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THESIS SUMMARY 

The broad objectives of this work are the identification of genes that contribute to the 

susceptibility to attention-deficit/hyperactivity disorder (ADHD) and cocaine dependence, two 

disorders that co-occur in patients. In this Thesis, we describe (i) the contribution to ADHD of 

allele-specific methylation (ASM), an epigenetic mechanism that involves single single-

nucleotide polymorphisms (SNPs) correlating with differential levels of DNA methylation at 

CpG sites, (ii) the role of microRNA (miRNA) genes in ADHD, and (iii) a genome-wide 

association meta-analysis of cocaine dependence. We also explore the common genetic basis 

that explains the comorbidity between these disorders.  

The main results from the three studies include: 

(i) Common genetic risk variants for ADHD identified in a previous genome-wide association 

study (GWAS) that included 20,000 cases and 35,000 controls are enriched in SNPs that 

correlate with levels of DNA methylation. Eight ASM SNPs were found significantly 

associated with ADHD and correlated with differential methylation at six CpG sites in cis in 

different brain areas. These six CpG sites are located at possible promoter regions of six genes 

expressed in brain: ARTN, C2orf82, NEUROD6, PIDD1, RPLP2 and GAL. Based on the 

bioinformatic functional analyses of these genes, our study highlights the candidacy of ARTN, 

C2orf82 and PIDD1 genes as potential contributors to ADHD susceptibility. 

(ii) We conducted a case-control association study to investigate the contribution to ADHD of 

common genetic variation in 1,761 autosomal miRNAs using pre-existing GWAS data from 

20,000 cases and 35,000 controls. We identified significant associations of SNPs with ADHD 

that highlight 12 miRNA genes, all located within protein-coding genes. The associated 

variants are located in the putative regulatory regions of the miRNA genes or in the promoter 

region of the host protein-coding gene. We inspected the target genes, brain expression, 

homologs for the miRNAs and we propose miR-7-1 and miR-3666 as promising candidates 

since both are brain expressed, have validated brain-expressed targets, and homologs in model 

species. Pathway analysis of ADHD-associated miRNAs revealed miRNA-mediated 

regulation of serotonin receptor genes, well-known contributors to neurological functions and 

diseases. 



 

 

(iii) We performed the largest cocaine dependence GWAS meta-analysis in individuals of 

European ancestry, including 2,100 cases and 4,300 controls. Although SNP-based analysis 

revealed no genome-wide significant associations with cocaine dependence, probably due to 

limited sample size, gene-based analysis identified the HIST1H2BD gene, previously 

associated with schizophrenia. The estimated SNP-based heritability of cocaine dependence 

was estimated as 30%. A significant genetic correlation was found between cocaine 

dependence and ADHD, schizophrenia, major depressive disorder and risk-taking behaviour, 

suggesting a shared genetic basis across pathologies and traits. Polygenic risk score (PRS) 

analysis shows that all the comorbid features analysed (ADHD, schizophrenia, major 

depressive disorder, aggressiveness, antisocial personality or risk-taking behaviour) can predict 

cocaine dependence.  

Overall, we identified common genetic and epigenetic risk factors that underlie the 

susceptibility to ADHD and to cocaine dependence. The results reinforce the idea that 

epigenetic mechanisms dictate the differential expression of genes that may be causal to 

ADHD. Cocaine dependence, which has been widely believed to occur under environmental 

and epigenetic influences, is also in part genetically determined. Finally, ADHD and cocaine 

dependence are comorbid disorders, and the observed genetic correlation between these 

conditions can reflect biological pleiotropy. 

 

 

  



 

 

RESUM DE LA TESI 

Aquest treball té com a objectiu principal la identificació de gens que contribueixen a la 

susceptibilitat al trastorn per dèficit d’atenció amb hiperactivitat (TDAH) i a la dependència de 

cocaïna, dos trastorns que es presenten amb freqüència conjuntament en pacients. En aquesta 

Tesi es descriu (i) la contribució al TDAH de la metilació específica de l’al·lel (ASM), un 

mecanisme epigenètic pel qual variants polimòrfiques presenten correlació amb nivells 

diferencials de metilació de l’ADN en llocs CpG, (ii) el paper dels gens de microRNAs 

(miRNAs) en el TDAH, i (iii) una meta-anàlisi d’estudis d’associació a escala genòmica de la 

dependència de cocaïna. També explorem la base genètica comuna que explica la comorbiditat 

entre aquests dos trastorns. 

Els principals resultats dels tres estudis són: 

(i) Les variants genètiques comunes de risc al TDAH identificades en un estudi previ 

d’associació a escala genòmica (GWAS) amb 20.000 casos i 35.000 controls estan enriquides 

en variants de canvi d’un sol nucleòtid (SNPs) que tenen influència sobre la metilació de 

l’ADN. Vuit SNPs de tipus ASM estan associats significativament amb el TDAH i presenten 

correlació amb la metilació diferencial de sis dinucleòtids CpG en cis en diferents àrees 

cerebrals. Aquests sis llocs CpG estan en possibles regions promotores de sis gens que 

s’expressen al cervell: ARTN, C2orf82, NEUROD6, PIDD1, RPLP2 i GAL. En base a anàlisis 

bioinformàtiques d’aquests gens a nivell funcional, el nostre estudi prioritza els gens ARTN, 

C2orf82 i PIDD1 com a possibles contribuents a la susceptibilitat al TDAH. 

(ii) Hem dut a terme un estudi d'associació cas-control per investigar la contribució al TDAH 

de la variació genètica comuna en 1.761 miRNA autosòmics utilitzant dades GWAS 

preexistents de 20.000 casos i 35.000 controls. Hem identificat associacions significatives de 

SNPs amb el TDAH que assenyalen 12 gens de miRNAs, tots situats dins de gens que 

codifiquen proteïnes. Les variants associades estan situades en suposades regions reguladores 

dels gens de miRNA o a la regió promotora del gen hoste. Hem inspeccionat els gens diana 

dels miRNAs, la seva expressió en cervell i els gens homòlegs en altres espècies, i proposem 

els gens miR-7-1 i miR-3666 com a candidats prometedors, ja que tots dos són s’expressen al 

sistema nerviós central, tenen dianes validades que s’expressen també en cervell i tenen 

homòlegs en espècies model. L’anàlisi de vies a partir dels miRNAs associats al TDAH ha 



 

 

assenyalat gens de receptors de serotonina regulats pels nostres miRNAs, la relació dels quals 

amb funcions i malalties neurològiques és ben coneguda. 

(iii) Hem realitzat la metaanàlisi més gran fins ara de dades GWAS de dependència de cocaïna 

en individus d'ascendència europea, amb 2.100 casos i 4.300 controls. Tot i que l’anàlisi basada 

en SNPs no ha revelat cap associació significativa amb la dependència de cocaïna, 

probablement a causa de la mida mostral limitada, l’anàlisi basada en gens ha permès 

identificar el gen HIST1H2BD, anteriorment associat a l’esquizofrènia. Hem calculat també 

l'heretabilitat basada en SNPs de la dependència de cocaïna, que seria d’un 30%. Hem detectat 

una correlació genètica significativa entre la dependència de cocaïna i el TDAH, 

l’esquizofrènia, el trastorn depressiu major i els comportaments de risc, tot suggerint que hi ha 

una base genètica compartida entre patologies i trets. L’anàlisi de la puntuació de risc poligènic 

(PRS) mostra que totes les característiques comòrbides analitzades (TDAH, esquizofrènia, 

trastorn depressiu major, agressivitat, personalitat antisocial o comportaments de risc) prediuen 

la dependència de la cocaïna. 

En resum, hem identificat factors de risc genètics i epigenètics freqüents a la població que 

contribueixen a la susceptibilitat al TDAH i a la dependència de cocaïna. Els resultats reforcen 

la idea que els mecanismes epigenètics estan relacionats amb l'expressió diferencial de gens 

que poden contribuir al TDAH. La dependència de cocaïna, que fins ara s’havia relacionat amb 

factors de risc ambientals i epigenètics, també estaria determinada, en part, per factors genètics. 

Finalment, el TDAH i la dependència de la cocaïna són trastorns comòrbids i la correlació 

genètica observada entre aquestes afeccions pot reflectir pleiotropia biològica. 
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CHAPTER 1. OVERVIEW 

Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset 

neurodevelopmental psychiatric condition. It is characterized by impairing symptoms of age-

inappropriate inattention, impulsivity and hyperactivity. The disorder affects around 5-7% of 

children and adolescents worldwide1,2. According to longitudinal data, ADHD symptoms 

persist into adulthood in nearly 65% of the affected individuals3, making it a lifelong state. The 

prevalence of adult ADHD is 2.5-5%1,3,4. The questions on causation, risk, mediating factors 

and lifespan trajectory of this disorder remain still poorly understood. 

1.1 Clinical symptomatology 

In line with the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-V)5, ADHD symptoms must be discernible before the age of 12 years with significant 

debilitation of child’s integration in more than one environment, e.g., school or work, or family 

and peers. The previous criterion, according to DSM-IV, for the age of onset of ADHD 

symptoms was 7 years6. Based on the associated behavioral symptoms, there are three subtypes 

of ADHD (DSM-IV): predominantly hyperactive/impulsive (HI), predominantly inattentive, 

or combined. However, DSM-V puts less emphasis on these distinctions7. It is relatively easier 

to notice the contrasting subtypes of inattention and HI. However, the presence of the combined 

form of ADHD severely disturbs the functioning of an individual8. A greater percentage of 

males fall within the HI spectrum, while females tend to present more inattentive symptoms 

and often go undiagnosed8,9. This may explain, in part, the disparity in the reported incidence 

of ADHD between both genders. 

1.2 Comorbidities 

It is well known that ADHD is highly comorbid with other psychiatric and non-psychiatric 

conditions, throughout the life span4. Major comorbidities observed during several stages of 

a subject with ADHD are learning disorders, tics, autism spectrum disorders (ASD), conduct 

disorder (CD), oppositional defiant disorder (ODD), mood and anxiety disorders, antisocial 

behaviors, sleep disorders, major depressive disorder (MDD), substance use disorders (SUDs) 

and obsessive-compulsive disorder (OCD)4,9,10.  

The comorbidities and their impact often change during the lifetime of patients10. For example, 

children with ADHD might show more CD, ODD and anxiety; while adolescents with ADHD 
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are likely to exhibit OCD and SUD4,11. These co-occurring behaviors can be direct outcomes 

of the ADHD and increase the severity of the disorder. The relatively poor performance in 

education or in work spaces may trigger anxiety and depression in ADHD individuals11. Social 

exclusion may lead to increased loneliness or to antisocial behavior at later stages12.  

1.3 Social problems 

The disorder poses impediments that begin in childhood and continue throughout the lifespan 

generating a personal burden that can be highly impairing. HI children are more likely to 

present aggressiveness or behaviors that are inadequate in sociocultural contexts. This 

increases their odds of facing social rejection from their non-ADHD counterparts13. 

Adolescents with ADHD have troubles building peer relationships because of the reported low 

esteem, which also exposes them to a greater risk of substance abuse14.  

While the medication benefits the condition, it is certainly not a substitute for interpersonal and 

social skills development. There are concealed struggles by ADHD-afflicted in achieving high 

working memory, decision making, time management, impulse control, endurance in personal 

or professional tasks and follow-through on ideas. In most instances, not all these parameters 

are satisfactorily met.   

In addition, the stigma attached to ADHD as with many other psychiatric conditions, challenges 

the integration of the affected into the society, which is presently still not prepared to accept 

the neurodiverse community. Despite the global validity of ADHD as a psychiatric condition, 

it is still not prioritized in some societies, which hinders the conditioning and progress of the 

suffering individuals. 

1.4 Misdiagnosis of ADHD 

Multiple issues can complicate and interfere with a clear and uniform diagnosis of ADHD. 

First, the clinical presentation of ADHD may vary according to gender, age and stage of 

development8,15,16. Second, the uniformity of ADHD diagnosis is hindered by the presence of 

cultural differences in the expected activity and inattention levels8,15,16. Third, the presence of 

comorbid conditions may mask the ADHD symptoms and lead to misdiagnosis16. In the 

presence of multiple manifestations, detailed screenings are needed to figure out the causal 

condition and the effects9. Fourth, the inattentive form of ADHD gets more easily unnoticed, 

especially in the absence of comorbidities. 
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1.5 Therapeutic approaches 

ADHD treatment involves a combination of pharmacological and non-pharmacological 

interventions in children, adolescents and adults4. Pharmacotherapy relies mainly on the use of 

stimulant medications, e.g. methylphenidate, pemoline and dextroamphetamine17,18. Mostly 

considered safe in structured doses, these molecules may improve the core symptoms of 

inattention, hyperactivity and impulsivity19. The affected children and adolescents benefit from 

an increased academic performance and social functioning at school and at home, and adults 

tend to cope better with occupational and social dysfunctions while under stimulant 

medication20–23. Nearly all the treatments show the same efficacy, with around 70% of ADHD 

patients responding to the available treatments that target mainly the dopaminergic and 

noradrenergic systems17,19. However, there is a need for research into the causal biological 

pathways in ADHD to address new targets and for a better outreach. In children, non-

pharmacological interventions involving cognitive-behavioral therapy (CBT) are perceived to 

be less efficient than stimulant medication, if used alone24. However, CBT can assist in 

managing comorbid behavior disruptions like CD25. CBT has been shown to be more effective 

in adolescents with ADHD than in children26,27. 
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CHAPTER 2. ETIOLOGY OF ADHD 

ADHD etiology is believed to be multifactorial, with genetics contributing significantly to the 

cause of the disorder, together with environmental risk factors. ADHD is one of the psychiatric 

disorders with the strongest genetic basis according to familial, twin, and SNP-based 

statistics3,4.  

2.1 Heritability estimates in ADHD 

Heritability is a measure to understand how much of the variation in a given trait can be 

attributed to genetic factors. Two main approaches are implemented to quantify heritability. 

The classic method employs twin studies, where the concordance (or correlation) of a 

phenotype is assessed in monozygotic twins (sharing 100% of their genomes) versus dizygotic 

twins (sharing 50% of their genomes). Another method identifies the impact of the environment 

in addition to the genetic contribution in twins. The environmental risks may not be shared 

among siblings. This estimates the genetic (A), shared environment (C) and unique 

environment (E) in the twin studies and is therefore termed as ‘ACE’ model3. Twenty twin 

studies in ADHD estimated the heritability of this psychiatric disorder as 76%28 and the latest 

estimated mean heritability from across 37 twin studies is 74%29, retaining consistency over 

the decade (Figure 1). This indicates that three quarters of the phenotype variation in ADHD 

is due to genetic variation, and therefore ADHD is among the most heritable of psychiatric 

disorders. 

  
A.      B. 

 

Figure 1. A: Estimated heritability of ADHD, based on pooled results from 20 twin studies. B: Heritability of 

ADHD from twin studies of ADHD diagnoses or symptom counts. 

Adapted from Faraone et al., 2005 and Faraone et al., 2018. 
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Although several countries maintain twin registries, especially in Scandinavia and in the USA, 

finding an adequate number of twins can be challenging since human twin occurrences are not 

very common. Thus, an alternative approach estimates single nucleotide polymorphism (SNP)-

based heritability (SNP-h2) through genome-wide complex trait analysis (GCTA). The starting 

point is a genome-wide association study (GWAS), where SNPs covering the whole genome 

at regular intervals are genotyped -typically- in a group of patients and a group of controls and 

pairwise genetic and phenotypic correlations are computed by employing linkage 

disequilibrium (LD) score regression models. The additive effect of common SNPs to the 

phenotype is a predictor of SNP-h2. In ADHD, the most recent estimation for SNP-h2 is 0.22 

(standard error = 0.01)1. It is important to note that SNP-based heritability accounts for the 

genetic contribution to the trait of a certain type of variation (SNPs) with a certain frequency 

(greater than 1% or than 5%, depending on the study), neglecting the genetic effects of other 

variants (e.g. copy number variants -CNVs- or rare variants). 

2.2 Is there an environmental basis for ADHD? 

Pre-, peri- and postnatal risk factors may aggravate the development of ADHD symptoms: 1) 

Maternal characteristics during pregnancy are counted as prenatal influences, for instance- 

presence of illnesses, stressors, exposure to chemicals or substance use. 2) Perinatal factors 

involve birth-related indicators like type of delivery, hypoxia, child’s birth weight, infections 

in child following birth, among others. 3) Exposures and experiences during early childhood 

build the postnatal environment. 

Maternal exposure to cigarettes and alcohol prenatally may induce alterations in the 

cerebellum30,31, a brain region monitoring some of the cognitive functions that are impaired in 

ADHD. It may also increase hyperactivity, impulsivity and disruptive behaviours in children, 

potentially exposing them to developing psychiatric conditions. Maternal smoking escalates 

the ADHD risk in children by twice32 and a positive relation is reported between smoking doses 

and hyperactivity33. Other prenatal factors can lead to very low birth weight in children, which 

is associated with a two-fold increase in ADHD34,35. 

Perinatal events like complications during delivery are associated with increased incidence of 

ADHD symptoms in children36. Hypoxic occurrences adversely affect developing brains37. 

Postnatal risks are diverse but mostly reflected by the social conditioning of children and their 

dietary imbalances. For instance, a role for iron-deficient diets and unbalanced consumption of 

essential fatty acids (omega-3 and omega-6) have been suggested impact ADHD 
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development38–40. However, further evidences are needed to validate these speculations. 

Exposure to environmental toxins and social adversities like stressful social life at early stages 

may also interfere with the neurobehavioral progression and trigger ADHD symptomatology41.  

