretical and practical rele-
vance. On the one hand, as the topological organiza-
tion of empirical complex systems can be characterized
in terms of hierarchies [219, 220] and mesoscale struc-
tures such as bow-tie [221, 222], k–cores [223, 224]
and core-periphery [225, 226], it will be interesting to
identify and characterize their functional counterparts
in terms of diffusion geometry. Here, the main prob-
lem is to define mesoscale objects such as functional
giant components and functional cores. On the other
hand, further research is needed to better understand
the deep relationships among the different aspects of
network geometry reviewed here. A promising step
towards the direction of building a theoretical bridge
is provided by the concept of communicability, which
can be understood in purely combinatorial terms as
an effective pathway – weighting in a very specific way
the contributions of walks of different lengths – be-
tween nodes in the network space. In this regard, it is
intimately related, for instance, to the concept of geo-
metrical navigability, which is determined by selecting
topological paths that follow geodesics in the latent
space. In general, those paths happen to be topological
shortest-paths when networks are sufficiently congru-
ent with the latent space. Notice that congruency
can be defined in different ways, not only in terms
of greedy shortest paths, as done in [21, 24, 86, 227],
but also taking into account all topological shortest
paths [228].

As for further open challenges, developing RG tech-
niques in the space induced by diffusion distances is a
fundamental open problem, whose solution could shed
light on the self-similar symmetries of dynamical pro-
cesses evolving on the top of complex networks. This
could further pave the way to the analysis of coexisting
temporal scales due to the interplay between structure
and dynamics. Finally, a natural development of ge-
ometries induced by network-driven processes is the
identification and characterization of a more general
framework where diffusive dynamics are replaced by
more complex ones. This advance would improve our
understanding of complex dynamical processes and has
the potential to enhance the control and forecasting
of the evolution of empirical systems.

Other flavors of network geometry. The
spectacle of flavors of network geometry is by no
means limited to the topics addressed in details above.
Other significant direction of research in network
geometry have emerged through the years. Recent
advances and open challenges in some of those areas
are briefly reviewed below.

Geometrogenesis. Perhaps one of the most funda-
mental open problems in network geometry is that of
geometrogenesis, which is the emergence of continuous

geometric spaces from discrete combinatorial rules.
The study of emergent geometries is recently gaining
large momentum [229, 230] due to its intimate
connections with longstanding combinatoric problems
in several approaches to quantum gravity, like causal
sets [231, 232], quantum graphity [233] and causal
dynamic triangulations [234]. In loop quantum
gravity (LQG), for example, the basis of states is
formed by spin networks which have support on
a graph, determining a sort of quantum geometry
where the intrinsic geometry—consisting of quanta
of space—is discrete and the extrinsic curvature is
fuzzy because of the Heisenberg’s uncertainty princi-
ple [235]. The main challenge is to assign a classical
geometrical interpretation to such states. Recent
advances in this direction are based on operators
which quantize both scalar and mean curvature when
spin network edges run within the surfaces of the
quantized geometry [236]. In quantum graphity [233],
the space is a dynamical graph evolving under
the action of a Hamiltonian. In causal dynamical
triangulation (CDT) [237], a non-perturbative path
integral approach is used to build a connection with
Hovrava-Lifshitz gravity in 2 + 1 dimensions [238].
Spectral dimension, defined as the scaling exponent of
the average return probability of diffusion processes
(e.g., random walks), is used in CDT to measure the
effective dimension of the underlying geometry [239]
and can provide an interesting bridge to geometry
induced by network-driven processes, where one ex-
pects that this geometry characterizes the underlying
diffusion manifold. More recently, a model [240]
where random graphs dynamically self-assemble into
discrete manifold structures has been proposed as
an alternative to approaches based on simplicial
complexes and Regge calculus. The Ollivier curvature,
defined for generic graphs—and similar in spirit to
Ricci curvature—is used to discretize the Euclidean
Einstein-Hilbert action and to provide a new ground
for emergent time mechanisms [240].

