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A B S T R A C T   

Background and aims: In this work, breath samples from clinically stable bronchiectasis patients with and without 
bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they 
have clinical value in the monitoring of these patients. 
Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the 
former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and 
analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by 
chemometric methods to determine their discriminant power in regards to their health condition. Results were 
evaluated with blind samples. 
Results: Breath analysis by electronic nose successfully separated the three groups with an overall classification 
rate of 84% for the three-class classification problem. The best discrimination was obtained between control and 
bronchiectasis with PA infection samples 100% (CI95%: 84–100%) on external validation and the results were 
confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach 
proper statistical significance after a permutation test. 
Conclusions: Breath sample analysis by electronic nose followed by proper predictive models successfully 
differentiated between control, Bronchiectasis and Bronchiectasis PA samples.   

1. Introduction 

The potential advantages of breath analysis for volatolomics studies, 
including the unlimited sample supply, the non-invasive way to collect 
samples, and the possibility deliver fast analysis results have been 
described in several previous works [1–7]. However, despite the abun
dant literature, the use of breath analysis for clinical applications is in its 
infancy [8,9] and the lack of standardization on sample collection/ 
analysis [10–13] and the complexity of data analysis step leave space to 
further developments [14–18]. 

In breath analysis, there are different types of confounding factors 
and the most important are the clinical (gender, age, diet, medication) 
and instrumental ones (time of the measurements, time from collection 
until analysis). A good design is essential to handle confounding factors 

and methods as randomization, restriction, or matching [19] can be 
used. Appropriate control of the clinical and instrumental confounding 
factors on observational studies in breath analysis could improve and 
decrease biased results [20–22]. 

On the other hand, there are a variety of instrumental techniques for 
breath analysis that differ on usability, cost, and retrieved chemical 
information: namely, GCxGC-MS [23], chemical sensor systems [24], 
Proton Transfer Reaction-Mass Spectrometry (PTR-MS) [25], Selected 
Ion Flow Tube-Mass Spectrometry (SIFT-MS) [26], Laser Spectroscopy 
[27] or Gas Chromatography -Ion Mobility Spectrometry (GC-IMS) [28]. 

Among the several analytical platforms available to analyse breath 
samples a review on cancer detection mentions that GC-MS and e-nose 
are the most commonly used platforms (47% and 26% of papers), while 
their simultaneous use on the same samples appears only in 8% of the 
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studies [29]. The use of two (or more) analytical distinct platforms 
[30,31] on the same samples or confront the results from breath analysis 
with another type of sample (as tissue/ sputum) [32–34] are an inter
esting avenue of research in breath analysis and can be used to confirm 
somehow the obtained results. 

As said the raw data provided by different analytical platforms differ 
in information content but also on dimensionality and data processing 
needs. E-noses and GC-MS datasets, particularly, are represented as a 
vector and a matrix, for one sample, and as a matrix and a three-way 
array for the whole dataset, respectively. In general terms, GC-MS pro
vides higher dimensional and richer information data, at the expense of 
requiring a more complex data processing pipeline [35]. 

Proper validation methodologies help to avoid overfitting and 
consequently reduce false discoveries [36–38]. Overfitting problems in 
GC/MS are aggravated by the curse of dimensionality [39], because 
these datasets are highly dimensional (102–103 detected analytes) and 
most studies have limited sample size (20–100 subjects). In this context, 
we advocate the use of resampling methods for model optimization and 
external validation for performance assessment [40,41]. We have to 
remind that for small datasets, all samples can be used for external 
validation using double cross-validation methodologies [42]. Even if 
external validation is unbiased, small sample datasets do still feature 
performance estimators with large variance and a permutation test 
should be used to confirm the obtained results [43]. 

In the last decade, a number of VOCs in breath have been found to be 
helpful in the diagnostics of several diseases including respiratory dis
eases and cancer [5,44–46] Among the several diseases that can be 
evaluated by breath analysis the development of bronchial infections on 
bronchiectasis patients has been described and evaluated by previous 
work. In this case, electronic nose has been used to identify airway 
bacterial colonization in Chronic Obstructive Pulmonary Disease 
(COPD) patients [47,48]. Furthermore, e-nose technology has been 
proven successful to identify Pseudomonas aeruginosa infection in bron
chiectasis [49]. 

