
Available online at www.sciencedirect.com
www.elsevier.com/locate/cogsys

ScienceDirect

Cognitive Systems Research 67 (2021) 66–72
Complementary interactions between classical and top-down
driven inhibitory mechanisms of attention
S.C. Low a, V. Vouloutsi a, P.F.M.J. Verschure a,b,⇑

aLaboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona

Institute of Science and Technology, Barcelona, Spain
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Abstract

Selective attention informs decision-making by biasing perceptual processing towards task-relevant stimuli. In experimental and com-
putational literature, this is most often implemented through top-down excitation of selected stimuli. However, physiological and
anatomical evidence shows that in certain situations, top-down signals could instead be inhibitory. In this study, we investigated how
such an inhibitory mechanism of top-down attention compares with an excitatory one. We did so in a neurorobotics context where
the agent was controlled using an established hierarchical architecture. We augmented the architecture with an attentional system that
implemented top-down attention biasing as connection gains. We tested four models of top-down attention on the simulated agent per-
forming a foraging task: without top-down biasing, with only excitatory top-down gain, with only inhibitory top-down gain, and with
both excitatory and inhibitory top-down gain. We manipulated the reward-distractor ratio that was presented and assessed the agent’s
performance using accumulated rewards and the latency of the selection. Using these measures, we provide evidence that excitatory and
inhibitory mechanisms of attention complement each other.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

For an agent acting in all but the most simplistic envi-
ronments, it likely receives more sensory information than
it has the capacity to process in the moment. Such prioriti-
sation of task-relevant stimuli over others is called selective
attention. It is, however, arguably not an end goal itself,
but rather a means to several ends (Allport, 2016) as it is
ultimately behaviour that leads to survival or success in
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achieving the agent’s goals. As behaviours are elicited
through action selection based on perceived stimuli, biasing
sensory processing would lead to changes in behavioural
outcome as well. Selective attention thus has an impact
on embodied agents’ behaviour, and it is therefore a com-
mon method to test the performance of attention models
by implementing them in artificial agents.

There are two advantages to implementing models of
attention in artificial agents. Firstly, and many a times this
alone justifies the effort, an agent equipped with some form
of selective attention is better able to interact with more
complex environments and exploit greater sensor resolu-
tion and sensitivity. This is clearly beneficial in applications
ommons.org/licenses/by-nc-nd/4.0/).
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ig. 1. Experimental setup. (A) Example of how the agent senses objects
its environment. The agent has seven visual sensors, represented by the

lue circles spread across its front. The white lines show the linear
rojections of three visual sensors, and the individual sensor is filled with
he colour of the object that it detects. A sensor filled with black indicates
hat is has not detected any object. (B) The first experiment consisted of
wo stimuli presented to the agent, and the order of the reward (green) and
istractor (red) was randomised. The positions of the objects were
ymmetric about the agent’s midline, but their distance to the midline,
dicated by d, was not fixed (0.23 m � 0.78 m). C) The second experiment
onsisted of seven objects presented to the agent, and the proportion of
ewards was varied as an experimental condition (reward-distractor ratio).
he positions at which the objects were placed were fixed to be evenly
istributed, but the order was randomised. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web
ersion of this article.)
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like robotics and computer vision. Secondly, taking a more
ontological perspective, it considers the model not simply
as an algorithm solving an abstract problem but something
that enables a body to function, which is a key principle of
embodied cognition (Anderson, 2003; Engel et al., 2013;
Wilson, 2002). Thus, there are a considerable number of
implementations of selective attention in artificial agents
or robots. An influential, saliency-based model of
bottom-up attention was proposed by Itti et al. (Itti
et al., 1998) and subsequently inspired many others
(Driscoll et al., 1998; Frintrop et al., 2003; Ouerhani and
Hügli, 2005). There have also been proposals that include
top-down elements of attention to facilitate more sophisti-
cated behaviours, for example through drive management
(Breazeal and Scassellati, 1999), cuing from human part-
ners (Haasch et al., 2005), and exploiting a collection of
historical bottom-up input to guide top-down attention
(Colombini et al., 2016).