2.3 Quantifying gene-environment interactions 

As several risk factors for ADHD have been identified in addition to the genetic ones, the 

models to study the etiology of ADHD have accordingly evolved and are complex. These 

models intend to quantify the interactions between genes and environmental exposures. For 

instance – It is known that an altered activity of nicotinic receptors disrupts dopaminergic 

function42, a functional pathway known to be relevant to ADHD. So, it is enticing to speculate 

on the impact of prenatal smoking to ADHD risk on those subjects bearing genetic risk factors 

for ADHD in dopaminergic genes. An example model to estimate the ADHD outcome 

considers ADHD risk variants in DRD4 -encoding a dopaminergic receptor- and DAT1 -the 

dopamine transporter- together with the intensity of prenatal smoking43. Such models may also 

help to predict the severity of ADHD symptoms and also its clinical subtypes. Similarly, males 

homozygous for the 10-repeat allele of the 40-bp variable number of tandem repeats (VNTR) 

polymorphism in DAT1 who grow up in a context of psychosocial adversity exhibit higher 

hyperactivity-impulsivity than non-homozygous DAT1 males or those who grow up in less 

adverse conditions. Similarly, significant interactions of the 30-bp VNTR and DAT1 haplotype 

with psychosocial adversity on ADHD symptoms have also surfaced44.     
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CHAPTER 3. MOLECULAR GENETIC STUDIES 

3.1 Genome-wide linkage scans 

Seven independent genome-wide linkage scans have identified susceptibility loci for ADHD 

on chromosomes 5p13, 14q12 and 17p114. However, the linkage signals on 5p and 17p could 

not be replicated in a later high-density SNP linkage scan and suggestive linkage signals were 

reported on chromosomes 16q23 and 9q22 in this same study45. Other linkage spots appeared 

on 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p1146 and 16p1347. A genome scan meta-analysis 

(GSMA) was conducted on all seven independent genome-wide linkage scans in ADHD that 

identified a genome-wide significant (GWS) linkage on chromosome 16 (16q22–16q24),  and 

nine genomic regions showing nominal linkage48. Follow-up studies on these linkage signals 

are limited and only a few genes behave been highlighted. For instance - The 9q22 locus 

pointed at genetic variation in the promoter region of the brain-expressed DIRAS2 gene, 

encoding a GTPase of the Ras family, as a risk factor for ADHD and impulsive disorders49. In 

addition, fine mapping of the genomic region on chromosome 4 found previously linked to 

ADHD narrowed down a segment encompassing exons 4 to 19 of the LPHN3 gene, containing  

several functional domains and variants with a potential impact on splice isoform variability50. 

LPHN3 encodes a G-protein coupled receptor involved in cell-to-cell adhesion. 

3.2 Common genetic variation in ADHD 

3.2.1 Candidate gene association studies/Hypothesis-driven studies 

Research through this approach has focused on neurobiological pathways that are suspected to 

be involved in ADHD. Genes that belong to these pathways are proposed to be candidates for 

the disorder and subsequently examined in both cases and controls for differences in the 

frequency of genetic variants. 

Most classic candidate gene studies in ADHD have tagged neurotransmitter systems, mainly 

dopamine and serotonin. The fact that the main pharmacological treatments for the disorder 

target dopaminergic receptors and the dopamine transporter, has motivated an extensive 

scrutiny of this system, with several associations with childhood or adult ADHD found at 

genetic loci containing DRD4, DRD5, DAT1 5HTT, HTR1B, and SNAP2551.   

However, an important limiting factor hampers the use of the candidate gene approach: the 

knowledge we have on the disease mechanisms is still scarce and fragmented. Also, the 
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reliability of this approach is limited, as the chances of obtaining false positive results are high, 

making it difficult to replicate the findings3. It is worth to note that none of the hypothesis-

driven findings have emerged as Bonferroni significant (P < 5 × 10−8) in GWASs so far, with 

the only exception of FOXP2, a language-related gene that encodes a transcription factor and 

found associated with adult ADHD in a study published in 201252. 

3.2.2 Genome-wide association studies / Hypothesis-free studies 

Initial attempts on identifying genome-wide associations of SNPs with ADHD through GWAS 

have been performed on nine independent datasets4. Three of these GWASs were specific to 

the persistent form53–55, and another one focused on conduct disorder with ADHD56, and 

studied families. Several of these datasets were part of the first two meta-analyses in 

ADHD57,58. However, neither the individual GWASs nor the meta-analyzed associations 

resulted in genome-wide significant loci. Key functions of the top genetic loci from these 

ADHD GWASs are central nervous system development, neuronal progression involving 

differentiation and activity, neurite outgrowth, synaptic transmission, axon guidance, ligand 

binding e.g. to FGFR, and also the activation of ion channels4. 

The very first GWS hits in ADHD have been unraveled in a meta-analysis published in 2019 

that comprises 20,183 ADHD cases and 35,191 controls from 12 datasets including both 

children and adults1. This study highlights 12 independent GWS loci containing 304 SNP 

variants. The well annotated genes include FOXP2 (mentioned in the previous section, a 

transcription factor involved in learning disabilities and language), SORCS3 (a brain-expressed 

receptor with a role in brain plasticity and neuronal development), DUSP6 (with a role in 

dopamine homeostasis), SEMA6D (possibly involved in the inhibition of axon growth, 

associated with educational attainment) and MEF2C (a transcription factor associated with 

other brain conditions). However, there are additional genes (e.g. miR-3666) and intergenic 

variants located in these GWS loci1 that are not well annotated, but they might be potentially 

relevant in understanding ADHD. 

The latest findings from the GWAS and, especially, those from the previous linkage studies or 

the CGAS continue to present inconsistencies. Presumably, with studies that utilize an even 

greater sample size, we expect to achieve replications and more confidence in the findings. 

Indeed, a preliminary GWAS that is an extension of the one published in 20191 and includes 

more than 100,000 ADHD cases and over 120,000 controls was presented at the World 
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Congress of Psychiatric Genetics 2019 and has not been published yet. This study released 

around 100 independent GWS hits. 

3.3 Rare genetic variation and structural variants in ADHD 

The contribution of rare genetic variants (minor allele frequency (MAF) <1%) and of structural 

variants, also known as copy-number variants or CNVs (involving DNA segments >1 Kb) to 

ADHD heritability can be weighted through whole-genome, whole-exome or targeted 

sequencing, but also by using genotyping arrays and other methodologies. Rare mutations 

(either-single nucleotide variants -SNVs- or CNVs) and high-frequency CNVs are suspected 

to explain a considerable fraction of the so-called missing heritability of ADHD. Those genetic 

effects would add to those explained by common single-nucleotide variation (SNPs), estimated 

to be around 20% for this disorder. 

Large rare CNVs (> 100 kb or > 500 kb) are at a greater burden in both child and adult ADHD 

patients59–61. Many of the risk CNVs are found in genomic regions related to 

neurodevelopmental processes and are shared with other brain disorders, like intellectual 

disability (ID), autism and schizophrenia. Individuals carrying rare risk CNVs may require a 

lesser load of common risk variants to develop ADHD59.  

Rare SNVs in psychiatric disorders have been studied mainly in autism62 and schizophrenia63 

through whole-exome (WES) or whole-genome sequencing (WGS). A recent exome analysis 

on a large number of ADHD and ASD cases has ascertained a significantly greater burden of 

rare protein-truncating variants, and associated MAP1A, with both disorders64. A WES study 

explored a prioritized set of 52 candidate risk genes in ADHD and found that rare missense 

and disruptive variants in these genes were more than twice as prevalent in patients with 

persistent ADHD compared to controls65. A combined linkage analysis and WES approach 

identified 38 rare variants within 25 genes where these genes altogether were significantly 

associated with persistent ADHD. The AAED1 gene that can possibly regulate DAT trafficking 

through PICK1 binding emerged as gene-wide significant, and a rare variant 

in AAED1 (rs151326868) segregated with ADHD66. Also, an exome-wide scan of rare coding 

variants for adult ADHD revealed four significant candidate loci at 6q22.1, where NT5DC1 

and COL10A1 reside, along with the SEC23IP, PSD and ZCCHC4 loci67. Putative functional 

rare SNVs associated with hyperactivity and inattention have been detected in the context of 

one of the major common variants of DRD4: a repeat of a 48-bp unit in exon 3 of the gene 

(DRD4-7R). It is worth speculating whether these rare variants in DRD4 can be a stronger 
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contributor to ADHD symptoms than the classically investigated DRD4 common 

variation68.  The brain-derived neurotropic factor gene BDNF, previously related to 

impulsive symptoms, is enriched in putatively functional, rare SNVs69. An investigation on 

the etiology of sporadic ADHD highlighted six brain-expressed genes as candidates for the 

disorder, based on the load of de novo missense SNVs70.  

3.4 Epigenetics and ADHD 

Epigenetic modulators dynamically regulate the expression of many genes, including those that 

control the neural cell phenotype and brain function. Thus, modifications of DNA methylation, 

histone code, nucleosome positioning, and noncoding RNA-based mechanisms are recognized 

epigenetic regulators, all of them relevant to the identification of disease mechanisms. Each 

epigenetic modification can contribute multiplicatively to the disease risk71. Given the 

phenomenon of transgenerational epigenetic inheritance71, a better scrutiny of the epigenetic 

landscape may help to elucidate a proportion of the “missing heritability” that accompanies 

many common and complex human diseases72. The first epigenetic studies in ADHD have 

already established links between the epigenetic modification of genes and ADHD etiology. 

3.4.1 MicroRNAs (miRNAs, miRs) and ADHD 

3.4.1.1 MicroRNAs 

MiRNAs are 19-21bp long non-coding RNAs (ncRNAs) and have been extensively studied.  

They bind to target mRNAs which might lead to either complete degradation of the mRNA or 

to an alteration in its translation to protein. A single miRNA can target one or more mRNAs, 

and many miRNAs can simultaneously target a single mRNA molecule73. This therefore 

constitutes a critical form of posttranscriptional regulation of gene expression that involves 

around 60% of all the protein-coding genes in the human genome74.  

The precise identification of miRNAs and their probable targets is not an easy task. The 

database miRBase v.21 (http://www.miRBase.org), released in 2014, reports the latest figures 

on identified human precursor and mature miRNAs in humans, mice, and other species75. In 

humans, 1,881 precursor miRNAs have been identified, resulting in the generation of 2,588 

mature miRNAs.  

Investigating the mechanisms of action of miRNAs is of upmost importance to our 

understanding of the regulation of the cellular function. The human brain contains 70% of all 

known miRNAs, making miRNAs a crucial component in neuropsychiatry76,77. MiRNAs 

http://www.mirbase.org/
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define the overall multifold molecular, structural and functional development of the nervous 

system73. Therefore, disentangling the functionality of miRNAs in brain may specifically trace 

the underlying neuropsychiatric pathways (Figure 2).  

.   

One of the approaches used involves comparing the mRNA transcriptome and the miRNA 

levels from brain biopsies of patients against those of controls. However, because of the 

invasive nature of brain biopsies, this technique has ethical issues and necropsies from post-

mortem brains are used instead. An alternate minimally invasive approach might be to study 

the levels of cell-free circulating miRNAs in body fluids like saliva, serum, urine, and 

cerebrospinal fluid (CSF). MiRNA profiles are highly stable in nearly all fluids, as these 

molecules are resistant to RNAse degradation in bloodstream78,79.  

Human plasma carries nearly 10% of all known human miRNAs, including mirtrons, 

unconventional precursors to miRNA biogenesis pathways79. However, how these circulating 

miRNAs contribute to the normal and/or altered physiology, remains unclear. Expression 

profiling of miRNAs can be valuable in estimating the risk or progression of diseases. 

3.4.1.2 MiRNAs and ADHD 

In order to evaluate circulating miRNAs as biomarkers in neurodevelopmental conditions, 

studies have been attempted in individuals with ADHD, ASD, schizophrenia, anxiety disorder, 

bipolar disorder and Tourette syndrome80,81. Regarding ADHD, we know that several miRNAs 

modulate the expression of genes that have been linked to the disorder, for instance BDNF, 

which controls neuronal activity, and DAT1, HTR2C, HTR1B and SNAP-25, involved in 

neurotransmitter mediation82. Also, the levels of several miRNAs have been found altered in 

peripheral tissues of ADHD patients and in animal models82.  

Figure 2. The effect of the 

miRNome on brain functions. 

Adapted from O’Connor et al., 
2016. 
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Deregulated miRNAs in ADHD 

Five dysregulated miRNAs have been reported in serum samples with significant predictive 

values to discriminate between the ADHD and control groups (upregulated: hsa-miR-101-3p, 

hsa-miR-130a-3p, hsa-miR-138-5p and hsa-miR-195-5p and downregulated hsa-miR-106b-

5p)83. miR let-7 is most extensively addressed for its role in neuronal adaptations and 

neurodegeneration84. Reports of miR let-7 in the brains of an ADHD rat model (SHR, 

Spontaneously Hypertensive Rat) have confirmed its elevated levels and its role as a 

downstream regulator of tyrosine hydroxylase, a critical molecule to dopamine metabolism85. 

The glucocorticoid receptor Nr3c1 is known to undergo a complex miRNA-Bhlhb2 regulation. 

In the prefrontal cortex (PFC) of this ADHD animal model, Nr3c1 inhibits the expression of 

miR-296, 34c, 138 and 138, which in turn target Bhlhb2, encoding a transcription factor, that 

becomes overexpressed. Targeted silencing of Bhlhb2  significantly improves the hyperactivity 

behavior in the SHRs86. In the most recent attempts to establish circulating blood miRNAs as 

ADHD biomarkers, 13 miRNAs have been reported using next-generation sequencing 

(NGS)87, and also miR-26b-5p, miR-185-5p, and miR-191-5p in a genome-wide miRNA 

expression analysis88. 

Genetic variation in the miRNA machinery in ADHD 

Presence of polymorphisms in miRNA sequences or their target sites may disrupt the binding 

strength of miRNAs-mRNAs89. Moreover, variation in regions involved in the regulation of 

miRNA expression may also be functionally relevant. These variants may be located in cis or 

in trans with respect to the miRNA gene which expression is affected. Two ADHD-associated 

SNPs are located in the 3′UTR of the SNAP-25 gene, which is also a predicted binding region 

for miR-510 and miR-64190,91. A SNP in the pri-miR-34b/c locus has been associated with 

ADHD, and their mature forms miR-34b and miR-34c are differentially expressed in the blood 

of ADHD subjects. This pri-miR loci targets ADHD-associated genes, either validated 

(NOTCH2, HMGA2) or just predicted targets (HTR2C and VAMP2)92. The 3’UTR of DAT1, 

encoding the dopamine transporter, has a 40bp-VNTR that contains binding sites for four 

miRNAs: mir-1972, miR-30b-5p, miR-1301 and miR-607093. Interestingly, two SNPs located 

downstream from miR-96 in the miR-183–96–182 cluster have been associated with ADHD 

without substance use disoders94. The members of this cluster may target the serotonin receptor 

gene HTR1B and also RARG, implicated in the control of the dopamine signaling pathway95. 

Finally, a study explored the contribution of genetic variants in the miRNA biogenesis 

machinery, i.e. in genes and found a suggestive association between a SNP in the AGO1 gene 
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and ADHD96. The authors claim for innovation in the diagnostic strategies in ADHD, in the 

sense that there is a need to interrogate also the ‘regulators of the regulators’ (Figure 3). 

 

 

 

 

 

3.4.2 DNA methylation and Allele-Specific methylation (ASM) 

The methylation of cytosine molecules in CpG dinucleotides through a covalent modification 

is known as DNA methylation.  It is a stable epigenetic modification with a direct role in 

defining chromatin-histone patterns, and in the processes of X-chromosome inactivation, 

genomic imprinting, gametogenesis, embryogenesis and silencing of repetitive DNA elements.  

Research on DNA methylation patterns in candidate genes for distinct disorders have allowed 

identification of aberrant patterns of methylation in several genomic regions and tissues. Often, 

these patterns are tissue- or even cell line-specific. In addition, allele-specific DNA methylation 

can lead to allele-specific gene expression (ASE)97. 

Multiple studies have tested whether the patterns of DNA methylation of certain candidate 

genes for a disorder can be synchronous with the symptoms of the disorder. For instance, a 

study conducted on newborns has reported negative associations between childhood ADHD 

symptomology and the methylation of genomic regions encompassing DRD4 and 5-HTT98.  In 

some instances, the co-occurring conditions may weaken or enhance the associations between 

the DNA methylation levels and ADHD scores98. 

ASM is a prevalent epigenetic mechanism across the genome where different alleles at a 

polymorphic site can skew the patterns of DNA methylation. The most widespread is the cis-

effect ASM, where a local genotype is concomitant with allelic DNA methylation on the same 

DNA molecule. On the contrary, a minority of ASM events are non-cis, resulting from trans-

acting elements. Even though ASM is cell-type specific, it occurs on 23%∼37% heterozygous 

SNPs in any given cell line97. The heterozygous SNPs in the regions of CpG dinucleotides can 

• Variation in miRNA genes 

• Variation in downstream ADHD candidate genes 

• Variation in other genes and interactors 

Genetic 

variation in the 

miRNA 

biogenesis 

Figure 3. Novel candidates for exploration of genetic risk factors in ADHD: miRNA biogenesis. 

Adapted from Karakas et al., 2017. 
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account for up to 80% of ASM regions97. In consequence, the methylation potential of these 

CpG dinucleotides is perturbed, which alters the expression of the regulated genes. Deciphering 

the ASM variants and integrating this information with GWAS data is a valid approach to mine 

the functional connections from variants to phenotype99.  

3.4.3 Challenges in epigenetic research 

Epigenetics research is a promising way to digest the chunks of available information and to 

infer the most out of GWAS datasets100. Efforts in establishing abnormal epigenetic marks in 

the genome of ADHD patients are subject to some practical limitations. To begin with, a major 

drawback is the difficult access to human brain tissues101. Second, the epigenetic patterning is 

tissue or even cell-specific, which may limit reproducibility. Third, the human epigenome still 

lacks the rich annotation as of the human genome, for instance, (i) an accurate estimation of 

human miRNA genes, (ii) validated targets of known miRNAs or (iii) miRNA genes still poorly 

explored in terms of their potential as quantitative trait loci (QTL). Nonetheless, owing to the 

causal relevance of epigenetic research, alternate methods like the use of proxy tissues and 

newer molecular techniques like miRNA-Seq continue to ensure its feasibility101. 