In the clinical stability phase the presence of potential pathogens 
bacteria in the airway of bronchiectasis patients are common (30–70%) 
being mainly Pseudomonas aeruginosa [50]. Furthermore, aggravations 
as faster lung function loss, pulmonary and systemic inflammation are 
serious concerns. Bronchial infection is the reason for 60–70% of these 
aggravations [51], that has a direct relation with mortality increase in 
Bronchiectasis [52] and the reasons why bronchiectasis patients are 
more susceptible to developing a bronchial infection are still unknown. 

In this work, we build upon previous works to test the adequacy of 
breath sampling to monitor infections in bronchiectasis patients, 
particularly with Pseudomonas aeruginosa. Previous studies have re
ported success on e-nose applications using linear discriminant analysis 
and leave-one-out internal validation. In this new study, we amplified 

the finds collecting a new group of samples and using external validation 
methodologies and permutations test. Additionally, the same samples 
collected were also analyzed by GC-MS aiming to understand, if 
possible, the origin of the chemical discrimination already proven by e- 
noses and discuss the advantages and disadvantages of these distinct 
analytical platforms on breath analysis. In fact, prior studies using GC- 
MS have found VOCs related to the presence of Pseudomonas Aerugi
nosa (PA) in cystic fibrosis patients: methyl thiocyanate [53] and 2-ami
noacetophenone [54] have been reported as putative biomarkers. In this 
work, a volatolomics untargeted approach is proposed to discover po
tential signatures of PA infection in Bronchiectasis patients. 

2. Methods 

A schematic representation of the applied methodology can be 
observed in Fig. 1. This research features parallel analysis of breath 
samples by electronic nose and GC/MS. The following sections provide 
methodological information. 

2.1. Cohort selection and experimental design 

Observational studies are always suspect of bias. In order to block 
potential confounding factors, we carried out a proper experimental 
design. To prevent gender as a confounding factor a restriction strategy 
was applied. It is known that in non-cystic fibrosis bronchiectasis has 
more prevalence among females than among males. Additionally, fe
males suffer more severe diseases and with worse prognoses in terms of 
poorer lung function and survival [55]. For these reasons, only females 
were included in the cohort. 

Breath samples from woman subjects were collected, all of them 
were not currently smokers and the ones with prescribed drugs therapies 
were asked to stop medication 1 day before sample collection and food- 
drink intake at least 12 h before. All patients signed the informed con
sent form to participate in the study (Ethical approvement code: Institut 
d’Investigació Biomédica Sant Pau- IIBSP-PRI-2018-105). Diagnosis of 
Bronchiectasis was performed according to current European guidelines 
[56]. Bronchial infection was determined using a quantitative sputum 
culture prior to breath samples collection. PA infection was diagnosed 
using sputum culture that was not performed in healthy controls because 
PA only affects patients with pulmonary diseases who had chronic 
sputum production [50]. The procedure used to diagnose PA was well 
validated and previously described [57], besides that no other patho
gens differently of PA were detected. Bacterial colonization was 
considered when patients had PA infection and clinical stability, defined 
by the absence of increased symptoms that required changes in baseline 
treatment during 4 weeks [57]. 

To block instrumental shifts often found in e-noses [37] and even in 

Fig. 1. Overview of sample collection and analysis.  
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GC-MS, we matched the collection and analysis of samples belonging to 
the different groups as depicted in Fig. 2. Supplementary Material 1 
shows specific information for the subjects in the study. 

2.2. Breath sample collection 

Three liters Tedlar® bags were used to collect the total amount of 
exhaled air by the patients. Two-valve Tedlar® bags were cleaned before 
use by flushing with argon and baking at 45 ◦C during 15 min (repeated 
three times) [58]. All samples were collected in the same room after the 
patients breathing through a Hans-Rudolph valve during 3 min as 
described in previous work [49]. Also, a biological filter was used for 
each patient to avoid pathogens entering the bags and cross contami
nation between patients. 