The success of these implementations of selective atten-
tion supports not only its functional value but also the
physiological, experimental literature that has grown
alongside this field (e.g. Cutrone et al., 2014; Desimone,
1998; Sani et al., 2017). Nonetheless, common task para-
digms tend to revolve around task-relevant stimuli being
more easily anticipated than task-irrelevant ones. This
has potentially led to a bias towards excitatory top-down
models that target task-relevant stimuli. For example, only
5 of the 52 reviewed cognitive architectures included the
suppression of task-irrelevant stimuli, space or features;
all of them exhibited at least one element of selection and
restriction (Kotseruba and Tsotsos, 2020), which is excita-
tory in nature.

However, there are situations where an excitatory mech-
anism is inefficient, such as when task-relevant stimuli are
difficult to predict but task-irrelevant stimuli are not. Here,
inhibition is more suitable as a mechanism of attention, as
it targets task-irrelevant stimuli. Indeed, there is strong
support for both mechanisms in the mammalian brain
(Phillips et al., 2016; Zikopoulos and Barbas, 2012;
Wimmer et al., 2015) and they appear to have strengths
and weaknesses that are complementary rather than com-
petitive. We therefore investigated how these two mecha-
nisms, both separately and combined, modulated the
behaviour of an artificial, autonomous agent performing
a controlled, foraging task.

The agent was placed in an environment populated with
two types of objects—rewards and distractors—distinguish
able by their colours. By approaching and touching an
object, the agent effectively demonstrated that its control
dynamics had selected that object over other objects in
the vicinity. In this study, the agent’s control architecture
was based on the biologically grounded Distributed Adap-
tive Control (DAC; (Pfeifer and Verschure, 1992;
Verschure, 2016)), which has been shown to, among other
cognitive functions, robustly learn sequences of state-
action couplets that eventually lead to a goal state
(Marcos et al., 2014). We demonstrated the utility of top-
down attentional biasing in the task, and additionally
benchmarked the inhibitory model against the excitatory
one. We showed how, between the excitatory and inhibi-
tory models, excitatory biasing led to quicker trials but
lower yield of rewards. Most interestingly, we observed
that the two mechanisms working together resulted in the
best performance across conditions.

2. Methods

2.1. Agent and environment

We placed an embodied agent (Fig. 1) in a virtual arena
to perform a foraging task. The environment was created
using Python (Rossum, 1995); PyGame (Shinners, 2011)
and Box2D (Catto, 2011). The simulated agent was a
mobile, two-wheeled robot with seven sensors for proxim-
ity and vision each. Both types of sensors projected a ray
which returned either the distance or the colour of the first
object it hit (Fig. 1-A).

The objects were solid-coloured circles. The distractors
were intentionally valued to be neutral instead of punish-
ments (as punishments necessitate aversive behaviour and
are task-relevant); a distraction itself has no benefit or loss
and is therefore task-irrelevant. The top-down attentional
mechanisms tested here were the excitatory model, concep-
tually congruent with most enhancement-based models of
attention, and the inhibitory model, where activity repre-
senting task-irrelevant stimuli is suppressed. In both cases,
top-down biasing was dependent on the motor decision
from the contextual layer (see Control Architecture below)
in the previous time step. If the selected action was towards
a reward, the excitatory model would excite subsequent sig-
nals from the associated sensor while the inhibitory model
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would inhibit it in the next time step(s). This led to a bias-
ing of subsequent sensory competition and, by extension,
perceptual information that is next fed into the contextual
layer for action selection. The strength of the top-down
excitatory and top-down inhibitory signals were defined
by their gains, GTDexc and GTDinh respectively (Fig. 2).

2.2. Task description

The agent started every trial with a number of objects
equidistant to it and within its field of vision. Regardless
of experimental condition, there was always bottom-up
sensory competition in the form of intralayer inhibition
(Wintra). However, the values of the top-down biasing gains
(GTDexc and GTDinh) were changed between conditions.

Two experiments, variations of the same task, were run;
in both, a trial ended when the agent touched an object and
success was determined as the selection of a reward. For
the first experiment, the agent was presented with two
objects, a reward and a distractor, located equidistant to
it but with varying distances to each other (Fig. 1-B).
Green indicated a reward and red a distractor. The exact
colour of the objects was randomly drawn from a range
of intensities and the objects’ order was randomised. To
determine the effect of each mechanism on its own, one
of the top-down biasing gains was kept constant at 0 while
Fig. 2. Control architecture of the agent. Lines terminating with arrow-
heads show excitatory connections while lines terminating with circles
show inhibitory connections. The contextual layer decided on actions and
change the gains of the top-down attentional biasing based on its long-
term memory (LTM), which is shown here as a collection of sequences of
state-action couplets. The visual channels are indicated by the nodes R, G,
and B, and the connections which were modulated in the experiments are
labelled GTDexc and GTDinh. The gain of the inhibition, representing
bottom-up processes, is shown by Wintra and applied to all the inhibitory
connections between the visual channels.
the other was tested in the range [0–0.7] with step sizes of
0.1. 50 trials were run per gain condition.