3.5 Neuroimaging profiles and genetics in ADHD 

ADHD has been postulated as a disorder of impaired neurocognition. The identification of 

neuroanatomical changes in ADHD is thus fundamental to ADHD research. Neuroimaging 

scans recognize abnormalities in brain anatomy and function in individuals with ADHD. For 

instance, smaller volumes and abnormal surface morphologies in basal ganglia have been 

associated with ADHD102,103. In addition to these static changes, brain structures may undergo 

delayed maturation development, and these developmental patterns correlate with the 

severity and subtypes of ADHD trajectories104. The enrichment of neurodevelopmental 

genes found in the association studies29 suggest that these genes may underlie the impaired 

brain structures and function revealed by neuroimaging studies. Verification of this 

hypothesis may concatenate the functionality of the highlighted genetic loci and the brain 

phenotypes. 
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CHAPTER 4. COMORBID PROFILES IN ADHD 

More than 10 psychiatric and behavioral phenotypes are known to be comorbid with ADHD in 

both children and adults. The various presentations of ADHD, hyperactive-impulsive, 

inattentive and combined, differ in the comorbidity profile 10,105. Of these three presentations, 

the combined subtype presents a greater risk of developing other psychiatric conditions105. 

Thus, psychiatric comorbidity can be a marker of more severe ADHD as reflected by the 

combined subtype symptoms105. Several of the comorbid disorders appear to be more strongly 

associated with ADHD in females106.  

4.1 Autism Spectrum Disorders (ASD)  

ASD can co-occur with ADHD in up to 50% of the children with ADHD and these disorders 

share impairments in developmental and cognitive domains. For instance, patterns of social 

and empathy deficits that directly affect the ability to build peer relationships are found in 

individuals having ADHD and ASD107. More is known about the ADHD-ASD comorbidity in 

children than in adults4. Children with ADHD and ASD present augmented ADHD symptoms 

along with worsened executive functions (e.g. verbal working memory) when compared to 

those with ASD alone4,107,108.  It has also been reported that individuals with the 22q11 deletion 

syndrome present with combined ADHD and also ASD, and they may suffer behavioral and/or 

learning problems109. 

4.2 Intellectual disability (ID) and learning disabilities (LgD) 

ID is also 5-10 times more prevalent in children with ADHD than in those without ADHD4. 

Subjects with both ADHD and ID exhibit increased diagnoses of ODD and CD110. Learning 

disorders are characterized by difficulties in reading, writing and arithmetical skills, which are 

experienced by 25–40% of the individuals with ADHD4. Such difficulties are presumably 

driven more by inattentive symptoms in ADHD than by hyperactivity/impulsivity. The 

prevalence estimates of LgD with ADHD and vice versa vary considerably given the 

heterogeneous LgD identification criteria111. ADHD+LgD females are also at greater risk to 

experience cognitive depression112.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/intellectual-disability
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4.3 Tic disorders (TDs) 

TDs are neurodevelopmental disorders characterized by an onset of multiple episodes of motor 

and/or vocal tics. TDs include Tourette’s disorder, chronic tic disorder (CTD) and transient tic 

disorder113. About 20% of children with ADHD also suffer from TD114 and the likeliness of 

developing CTD peaks between the ages of 7 to 10 years115. Compared to non-ADHD children, 

the incidence of CTD in ADHD kids is nearly three to four times115. A Tourette syndrome 

(TS)-based study on adults and children could also diagnose ADHD in 60% of the TS patients, 

making ADHD the most common comorbidity in TS, together with learning disabilities, social 

skill deficits and anger control issues. ADHD+TD may aggregate in families as ADHD and 

TD do separately. 

4.4 Aggression and rule-breaking behaviors  

Aggression has been repeatedly reported to co-occur with ADHD116, and this correlation 

becomes stronger at older ages. Aggressive behavior results in rule-breaking at later stages117.  

Direct associations have also surfaced between ADHD and rule-breaking behaviors. In legal 

systems, offenders with ADHD tend to re-offend twice than the non-ADHD offenders, leading 

to increased chances of legal confinement118. Externalizing behaviors of aggression and rule 

breaking, to some extent, are manifestations of emotion dysregulation (ED) typical of 

ADHD119.  

4.5 Mood Disorders 

Having ADHD may elevate the risk of developing bipolar disorder by 10% in children and 

adolescents and other mood disorders by up to 40%120,121. The occurrence of bipolar disorder 

in ADHD can range between 5 and 47%122. Lifetime ADHD is more comorbid with bipolar 

disorder type I than with type II120,123. Restlessness, talkativeness, distractibility and fidgeting 

are the usual symptoms in cases with both manic bipolar disorder and ADHD9. The  prevalence 

rates of comorbid depression in ADHD individuals range between 18 to 53%, and nearly 14% 

of the children with ADHD may exhibit clinical depression9,124. ADHD is a common 

comorbidity in individuals with bipolar disorder or MDD, with a higher comorbidity rate in the 

former group123. Individuals with both ADHD and bipolar disorder have an earlier age of onset 

of the mood disorder of around 5 years120. 
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4.6 Substance use disorders (SUDs) 

SUD is one of the most common comorbid conditions of ADHD, particularly alcohol and/or 

nicotine, cannabis, cocaine use. Substance abuse and dependence are nearly twice more 

prevalent in individuals with ADHD9. Subjects with persistent ADHD are 4.6 times more likely 

to develop SUD, when compared to controls in a major longitudinal study125. More severe 

physical dependency for nicotine has been established in ADHD9. While various 

neurobiological or psychosocial factors trigger the increased incidence of SUDs in individuals 

with ADHD, novelty-seeking behavior and higher impulsivity in this cohort remain major 

drivers towards the initial contact with the drug as of self-medication9. 

The use of stimulant medication like methylphenidate in children can postpone the onset of 

substance abuse (cigarette smoking, drug and alcohol misuse) at later ages9,125,126. However, 

prescribing stimulant medications to high-risk ADHD-SUD groups can be controversial 

because of the increased risk of substance misuse and diversion among this group126,127. The 

presence of ADHD in individuals with SUD may lower the onset age of substance abuse and 

rates of treatment obedience while increasing the odds of developing self-harms and multiple 

substance abuse. 

4.7 Sleep disorders 

Sleep disorders in ADHD children are characterized by significant and consistent disturbances 

in the patterns of sleep initiation and sleep duration. Irregular circadian rhythms and melatonin 

production are believed to underlie to the occurrence of sleep disorders. Nearly 25-50% of 

ADHD patients experience sleep troubles, and worsened ADHD symptoms are reported in 

individuals with sleep deficiencies. The latter group is reported to show increased daytime and 

cognitive impairments. Circadian rhythm sleep disorder, insomnia, narcolepsy, restless leg 

syndrome, sleep-disordered breathing are primary forms of comorbid sleep disorders128. 

4.8 Obesity and food addiction 

Obesity or overweight is a comorbid condition that presents in both child and adult ADHD, 

more often reported in males10. The percentage of reported obesity in individuals with ADHD 

can be as high as 50% and it has significantly augmented since the first recorded ADHD-

obesity relationship129,130. Impulsivity and inattention lead to abnormal eating patterns which 

results in weight gain131. Whether the inattentive or the HI ADHD group show a higher 
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prevalence of obesity is still unclear10,132. ADHD is associated with binge eating and food 

addiction, and this is more evident in adults than in children133. The association between obesity 

and ADHD is stated to be bidirectional and attributed to shared underlying neurobiological 

mechanisms131. However, the role of ‘reward-deficiency syndrome’ due to altered 

dopaminergic receptors has been documented in addictions and in ADHD132,134. 

4.9 Conduct Disorder (CD) and Personality Disorder (PD) 

Behavioral disruptions if not resolved can perpetuate into personality disorders. 37% of adults 

with ADHD have one PD, and 27% have two or more PDs, specifically in cluster C and B 

PD135,136. Increased levels of ED and symptoms of ODD are also present in subjects with 

PD+ADHD136. Higher number of PD symptoms are perceived  in adolescents with ADHD137, 

more frequently in girls than in boys137. The HI ADHD group shows a higher incidence of CD 

in childhood and antisocial personality traits in late adolescence10. The prevalence of borderline 

personality disorder (BPD) in ADHD individuals can range between 10-45% and lifetime 

comorbidity of BPD with ADHD is around 33%138,139. BPD reflects patterns of unstable 

identity and interpersonal relationships, pronounced impulsivity and ED140. Conducts typically 

associated with CD and PD like kleptomania or substance abuse can have criminal, judicial 

and financial repercussions. Therefore, these comorbidities are detrimental to the social 

environment in addition to the life of sufferers10.  



 

 

 

 

 

 

 

OBJECTIVES 

  



Objectives 

25 

 

The broad objectives of this work are the identification of genes that contribute to the 

susceptibility to attention-deficit/hyperactivity disorder (ADHD) and cocaine dependence, two 

disorders that co-occur in patients. We propose to focus on epigenetic risk factors (allele-

specific methylation and miRNAs) in ADHD, and to scrutinize the genetic basis of cocaine 

dependence. We also aim at exploring the common genetic basis that explains the comorbidity 

between these disorders. 

The specific aims are outlined below: 

Chapter 1.  Exploring genetic variation that influences brain 

methylation in ADHD 

1.1 Assessment of the contribution to ADHD of allele-specific methylation (ASM), an 

epigenetic mechanism that involves SNPs correlating with differential levels of DNA 

methylation at CpG sites. 

1.2 Assessment of the possible effects of identified ASM variants on gene expression and 

on brain volumes to identify new genes contributing to ADHD. 

Chapter 2. Genome-wide association meta-analysis of cocaine 

dependence: Shared genetics with comorbid conditions 

2.1.  Investigation of the variants that underlie cocaine-dependence by meta-analyzing 

available genome-wide association study (GWAS) datasets. 

2.2.  Investigation of shared genetic risk factors between cocaine dependence and its 

comorbid conditions, including ADHD. 

Chapter 3. Exploring the impact of common variation in 

micro-RNA genes in attention-deficit/hyperactivity disorder 

3.1. Assessment of the contribution to ADHD of variation in miRNA genes and their 

putative regulatory elements through case-control association studies. 

3.2. Deciphering of the miRNA-mediated pathways that regulate the expression of genes 

potentially causal in ADHD.
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SUMMARY ARTICLE 1 

“Explorant la variació genètica amb efectes sobre la metilació en cervell en el 

dèficit d’atenció amb hiperactivitat 

El trastorn per dèficit d'atenció i hiperactivitat (TDAH) és un trastorn del neurodesenvolupament 

causat per la interacció entre factors genètics i ambientals. L'epigenètica és crucial en la generació de 

canvis persistents que afecten l'expressió gènica al cervell. Estudis recents suggereixen que la 

metilació de l'ADN tindria un paper clau en el TDAH. Hem explorat la contribució al TDAH de la 

metilació específica d'al·lel (ASM), un mecanisme epigenètic pel qual variacions de tipus SNP 

presenten correlació amb nivells diferencials de metilació de l'ADN en llocs CpG. Hem seleccionat 

3.896 tagSNPs que sabem que tenen una influencia sobre la metilació al cervell i hem realitzat un 

estudi d'associació de tipus cas-control utilitzant els resultats de la meta-anàlisi GWAS més gran 

realitzada en TDAH, que comprèn 20.183 casos i 35.191 controls. Hem observat un enriquiment de 

variants genètiques que confereixen risc al TDAH en el conjunt de SNPs de tipus ASM, i hem identificat 

associacions significatives amb vuit tagSNPs (FDR=5%). Aquests SNPs presenten correlació amb la 

metilació de llocs CpG situats a les regions promotores de sis gens. Atès que la metilació pot afectar 

l'expressió gènica, hem investigat si aquests SNPs, juntament amb 52 SNPs en alt desequilibri de 

lligament, són eQTLs en teixits cerebrals i hem observat que tenen un impacte sobre l'expressió de 

tres d'aquests gens. Els al·lels de risc al TDAH presenten correlació amb una major expressió (i 

disminució de la metilació) d'ARTN i PIDD1 i amb una disminució de l'expressió (i augment de la 

metilació) de C2orf82. A més, hem predit que aquests tres gens tindrien una expressió alterada en 

pacients amb TDAH, i variants genètiques a C2orf82 presenten correlació amb el volum de 

determinades regions del cervell. En resum, hem seguit una estratègia sistemàtica per identificar 

variants de risc al TDAH que correlacionen amb la cis-metilació diferencial, tot identificant tres nous 

gens que contribueixen al trastorn. 
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Exploring genetic variation that influences brain
methylation in attention-deficit/hyperactivity
disorder
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Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic

and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies

suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation

(ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG

sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-

control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising

20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and

identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs

correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene

expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues

and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with

increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased

methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and

genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify

risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to

the disorder.

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is a

common neurodevelopmental disorder with a worldwide

prevalence of around 5%1. Its main symptoms include

inattention and/or hyperactivity-impulsivity (DSM-V)2.

ADHD is among the most heritable psychiatric disorders,

with about 76% of its etiology accounted by genetic risk

factors3 and with single-nucleotide polymorphisms

(SNPs) explaining around 22% of the phenotypic var-

iance4. Furthermore, there is molecular evidence of

shared genetic risk factors across many psychiatric dis-

orders5. In ADHD, a recent genome-wide association

study (GWAS) meta-analysis of 12 sample groups unra-

veled some of the specific genetic underpinnings of this

polygenic disorder for the first time4. One of the chal-

lenges of GWAS is to establish the causal relationship

between the associated genetic variants, especially those
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located outside genes, and the disorder. In this regard, the

use of epigenetic information can improve the inter-

pretation of functionality of non-coding genetic varia-

tion6. In addition, some studies have hypothesized the

importance of sub-threshold variants derived from

GWAS7,8, particularly those located in enhancer regions,

with a potential impact on gene regulation9,10.

DNA methylation is one of the most stable epigenetic

mechanisms, involving mainly cytosines of CpG dinu-

cleotides. This mechanism plays an important role in the

regulation of neurogenesis, differentiation, and brain

development11. Furthermore, epigenetic alterations have

been hypothesized to contribute to neurodevelopmental

disorders12, including ADHD13, autism spectrum dis-

orders (ASD)14,15, or borderline personality disorder16.

DNA methylation can be complementary if it involves

both alleles, or non-complementary when it affects only

one allele, as in chromosome X inactivation in females or

allele-specific methylation (ASM)6. ASM is a common

mechanism by which single nucleotide variants determine

differential methylation levels of CpG sites. ASM can alter

promoter activity, leading to allele-specific expression17 in

combination with other still quite unknown factors, such

as environmental effects6. It is quantitative and hetero-

geneous across tissues and individuals6. The environment

affects DNA methylation leading to changes in gene

regulation, although the underlying mechanism is still not

well understood18. It has been suggested that, during

embryonic development, ASM regions could be especially

sensitive to environmental effects6. Investigating SNPs

that display ASM could help to identify risk variants for

common diseases, including neuropsychiatric disorders19,

as shown by recent studies of bipolar disorder (BD) and

schizophrenia10,20.

The present study investigated the possible contribution

of ASM to ADHD using data from the largest GWAS

meta-analysis performed to date in ADHD4. We also

assessed its possible effect on gene expression and on

brain volumes to identify new genes contributing to the

disorder.

Materials and methods
Selection of ASM SNPs

SNP selection was made based on the results of two

previous studies21,22, which identified ASM variants in

multiple brain regions of post-mortem human samples.

Gibbs et al.21, considered four brain regions (cerebellum,

frontal cortex, caudal pons, and temporal cortex) of

150 subjects and Zhang et al.22, used only the cerebellum

of 153 subjects. Gibbs et al.21, unlike Zhang et al.22,

excluded those sequences of probes with significant cor-

relation with methylation that contained polymorphisms.

To discard possible artifacts in our results, we checked

and confirmed that none of the probes used to detect the

six highlighted CpG sites target genomic regions with

SNP variants. The genotyping platforms used in the two

studies were different (Gibbs et al.21 used Infinium

HumanHap550 Beadchips and Zhang et al.22 used Affy-

metrix GeneChip Mapping 5.0K Array). Both studies

evaluated DNA methylation using the HumanMethyla-

tion27 Beadchips, and performed linear regression ana-

lyses by PLINK23 to determine the correlation between

each SNP and methylation of any CpG site21,22. Zhang

et al.22, unlike Gibbs et al.21 applied quantile normal-

ization to the residuals prior to the linear regression

analyses.

In the study by Zhang et al.22, a total of 12,117

SNP–CpG pairs associations were reported in cerebellum,

and Gibbs et al.21 listed a total of 12,135 SNP–CpG pairs

in frontal cortex, 11,374 in caudal pons, 16,734 in tem-

poral cortex, and 12,102 in cerebellum (Fig. 1). We

combined the information from both studies and obtained

a total of 43,132 SNP–CpG pairs involving 33,944 dif-

ferent SNPs and 5306 CpG sites (Fig. 1). We considered

all the ASM SNPs from all the tissues in the two studies,

as there are multiple SNP–CpG pairs in common between

them (Fig. S1).

We subsequently applied different filters to generate a

sub-list of 3896 SNPs (Figs. 1 and S2) out of these 33,944

variants to minimize redundancy: associations in cis

between the SNP and the CpG site, correlation of the SNP

with methylation levels of the CpG (R2) ≥ 0.2, as per-

formed in Gibbs et al. (2010)21. We considered only

autosomal SNPs and selected tagSNPs for each CpG site

(r2 ≥ 0.85), by assessing linkage disequilibrium (LD) with

Haploview software24 using the Central European (CEU)

reference panel from 1000 Genomes Project Phase 325.