Samples were collected in the hospital and e-nose measurements 
were done a few minutes after the patients filled the bags. Then, the bags 
were carried out to the laboratory and analyzed on the same day of 
sample collection by GC-MS. For each day of sample collection, ambient 
air, controls, and cases samples were collected. The final sample set 
analyzed consisted of 8 ambient air samples, 9 Controls (healthy 
women), 13 bronchiectasis patients (Bronch), and 12 bronchiectasis 
subjects with bronchial infection by Pseudomonas aeruginosa (Bro_PA). 

2.3. Sample analysis 

2.3.1. E-nose 
The e-nose device Cyranose 320® (Smith Detections, Pasadena, CA), 

that features a nanocomposite sensor array with 32 sensors, was con
nected to the breath Tedlar bag for 5 min and each measurement con
sisted of 5 replicates. Nitrogen was used as carrier gas and a constant 
flow rate of 120 mL/min was used during 60 s and 40 s for baseline 
recording and sample analysis, respectively, followed by an increase of 
the flow for 180 mL/min for sample line purging and air intake. A Tedlar 
bag with ambient air collected in the day of sample analysis was ana
lysed in parallel every day as background measurement. Supplementary 
Materials shows actual pictures of the breath sampling process (Figure 2 
in supplementary materials.) 

2.3.2. Gas chromatography 
Solid phase micro extraction (SPME) sample preconcentration was 

carried out using a 75 µm carboxen®/ Polydimethylsiloxane (CAR/ 
PDMS) fiber [59]. The fiber was exposed inside the bags for 30 min at 
ambient temperature and immediately after it was desorbed into the GC 

injector. The chromatographic column used was type DB-624 (60 m ×
0.320 mmID × 1.8µm – Agilent). The temperature of the column was 
maintained at 40 ◦C for 2 min and then subjected to a temperature ramp 
of 10 ◦C/min till 250 ◦C and stayed at this temperature for 5 additional 
minutes. The carrier gas used was helium in a constant flow of 1.7 mL 
min− 1. The temperatures of the injector and the transfer line were set to 
250 ◦C and 230 ◦C, respectively. Ion source temperature was set to 
200 ◦C and the mass scan range was from 40 to 400 m/z. 

2.4. Data analysis 

2.4.1. E-nose 
A non-linear transformation (arctangent transformation) was used to 

improve data gaussianity [60]. Data normality was then confirmed with 
the Shapiro-Wilk test at the 5% risk with Benjamini-Hochberg multitest 
correction [61]. Variance of inter-replicates for each sample and robust 
PCA [62] was used for outlier detection. Specifically, the algorithm 
ROBPCA (available in the rospca package in R) was used and outliers 
were selected based on the robust score distance and the robust 
orthogonal distance. Proper cutoff values for those statistics are given by 
Hubert et al. [63]. After outlier removal, data was autoscaled and 
inspected by classical PCA. 

Subject classification was based on the K-NN algorithm (available in 
the class package in R [64]) plus a majority voting over the replicate 
measurements. K-NN classifier optimization and performance assess
ment were based on double cross-validation [42] using leave one subject 
out (LOSO). By LOSO we mean that all the replicate measurements from 
the same subject are treated as a single indicator to decide the final label 
given to the subject. In the inner loop (internal validation) the number of 
neighbors was optimized, while performance assessment was carried out 
in the external loop (external validation). In both cases, the chosen 
figure of merit was classification accuracy (classification rate: CR). Final 
class assignment to each subject was based on the joint classification of 
all the replicates through a voting mechanism. To check that the ob
tained value cannot be obtained by random choice (null hypothesis) we 
calculated a permutations test [65] with 500 iterations. Supplementary 
Material 3 shows a block diagram of the e-nose data analysis (Figure 3 in 
supplementary materials.) 

2.4.2. Gas chromatography 
Features from the raw chromatograms were extracted using the 

XCMS package in R [66,67]. On XCMS matched filter algorithm was 
used for peak detection followed by peak clustering and alignment. Data 

Fig. 2. Distribution of cases, controls, and quality controls samples between the days of collection.  
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imputation was used to fill missing values based on the integration of the 
peak position. Robust Principal component analysis (RobPCA) was used 
to explore the data and verify the presence of outliers in the same 
manner described above. 