In the second experiment, the agent was presented with
seven objects located equidistant to it. The reward-
distractor ratio was varied (Fig. 1-C). Although the posi-
tions were fixed, the objects’ order was randomised every
trial. The objects were evenly distributed in front of the
agent over 140�. When active, the top-down biasing gains
for both excitatory and inhibitory mechanisms were set
to 0.5 in this experiment as, in the first experiment, it had
yielded approximately the mean performance for nonzero
top-down gains. There were four attentional conditions:
with no top-down biasing (gG,TDexc = gR,TDinh = 0), with
only inhibitory top-down biasing (gG,TDexc = 0, gR,

TDinh = 0.5), with only excitatory top-down biasing (gG,
TDexc = 0.5, gR,TDinh = 0), and with both excitatory and
inhibitory biasing (gG,TDexc = gR,TDinh = 0.5). In addition,
there were four reward-distractor ratios: with one, three,
four, and six rewards. Hence, there were 16 conditions,
and for each condition 50 trials were run leading to a total
of 800 trials.

2.3. Control architecture

As a cognitive architecture, the Distributed Adaptive
Control theory (DAC) posits that cognition arises from
the interaction between interconnected control loops oper-
ating at four increasing levels of abstraction for hierarchi-
cal control: soma, reactive, adaptive, and contextual. At
the lowest level of abstraction, the soma layer defines the
body of the agent in its environment. The layer above it
is the reactive control of behaviour, which associates cer-
tain sensory input with hard-wired behaviours. Although
limited in functionality, the reactive layer is still a necessary
part of the architecture (Nolfi, 2002).

Behaviour generated by the reactive layer bootstraps
learning of the agent’s environment and the sensory out-
comes of its actions, which takes place in the adaptive
layer. This helps the agent develop behavioural responses
that are more noise resistant. In the adaptive layer, these
pairs of perceived states and motor action are associated
together as state-action couplets, which are then sent to
the contextual layer for higher-level cognitive functions like
goal selection and planning. Through Bayesian decision-
making (Bayes, 1763; Beck, 2008), DAC’s contextual layer
captures a knowledge level description of intelligence and
the principle of rationality by exploiting perceptual and
behavioural learning through interaction with the environ-
ment (Verschure et al., 2003). This is supported by a long-
term memory that is modelled after what is found in ani-
mals, which was proposed to accumulate knowledge and
abilities to optimise subsequent planning and behaviour
(Newell, 1994). In this study, it was manifested by the agent
comparing its current state with those in its long-term
memory to identify potential goal states, anticipate the
state-action couplets that would bring it there, and trigger
goal-oriented behaviours.
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The agent’s behaviour was a combination of motor
commands from the reactive and contextual layers
(Fig. 2). Although the DAC architecture allows for motor
control via the adaptive layer, in this implementation it did
not provide any direct motor control to avoid confounding
the results. The agent’s reactive layer was hard-coded to
avoid colliding with walls using the activation of proximity
sensors, similar to Braitenberg vehicles (Braitenberg, 1986).
The agent also had a reactive drive to randomly explore the
environment when it did not detect any objects, ensuring
that the agent proactively interacted with the environment.

The adaptive layer integrated bottom-up and top-down
signals to produce the perceptual state that was used by the
contextual layer. The perceptual information was driven by
sensory input, which consisted of three colour channels per
visual sensor. The competition observed between sensory
cortical neuronal populations (Reynolds et al., 1999) was
simulated here with the sensors’ activity contributing to
the activity of each channel’s node. Their activity was
weighted by Wintra. After this interaction, the winning
channel was decomposed into the different contributing
sensors, and a winner-takes-all mechanism selected the
most active sensor’s activity as the perceptual input to
the contextual layer.