In network science, a step forward in addressing
the geometrogenesis problem has been made in
Refs. [229, 230, 241–243] by defining models of
growing random graphs and simplicial complexes.
In a wide range of parameters, these models lead
to an effective preferential attachment and, thus,
heterogeneous degree distributions [241]. Besides,
some growth processes can be mapped to trees, leading
to emergent hyperbolic geometry in the resulting
graphs [243]. For a more exhaustive introduction to
the topic we refer the interested reader to the recent
review by Mulder and Bianconi [230].

Graph curvature. Curvature is one of the most basic
geometric notions, a key player in the Einstein-Hilbert
action, whose least-action variation leads to Einstein’s
equations in general relatively. It is thus not surprising
that graph curvature appears in many flavors of
geometrogenesis and combinatorial approaches to
quantum gravity [240]. More surprising is that there
is not one but many successful attempts to port
the notion of curvature to the realm of networks,
resulting in many nonequivalent definitions of graph
curvature [98, 244–250]. Unfortunately, none of these
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definitions of graph curvature is rigorously known to
converge to any traditional curvature of smooth space
in the continuum limit of any random graph ensemble,
with the only exception of Ollivier curvature of
random geometric graphs recently shown to converge
to Ricci curvature in any Riemannian manifold [251].

Nevertheless, many of these graph curvature
definitions have recently found applications in diverse
applications ranging from differentiating cancer
networks [252] to the characterization of human brain
structural connectivity [192], to mesoscale characteri-
zation of complex networks based on Ollivier-Ricci
curvature [253] and Ricci flow [254]. The topic is of
much interest and receiving increasing attention, since
combinatorial-based notions of network curvature
have disclosed profound connections between network
measures such as the graph Laplacian and exquisitely
geometrical quantities such as the Laplace-Beltrami
operator in Riemannian manifolds [255, 256] or the
Fisher-Rao metric in information geometry [257].

An important definition of global graph curvature
that applies to networks without a change, is Gromov’s
δ-hyperbolicity [81], which has been measured for
a variety of real-world networks [258–261]. It is a
rough measure of how far a metric space is from a
tree [262]. It applies to any metric space, including
the metric spaces of shortest path distances in
Section I and the latent spaces in Section II. Any
hyperbolic space is also δ-hyperbolic [83], but a
network is called δ-hyperbolic if its shortest path
metric space is such. This terminology often causes
bad confusion because networks in the hyperbolic
latent-space models in Section II—that are often
called random hyperbolic graphs—are actually unlikely
to be δ-hyperbolic because their two different limits
are not δ-hyperbolic [263, 264]. However, at present it
is not exactly known how δ-hyperbolic the random
hyperbolic graphs are, another open problem.

Topological data analysis. More recently, another
interesting bridge with topology has been established
by generalizing networks to higher dimensions via
simplicial complexes, allowing for the application of

persistent homology methods [265] from topological
data analysis (TDA) [266]. Persistent homology relies
on the filtration of a simplicial complex to uncover
topological features that recur over multiple scales
and are thus likely to represent some true features
of the underlying space. The TDA in general and
persistent homology in particular are vigorous research
areas in data science that found applications in a
variety of problems, including spreading processes in
networks [38] and the detection of geometric structure
in neural activity [267]. For thorough reviews of
current advances in TDA, we refer the interested
reader to [268, 269].

Taken together, the advances in network geometry
offer a new theoretical framework to gain deep insights
into the fundamental principles of complex systems
and, more generally, into the physical reality. It is not
excluded that the existing results and future advances
in this area will lead to fruitful cross-fertilization with
other areas of physics.