The extracted features were then corrected using log transformation 
and PQN normalization [68]. The AlpsNMR package [69] was used to 
create Partial Least Squares – Discriminant Analysis (PLS-DA) [70] 
classification models followed by permutations test. Furthermore, a 
second strategy was used applying variable selection based on Wilcoxon 
and binary problems were built using the same strategy applied to the e- 
nose data (double cross-validation [42] using leave one subject out 
(LOSO)), and PLS-DA and KNN models were built. All data analysis for e- 
nose and GC-MS was done in RStudio 4.0.3. 

3. Results 

3.1. E-nose analysis 

E-nose analysis aim is to record a breath-print of a wide range of 
gases and vapours (mixture of compounds) present in each breath 
sample not focusing on a specific compound or class of compounds, in 
the case of Cyranose 320® this is done by 32 nanocomposite sensor 
arrays. Each patient breath measurement is represented as a matrix, 
having 32 columns, one per sensor, and as many rows as replicates have 
been measured (typically five). Supplementary Material 4 shows a 
heatmap where on rows is showed the different replicates of each pa
tient and in the columns the sensors. The colors correspond to the value 
of the sensor’s response after preprocessing. The rows are arranged ac
cording to the class of the patient and the columns are ordered according 
to hierarchical clustering of the sensor responses. After the non-linear 
transformation, all sensors except numbers 6 and 28 were normally 
distributed and we could not reject the null hypothesis of a normal 
distribution using the Shapiro-Wilk hypothesis test with Benjamini- 
Hochberg multitest correction. Three entire samples (including all rep
licates) were considered outliers (see methods) and were removed from 
the dataset before the construction of the models. After preprocessing, 
data were visually inspected by PCA and the score plot (PC1xPC2) is 
shown in Fig. 3. No clear data separation was observed at this point. 

The best number of neighbors k (optimized in the internal validation 
loop), the values of classification rates (in external validation), and the 
p-value after permutation tests for all constructed models are showed in 
Table 1 (including three class and two class models). Furthermore, 
Supplementary Material 5 shows the confusion matrix for the three class 
K-NN models. 

3.2. Gas chromatographic analysis 

The application of XCMS to the raw data provided a feature table 

with dimensions 42 samples × 409 features. The outlier detection step 
did not show any anomalous sample and all subjects were kept in the 
data set. The Total Ion Chromatograms (TICs) in log scale for the GC-MS 
analysis for all collected samples and the outlier detection step plot are 
shown on Supplementary Material 6(i) and 6(ii). 

Fig. 4 (i) shows the score plots of a PLS-DA model for a binary 
classification problem. However, it is well known that scoreplots are 
overoptimistic. In this spirit, we gave better credit to the evaluation of 
the classifiers in external validation. The best results were obtained for 
the discrimination between Control versus Bronchiectasis_PA. PLS-DA 
models presented good classification rates above 0.75 on external vali
dation. However, permutation tests were applied for all binary PLS-DA 
models, and it was not possible to reject the null hypothesis (see Fig. 4 
(ii)). 

Table 2 shows a summary of the obtained results for the GC-MS after 
feature selection applying Wilcoxon test (binary models) and then 
applying the same strategy used to the e-nose (double cross-validation 
using leave one subject out). 

The last step on an untargeted approach is the compound identifi
cation and although several important compounds were already iden
tified and described as potential to be related with specific diseases on 
breath samples [71,72] the untargeted methodology used here was not 
able to reach the annotation step, in other words, even though some PLS- 
DA presented good results neither model was able to overcome per
mutations tests for statistical significance. 

4. Discussion 

4.1. Sample collection and analysis 

Breath samples can be collected and analyzed online and offline, the 
main reason for choosing one or another method will depend on the final 
aim of the work. Although, analyzing breath directly and the use of 
cartridges are preferential for e-nose and GC-MS, respectively, Tedlar® 
bags fits very well when the objective is to analyze the same sample with 
two or more analytical platform [58]. Furthermore, when a patient has a 
pulmonary disability, identifying and collecting the end-tidal breath it is 
not a simple task and for this reason and, to follow the same protocol for 
all involved subjects in the study, whole breath samples were collected 

Fig. 3. Score plot for the Principal Component Analysis (PC1xPC2) containing 
all samples from the e-nose measurements. 

Table 1 
Summary of the KNN models performance in external validation for the e-nose 
dataset (confidence limits 95% in brackets, calculated according to the binomial 
distribution).    