Case-control GWAS datasets

We explored the selected ASM SNPs in the summary

statistics from a meta-analysis of 11 independent GWAS

of ADHD conducted by the Psychiatric Genomics Con-

sortium (PGC) and iPSYCH. This case-control study

investigated 8,047,420 markers in 20,183 cases and 35,191

controls from Europe, USA, Canada, and China, with

patients diagnosed according to the criteria detailed in

Demontis et al. (2019)4.

Statistical analysis

To test whether risk variants for ADHD are enriched in

ASM SNPs, we carried out an enrichment analysis using

the Fisher’s exact test in R26 at p-value thresholds ranging

from 5E−02 to 5E−08 considering the total number of

ASM SNPs available from the ADHD GWAS meta-

analysis4 (32,884 out of 33,944 SNPs).

From our selection of 3896 ASM tagSNPs, we could

retrieve information on the association with ADHD of

3771 SNPs (96.8%) that were present in the summary
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Fig. 1 Selection of allele-specific methylation (ASM) SNPs and association results obtained for ASM variants in ADHD. SNPs tested in the

ADHD GWAS meta-analysis and multiple testing correction. SNPs correlating with differential methylation of CpG sites and eQTLs in brain regions

(only for genes in which the CpG site lies <5 kb from the transcription start site) are depicted
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statistics of the ADHD GWAS meta-analysis (Fig. 1)4.

False discovery rate (FDR) was applied to correct for

multiple testing. We used the q-value package for R27 and

obtained a threshold p-value of 6.78E−05 corresponding

to a 5% FDR. CpG sites highlighted by SNPs that were

significant at this FDR threshold were followed-up in

further analyses (Fig. 1). Additionally, we performed

corrections for multiple testing, using Bonferroni and

Genetic type 1 Error Calculator (GEC) methods (http://

grass.cgs.hku.hk/gec/)28. The Bonferroni-corrected

threshold was set at p ≤ 1.32E−05, which considered all

the SNPs and tests to be independent (0.05/3771 SNPs).

The GEC established the significance threshold at 1.98E

−05, which addressed multiple testing for the set of 3771

dependent SNPs by estimating the independent number

of tests. The LD between SNPs was calculated according

to the 1000 Genomes EUR reference data25.

Finally, we considered and retrieved p-values of those

tagged ASM SNPs in high LD (r2 ≥ 0.85) with the previous

ones that also correlated in cis with the methylation levels

of the same CpG sites (R2
≥ 0.2) (Fig. 1).

Functional annotation of associated ASM SNPs

We applied four methods to obtain information about

the possible functional impact of the ASM SNPs that were

associated with ADHD. First, we evaluated the presence of

possible enhancer or promoter regions using the Hap-

loreg v4.1 tool29. To do this, we considered histone

modifications related to enhancer regions (H3K4me1 and

H3K27ac) and promoters (H3K4me3 and H3K9ac) of 10

different brain regions (hippocampus middle, substantia

nigra, anterior caudate, cingulate gyrus, inferior temporal

lobe, angular gyrus, dorsolateral prefrontal cortex, germ-

inal matrix, and male and female fetal brain). Second, we

evaluated the effect on gene expression through an eQTL

analysis using GTEx data (Release V7)30. We considered

eQTL information for all available brain tissues: amygdala,

anterior cingulate cortex (BA24), caudate basal ganglia,

cerebellar hemisphere, cerebellum, cortex, frontal cortex

(BA9), hippocampus, hypothalamus, nucleus accumbens

basal ganglia, putamen basal ganglia, spinal cord cervical

c-1, and substantia nigra. Third, we considered all the

SNPs, not only ASMs, located within ±1Mb from the

transcription start site (TSS) of each gene to infer if the

genetically determined expressions of genes of interest

correlated with ADHD. This analysis was carried out

using MetaXcan31, the input being the summary statistics

of the ADHD GWAS meta-analysis4 and prediction

models trained with RNA-Seq data of 10 GTEx30 brain

tissues and CommonMind32 dorsolateral prefrontal cor-

tex. The SNP covariance matrices were generated using

the 1000 Genomes Project Phase 325 EUR genotypes of

the prediction model SNPs. Bonferroni correction for

multiple testing was considered (p ≤ 2.27E−03; 0.05/22

tests). Finally, we examined the possible influence of the

identified variants on subcortical brain structures. We

obtained the summary statistics of a GWAS meta-analysis

of eight MRI volumetric measures (nucleus accumbens,

amygdala, caudate nucleus, hippocampus, pallidum,

putamen, and thalamus) produced by the Enhancing

Neuro Imaging Genetics through Meta-Analysis

(ENIGMA) consortium33. This ENIGMA2 discovery

sample included 13,171 subjects of European ancestry and

contained association results between seven million

markers and variance in the volumes of the mentioned

structures33; we applied the Bonferroni correction (p ≤ 1E

−03; 0.05/50 SNPs).

Results
We investigated the possible association with ADHD of

SNPs that show ASM in brain regions. Starting from two

previous studies21,22 that describe ASM in brain tissues

we obtained 43,132 SNP–CpG pairs involving 33,944

SNPs and 5306 CpG sites (Figs. 1 and S1). Genetic risk

variants for ADHD are enriched in those ASM SNPs, as

observed through enrichment analysis at different asso-

ciation p-value thresholds (Table S1).

We detected some overlaps and redundancies between

studies and tissues (Fig. S1), so we performed a selection

process ending up with a list of 3896 ASM tagSNPs (Figs.

1 and S2). Eight ASM tagSNPs were significantly asso-

ciated with ADHD after correcting for multiple compar-

isons (5% FDR, p ≤ 6.78E−05) (Fig. 1 and Table S2). These

eight SNPs correlated with differential methylation at six

CpG sites in cis (three for cg20225915, two for both

cg22930187 and cg06207804, and one for each of

cg13047596, cg11554507, and cg04464446) in different

brain areas (Figs. 2–4 and regional associational plots Figs.

S3–S10, Table S2). Three of the eight ASM tagSNPs

remained associated with ADHD after applying the Bon-

ferroni and GEC corrections, all correlating with differ-

ential methylation at the cg20225915 site (Table S2).

As considering only tagSNPs may overlook true causal

variants, we retrieved association results from all the 52

ASM SNPs tagged by the previous ones (LD; r2 ≥ 0.85),

ending up with 60 variants in eight LD blocks that show

association with ADHD and correlate with methylation

levels at six CpG sites (Figs. 2–4 and S11–S15 and Table

S3). We also selected, for each LD block, the SNP showing

the highest number of functional annotations (Table 1), as

a putative causal SNP.

Consistently, the direction of the effect of the risk alleles

on methylation levels is the same for all the SNPs corre-

lating with the same CpG site. Thus, the risk alleles cor-

relate with decreased methylation of cg22930187,

cg06207804, cg11554507 and cg20225915 and with

increased methylation of cg13047596 and cg0446444621,22

(Figs. 2–4 and Tables 1, S2, and S3).
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All six CpG sites are located in possible promoter

regions (<5000 bp upstream from a TSS) of six genes

(Table 1), all of them expressed in brain: ARTN

(cg22930187 and cg06207804), C2orf82 (cg13047596),

NEUROD6 (cg11554507), PIDD1 (cg20225915), RPLP2

(cg20225915), and GAL (cg04464446) (Figs. 2–4). Fur-

thermore, 85% of the 60 ASM SNPs are located within a

region with enhancer or promoter histone marks in at

least one brain area (Figs. 2–4 and Tables S4–S8). All

putative causal SNPs selected from each LD block lie

within a region with histone marks, ranging from 3 to 17

in enhancer regions and from 4 to 16 in promoter regions

(Table 1).

We subsequently assessed the possible effect of those 60

SNPs on gene expression and observed that 57 of them

are eQTLs for different genes in brain regions (Table S3).

Seven out of the eight putative causal SNPs are eQTLs in

brain for at least one gene (Table 1). We focused on

methylation in promoter regions, which is well established

to inversely correlate with gene expression. The eQTLs

for ARTN, C2orf82, and PIDD1 correlated with methyla-

tion of CpG sites lying on their possible promoter regions,

showing opposite directions for methylation and gene

expression levels (Figs. 2–4 and Tables 1 and S3). The

ADHD risk alleles are associated with increased expres-

sion of ARTN (in cerebellum and a subcortical region)

and PIDD1 (in cerebellum and cortex) and with decreased

expression of C2orf82 (in cortical, subcortical, and cere-

bellar regions) (Figs. 2–4 and Tables 1 and S3).

Consistently, the predicted direction of the effect on

gene expression for these three genes is the same when we

consider all variants within ±1MB from the TSS (and not

only the ASM SNPs). We found significant associations of

gene expression with ADHD for the same three genes in

multiple brain tissues using MetaXcan: ARTN, PIDD1

showed increased expression (3.57 < Z-score <4.19 and

3.57 < Z-score < 5.37, respectively) and C2orf82 with a

decreased expression (−3.64 < Z-score <−3.07) (Table

S7), all of them surviving the Bonferroni correction.

We also evaluated the correlation of the 60 ADHD-

associated SNPs with subcortical brain volume changes in

ENIGMA2 data. SNPs correlating with methylation at

cg13047596 and at cg04464446 correlate with nucleus

accumbens and/or caudate nucleus volumes, while the

only SNP correlating with cg11554507, which is present in

ENIGMA2, correlates with thalamus volume (Table S10).

Fig. 2 Genomic context of ASM variants, and methylation and eQTL information for cg22930187 and cg06207804. Genes are depicted in

dark blue, showing the direction of transcription with an arrow; CpG sites inspected in the reference studies appear in brown; framed CpG sites

indicate those sites showing differential levels of methylation for the associated ASM SNPs, and brown arrows indicate the effect on methylation of

the ADHD risk variants, with indication of the brain regions where the ASMs were described. The tagSNPs are underscored. The colored rhombuses

show the LD blocks present in each region. The colored dots for eQTLs indicate the effect on gene expression of the ADHD risk allele, according to

the legend (red: over-expression, blue: under-expression). The number of enhancer (H3K4me1 and H3K27ac) and promoter (H3K4me3 and H3K9ac)

histone marks found in the different brain areas are displayed for each SNP. ‘-' indicates no known enhancer or promoter histone marks
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Three of the putative causal SNPs showed correlation

with brain volumes (Table 1).

Interestingly, the majority of ASM SNPs that correlate

with methylation levels of cg13047596, located in the

promoter region of C2orf82, are eQTLs in brain for this

gene, lie in a region with histone marks and correlate with

volume changes of nucleus accumbens and caudate

nucleus (Figs. 2–4, Tables 1 and S3–S8 and S10). All this

functional evidence highlights the C2orf82 gene as a good

candidate for contributing to ADHD.

Discussion
This study is the first comprehensive assessment of the

contribution to ADHD of genetic variants altering

methylation in the brain. We identified a total of 60 var-

iants from eight LD blocks associated with ADHD that

correlate with differential levels of methylation at six

different CpG sites21,22 (Tables 1 and S3). All the variants

from six out of the eight LD blocks alter the methylation

of CpG sites lying at potential promoter regions and are

also eQTLs for one of the following three genes in

multiple brain regions: ARTN, C2orf82, and PIDD1 (Figs.

2–4 and Tables 1 and S3). It is well known that DNA

methylation in promoter regions inversely correlates with

levels of gene expression18, and all these ASM variants

associated with ADHD in our study are concordant with

this statement.

The ARTN gene, highlighted by two tagSNPs, encodes

Artemin, a ligand of the GDNF family (glial cell line-

derived neurotrophic factor). Artemin supports the sur-

vival of sensory and sympathetic peripheral neurons in

culture by interacting with GFRα3-RET and possibly also

of dopaminergic neurons of the ventral mid-brain

through activation of GFRα1-RET complex34. Gene

Ontology (GO) pathways link it to key neurodevelop-

mental functions: axon guidance (GO:0007411), neuro-

blast proliferation (GO:0007405), and peripheral nervous

system development (GO:0007422). Risk alleles for

ADHD lead to an overexpression of ARTN. Previously,

overexpression of ARTN has been studied in transgenic

mice and been linked to an increase of neuron excitability

that leads to hypersensitivity35,36. Another study in ARTN

Fig. 3 Genomic context of ASM variants, and methylation and eQTL information for cg13047596. Genes are depicted in dark blue, showing

the direction of transcription with an arrow; CpG sites inspected in the reference studies appear in brown; framed CpG sites indicate those sites

showing differential levels of methylation for the associated ASM SNPs, and brown arrows indicate the effect on methylation of the ADHD risk

variants, with indication of the brain regions where the ASMs were described. The tagSNPs are underscored. The colored rhombuses show the LD

blocks present in each region. The colored dots for eQTLs indicate the effect on gene expression of the ADHD risk allele, according to the legend

(red: over-expression, blue: under-expression). The number of enhancer (H3K4me1 and H3K27ac) and promoter (H3K4me3 and H3K9ac) histone

marks found in the different brain areas are displayed for each SNP. ‘-' indicates no known enhancer or promoter histone marks
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knockout mice reported aberrations in the sympathetic

nervous system related to migration and axonal projec-

tion37. The C2orf82 gene (also known as SNORC) was

highlighted by one tagSNP and it encodes a proteoglycan

transmembrane protein that is expressed in brain more

than in other tissues30. Little is known about its function.

Finally, PIDD1 was highlighted by three tagSNPs. It is a

cell life regulator gene and it has been linked to apoptotic

and anti-apoptotic pathways. The PIDD protein initiates

apoptosis as a component of the PIDDosome together

with RAIDD (RIP-associated ICH-1/ECD3-homologous

protein with a death domain) and procaspase-238 and it

also activates an anti-apoptotic pathway involving the

transcription factor NF-κB in response to genotoxic

stress39.

Alterations in the expression of these three genes

(upregulation of ARTN and PIDD1 and downregulation

of C2orf82) in different brain regions seem to be related

to ADHD. Interestingly, most of these regions are

relevant for this disorder. Neuroimaging studies have

implicated the cerebellum, subcortical and prefrontal

regions in ADHD, suggesting a link to problems in the

processing of temporal information40. Structural

anomalies in the cerebellum have been reported in

ADHD individuals through neuroimaging studies41–43.

Cerebellar developmental trajectories and hippocampal

volumes are linked to the severity of ADHD symp-

toms44–46. Structural and functional abnormalities in

cerebellum and basal ganglia have been associated with

motor impairments47, which are frequent in nearly half

of ADHD cases48. Subcortical regions identified through

our expression analyses have also been related to

ADHD, for instance: (i) remarkably different shapes of

caudate-putamen basal ganglia and smaller volumes

have been reported in ADHD boys49–52; (ii) in adult

males with ADHD, right caudate volume correlates with

poor accuracy on sensory selection tasks53 and also with

hyperactivity/impulsivity54,55; (iii) nucleus accumbens,

caudate nucleus, putamen, amygdala, and hippocampus

are structurally altered in the brains of ADHD

patients56. Remarkably, all the ASM SNPs in the LD

block for C2orf82 with available information nominally

correlate with increased volumes of nucleus accumbens

and caudate nucleus subcortical regions. Also, the eQTL

Fig. 4 Genomic context of ASM variants, and methylation and eQTL information for cg20225915. Genes are depicted in dark blue, showing

the direction of transcription with an arrow; CpG sites inspected in the reference studies appear in brown; framed CpG sites indicate those sites

showing differential levels of methylation for the associated ASM SNPs, and brown arrows indicate the effect on methylation of the ADHD risk

variants, with indication of the brain regions where the ASMs were described. The tagSNPs are underscored. The colored rhombuses show the LD

blocks present in each region. The colored dots for eQTLs indicate the effect on gene expression of the ADHD risk allele, according to the legend

(red: over-expression, blue: under-expression). The number of enhancer (H3K4me1 and H3K27ac) and promoter (H3K4me3 and H3K9ac) histone

marks found in the different brain areas are displayed for each SNP. ‘-' indicates no known enhancer or promoter histone marks
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effect sizes of these SNPs are the largest for caudate

basal ganglia, which volume correlates with the SNP

genotype variation. There is evidence about the role in

ADHD of cortical thickness, cortical volume and func-

tional connectivity in the anterior cingulate cortex, a

region involved in cognitive control, attention, affect

and drive57–63. Furthermore, delayed cortical develop-

ment, e.g. in prefrontal regions has been reported in

ADHD patients64,65 and this appears to be stronger in

ADHD children with below median intelligence quo-

tient66. All the above mentioned fronto-subcortical

structures and pathways are rich in catecholamines,

the molecular targets in pharmacological treatments for

ADHD48,52,64,67.

Interestingly, the methylation of cg20225915 has also

been associated with PIDD1 expression in peripheral

blood68, turning it into a good candidate as a biomarker.

The expression of ARTN was found to be altered in blood

of major depressive disorder (MDD) patients69 and the

C2orf82 gene has been associated to schizophrenia70,71.

Furthermore, C2orf82 was highlighted in a cross-disorder

GWAS of eight psychiatric conditions, including ADHD

and schizophrenia72, with the rs778353 lead SNP, located

47 kb downstream from the gene, showing a genome-wide

significant association with the phenotype. All three genes

overlap with several CNVs that contribute to autism,

intellectual disability or aggressive behavior, conditions

often comorbid with ADHD (Table S11). It is noteworthy

that some of the CNVs reported in ARTN, C2orf82, and

PIDD1 are related to brain-specific and overall develop-

mental delay at both fetal and postnatal stages. Thus, it is

reasonable to assume that altered expression of these

genes might affect brain volumes and cognition. Overall,

the fact that these genes have previously been related to

neuropsychiatric disorders that are often comorbid with

ADHD73 make them appealing candidates to be pursued.