In conditions with top-down biasing, the top-down
gains (GTDexc and GTDinh) were nonzero. The contextual
layer matched the perceptual input to the states in the
long-term memory. In this way, it predicted the potential
reward of following a sequence of motor actions and made
decisions that maximised future rewards. This top-down
biasing signal is applied to the sensory input of the adap-
tive layer in the next time step. The contextual layer was
pre-populated with appetitive behaviour towards both
red and green objects, though their values were not identi-
cal, and the same long-term memory was used in all exper-
iments. Although all sequences in the long-term memory
terminated with a goal state, they were not necessarily of
Fig. 3. Performance of the agent in the two experiments. (A) In the first ex
approaching and selecting a reward (green) when the top-down biasing mecha
chance level. (B) The mean durations per trial in each condition in the second e
from left to right, as follows: no top-down biasing (no TD), only inhibitory t
inhibitory and excitatory top-down biasing (both). (C) The probability of the a
are the same as in the previous plot. The red dotted lines indicate chance level fo
this figure legend, the reader is referred to the web version of this article.)
the same length. The agent’s reactive exploratory beha-
viour was overridden by the contextual layer, but the reac-
tive collision avoidance took priority over the contextual
layer.

3. Results

3.1. Top-down attentional biasing increased selectivity of

rewards

In the first experiment, chance level reward selection was
0.5. Both mechanisms improved performance to at least 0.7
(Fig. 3-A). The trials were then separated into three condi-
tions and their durations, in time steps, were analysed:
without top-down biasing (68 ± 32 steps), with nonzero
inhibitory gains (80 ± 38 steps), and with nonzero excita-
tory gains (65 ± 33 steps). Trials with nonzero excitatory
weights were significantly faster than the other conditions
(Table 1).

3.2. Attentional mechanisms led to quicker trials when there

were more rewards than distractors

When there was one reward, the top-down attentional
mechanism did not significantly affect trial duration
(Fig. 3-B; 42. ± 6.0 steps (no TD), 41. ± 7.8 steps (inh),
40. ± 8.2 (exc), 46. ± 9.3 steps (both); Friedman,
p = 0.077, v2(3) = 6.9). However, when there were three
rewards, we found that the duration of trials with only
excitatory top-down biasing was significantly quicker than
the other conditions (Friedman, p = 0.0021, v2(3) = 14.;
Table 1). With four rewards, all the conditions with any
attentional biasing had similar durations and were all sig-
nificantly faster than when there was no attentional biasing
(49. ± 2.1 steps (no TD), 47. ± 1.8 steps (inh), 46. ± 2.3
steps (exc), 46. ± 2.9 steps (both); Friedman, p = 0.0039,
v2(3) = 13.). When there were six rewards, there were sig-
periment, the probability of a successful trial, determined by the agent
nism was either only inhibitory or only excitatory. The red line indicates
xperiment. Within each column, the top-down biasing groups are ordered,
op-down biasing (inh), only excitatory top-down biasing (exc), and both
gent selecting a reward in the second experiment. The order and labelling
r that reward proportion. (For interpretation of the references to colour in



Table 1
Post-hoc Monte Carlo permutation testing statistics for mean differences in latencies of trials. Exp: experiment; N(G): number of green objects, which
serve as rewards; CI (95%): the 95% confidence interval.

Exp N(G) Control Test Difference CI (95%) p-value

lower upper

1 1 No TD Exc �3.1 –6.0 –0.25 0.043
1 No TD Inh 13. 9.8 16. <0.001
1 Exc Inh 16. 14. 18. <0.001

2 3 No TD Inh 1.2 –0.44 2.9 0.15
3 No TD Exc �2.2 –3.6 –0.57 0.0096
3 No TD Both 0.55 –0.93 2.2 0.50
3 Exc Both 2.7 1.3 4.1 0.0012
3 Inh Exc –3.4 –4.8 –1.8 <0.001
4 No TD Inh –2.0 –3.2 –0.88 0.0024
4 No TD Exc –2.4 –3.8 –1.1 0.0018
4 No TD Both –3.0 –4.5 –1.5 <0.001
4 Inh Exc –0.42 –1.7 0.81 0.53
6 No TD Inh –1.8 –3.0 –0.71 0.006
6 No TD Exc –4.9 –6.3 –3.6 <0.001
6 No TD Both –8.2 –9.4 –6.9 <0.001
6 Exc Both –3.3 –4.6 –1.8 <0.001
6 Inh Exc –3.1 –4.4 –1.8 <0.001
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nificant differences between all the attentional conditions
(59. ± 2.0 steps (no TD), 57. ± 1.9 steps (inh), 54. ± 2.4
(exc), 50. ± 2.2 steps (both); Friedman, p < 0.001,
v2(3) = 47.).