All replicates 

Models best 
k 

Sensitivity Specificity CR(%) p- 
value 

Control vs 
Bronch vs 
Bro_PA 

7 – – 78 0.002 

Control vs 
Bronch 

7 0.86 
(0.73,0.92) 

0.9 
(0.76,0.96) 

89(84,96) 0.002 

Control vs 
Bro_PA 

5 0.94 
(0.82,0.97) 

0.9 
(0.76,0.96) 

92(83,95) 0.004 

Bronch vs 
Bro_PA 

5 0.86 
(0.71,0.92) 

0.92 
(0.83,0.97) 

89(81,93) 0.002   

Majority vote 
Models best 

k 
Sensitivity Specificity CR (%) p- 

value 
Control vs 

Bronch vs 
Bro_PA 

7 – – 84 0.002 

Control vs 
Bronch 

7 0.92 
(0.64,1.00) 

1(0.66,1.00) 95 
(77,100) 

0.002 

Control vs 
Bro_PA 

5 1(0.75,1.00) 1(0.66,1.00) 100 
(84,100) 

0.004 

Bronch vs 
Bro_PA 

5 0.75 
(0.43–0.95) 

1(0.74,1.00) 87(69,97) 0.002  
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and the methodology was previous validated [49]. 
Furthermore, the CAR/PDMS fiber and the column selected possess 

intrinsic characteristics that will allow the pre-concentration and anal
ysis of a delineated group of compounds presented in breath samples 
analyzed by GC-MS. However, the preconcentration step is mandatory 
since many compounds will be present in very low concentrations inside 
the bags mainly when whole breath samples are collected as in this 
work. Breath sampling methodologies, advantages, and disadvantages 
are described in the literature [73]. 

4.2. E-nose analysis 

Initial visual inspection of the sensor response distribution indicated 
a strong lack of normality. The histogram presented long right-side tails 
but also the presence of negative values. This is known to have a 
negative effect on data analysis techniques based on the analysis of 
variance. Data normality was greatly improved using a non-linear 
transformation. To be able to deal with negative values we selected 
the arctangent transformation instead of the most common logarithmic 
transform. 

It is possible to observe that samples do not appear linearly separable 
in an unsupervised exploration based on the PCA scoreplot (Fig. 3). K- 
NN and PLS-DA classifiers were evaluated. PLS-DA is one of the most 
common classifiers in metabolomics, but it provides only linear parti
tions of the input space. To test a more flexible input space partition K- 
NN models were chosen as a simple an model-free alternative. All K-NN 
models constructed for the e-nose dataset presented better results than 
the PLS-DA ones and for this reason, only the KNN results are shown. 

The classification rates were calculated using two different ap
proaches. First, considering each individual replicates and second using 
the most voted class using all replicates from the same individual. This 
last procedure does not represent in fact additional costs since all the 
replicates are just consecutive analyses from the same bag as explained 
in Section 2.4.1. Using all the replicates approach significantly improved 
the performance of the classifier, except in the case of the three-class 
problem. 

When trying to classify individual measurements, K-NN models 
presented very good classification rates on external validation, and the 
values varied between 78% and 92%. Permutation tests were used for all 
models and in all cases, the classification rates were considered statis
tically significant (risk level 0.05) compared with the distribution of the 
null hypothesis. The three-class problem resulted in a smaller CR (78%) 
but still statistically significant. For all the other binary problems the CR 
ranged between 89 and 92%, but those differences were not statistically 
significant due to the limited cardinality of the different groups. 

Results improved significantly when we used the majority vote 
mechanism to classify a subject using the five consecutive replicates. In 
this case, the CR for the three-class problem improved up to 84%, while 
we got perfect classification (100)% for the Control vs Bronchiectasis 
with PA infection. The next model in terms of good performance was the 
discrimination between Controls and Bronchiectasis, while the presence 
of PA infection in Bronchiectasis performed a bit lower but still with an 
excellent 87% classification rate. In general, models presented better 
specificity than sensitivity, however, the latter still ranged from 92% to 
100% (see Table 1). 