ARTN is the only gene highlighted in our study that is

present in one of the top regions reported in the ADHD

GWAS meta-analysis4, although it did not contain SNPs

surviving genome-wide significance. The GWAS findings

in the region could be accounted for by one of several

genes: ST3GAL3, PTPRF, KDM4A, RP11-184I16.4,

XR_246316.1, KDM4A-AS1, and SLC6A9. ST3GAL3 had

the most signals. Although two of the reported ASM

variants associated with ADHD are intronic to ST3GAL3,

this gene was not highlighted in our study as none of the

associated variants correlated with differential methyla-

tion of CpG sites near the ST3GAL3 TSS (distance from

the nearest CpG site: 197 kb) or were eQTLs for the gene

in brain tissues. Instead, these SNPs correlated with a

nearby gene, ARTN, both in terms of methylation and

gene expression. This suggests the importance of finding

functional connections between disease-associated SNPs

and genes, besides considering the genes in the physical

vicinity of variants. Furthermore, another of the high-

lighted genes, PIDD1, although not being among the top

Table 1 Selection of putative causal ASM SNPs associated with ADHD according to functional annotations

SNP Association with

ADHDa

Effect on methylationb Epigenetic marksc Effect on expression (GTEx

data)d
Effect on brain

volumese

Risk allele p-value Enhancer Promoter

rs2906458 G 3.01E−05 ↓ cg22930187,

↓ cg06207804

6 0 ↑ ARTN –

rs12410334 A 2.87E−05 17 15 –

rs7558609 A 7.06E−05 ↑ cg13047596 14 4 ↓ C2orf82 ↑ NAc ↑ CN

rs4140961 A 6.05E−05 ↓ cg11554507 3 0 – ↑ T

rs7104929 G 7.89E−06 ↓ cg20225915 15 4 ↑ PIDD1 ↓ PNPLA2 ?

rs10902222 T 2.03E−06 17 16 –

rs4131364 A 1.60E−06 17 10 –

rs1054252 G 3.86E−05 ↑ cg04464446 4 0 ↑ MRPL21, ↑ MRGPRD ↓ IGHMBP2 ↓ NAc ↓ CN

ASM: Allele-specific methylation, SNP: single nucleotide polymorphism, NAc: nucleus accumbens, CN: caudate nucleus, T: thalamus. Risk allele: all alleles are reported in
the forward strand; Underlined: significant associations between ASM tagSNPs and ADHD overcoming Bonferroni correction for multiple testing and p-value threshold
determined using independent number of tests (GEC); ↑: Hypermethylation/overexpression/increased brain volume; ↓: Hypomethylation/underexpression/decreased
brain volume; “−”: No significant data for the SNP; “?”: No information available for the SNP; Enhancer: Number of H3K4me1 and H3K27ac marks; Promoter: Number of
H3K4me3 and H3K9ac marks; In bold: genes with the reported CpG sites lying in their possible promoter region
aData obtained from the PGC+iPSYCH ADHD GWAS meta-analysis4
bDescribed in Zhang et al. 22 and Gibbs et al. 21
cHistone marks found in brain areas
deQTL information for brain tissues
eData from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium33
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findings in the ADHD GWAS meta-analysis4, it is pointed

out by the gene-based association analysis performed in

the same study.

Genetic variants surpassing genome-wide significance

in GWAS explain only a small part of the SNP-based

heritability and associations not reaching the significance

threshold also contribute to disease susceptibility4,9. An

omnigenic model has been recently proposed suggesting

that the sub-threshold variants could point at regulatory

elements of core genes7,8. Indeed, a previous study on a

cardiovascular cardiac phenotype reported that nominally

significant associations are enriched in enhancer regions9,

consistent with our findings. Therefore, although none of

the variants that we identified in our study display

genome-wide significant association with ADHD, they

may contribute to the susceptibility to ADHD, as they do

have a functional impact (methylation, expression, and in

some cases brain structure) via genes that are expressed

in brain.

Brain-specific ASM information has also been utilized

to detect key genes and pathways in BD20. Also, a higher

enrichment of brain ASM was observed in a schizo-

phrenia GWAS in comparison to non-psychiatric

GWAS10. This, together with the enrichment of ASM in

ADHD-associated variants found in the present study,

reinforces the rationale of utilizing ASM SNPs to high-

light genes that are relevant to psychiatric disorders from

GWAS data.

There are some strengths and limitations in our study

that should be discussed. Strengths: (i) We used the lar-

gest GWAS meta-analysis of ADHD performed so far,

including around 20,000 cases and 35,000 controls. (ii)

The genetic variants identified as associated with ADHD

have a functional impact on epigenetic regulation,

expression or brain volumes. (iii) Two of the highlighted

genes in this study, ARTN and C2orf82, have previously

been associated with other psychiatric disorders. (iv) For

two of the genes there is more than one LD block showing

the same effect on CpG site methylation. (v) Our results

are concordant with eQTL information that had been

assessed in an independent sample, with all the SNPs

showing the opposite effect on methylation of the pro-

moter region and on the expression of a given gene in

brain (more promoter methylation and less gene expres-

sion or vice versa), even for the different LD blocks from

each region. Limitations: (i) We did not perform a follow-

up study to replicate the association findings in an inde-

pendent sample. (ii) The previous studies that we used for

the selection of ASM SNPs were performed on different

genotyping platforms that do not include all the existing

SNPs in the genome, and therefore we could not test all

possible ASMs. (iii) We only considered cis-associated

ASM variants, which are the vast majority, although non-

cis ASM also occurs. (iv) There is an overrepresentation of

ASM SNPs from cerebellum compared to the other stu-

died tissues.

To conclude, the present study points to the ARTN,

C2orf82, and PIDD1 genes as potential contributors to

ADHD susceptibility. The identified risk variants have an

impact on the methylation levels of different CpG sites

located in promoter regions and they inversely correlate

with expression of the corresponding genes in brain. This

finding is supported by a prediction of increased expres-

sion of ARTN and PIDD1, and a decreased expression of

C2orf82 in ADHD. Moreover, variants correlating with

methylation at cg13047596 (near C2orf82) influence the

volumes of nucleus accumbens and/or caudate nucleus.

Further studies are required to elucidate the mechanisms

by which these genes contribute to ADHD.
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Supplementary Material  

EXPLORING GENETIC VARIATION THAT INFLUENCES BRAIN 

METHYLATION IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER 

  

 

Figure S1. Venn diagram showing the overlaps among the initial 33,944 ASM SNPs selected 

in the different brain areas. *Cerebellum from the study by Zhang et al. 2010. 
#
Brain areas from 

the study by Gibbs et al. 2010. The overlap accounts for 31% of the ASM SNPs; 12.5% ASM SNPs 

are shared between two tissues, 9% are shared between three tissues, 8.5% are shared between 

four tissues and only 1% are shared between all the tissues. Sixteen percent of the 9,448 ASM 

SNPs identified by Zhang et al., 2010 overlap with the ASM SNPs identified in the Gibbs et al., 2010 

study. 
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Figure S2. Venn diagram showing the overlaps among the 3,896 ASM tagSNPs selected in 

the different brain areas. The overlap accounts for 33.5% of tagSNPs; 13.5% tagSNPs are shared 

between two tissues, 11% are shared between three tissues and 9% are shared between all the 

tissues.  
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Figure S3. Regional association plot for rs2906458. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 2. 

 

Figure S4. Regional association plot for rs7412307. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 2. 
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Figure S5. Regional association plot for rs11676216. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 3. 

 

Figure S6. Regional association plot for rs4140961. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: region containing the CpG site and the ASM-SNPs of 

interest. 
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Figure S7. Regional association plot for rs7104929. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 4. 

 

Figure S8. Regional association plot for rs7479101. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 4. 
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Figure S9. Regional association plot for rs4131364. The SNP represented in the regional plot is 

depicted in purple. Highlighted in blue: Region represented in Figure 4. 

 

Figure S10. Regional association plot for rs11600377. The SNP represented in the regional plot 

is depicted in purple. Highlighted in blue: region containing the CpG site and the ASM-SNPs of 

interest. 
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Figure S11. Linkage disequilibrium (LD, r
2
) patterns between the three SNPs associated with ADHD 

that also correlate with differential methylation at two CpG sites, cg22930187 and cg06207804, 

located in the possible promoter region of ARTN.  

 

  

Figure S12. Linkage disequilibrium (LD, r
2
) patterns between the 45 SNPs associated with ADHD 

that also correlate with differential methylation at the CpG site cg13047596, located in the possible 

promoter region of C2orf82.  
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Figure S13. Linkage disequilibrium (LD, r
2
) patterns between the three SNPs associated with ADHD 

that also correlate with differential methylation at the CpG site cg11554507, located in the possible 

promoter region of NEUROD6.  

 

 

Figure S14. Linkage disequilibrium (LD, r
2
) patterns between the 7 SNPs associated with ADHD 

that also correlate with differential methylation at the CpG site cg20225915, located in the possible 

promoter region of PIDD1.  
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Figure S15. Linkage disequilibrium (LD, r
2
) patterns between the two SNPs associated with ADHD 

that also correlate with differential methylation at the CpG site cg04464446, located in the possible 

promoter region of GAL. 
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Significance 

Threshold N SNPs N ASM SNPs p-value OR

5.00E-08 303 6 1.70E-03 4.92

5.00E-07 945 8 4.30E-02 2.08

5.00E-06 2,122 15 3.15E-02 1.74

5.00E-05 6,970 35 1.31E-01 1.23

5.00E-04 25,288 139 4.58E-04 1.35

5.00E-03 115,681 527 6.94E-03 1.12

5.00E-02 651,772 2790 5.54E-03 1.05

Table S1.  Enrichment analysis of ASM SNPs at different significance thresholds 

in the ADHD GWAS meta-analysis by Demontis et al. (2019). 

ASM: Allele-specific methylation; N SNPs: Significant SNPs in the ADHD GWAS

meta-analysis for the corresponding significance threshold; N ASM SNPs:

Significant ASM SNPs in the GWAS meta-analysis; Underlined: Significant

enrichment of ASM SNPs in the list of ADHD-associated SNPs; OR: Odds ratio.
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SNP Chr Pos A1 A2 Cases Controls OR p-value CpG site Tissue Effect p-value

rs2906458 1 44336389 A G 0.74 0.756 0.94 3.01E-05 cg22930187 Crbl ↓ 5.55E-10

cg06207804 Crbl ↓ 1.10E-12

rs7412307 1 44433864 C G 0.185 0.172 1.07 2.82E-05 cg22930187 Crbl ↓ 3.59E-11

cg06207804 Crbl ↓ 1.76E-15

rs11676216 2 233706368 T C 0.646 0.654 0.95 6.78E-05 cg13047596 Tctx ↑ 1.09E-10

Fctx ↑ 2.35E-10

rs4140961 7 31349352 A G 0.597 0.592 1.06 6.05E-05 cg11554507 Pons ↓ 8.45E-25

Tctx ↓ 4.72E-23

rs7104929 11 784340 C G 0.512 0.526 0.94 7.89E-06 cg20225915 Pons ↓ 8.17E-10

Tctx ↓ 1.51E-08

rs7479101 11 802115 A G 0.317 0.33 0.93 5.90E-06 cg20225915 Pons ↓ 2.15E-14

Tctx ↓ 3.37E-14

rs4131364 11 812188 A G 0.517 0.502 1.07 1.60E-06 cg20225915 Pons ↓ 2.49E-10

rs11600377 11 68785803 A G 0.731 0.72 1.06 4.38E-05 cg04464446 Crbl ↑ 3.14E-08

ASM: Allele-specific methylation;
1
Data obtained from the PGC+iPSYCH ADHD GWAS meta-analysis (Demontis et al.,

2019);
2
Described in Zhang et al., 2010 and Gibbs et al., 2010; SNP: Single Nucleotide Polymorphism; Chr:

Chromosome; Pos: Position (build hg19); A1: Allele 1; A2: Allele 2; All alleles are reported in the forward strand;

Freq A1: Frequency of allele 1; OR: Odds Ratio (calculated on A1); Effect: Direction of the risk allele effect on DNA

methylation levels; Underlined allele: Risk allele for ADHD; In bold: Significant associations for the association

between ASM tagSNPs and ADHD p-values overcoming Bonferroni correction for multiple testing and p-value

threshold determined using independent number of tests (GEC); Crbl: Cerebellum; Tctx: Temporal cortex; Fctx:

Frontal cortex. 

Table S2. ASM tagSNPs associated with ADHD.

SNP information 1
Association with ADHD

2
Correlation with methylation

Alleles Freq A1
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Table S3. ASM SNPs associated with ADHD.

SNP TagSNP LD (R
2
) Chr Pos A1 A2

Freq A1 

cases

Freq A1 

controls
OR p-value

2
 ADHD risk allele effect on CpG 

methylation (ASM studies)

3
 ADHD risk allele effect on gene 

expression (GTEx data)

rs2906458* rs2906458 1 1 44336389 A G 0.74 0.756 0.94 3.01E-05

rs7412307* 1 1 44433864 C G 0.185 0.172 1.07 2.82E-05

rs12410334 0.96 1 44442521 A C 0.184 0.171 1.07 2.87E-05

rs2012221 0.977 2 233566848 T C 0.642 0.651 0.95 1.67E-04

rs6747645 0.977 2 233571033 A G 0.637 0.647 0.95 1.39E-04

rs1022330 0.977 2 233577330 A G 0.357 0.348 1.05 1.15E-04

rs6714245 0.977 2 233580505 T C 0.643 0.652 0.95 1.12E-04

rs6746294 0.977 2 233583050 C G 0.645 0.653 0.95 9.06E-05

rs13003675 0.977 2 233584109 T C 0.355 0.346 1.06 6.88E-05

rs13004406 0.977 2 233584557 A T 0.642 0.651 0.95 1.49E-04

rs6745879 0.977 2 233590007 A G 0.645 0.654 0.95 6.66E-05

rs6717841 0.977 2 233590255 T C 0.355 0.346 1.06 6.42E-05

rs11555646 0.977 2 233599904 A C 0.645 0.654 0.95 5.80E-05

rs13013142 0.977 2 233600606 A G 0.645 0.654 0.95 5.73E-05

rs6738386 0.977 2 233602028 T C 0.645 0.654 0.95 5.06E-05

rs7606090 0.954 2 233606740 T C 0.645 0.654 0.95 4.90E-05

rs3817311 0.977 2 233612557 T C 0.355 0.346 1.06 5.13E-05

rs11679079 0.977 2 233612656 T C 0.355 0.346 1.06 5.29E-05

rs13011298 0.977 2 233612996 A G 0.645 0.654 0.95 5.30E-05

rs12474040 0.977 2 233615345 T G 0.645 0.654 0.95 5.28E-05

rs12990821 0.977 2 233617585 C G 0.645 0.654 0.95 5.09E-05

rs6748027 1.0 2 233629552 T C 0.645 0.654 0.95 4.86E-05

rs1801251 1.0 2 233633460 A G 0.355 0.346 1.06 4.42E-05

rs1446308 1.0 2 233639309 T C 0.645 0.654 0.95 4.67E-05

rs737028 1.0 2 233640750 T C 0.644 0.653 0.95 4.74E-05

rs283486 1.0 2 233644223 A G 0.645 0.653 0.95 4.73E-05

rs283476 1.0 2 233650168 A G 0.657 0.666 0.95 5.09E-05

rs283475 1.0 2 233654381 T G 0.342 0.334 1.06 9.06E-05

rs283474 1.0 2 233654627 A G 0.656 0.665 0.95 7.96E-05

rs283471 1.0 2 233656627 A G 0.342 0.333 1.06 5.30E-05

rs283469 1.0 2 233656997 T G 0.353 0.345 1.06 4.45E-05

rs283468 1.0 2 233658309 T C 0.342 0.333 1.06 5.26E-05

rs2674839 1.0 2 233669040 C G 0.354 0.346 1.06 5.56E-05

rs1867778 0.977 2 233679644 T C 0.646 0.655 0.94 4.11E-05

rs7558609 1.0 2 233700379 A G 0.354 0.346 1.06 7.06E-05

rs1446311 1.0 2 233705071 A G 0.646 0.654 0.95 6.97E-05

rs11676216* 1.0 2 233706368 T C 0.646 0.654 0.95 6.78E-05

rs10933412 1.0 2 233707226 C G 0.646 0.654 0.95 6.76E-05

rs3816334 1.0 2 233708806 A G 0.354 0.346 1.06 6.66E-05

rs4973054 1.0 2 233710713 C G 0.646 0.654 0.95 6.82E-05

rs991873 1.0 2 233711046 A G 0.354 0.346 1.06 6.89E-05

rs6437074 1.0 2 233712296 A G 0.646 0.654 0.95 7.05E-05

rs2100053 1.0 2 233719516 T G 0.645 0.653 0.95 8.18E-05

rs4973055 0.977 2 233720283 T G 0.639 0.647 0.95 1.07E-04

rs1947105 1.0 2 233721455 A G 0.645 0.654 0.95 7.31E-05

rs7589201 1.0 2 233724536 A G 0.355 0.346 1.06 7.49E-05

rs895430 1.0 2 233725483 A C 0.646 0.655 0.95 9.84E-05

rs2675971 1.0 2 233726154 A G 0.355 0.346 1.06 7.31E-05

rs6963258 0.937 7 31346832 A T 0.401 0.405 0.95 7.43E-05

rs6964113 0.937 7 31347163 C G 0.598 0.593 1.05 8.16E-05

rs4140961* 1 7 31349352 A G 0.597 0.592 1.06 6.05E-05

rs7104929* 1.0 11 784340 C G 0.512 0.526 0.94 7.89E-06

rs4963153 0.941 11 791462 A G 0.492 0.478 1.06 1.04E-05

rs7479101* 1.0 11 802115 A G 0.317 0.33 0.93 5.90E-06

rs10902222 0.896 11 810882 T G 0.697 0.683 1.07 2.03E-06

rs10902221 0.941 11 802379 T C 0.478 0.492 0.93 9.70E-07

rs6597981 0.941 11 803017 A G 0.471 0.485 0.94 2.77E-06

rs4131364* 1.0 11 812188 A G 0.517 0.502 1.07 1.60E-06

rs1054252 0.973 11 68772072 A G 0.27 0.281 0.94 3.86E-05

rs11600377* 1.0 11 68785803 A G 0.731 0.72 1.06 4.38E-05

Alleles

↓ cg22930187, cg06207804 ↑ ARTN
rs7412307

1
 Association with ADHD

rs11676216 ↑ cg13047596 ↓ C2orf82

rs4140961 ↓ cg11554507 -

ASM: Allele-specific methylation;
1

Data obtained from the PGC+iPSYCH ADHD GWAS meta-analysis (Demontis et al., 2019);
2
Described in Zhang et al., 2010 and Gibbs et al., 2010;