3.3. Combining excitatory and inhibitory attentional

mechanisms improved performance regardless of reward

proportion

When there was one reward, the excitation model did
not perform significantly different from the model without
Table 2
Post-hoc Monte Carlo permutation testing statistics for mean differences in pro
serve as rewards; CI (95%): the 95% confidence interval.

Exp N(G) Control Test

2 1 No TD Inh
1 No TD Exc
1 no TD Both
1 Inh Exc
1 Inh Both
3 No TD Inh
3 No TD Exc
3 no TD Both
3 Inh Exc
3 Inh Both
4 No TD Inh
4 No TD Exc
4 no TD Both
4 Inh Exc
4 Inh Both
6 No TD Inh
6 No TD Exc
6 no TD Both
6 Inh Exc
6 Inh Both
top-down biasing (Fig. 3-C, Table 2). The models with only
inhibitory biasing and both excitatory and inhibitory bias-
ing performed similarly, and at a level significantly better
than without top-down biasing and with only excitatory
biasing (0.33 ± 0.054 (inh), 0.32 ± 0.049 (both); Friedman,
p = 0.001, v2(3) = 16.; Table 2)

The models with some form of top-down attention all
performed better than the one without any top-down bias-
ing once the reward-distractor ratio increased. The inhibi-
tory only model performed better than the excitatory
only model, and performance was best when both inhibi-
bability of success. Exp: experiment; N(G): number of green objects, which

Difference CI (95%) p-value

lower upper

0.076 0.040 0.11 <0.001
0.033 –0.0030 0.066 0.071
0.073 0.040 0.10 <0.001
–0.043 –0.074 –0.008 0.015
–0.003 –0.033 0.028 0.85
0.19 0.14 0.23 <0.001
0.10 0.053 0.15 <0.001
0.25 0.20 0.29 <0.001
–0.082 –0.13 –0.039 0.001
0.064 0.020 0.10 0.006
0.19 0.15 0.23 <0.001
0.11 0.062 0.14 <0.001
0.23 0.19 0.27 <0.001
–0.088 –0.12 –0.053 <0.001
0.039 0.013 0.068 0.013
0.12 0.097 0.13 <0.001
0.11 0.094 0.13 <0.001
0.12 0.10 0.14 <0.001
–0.002 –0.013 0.006 0.63
0.004 –0.003 0.010 0.18
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tory and excitatory mechanisms were used. With three
rewards, this effect was significant (0.52 ± 0.078 (no TD),
0.70 ± 0.061 (inh), 0.62 ± 0.084 (exc), 0.77 ± 0.076 (both);
Friedman, p < 0.001, v2(3) = 43.) and with four rewards as
well (0.65 ± 0.073 (no TD), 0.84 ± 0.051 (inh), 0.76 ± 0.056
(exc), 0.88 ± 0.040 (both); Friedman, p < 0.001,
v2(3) = 43.). When there was a large majority of rewards,
there was a ceiling effect but the model without top-down
biasing remained significantly poorer in performance
(0.87 ± 0.042 (no TD), 0.99 ± 0.012 (inh), 0.99 ± 0.018
(exc), 0.99 ± 0.0098 (both); Friedman, p < 0.001,
v2(3) = 45.; Table 2).

4. Conclusion

For agents acting in dynamic environments, it is
important to prioritise task-relevant stimuli for process-
ing. Selective attention facilitates this, and typically it is
thought to do so via top-down excitation of neurons rep-
resenting selected stimuli or features while top-down inhi-
bition of close competitors sharpens the contrast in neural
activity between selected stimuli and the rest (Itti and
Koch, 2001). However, there is increasing interest in an
attentional mechanism that instead selects stimuli and fea-
tures for inhibition. We investigated the effectiveness of
the two mechanisms of attention, using an artificial agent
that performed a simple foraging task. In this task, the
environment consisted of rewards and distractors and
the goal of the agent was to reach a reward. The evalua-
tion of the different attentional models was based on the
agent’s performance (proportion of successful trials) and
the time needed to reach an object. Furthermore, the
models were evaluated with a variety of reward-to-
distractor ratios.