The current study indicates that the e-nose was able to classify the 
breath samples not only in internal validation as previously described 
but also in external validation. Furthermore, the class separation is not 
linear requiring non-linear decision functions to obtain good results. 
While these results are encouraging, they should be further validated 
with more subjects (due to the risk of over adjustment related with the 
small sample conditions), during a longer study, and eventually in a 
multicenter study. It should be independently tested with additional e- 
nose units. Another direction of study is to investigate if this very good 
separation is specific to the sensing technology used with the presently 
used device or if they can be replicated with electronic noses of different 
technologies. 

4.3. Gas chromatographic analysis 

While the score plot shows a good separation between the two 
studied classes, we have to take into account that PLS-DA score plots are 
easily overoptimistic [36,74]. Additionally, the apparent good result in 
classification rate is unable to overcome the additional permutation test 
due to the large variance of the CR estimator probably linked to the 
small number of samples compared to the input data dimensionality. 

Regarding the second strategy applied (Table 2), these results agree 
with the obtained results for the e-nose in the sense that KNN models 
presented a better performance than PLS-DA (exception for the Control 
vs Bro_PA). However, in this work, all the predictive models constructed 
for the GC-MS data the classification rates were not good enough to 
distinguish between the classes, and consequently it was not possible to 

Fig. 4. (i) Scoreplot PLS-DA model obtained from alpsNMR using as class Control versus Bronchiectasis_PA (ii) permutation test for the predictive model.  

Table 2 
Summary of results obtained for the GC-MS after feature selection applying 
Wilcoxon test (binary models).    

PLS-DA KNN  
Number of selected features CR (%) CR (%) 

Control vs Bronch 39 40 62 
Control vs Bro_PA 42 62 52 
Bronch vs Bro_PA 13 48 58  
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discover the compounds that are important to class separation. 
It is interesting to confront the successful results of the predictive 

models built with the e-nose measurements in opposition to the failure 
obtained using GC-MS data. We can point several underlying reasons 
behind these results. First, the e-nose measurements have replicates (5 
per sample) while a single GC/MS analysis is carried out per bag. Sec
ondly and as expected, the dimensionality of the e-nose is much smaller 
than the GC-MS leading to curse of dimensionality problems. This is 
more important when facing binary problems (for the GC-MS) since the 
sample count is even smaller. 

Furthermore, the signal processing pipeline for GC-MS is more 
complex than for e-nose data. The large number of peaks, sometimes 
with strong coelution, baseline instabilities, and slight shifts in retention 
time leading to alignment problems, makes the whole data processing 
workflow a real challenge, particularly if in addition we have a limited 
supply of examples for the machine learning step. This is in agreement 
with previous research that combined GC-MS and e-nose analysis on the 
same samples for cancer screening [75,76]. The GC-MS results obtained 
in this study sign that, even though the use of experimental design and 
good analytical chemistry practices are essential, good validations 
techniques in the development of the models are key to avoiding false 
discoveries in complex data. 

5. Conclusions 

This study showed that e-noses were able to differentiate bronchi
ectasis and bronchiectasis with bronchial infections, produced by pseu
domonas aeruginosa, patients from controls with good results in external 
validation and the results were confirmed by permutation tests. 

We would like to highlight a number of methodological factors that 
support the results and the validity of the conclusions. First, the proper 
experimental design to block the most important confounding factors. 
Second, the evaluation of the predictive models in external validation 
using double leave one subject out and the additional permutation tests 
to explore if the obtained results can just be obtained due to the large 
variance of performance estimators in small sample conditions. Results 
for e-nose improved significantly after non-linear signal transformation, 
and the use of majority voting over measurement replicates. 

The use of GC-MS to explore the important compounds for the class 
differentiation was not successful. The main reasons for that were the 
small sample counting, the lack of replicates and the complexity of the 
obtained signals. We consider that more strict validation methodologies 
should be in use to avoid false discoveries in breath analysis. 

Despite the good results obtained by electronic nose, the fact that this 
approach does not allow to identify condition specific compounds is a 
clear limitation of this approach since it does not bring additional in
formation for the understanding of the underlying mechanisms below 
the observed discrimination. 

The obtained results should be considered as a positive indication 
supporting the validity of the proposed methodology. However, studies 
with larger cohorts, from different geographical areas and recruitment 
hospitals are needed to give additional support to the findings reported 
in this work. 
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