3
eQTL 

information for brain tissues; SNP: Single Nucleotide Polymorphism; LD: linkage disequilibrium; Chr: Chromosome; Pos: Position (build hg19); A1: Allele 1; A2: Allele 2; All alleles are reported in

the forward strand; Freq A1: Frequency of allele 1; OR: Odds Ratio (calculated on A1); Underlined allele: Risk allele for ADHD; ↑: Hypermethylation/Overexpression; ↓:
Hypomethylation/Downexpression; "-": No significant data for the SNP; *: Significant tagSNPs overcoming 5% FDR, the other SNPs are ASM SNPs in LD with these significant tagSNPs; In bold:

Significant associations for the association between ASM tagSNPs and ADHD p-values overcoming Bonferroni correction for multiple testing and p-value threshold determined using independent

number of tests (GEC).

rs11600377 ↑ cg04464446 ↑ MRPL21, MRGPRD   ↓ IGHMBP2

rs7104929

↓cg20225915 ↑ PIDD1      ↓ PNPLA2
rs7479101

rs4131364
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Gene Brain tissue* Z-score p-value

N SNPs in 

model

N SNPs 

used

N ASM 

SNPs

Predicted 

R
2 

Caudate basal ganglia 1.54 1.20E-01 19 16 0 0.10

Cerebellar hemisphere 4.19 2.50E-05 15 15 4 0.37

Cerebellum 3.57 3.50E-04 31 31 5 0.36

Cortex 3.94 8.10E-05 5 4 2 0.14

Frontal cortex 1.42 1.50E-01 29 24 2 0.09

Hippocampus 1.55 1.10E-01 140 129 2 0.16

Dorsolateral prefrontal cortex -3.50 4.50E-04 58 41 9 0.43

Amygdala -3.07 2.00E-03 92 89 42 0.40

Anterior cingulate cortex -3.55 3.00E-04 11 11 7 0.19

Caudate basal ganglia -3.54 3.00E-04 11 11 8 0.44

Cerebellar hemisphere -3.64 2.00E-04 37 35 6 0.19

Cerebellum -3.50 4.00E-04 30 30 7 0.28

Cortex -3.46 5.00E-04 59 54 7 0.27

Frontal cortex -3.59 3.00E-04 29 28 6 0.45

Hippocampus -3.40 6.00E-04 25 23 8 0.24

Hypothalamus -3.37 7.00E-04 30 28 13 0.17

Nucleus accumbens basal ganglia -3.59 3.00E-04 29 29 11 0.33

Putamen basal ganglia -3.20 1.00E-03 52 43 9 0.52

Dorsolateral prefrontal cortex 4.71 2.41E-06 4 2 1 0.06

Cerebellar hemisphere 5.00 4.20E-07 32 27 4 0.53

Cerebellum 5.37 7.60E-08 36 27 5 0.49

Cortex 3.57 3.40E-04 64 47 2 0.03

Table S9. MetaXcan prediction of gene expression effects on ADHD for multiple brain tissues.

ARTN

C2orf82

PIDD1

ASM: Allele-specific methylation; *ADHD prediction models were only available for some tissues and genes; Z-

score: Number of standard deviations change in gene expression in ADHD; p-value: Significance of the

association between predicted expression levels and ADHD; N SNPs in model: Number of SNPs used in the

training of prediction models for each gene; N SNPs used: Number of SNPs used from the ADHD GWAS meta-

analysis summary statistics; N ASM SNPs: Number of ASM SNPs included in the model; Predicted R
2
: Correlation

between the predicted and observed gene expression during prediction model training; In bold: Significant p-

values overcoming Bonferroni correction for multiple testing.
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SNP ASM for CpG site A1 A2 Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value

rs2906458* A G 0.2 0.885 0.7 0.784 0.8 0.881 -4.1 0.442 3.9 0.073 8.9 0.191 3.5 0.628

rs7412307* C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs12410334 A C -0.6 0.651 2.9 0.341 -1.6 0.795 -3.0 0.624 3.9 0.119 3.9 0.619 -4.0 0.623

rs2012221 T C 2.5 0.041 1.7 0.494 10.8 0.040 -2.5 0.618 0.2 0.923 8.2 0.202 -4.9 0.471

rs6747645 A G 2.5 0.030 1.8 0.473 11.1 0.035 -2.7 0.589 0.5 0.812 8.5 0.187 -4.6 0.496

rs1022330 A G 2.5 0.029 1.8 0.479 10.8 0.038 -2.6 0.609 0.2 0.908 8.2 0.200 -4.8 0.471

rs6714245 T C 2.5 0.038 1.8 0.470 10.7 0.040 -2.8 0.577 0.3 0.880 8.1 0.202 -4.9 0.467

rs6746294 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs13003675 T C 2.5 0.036 1.8 0.465 10.5 0.044 -2.2 0.663 0.3 0.897 7.9 0.220 -4.9 0.467

rs13004406 A T ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs6745879 A G 2.5 0.031 1.8 0.468 10.6 0.040 -2.7 0.585 0.3 0.881 8.1 0.201 -4.9 0.456

rs6717841 T C 2.4 0.044 2.2 0.377 10.1 0.052 -2.4 0.628 0.2 0.941 7.1 0.268 -4.8 0.471

rs11555646 A C 2.5 0.028 1.7 0.478 10.6 0.039 -2.7 0.586 0.2 0.923 7.9 0.207 -5.1 0.435

rs13013142 A G 2.5 0.028 1.7 0.478 10.6 0.039 -2.7 0.587 0.2 0.922 7.9 0.207 -5.1 0.435

rs6738386 T C 2.5 0.028 1.8 0.476 10.6 0.039 -2.7 0.587 0.2 0.920 7.9 0.208 -5.1 0.435

rs7606090 T C 2.5 0.027 1.8 0.470 10.7 0.037 -2.7 0.580 0.2 0.912 8.0 0.202 -5.2 0.428

rs3817311 T C 2.5 0.029 1.8 0.472 10.6 0.038 -2.7 0.577 0.2 0.915 7.8 0.212 -5.5 0.405

rs11679079 T C 2.5 0.029 1.8 0.472 10.6 0.038 -2.7 0.576 0.2 0.916 7.8 0.213 -5.5 0.405

rs13011298 A G 2.5 0.029 1.8 0.472 10.6 0.037 -2.7 0.576 0.2 0.916 7.8 0.213 -5.5 0.404

rs12474040 T G 2.5 0.029 1.8 0.473 10.6 0.038 -2.8 0.567 0.2 0.918 7.7 0.217 -5.6 0.395

rs12990821 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs6748027 T C 2.5 0.025 1.6 0.512 10.5 0.040 -3.0 0.536 0.2 0.938 7.6 0.224 -5.5 0.396

rs1801251 A G 2.5 0.025 1.6 0.516 10.5 0.040 -3.1 0.531 0.2 0.940 7.6 0.224 -5.6 0.394

rs1446308 T C 2.5 0.025 1.6 0.518 10.5 0.040 -3.1 0.532 0.2 0.937 7.6 0.222 -5.5 0.398

rs737028 T C 2.5 0.024 1.6 0.519 10.5 0.040 -3.1 0.530 0.2 0.933 7.7 0.218 -5.4 0.404

rs283486 A G 2.6 0.023 1.6 0.517 10.5 0.039 -3.1 0.525 0.1 0.944 8.0 0.201 -5.2 0.427

rs283476 A G 2.1 0.068 2.6 0.301 10.5 0.041 -2.1 0.671 -0.7 0.725 6.5 0.307 -3.2 0.634

rs283475 T G 2.2 0.065 2.6 0.289 10.4 0.044 -2.1 0.665 -0.7 0.716 6.4 0.311 -3.2 0.626

rs283474 A G 2.2 0.065 2.6 0.301 10.5 0.042 -2.1 0.664 -0.7 0.714 6.5 0.304 -3.2 0.633

rs283471 A G 2.2 0.062 2.9 0.252 10.7 0.039 -2.1 0.676 -0.7 0.736 6.3 0.318 -2.9 0.667

rs283469 T G 2.6 0.025 1.6 0.506 10.3 0.044 -3.0 0.541 0.1 0.974 8.4 0.179 -5.0 0.449

rs283468 T C 2.2 0.064 2.6 0.299 10.5 0.042 -2.2 0.659 -0.8 0.707 6.5 0.308 -3.2 0.630

rs2674839 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs1867778 T C 2.5 0.030 1.6 0.516 10.3 0.044 -3.2 0.508 0.1 0.973 7.9 0.203 -5.8 0.373

rs7558609 A G 2.6 0.019 1.5 0.537 10.6 0.037 -3.4 0.484 0.1 0.974 8.0 0.202 -6.4 0.326

rs1446311 A G 2.6 0.020 1.5 0.526 10.3 0.043 -3.1 0.522 0.1 0.967 7.9 0.202 -6.1 0.348

rs11676216* T C 2.6 0.020 1.5 0.527 10.5 0.039 -2.9 0.555 0.0 0.992 8.1 0.194 -6.1 0.348

rs10933412 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs3816334 A G 2.6 0.019 1.6 0.508 10.4 0.042 -3.0 0.536 0.1 0.959 8.1 0.194 -6.2 0.339

rs4973054 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs991873 A G 2.6 0.019 1.6 0.507 10.4 0.042 -3.0 0.533 0.1 0.960 8.1 0.194 -6.3 0.337

rs6437074 A G 2.6 0.020 1.7 0.483 9.9 0.052 -3.0 0.536 0.1 0.948 7.8 0.210 -6.6 0.316

rs2100053 T G 2.6 0.020 1.6 0.524 10.1 0.047 -3.2 0.514 0.1 0.952 7.9 0.204 -6.0 0.358

rs4973055 T G 2.6 0.024 2.1 0.398 9.6 0.063 -3.1 0.526 0.3 0.881 7.8 0.214 -5.0 0.444

rs1947105 A G 2.6 0.021 1.6 0.499 10.1 0.048 -3.2 0.508 0.1 0.959 7.7 0.213 -6.0 0.361

rs7589201 A G 2.6 0.020 1.6 0.519 10.2 0.046 -3.2 0.507 0.1 0.956 7.8 0.209 -5.9 0.363

rs895430 A C 2.6 0.020 1.6 0.517 10.2 0.045 -3.2 0.510 0.1 0.951 7.8 0.208 -5.9 0.367

rs2675971 A G 2.6 0.019 1.6 0.516 10.2 0.045 -3.1 0.522 0.2 0.937 7.9 0.206 -5.8 0.375

rs6963258 A T ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs6964113 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs4140961* A G 1.6 0.147 1.7 0.467 1.9 0.700 7.0 0.147 2.2 0.273 5.8 0.341 13.5 0.035

rs7104929* C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?

rs4963153 A G 0.1 0.931 1.7 0.514 -2.4 0.643 -0.6 0.899 0.5 0.795 -3.5 0.588 8.0 0.232

rs7479101* A G 0.4 0.766 2.5 0.365 -2.0 0.733 -1.4 0.808 0.6 0.798 -1.7 0.814 -2.1 0.777

rs10902222 T G 0.5 0.715 1.6 0.557 -2.0 0.727 -2.4 0.668 0.5 0.840 -2.1 0.761 -2.6 0.726

rs10902221 T C 0.1 0.940 1.4 0.574 -1.2 0.825 -2.1 0.681 0.6 0.773 2.8 0.663 2.9 0.662

rs6597981 A G 0.2 0.881 1.6 0.530 -0.7 0.890 -1.9 0.714 0.7 0.734 3.4 0.596 3.6 0.593

rs4131364* A G 0.1 0.941 1.2 0.622 -0.9 0.862 -3.3 0.511 0.6 0.749 0.0 0.998 0.7 0.915

rs1054252 A G -2.5 0.037 -1.2 0.651 -11.2 0.038 -2.8 0.587 -1.5 0.477 -3.6 0.583 -1.7 0.804

rs11600377* A G -2.5 0.038 -0.9 0.741 -11.7 0.030 -2.9 0.579 -1.9 0.375 -3.7 0.573 -2.2 0.751

Table S10. Correlations with sub-cortical brain volumes of the ASM SNPs associated with ADHD.

Nucleus 

Accumbens
Amygdala

Caudate 

nucleus
Hippocampus Pallidum Putamen Thalamus

ASM: Allele-specific methylation; A1: Allele 1; A2: Allele 2; All alleles are reported in the forward strand; Effect: Effect sizes are given in units of mm3 per risk allele; *:

Significant tagSNPs overcoming 5% FDR, the other SNPs are ASM SNPs in LD with these significant tagSNPs; Underlined allele: Risk allele for ADHD; In bold: Nominally

significant p-values; "?": No values retrieved for these SNPs.

cg22930187 

cg06207804

cg13047596

cg11554507

cg20225915

cg04464446
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SUMMARY ARTICLE 2 

“Meta-anàlisi de GWAS de dependència de cocaïna: base genètica compartida 

amb trastorns comòrbids” 

La dependència de cocaïna és un trastorn neuropsiquiàtric complex que presenta un elevat grau de 

comorbiditat amb altres trets psiquiàtrics. Els resultats obtinguts en estudis d’associació suggereixen 

que les variants genètiques comunes podrien tenir un paper rellevant en la susceptibilitat a la 

dependència de cocaïna. D’altra banda, cada vegada hi ha més evidències de l’existència de variants 

genètiques de risc compartides entre trastorns psiquiàtrics. En aquest estudi hem realitzat una meta-

anàlisi de dependència de cocaïna emprant dades GWAS de quatre estudis disponibles a la base de 

dades dbGaP (2.085 casos i 4.293 controls, tots ells d’ascendència europea). Tot i que no s’ha 

identificat cap variant que superi el llindar de significació GWAS, en l’anàlisi basada en gens (gene-

based analysis) s’ha identificat associació significativa entre el gen HISTH2BD i la dependència de 

cocaïna, que supera correccions per False Discovery Rate del 10%. Aquest gen està al cromosoma 6 en 

una regió enriquida en gens d’histones, la qual ha estat prèviament associada a l’esquizofrènia. Els 

SNPs amb menor valor p de la regió, el rs806973 i rs56401801 (P = 3,14 x 10-6 i 3,44 x 10-6, 

respectivament), són eQTLs (expression Quantitative Trait Loci) per diferents gens de la regió en 

múltiples àrees cerebrals. D’altra banda, s’ha identificat correlació genètica entre la dependència de 

cocaïna i el trastorn per dèficit d’atenció amb hiperactivitat (TDAH), esquizofrènia, trastorn depressiu 

major (TDM) i personalitat amb tendència a assolir riscos, emprant l’aproximació LDSC (Linkage 

Disequilibrium Score Regression). A més, s’ha vist que tots els fenotips testats permeten predir si un 

individu és cas o control per la dependència de cocaïna mitjançant una anàlisi PRS (Polygenic Risk 

Score): esquizofrènia (R2 = 2,28%; P = 1,21 x 10-26), TDAH (R2 = 1,39%; P = 4,5 x 10-17), personalitat amb 

tendència a assumir riscos (R2 = 0,60%; P = 2,7 x 10-08), TDM (R2 = 1,21%; P = 4,35 x 10-15), 

comportament agressiu en nens (R2 = 0,3%; P = 8,8 x 10-05) i personalitat antisocial (R2 = 1,33%; P = 2,2 

x 10-16). Aquesta és la meta-anàlisi de GWAS de dependència de cocaïna més gran publicada fins ara. 

Tot i les limitacions de l’estudi a causa de la mida mostral limitada, s’han identificat regions 

potencialment implicades en la dependència de cocaïna i mostrem evidències que hi ha factors 

genètics de risc comuns entre aquesta patologia i les condicions comòrbides testades.   
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A B S T R A C T

Cocaine dependence is a complex psychiatric disorder that is highly comorbid with other psychiatric traits. Twin
and adoption studies suggest that genetic variants contribute substantially to cocaine dependence susceptibility,
which has an estimated heritability of 65–79%. Here we performed a meta-analysis of genome-wide association
studies of cocaine dependence using four datasets from the dbGaP repository (2085 cases and 4293 controls, all
of them selected by their European ancestry). Although no genome-wide significant hits were found in the SNP-
based analysis, the gene-based analysis identified HIST1H2BD as associated with cocaine-dependence (10%
FDR). This gene is located in a region on chromosome 6 enriched in histone-related genes, previously associated
with schizophrenia (SCZ). Furthermore, we performed LD Score regression analysis with comorbid conditions
and found significant genetic correlations between cocaine dependence and SCZ, ADHD, major depressive dis-
order (MDD) and risk taking. We also found, through polygenic risk score analysis, that all tested phenotypes are
significantly associated with cocaine dependence status: SCZ (R2=2.28%; P=1.21e-26), ADHD (R2=1.39%;
P=4.5e-17), risk taking (R2=0.60%; P=2.7e-08), MDD (R2=1.21%; P=4.35e-15), children's aggressive
behavior (R2=0.3%; P=8.8e-05) and antisocial behavior (R2=1.33%; P=2.2e-16). To our knowledge, this
is the largest reported cocaine dependence GWAS meta-analysis in European-ancestry individuals. We identified
suggestive associations in regions that may be related to cocaine dependence and found evidence for shared
genetic risk factors between cocaine dependence and several comorbid psychiatric traits. However, the sample
size is limited and further studies are needed to confirm these results.