Acknowledgments. S.H. thanks the Israel Sci-
ence Foundation, ONR, the BIU Center for Re-
search in Applied Cryptography and Cyber Se-
curity, NSF-BSF Grant no. 2019740, and DTRA
Grant no. HDTRA-1-19-1-0016 for financial sup-
port. M.B. and M.A.S. acknowledge support from:
a James S. McDonnell Foundation Scholar Award
in Complex Systems; the ICREA Academia award,
funded by the Generalitat de Catalunya; Agencia es-
tatal de investigación project no. PID2019-106290GB-
C22/AEI/10.13039/501100011033; the Spanish Minis-
terio de Ciencia, Innovación y Universidades project
no. FIS2016-76830-C2-2-P (AEI/FEDER, UE); project
Mapping Big Data Systems: embedding large com-
plex networks in low-dimensional hidden metric spaces,
Ayudas Fundación BBVA a Equipos de Investigación
Cient́ıfica 2017, and Generalitat de Catalunya grant
no. 2017SGR1064. D.K. acknowledges support from
the NSF grant no. IIS-1741355, and the ARO grant
nos. W911NF-16-1-0391 and W911NF-17-1-0491.

[1] Cimini, G. et al. The statistical physics of real-world
networks. Nat Rev Phys 1, 58–71 (2019).

[2] Watts, D. J. & Strogatz, S. H. Collective Dynamics
of “Small-World” Networks. Nature 393, 440–442
(1998).

[3] Barabási, A.-L. & Albert, R. Emergence of Scaling
in Random Networks. Science 286, 509–512 (1999).

[4] Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai,
Z. N. & Barabási, A.-L. Hierarchical Organization
of Modularity in Metabolic Networks. Science 297,
1551–1555 (2002).

[5] Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F.
Critical phenomena in complex networks. Rev Mod
Phys 80, 1275–1335 (2008).

[6] Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin,
S. Networks formed from interdependent networks.
Nature Physics 8, 40 (2012).

[7] D’Souza, R. M. & Nagler, J. Anomalous critical
and supercritical phenomena in explosive percolation.

Nature Physics 11, 531 (2015).
[8] Gao, J., Barzel, B. & Barabási, A.-L. Universal

resilience patterns in complex networks. Nature 530,
307–312 (2016).

[9] Bianconi, G. Interdisciplinary and physics challenges
of network theory. Europhys Lett 111, 56001 (2015).

[10] Estrada, E. The structure of complex networks: the-
ory and applications (Oxford University Press, 2012).

[11] Garlaschelli, D., Capocci, A. & Caldarelli, G. Self-
organized network evolution coupled to extremal dy-
namics. Nat Phys 3, 813–817 (2007).

[12] Garlaschelli, D. & Loffredo, M. Generalized Bose-
Fermi Statistics and Structural Correlations in
Weighted Networks. Phys Rev Lett 102, 038701
(2009).

[13] Kalinin, N. et al. Self-organized criticality and pat-
tern emergence through the lens of tropical geometry.
Proc Natl Acad Sci 115, E8135–E8142 (2018).

[14] Song, C., Havlin, S. & Makse, H. A. Self-similarity



20

of complex networks. Nature 433, 392–395 (2005).
[15] Gallos, L. K., Song, C., Havlin, S. & Makse, H. A.

Scaling theory of transport in complex biological
networks. PNAS 104, 7746–51 (2007).

[16] Condamin, S., Bénichou, O., Tejedor, V., Voituriez,
R. & Klafter, J. First-passage times in complex scale-
invariant media. Nature 450, 77 (2007).

[17] Radicchi, F., Ramasco, J., Barrat, A. & Fortunato,
S. Complex Networks Renormalization: Flows and
Fixed Points. Phys Rev Lett 101, 3–6 (2008).

[18] Rozenfeld, H. D., Song, C. & Makse, H. A. Small-
World to Fractal Transition in Complex Networks:
A Renormalization Group Approach. Phys Rev Lett
104, 1–4 (2010).

[19] Song, C., Havlin, S. & Makse, H. A. Origins of
fractality in the growth of complex networks. Nature
Physics 2, 275–281 (2006).
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A. & Boguñá, M. Hyperbolic geometry of complex
networks. Phys Rev E 82, 036106 (2010).
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Self-Similar Groups to Self-Similar Sets and Spectra,
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