We found that all combinations of attentional biasing
led to faster trials with increasing proportions of rewards
to distractors. At first glance, it might seem that top-
down attentional processes prevent the agent from being
distracted by other rewards. However, the contextual layer
was the main driver of behaviour even in conditions with-
out top-down attention. As the contextual layer exhibited
decision inertia, where previously-selected sequences were
prioritised over others, all decisions made would exhibit
decision inertia regardless of the top-down biasing condi-
tion. Decision inertia alone is thus insufficient to explain
the reduced trial durations in conditions with top-down
biasing, suggesting that top-down attentional mechanisms
do more than simply ensuring that a decision is carried
out till its goal is met.

The agent performed better with top-down attentional
biasing than without for all reward-to-distractor ratios,
demonstrating the usefulness of top-down attention even
in a task as simple as this. Most notably, the attentional
model that consistently performed the best was one that
combined both excitatory and inhibitory mechanisms. This
supports the hypothesis that the two mechanisms are
complementary.
While the current setup was sufficient for our purposes, it
still is a form of visual search of task-relevant stimuli.
Future work could test the models in a paradigm that is clo-
ser to an oddball task, where what is predictable is also task-
irrelevant. In addition, the visual sensors used in the agent
were very low resolution. While they approximate vision
in humans, it is nowhere close to the complexity of visual
input from human eyes. Its simplicity, and that of the envi-
ronment and objects, allowed the sensory competition to be
simulated cleanly through representations of three colour
channels. As future work, it would be interesting to test
the models’ performance in more ecological environments
and with a wider range of stimulus features as perceptual
states. Additionally, the calculation for bottom-up saliency
can be more detailed in terms of biological-grounding, for
example including a parameter for contrast. Also, learning
and attention are closely coupled (e.g. Eldar et al., 2013;
Grossberg, 1999), and a potentially interesting field of
research would be how the excitatory and inhibitory models
of attention could lead to differences in the learning process
either through changes in neuronal synapses or through
higher-level learning strategies.

Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This project was funded by H2020 Research and Inno-
vation program (#787061, ANITA), ERC H2020
(#840052, Cognitive RGS), H2020-Research and Innova-
tion action EU.3.1.5.3 (#826421, VBC), and H2020-
EU.2.1.5.1. (#820742, HR-Recycler). There are no conflicts
of interest to declare.

References

Allport, A. (2016). Selection for action: Some behaviorial and neurophys-
iological considerations of attention and action. Perspectives on

Perception and Action, 395–419.
Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial

Intelligence, 149(1), 91–130.
Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine

of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr.
Price, in a letter to John Canton, AMFR S. Philosophical Transactions
of the Royal Society B(53), 370–418.

Beck, J. M. et al. (2008). Probabilistic population codes for Bayesian
decision making. Neuron.

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology.
Philosophy Review.

Breazeal, C., & Scassellati, B. (1999). A context-dependent attention
system for a social robot. IJCAI international joint conference on

artificial intelligence. .
Catto, E. (2011). Box2d: A 2d physics engine for games.
Colombini, E. L., da Silva Simões, A., & Ribeiro, C. H. C. (2016). An

attentional model for autonomous mobile robots. IEEE Systems

Journal, 11(3), 1308–1319.

http://refhub.elsevier.com/S1389-0417(20)30109-1/h0005
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0005
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0005
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0005
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0010
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0010
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0010
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0015
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0015
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0015
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0015
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0015
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0020
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0020
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0025
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0025
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0030
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0030
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0030
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0030
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0040
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0040
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0040
http://refhub.elsevier.com/S1389-0417(20)30109-1/h0040


72 S.C. Low et al. / Cognitive Systems Research 67 (2021) 66–72
Cutrone, E. K., Heeger, D. J., & Carrasco, M. (2014). Attention enhances
contrast appearance via increased input baseline of neural responses.
Journal of Vision, 14(14), 16.

Desimone, R. (1998). Visual attention mediated by biased competition in
extrastriate visual cortex Visual attention mediated by biased compe-
tition in extrastriate visual cortex. Philosophical Transactions of the

Royal Society, 1245–1255.
Driscoll, J. A., Peters, R. A., & Cave, K. R. (1998). Visual attention

network for a humanoid robot. In IEEE international conference on

intelligent robots and systems (pp. 1968–1974).
Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on

attention and learning. Nature Neuroscience.
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the

action? The pragmatic turn in cognitive science. Trends in Cognitive

Sciences.
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