1. Introduction

Cocaine is one of the most used illicit drugs worldwide and its abuse
produces serious health problems. In Europe, around 5.2% of adults
(from 15 to 64 years old) have tried cocaine (EMCDDA, 2017), but at
most 20% will develop addiction (Wagner and Anthony, 2002). This
information allows us to estimate the prevalence of cocaine dependence
in the European population around 1.1%, similar to the prevalence
observed in American populations (Compton et al., 2007).

Cocaine dependence is a complex psychiatric disorder that results
from the interaction of environmental and genetic risk factors. It is one
of the most heritable psychiatric conditions, with an estimated herit-
ability of 65–79% (Ducci and Goldman, 2012). Although many case-

control association studies in candidate genes have been performed,
only a few risk variants for cocaine dependence have been identified
and replicated so far, such as rs16969968 in the CHRNA5 gene, en-
coding the cholinergic receptor nicotinic alpha 5 subunit, and rs806368
in CNR1, coding for the cannabinoid receptor 1 (Bühler et al., 2015). To
date, only one genome-wide association study (GWAS) on cocaine de-
pendence has been performed in European- and African-American in-
dividuals (Gelernter et al., 2014). When combining the two popula-
tions, one genome-wide finding was identified in the FAM53B gene,
using a symptom count approach, but this hit could not be replicated in
a subsequent study (Pineda-Cirera et al., 2018).

Several studies have shown that substance use disorders (SUD), and
especially cocaine dependence, is highly comorbid with other
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psychiatric disorders and related phenotypes like aggressive, antisocial
or risk-taking behaviors (Bezinović and Malatestinić, 2009; Hasin and
Kilcoyne, 2012). For example, the occurrence of lifetime SUD in pa-
tients with schizophrenia (SCZ) is 70–80%, in attention deficit/hyper-
activity disorder (ADHD) it is 39.2% and in major depressive disorder
(MDD) it is 16.1% (Currie et al., 2005; Piñeiro-Dieguez et al., 2016;
Westermeyer, 2006). Conversely, about 81% of substance abuse/de-
pendence patients have at least one comorbid mental disorder: 33%
MDD, 11% SCZ and 9% personality disorders (Shantna et al., 2009).
Such comorbidity is associated with an increase of severity for all dis-
orders, although it is unclear whether this relationship is causal or the
result of shared genetic and/or environmental risk factors. Some studies
have started to inspect these relationships using both genetic correla-
tion and polygenic risk score approaches, supporting the hypothesized
role of shared genetic risk factors in the lifetime co-occurrence of sev-
eral psychiatric disorders and SUD (Carey et al., 2016; Du Rietz et al.,
2017; Hartz et al., 2017; Reginsson et al., 2018).

Here we performed a GWAS meta-analysis of cocaine dependence in
samples with European ancestry using datasets from the dbGaP re-
pository. Then we investigated the shared genetics between cocaine
dependence and other psychiatric traits.

2. Experimental procedures

Detailed description of the materials and methods used, as well as
supplementary figures, can be found in the Supplementary Information.

2.1. Subjects

The case-control GWAS meta-analysis was performed using four
datasets from the dbGaP repository (https://www.ncbi.nlm.nih.gov/
gap) under the project 17,170 (Table 1). All cases used met DSM-IV
criteria for cocaine dependence, although most of them are also de-
pendent to other drugs of abuse. Diagnoses for schizophrenia, bipolar
affective disorder or other major psychotic illnesses or gross cognitive
impairment were exclusion criteria for all samples except for SAGE.
Drug abuse or dependence were discarded only in controls of the SAGE
sample, whereas in the other studies general population individuals
were used as controls (see Supplementary Information for detailed
description of subjects used in this study).

Since samples 2–4 did not have enough controls to perform the
association studies, we used controls from other datasets, strategy
previously followed by others (Johnson et al., 2016). In all cases, pa-
tients and controls were from the same geographic area, they were
genotyped with the same array and using the same genome assembly. In
order to reduce bias, we merged controls with cases prior to quality
control (QC) and imputation (Mitchell et al., 2014; Uh et al., 2012). The
analyses performed to control for population stratification is summar-
ized in Fig. S1.

The study was approved by the ethics committee of our institution,
in accordance with the Helsinki Declaration and with the dbGaP pro-
tocols.

2.2. Quality control and association analyses

Prior to analysis, stringent QC was performed on the genotyped
markers and individuals in each sample using the standardized pipeline
“Ricopili” (Ripke, 2014). Very briefly, subjects and SNPs were selected
according to “Ricopili” default parameters: SNP and subject call
rate > 0.98, SNP Hardy-Weinberg equilibrium (P > 1e−06 in con-
trols or P > 1e−10 in cases), autosomal heterozygosity deviation
(|Fhet| < 0.2) and sex check based on X chromosome heterozygosity.
European-ancestry individuals were selected based on principal com-
ponent analysis (PCA): PC1 and PC2 were used to define a genetic
homogenous population, excluding individuals with PC values greater
than three standard deviations from the reference population (Eur-
opean individuals from 1000 Genomes Project Phase 3 (1KGP3)). Re-
lated individuals and genetic outliers were excluded. A permutation test
for between-group IBS differences with fixed 10,000 permutations was
performed to discard population stratification between cases and con-
trols (T1 p-value<0.05).

After QC, non-genotyped markers were imputed using the European
individuals from the 1KGP3 reference panel in MINIMAC3 (https://
genome.sph.umich.edu/wiki/Minimac3).

In order to identify overlapping or related individuals across all
datasets, we ran the “Ricopili” PCA module considering the four sam-
ples together, and one individual of each pair was excluded.

For each sample, case-control GWAS was conducted using logistic
regression under the additive model in PLINK v1.9 (http://pngu.mgh.
harvard.edu/purcell/plink/). The 10 firsts PCs were included as cov-
ariates to correct for population stratification, and only variants with
imputation INFO score > 0.8 and minor allele frequency
(MAF)>0.01 were considered. In all samples the genomic inflation
factor (λ) was lower than 1.05.

2.3. GWAS meta-analysis

In total, 2085 cases and 4293 controls were meta-analyzed using an
inverse-variance weighted fixed effects model in METAL (http://csg.
sph.umich.edu//abecasis/Metal/)(Willer et al., 2010). Association re-
sults were considered only for variants with an effective sample size
[N=2/((1/Ncases)+ (1/Ncontrols))]> 70% of the full meta-analysis.
Heterogeneity across studies was tested with the Cochran's Q test and
quantified with the I2 heterogeneity index, implemented in METAL.

Manhattan plot and Q-Q plot from each sample and the meta-ana-
lysis results were generated with the library “qqman” implemented in
R.

2.4. LD score intercept evaluation

LD score (LDSC) regression analysis was used to calculate LDSC
intercept by regressing the chi-square statistics from GWAS against LD
scores for each SNP (downloaded from GitHub website, https://github.
com/bulik/ldsc) (Bulik-Sullivan et al., 2015b).

2.5. SNP heritability

The proportion of phenotypic variance explained by common SNPs

Table 1

Description of dbGaP samples used in the cocaine dependence GWAS meta-analysis.

Sample N cases %F cases N controls %F controls Genotyping chip dbGaP code

Sample 1 (SAGE) 468 39.3% 1284 69.9% Illumina ILMN_Human-1 phs000092.v1.p1 (cases/controls)
Sample 2 609 45.9% 410 50.2% Illumina HumanOmni1-Quad_v1-0_B phs000952.v1.p1 (cases/controls) + phs000179.v5.p2 (controls)
Sample 3 504 44.3% 1190 62% Illumina Human660W-Quad_v1_A phs000277.v1.p1 (cases/controls) + phs000170.v2.p1 (controls)
Sample 4 504 36.7% 1409 41.9% Illumina HumanOmni1-Quad_v1-0_B phs000425.v1.p1 (cases/controls) + phs000524.v1.p1 (controls)
Total 2085 4293

%F=percentage of females
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in the liability scale was assessed using two different methodologies:
LDSC 1.0.0 (https://github.com/bulik/ldsc/) and the Genome-based
REstricted Maximum Likelihood analysis implemented in the tool
Genome-wide Complex Trait Analysis (GCTA-GREML; https://
cnsgenomics.com/software/gcta/#Overview) (Lee et al., 2011). In
both analyses, a population prevalence for cocaine dependence of 1.1%
was considered (Compton et al., 2007). The GCTA-GREML analysis was
adjusted for the 10 first PCs and a dummy variable indicating geno-
typing-study.

Partitioned heritability analysis was performed using LDSC 1.0.0
based on 24 functional overlapping annotations described previously
(Finucane et al., 2015). Enrichment in the heritability of a functional
category was defined as the proportion of SNP heritability explained
divided by the proportion of SNPs. The threshold for significance was
calculated using the Bonferroni correction for multiple testing (P < 2e-
03).

2.6. Functional annotation of risk SNPs

SNPs were functionally annotated using FUMA (http://fuma.ctglab.
nl/)(Watanabe et al., 2017). FUMA define lead SNPs as signals that are
significantly associated with the phenotype of interest (we considered
suggestive associations (P < 1e-05)) and independent to each other
(r2 < 0.1). For each lead SNP, a “Genomic risk locus” is defined, in-
cluding all independent signals that are physically close or overlapping
in a single locus. The variants located in a “Genomic risk locus” were
explored considering the following functional annotations: eQTL (from
GTEx v6/v7 and BRAINEAC), CADD_v1.3, ANNOVAR, Reg-
ulomeDB_v1.1, 15-core chromatin state and GWAS-catalog e91.

2.7. Gene-based and gene-set association analyses

Gene-based and gene-set association analyses were performed with
MAGMA 1.05b (Willer et al., 2010) using the summary statistics from
the cocaine dependence GWAS meta-analysis. For gene-based analysis,
the SNP-wise mean model was used as the statistic test, considering p-
values for SNPs located within the transcribed region. For multiple
testing corrections, 10% False Discovery Rate (FDR) was considered.

Gene-set analysis was used to test for enrichment in association
signals in genes belonging to specific biological pathways or processes.
We performed a competitive test using: “All Canonical Pathways” (1329
gene sets), “GO” (4436 gene sets) and “BioCarta” (217 gene sets) pro-
vided by MsigDB 5.1 (https://software.broadinstitute.org/gsea/
msigdb/)(Subramanian et al., 2005). Multiple testing corrections were
applied to each gene set separately. When gene sets are strongly over-
lapping, the Bonferroni correction can be quite conservative, and for
that reason, we used an empirical multiple testing correction im-
plemented in MAGMA, based on a permutation procedure.

2.8. Shared genetic factors between cocaine dependence and comorbid

conditions

2.8.1. Subjects

We studied shared genetic factors between cocaine dependence and
six previously described comorbid conditions using publicly available
GWAS summary statistics of SCZ, ADHD, MDD, children's aggressive
behavior, antisocial behavior and risk-taking behavior (Table 2).
Summary statistics from the vitamin D levels GWAS of the UK Biobank
was used as a negative control.

2.8.2. LDSC genetic correlation

Genetic correlation between cocaine dependence and the six se-
lected comorbid disorders/traits was calculated using LDSC 1.0.0
(Bulik-Sullivan et al., 2015a). Summary statistics from all samples and
pre-computed LD scores from HapMap3_SNPs calculated on 378 phased
European-ancestry individuals from 1KGP3 were used (available at T
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https://github.com/buligk/ldsc). After Bonferroni correction, the sig-
nificance threshold was adjusted to P < 7.1e-03.

Furthermore, the genetic correlation of cocaine dependence with
other traits available at LD Hub (http://ldsc.broadinstitute.org/ldhub/)
(Zheng et al., 2017) was evaluated (Bonferroni correction threshold
P < 7.2e-05).

2.8.3. Polygenic risk scores for cocaine dependence

Poligenic risk score (PRS) analysis was performed using the PRSice
2.1.0 software (https://github.com/choishingwan/PRSice) (Euesden
et al., 2015).

The four cocaine dependence datasets were merged using PLINK
v1.9 and used as a target sample. After merging, strict QC was applied
resulting in 5,957,307 SNPs in 2083 cases and 4287 controls. To assess
population stratification PCA was performed, and the 10 first PCs and a
dummy variable indicating genotyping-study was included in the PRS
analysis as a covariate.

Summary statistics of the seven phenotypes described above were
used as discovery samples, which were clumped (r2 < 0.1 in a 250-kb
window) to remove SNPs in linkage disequilibrium (LD). Then, PRSs
were estimated for each discovery sample using a wild range of meta-
analysis p-value thresholds (PT) between PT=1e-04 and PT=1 at in-
crements of 5e-05. For each PT, the proportion of variance explained
(R2) by each discovery sample was computed by comparing the full
model (PRS+ covariates) score to a reduced model (covariates only).
The reported R2 value is the difference between R2 from the two
models. For quantitative traits we performed linear regression analysis,
and for qualitative traits we used logistic regression and Nagelkerke's

pseudo-R2 values are shown.
As recommended, we used the significance threshold of P=0.004

(Euesden et al., 2015). Bonferroni correction was applied considering
the seven tested phenotypes (P < 5.7e-04).

3. Results

3.1. GWAS results

We performed a GWAS meta-analysis of cocaine dependence using
four datasets from the dbGaP repository. In total, we meta-analized
9,290,362 common genetic variants in 2085 cases and 4293 controls of
European ancestry. No marker demonstrated significant heterogeneity
between studies (Fig. S2 and Table S1). The Q-Q plot (Fig. 1A) dis-
played a λ of 1.06, comparable to other GWAS. The LDSC analyses
estimated an intercept of 1.01 (SE=0.006; P=0.1), not sig-
nificantly> 1, discarding residual population stratification or cryptic
relatedness (Bulik-Sullivan et al., 2015b).

None of the analyzed variants reached the threshold for genome-
wide significance (P < 5e-08) in the SNP-based analysis, although we
identified several suggestive associations (P < 1e-05) (Table S1;
Fig. 1B).

3.2. Polygenic architecture of cocaine dependence

We applied two approaches to assess the proportion of phenotypic
variance explained by common SNPs. For LDSC, the estimated SNP
heritability in liability scale was h2snp=0.30 (SE= 0.06; P=2.4e-07),
and for GCTA-GREML h2snp=0.27 (SE=0.03, P < 0.01). Then we
performed partitioned heritability analysis on LDSC based on functional
genomic categories and found significant enrichment in the heritability
by SNPs located in intronic regions (enrichment= 2.17; SE= 0.45;
P=1.2e-03), and a nominal result for conserved genomic regions
(enrichment= 23.63; SE=8.57; P=4e-03) (Fig. S3).

3.3. Functional annotation of risk SNPs

To identify potentially interesting regions with FUMA we

considered the SNPs showing suggestive associations (P < 1e-05), as
the SNP-based analysis did not reveal genome-wide significant hits
(P < 5e-08). We identified 23 lead SNPs which correspond to 22
genomic risk loci including 112 genes (Table 3). Interestingly, the risk
locus located on chromosome 6 overlaps with a genomic region pre-
viously associated with schizophrenia. This region is defined by two
lead SNPs (rs806973 and rs56401801, GWAS P=3.1e-06 and 3.4e-06,
respectively) and it includes 77 genes and 458 nominally associated
SNPs. Moreover, most of the SNPs in this region (447) are brain eQTLs
for at least one member of a small group of 12 genes, including
BTN3A2, HIST1H2AK, ZSCAN31, PRSS16 and ZNF184 (Figs. 2 and S4).

3.4. Gene-based and gene-set analyses

The gene-based analysis mapped 3,418,270 SNPs from the GWAS
meta-analysis to 18,069 protein-coding genes (Fig. S5 and Table S2).
The HIST1H2BD gene, located in a genomic region on chromosome 6
that showed a suggestive association in the SNP-based analysis, dis-
played a significant gene-wise association with cocaine dependence
(10% FDR), although it did not overcome the Bonferroni correction for
multiple testing. Then we performed competitive gene-set tests for all
BioCarta, GO and Canonical Pathways. No gene sets attained a sig-
nificant association with cocaine dependence after correction for mul-
tiple testing (Tables S3–5), although the BioCarta immunity pathway
“BIOCARTA TNFR2 PATHWAY” showed a trend (uncorrected
P= 5.38e-04, corrected P= 0.09), being also the most significantly
associated canonical pathway gene set. Furthermore, from the 10 GO
gene sets with lower p-values, seven were related to synapse organi-
zation, glutamatergic neurotransmission and brain functions.

3.5. Cocaine dependence and shared genetic factors with comorbid

conditions

Cocaine dependence is highly comorbid with other psychiatric dis-
orders like SCZ, ADHD and MDD, and also with other phenotypes like
aggressive behavior in children, antisocial behavior or risk taking. In
order to investigate whether these phenotypic correlations are geneti-
cally mirrored, we performed a genetic correlation analysis using LDSC
analysis and found significant genetic correlations (P < 7.1e-03) be-
tween cocaine dependence and SCZ (rg= 0.2; SE=0.05; P=1e-04),
ADHD (rg= 0.5; SE=0.08; P=1.6e-09), MDD (rg=0.4; SE=0.08;
P=6.6e-07) and risk taking (rg= 0.35; SE= 0.06; P=9.1e-08)
(Fig. 3A). No significant correlations were found with children's ag-
gression or antisocial behavior, nor with a negative control (Vitamin D
levels).

On the other hand, we tested genetic correlations between cocaine
dependence and all the GWAS summary statistics publicly available in
the LD Hub. From the 690 tested traits, 109 demonstrated significant
correlations after applying the Bonferroni correction for multiple
testing, including negative correlations with educational achievements
(e.g. college completion) or with reproductive traits (e.g. age at first
child) and positive correlations with familiar situation (e.g. tobacco
smoke exposure at home) or with several psychological or psychiatric
traits like neuroticism, depressive symptoms or loneliness (Fig. S6 and
Table S6). The high number of significant associations may be ex-
plained by the high redundancy of the phenotypes of the LD Hub.

We also investigated the shared genetic etiology between cocaine
dependence and comorbid phenotypes through PRS analysis, and tested
whether these phenotypes are associated with cocaine dependence
status. For all the discovery samples tested, PRS was significantly as-
sociated with cocaine dependence: SCZ (pseudo-R2=2.28%,
PT=0.4911, P=1.21e-26), ADHD (pseudo-R2=1.39%,
PT=0.04275, P=4.5e-17), antisocial behavior (pseudo-R2=1.33%,
PT=0.4055, P=2.2e-16), MDD (pseudo-R2=1.21%, PT=0.0129,
P=4.35e-15), risk taking (R2=0.60%, PT=0.00135, P=2.7e-08)
and children's aggressive behavior (R2=0.30%, PT=0.3552,
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P=8.8e-05) (Figs. 3B and S7). In all cases, the quantile plot shows the
positive nature of this relationship as cocaine dependence increases
with greater polygenic load at each discovery dataset (Fig. S8). As ex-
pected, the negative control based on vitamin D levels was not asso-
ciated with cocaine dependence (R2=0.07%, PT=0.03075,
P=0.06).

4. Discussion

To our knowledge, this is the largest GWAS meta-analysis on co-
caine dependence performed so far in individuals with European an-
cestry, although the sample size is still limited. No genome-wide sig-
nificant (GWS) signals emerged from the SNP-based analysis, but the
gene-based study identified HIST1H2BD as significantly associated with
cocaine dependence. This gene is located in a region of chromosome 6
enriched in immune system and histone-related genes. These pathways

Fig. 1. Results from the GWAS meta-analysis on cocaine dependence. A) Q-Q plot and B) Manhattan plot. Red line: threshold for genome-wide significance (P < 5e-
08). Blue line: threshold for suggestive associations (P < 1e-05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3

FUMA analysis of genetic risk loci for cocaine dependence as identified from the GWAS meta-analysis.

Genomic locus Positiona Lead SNP SNP position GWAS P-value nSNPs nGenes Genes

1 chr1:15,916,714–16,049,893 rs148069235 15,950,064 9.52e-06 236 6 DNAJC16, AGMAT, DDI2, RSC1A1,

PLEKHM2, SLC25A34

2 chr1:104,966,872–104,966,872 rs72685414 104,966,872 1.87e-06 1 0
3 chr3:50,615,472–51,356,217 rs148179194 50,798,652 7.03e-06 152 3 C3orf18, HEMK1, DOCK3

4 chr3:84,862,871–84,961,810 rs6767407 84,955,841 9.61e-06 27 0
5 chr3:172,170,104–172,214,001 rs57361543 172,212,144 5.09e-06 28 2 GHSR, TNFSF10

6 chr4:82,943,149–83,005,137 rs7675557 82,970,816 2.28e-06 16 1 RASGEF1B

7 chr4:117,560,979–117,607,439 rs67769911 117,607,070 6.33e-06 18 1 MIR1973

8 chr5:30,884,915–31,001,774 rs62357000 30,884,915 9.20e-06 4 1 CDH6

9 chr5:44,051,305–44,130,776 rs4410642 44,129,423 9.42e-06 61 0
10 chr5:54,436,897–54,754,893 rs334878 54,519,878 7.67e-06 90 9 ESM1, CDC20B, GPX8, MCIDAS, CCNO,

DHX29, SKIV2L2, PLPP1, DDX4

11 chr5:106,788,817–106,796,026 rs71575441 106,788,817 2.37e-06 2 1 EFNA5

12 chr6:26,148,326–28,301,195 rs806973;
rs56401801

26,148,326;
27,301,762

3.14e-06;
3.44e-06

458 77 Locus too broad

13 chr8:99,193,765–99,226,821 rs4734387 99,193,765 4.20e-06 35 1 NIPAL2

14 chr9:28,890,331–28,993,271 rs35735220 28,963,289 6.86e-06 113 0
15 chr9:118,176,789–118,273,407 rs10121366 118,244,022 7.33e-06 54 0
16 chr13:36,947,826–37,019,186 rs79309473 36,972,202 1.89e-06 26 5 SOHLH2, SPG20, SPG20-AS1, CCNA1,

SERTM1

17 chr13:88,150,884–88,150,884 rs7332726 88,150,884 7.10e-06 1 0
18 chr16:6,654,017–6,695,032 rs112252907 6,675,141 4.43e-06 42 1 RBFOX1

19 chr16:84,581,684–84,590,225 rs247831 84,581,893 9.17e-06 8 2 TLDC1, COTL1

20 chr18:43,206,985–43,231,622 rs1484873 43,206,985 4.45e-06 14 1 SLC14A2

21 chr18:73,743,937–73,775,398 rs73973283 73,757,906 6.46e-06 88 0
22 chr20:54,516,338–54,516,338 rs11086525 54,516,338 3.01e-06 1 0

a Gene coordinates based on GRCh37/hg19. NSNPs: Number of nominally associated SNPs per genomic locus.

J. Cabana-Domínguez, et al. Progress in Neuropsychopharmacology & Biological Psychiatry 94 (2019) 109667

5

Results - Article 2

72 



have previously been associated with other psychiatric disorders like
schizophrenia, major depressive disorder and bipolar disorder
(O'Dushlaine, 2015). Despite the lack of GWS findings in this region, we
identified many subthreshold variants. Based on the omnigenic model
that has recently been proposed for complex disorders, these variants
could point at regulatory elements of core genes (Boyle et al., 2017;
Wray et al., 2018) and, therefore, contribute to the susceptibility to
cocaine dependence, as most of them are brain eQTLs. Interestingly,
this region overlaps with the genomic region that has been most con-
sistently associated with schizophrenia. Indeed, it contains five SNPs
(rs16897515, rs17693963, rs34706883, rs41266839 and rs55834529)
nominally associated with cocaine dependence (P < 1e-04) that had
previously been associated with schizophrenia and with bipolar dis-
order, being the risk allele the same in all studies. The genetic variant
most consistently associated with schizophrenia is rs17693963, re-
ported in five different studies (Bergen et al., 2012; Ripke et al., 2011;
2014; Ruderfer et al., 2014; Sleiman et al., 2013), which is a brain eQTL
for PRSS16, ZSCAN9, ZNF184 and ZSCAN31. Furthermore, a tran-
scriptomic study performed in lymphoblastoid cell lines of 413 in-
dividuals with schizophrenia and 446 controls found that the top dif-
ferentially expressed genes are located in this region (e.g. HIST1H2BD,
HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) (Sanders et al.,
2013).

Cocaine dependence is a highly heritable disorder (around 65–79%
(Ducci and Goldman, 2012)). Our analyses estimate that SNPs sig-
nificantly capture more than one third of cocaine dependence herit-
ability, as estimated using two different methods (LDSC h2SNP=0.30;
GCTA-GREML h2SNP=0.27). Interestingly, studies with comparable
sample sizes obtained similar results for cocaine dependence
(h2TOTAL=0.65–0.79; h2SNP=0.28) (Huggett and Stallings, 2019), al-
cohol dependence (h2TOTAL=0.55–0.69; h2SNP=0.33) (Mbarek et al.,

2015) and for other psychiatric disorders like ADHD
(h2TOTAL=0.77–0.88; h2SNP=0.28) and schizophrenia
(h2TOTAL=0.7–0.8; h2SNP=0.28) (Cross-Disorder Group of the PGC
et al., 2013). Increasing sample size has resulted in lower SNP-herit-
ability estimates in some studies (e.g. alcohol dependence, h2SNP=0.09
(Walters et al., 2018) and MDD, h2SNP=0.12 (Wray et al., 2018)), but in
others they remained similar (e.g. schizophrenia, h2SNP=0.26 (Ripke
et al., 2014) and ADHD, h2SNP=0.22 (Demontis et al., 2019)). For this
reason, larger samples are needed to confirm our results.

It is well known that most psychiatric disorders are highly co-
morbid. About 73.4% of cocaine abuse/dependence patients have co-
morbid mental disorders: 49.7% have personality disorders (e.g. 5.3%
schizoid and 17% antisocial personality) and 61.5% other mental dis-
orders (e.g. 23.4% MDD and 20.5% anxiety) (Arias et al., 2013).
However, the reasons for these covariations remain largely unknown.
We investigated whether the phenotypic correlations between cocaine
dependence and six comorbid psychiatric traits are genetically mirrored
by performing genetic correlation analyses using LDSC. For the first
time we found significant genetic correlation with ADHD, SCZ, MDD
and risk-taking behavior, although these results should be taken with
caution and need to be followed up in a larger sample of cocaine-de-
pendent individuals. Furthermore, we used the PRS method that, in
contrast to LDSC, uses individual-level SNP data, resulting in higher
statistical power and allowing for direct testing of interaction effects.
According to our results, all the tested comorbid conditions are asso-
ciated with cocaine dependence status, suggesting that cocaine de-
pendence is more likely in individuals with many risk alleles for the
tested conditions than in those with fewer risk alleles. To our knowl-
edge, this is the first report of a shared genetic etiology between cocaine
dependence and ADHD, antisocial behavior, risk-taking behavior and
children's aggressive behavior based on genome-wide data. Previous

Fig. 2. Circo-plot from genomic risk loci on chro-
mosome 6 by FUMA. The most outer layer is the
Manhattan plot (only SNPs with P < 0.05 are dis-
played). SNPs in genomic risk loci are colour-coded
as a function of their maximum r2 to the lead SNPs in
the locus, as follows: red (r2 > 0.8), orange
(r2 > 0.6), green (r2 > 0.4), blue (r2 > 0.2) and
grey (r2≤ 0.2). The rs ID of the top SNPs in the risk
locus is displayed in the most outer layer. Y-axis is
ranged between 0 to the maximum -log10(p-value) of
the SNPs. The second layer is the chromosome ring,
with the genomic risk locus highlighted in blue. Here
genes are mapped by chromatin interactions (or-
ange) or eQTLs (green). When the gene is mapped by
both, it is colored in red. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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studies have reported significant PRS associations between cocaine
dependence and SCZ or MDD (Carey et al., 2016; Hartz et al., 2017;
Reginsson et al., 2018), and also between SUD and other psychiatric
disorders (Du Rietz et al., 2017; Gurriarán et al., 2018), although our
study used the largest sample of cocaine dependence for this type of
analysis so far. This correlation can reflect biological pleiotropy, where
similar genetic mechanisms influence more than one trait, or mediated
pleiotropy, where one phenotype is causally related to a second phe-
notype, so that the variants associated with this phenotype are in-
directly associated with the second one. A recent study performed a
GWAS meta-analysis of eight psychiatric disorders, and found that 75%
of the LD-independent associated regions (109 out of 146) were asso-
ciated with more than one disorder (Cross-Disorder Group of the PGC
et al., 2019). Supporting the idea that the high comorbidity of psy-
chiatric disorders can be explained, in part, because some of the genetic
risk factors are shared among them (Brainstorm Consortium et al.,
2018; Martin et al., 2018).

An important and controversial consideration in association studies
for substance dependence is the selection of the control sample. Some
studies use control individuals that have been exposed to the drug at
least once (Agrawal et al., 2018; Gelernter et al., 2014). In this case, the
association study would capture the predisposing genetic component
involved in the transition from use to addiction, but not the ones related
to the initiation in the consumption (e.g. impulsivity or risk-taking
behavior). Our study shows evidence of shared genetic risk factors
between cocaine dependence and risk-taking behavior, estimating a
high genetic correlation (rg= 0.35) and identifying a significant asso-
ciation also in the PRS analysis. For the above reasons, we have used
unscreened controls from the general population in our study (except
for the SAGE controls, where dependence was discarded). It is also true

that this approach could eventually dilute positive findings due to the
presence of some cases in the control sample. However, based on the
prevalence of cocaine dependence in the general population (about
1.1%), the probability of false negative results due to this effect is low.
Similar controls were used in other GWAS of drug addiction (Ikeda
et al., 2013; Johnson et al., 2016).

This study has strengths and limitations that need some discussion.
We performed a GWAS meta-analysis using all the cocaine dependence
datasets available at the dbGaP repository, but we could not find any
GWS association at the SNP-based level, as expected given the limited
sample size, with a total of around 6000 subjects, one third of them
cases. However, these data allowed us to detect genetic correlations
between cocaine dependence and several co-occurring conditions. Also,
we calculated polygenic risk scores that explain a small fraction of the
variance in the target phenotype, with figures that are similar to those
obtained for other pairs of psychiatric conditions. To obtain a more
comprehensive picture of the etiological overlap between cocaine de-
pendence and comorbid conditions, larger studies will be needed, and
other genetic factors should be included in the analyses (e.g. CNVs and
rare variants). It is important to note that the high comorbidity across
the tested traits could influence our results on genetic correlation and
PRS. However, several studies have shown that this high co-occurrence
is due, at least in part, to shared genetic risk factors (Brainstorm
Consortium et al., 2018; Martin et al., 2018). On the other hand, some
of the dbGaP datasets used included only cases but not control in-
dividuals. For this reason, we used controls from other datasets that can
introduce potential biases into the experimental design. Nevertheless,
we performed very strict quality controls to avoid population stratifi-
cation: the paired case and control samples were genotyped with the
same platform and are from the same geographical area, the merging of
the different datasets was performed prior to quality control and im-
putation, and after that a permutation test was performed to discard
population stratification (Mitchell et al., 2014). Population admixture is
one of the main sources of false positive findings in association studies.
For this reason, we performed ancestry selection using genetic data,
which allowed us to discard a relatively high number of individuals
with non-European ancestry (ranging from 8 to 30% depending on the
dataset). This highlights the importance of using genetic data rather
than self-reported ancestry, as previously discussed by others (Shraga
et al., 2017). Moreover, the LDSC analyses confirmed that most of the
observed inflation (λ =1.06) can be attributed to polygenicity rather
than to residual population stratification or cryptic relatedness (Bulik-
Sullivan et al., 2015b). Finally, the disease phenotype has not been
excluded in most of the control samples, which may potentially dilute
positive findings in the association study (but not lead to false positive
results).

5. Conclusion

In conclusion, we reported the largest cocaine dependence GWAS
meta-analysis on individuals of European ancestry, even though no
GWS hits could be identified. Enlarging the sample size of this study
would increase the chances to detect significant associations. However,
the fact that our analyses highlighted a region on chromosome 6 that
also pops-up in several schizophrenia GWAS supports the idea of shared
genetic risk factors in these two comorbid disorders. This is in line with
the significant results derived from the genetic correlation and PRS
analyses in our study and in others. Finally, it would also be interesting
to investigate the genetic pathways and neurobiological mechanisms
that underlie the genetic overlap between cocaine dependence and
comorbid traits.
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SUPPLEMENTARY MATERIALS AND METHODS 

1. Detailed description of samples 

A brief overview of the samples included can be found in Table 1. 

All datasets used in this work were obtained from dbGaP (database of Genotypes and 

Phenotypes / National Center for Biotechnology Information, National Library of Medicine 

(NCBI/NLM), https://www.ncbi.nlm.nih.gov/gap) under the project “17170: Meta-analysis of 

cocaine dependence GWAS”.  

All affected subjects included in this study meet DSM-IV criteria for cocaine dependence, 

although most of them are also dependent to other drugs of abuse. Diagnoses for 

schizophrenia, bipolar affective disorder or other major psychotic illnesses or gross cognitive 

impairment were exclusion criteria. Only for the SAGE controls, drug abuse or dependence 

could be discarded; for the other studies general population individuals were used as controls.   

Sample 1 (SAGE) 

The data presented in the current publication was downloaded from the dbGaP website, under 

dbGaP accession phs000092.v1.p1. SAGE (Study of Addiction: Genetics and Environment) and 

it is part of the Gene Environment Association Studies initiative (GENEVA, 

www.genevastudy.org) funded by the National Human Genome Research Institute. Cases and 

controls included in this study belong to three large, complementary datasets: the 

Collaborative Study on the Genetics of Alcoholism (COGA), the Family Study of Cocaine 

Dependence (FSCD), and the Collaborative Genetic Study of Nicotine Dependence (COGEND). 

All three studies include measures of basic socio-demographic variables (e.g: age, sex, 
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race/ethnicity, family income…) and other important covariates and/or potential moderators 

of genetic effects (e.g: comorbid addictions and age at initiation of use for cigarettes, alcohol 

and drugs). Coding for both individual variables and indices has been standardized across 

studies and all subjects were assessed in person by trained research assistants. In total this 

dataset includes 1,897 European-American and African-American alcohol dependent subjects 

and 1,932 unrelated controls [1]. All cases met criteria for DSM-IV alcohol dependence, but 

some of them also met the criteria for other drug dependencies such as cocaine, tobacco or 

cannabis.  

Genomic DNA was extracted from whole blood samples and genotyping was performed on an 

Illumina ILMN_Human-1 chip (Illumina, Inc., San Diego, CA, USA). This dataset includes 1,130 

cocaine-dependent individuals and 1,967 controls. After quality control (QC) and ancestry 

selection, 468 cases and 1,284 controls were selected.  

The following datasets did not have controls that meet the inclusion criteria for the association 

study, so general population individuals with European ancestry genotyped with the same chip 

were obtained for each dataset of cases: 

Sample 2 

Cases: The data for the present analysis was downloaded from the dbGaP website, under 

dbGaP accession phs000952.v1.p1 (Substance Dependence GWAS in European- and African- 

Americans). Samples were collected in the course of three projects: studies focused on alcohol 

dependence genetics, on cocaine and opioid dependence genetics. This dataset includes 1,531 

self-reported African-American subjects and 1,339 self-reported European-American subjects 

that meet DSM-IV criteria for opioid, cocaine or alcohol dependence.  

Genotyping was performed on an Illumina HumanOmni1-Quad_V1-0_B chip. This dataset 

includes 2,433 cocaine-dependent individuals and 61 controls. 
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Controls: The data presented in the current publication is based on the use of study data 

downloaded from the dbGaP website, under dbGaP accession phs000179.v5.p2 (Genetic 

Epidemiology of COPD (COPDGene) funded by the National Heart, Lung, and Blood Institute). 

Only control individuals genotyped with the Illumina HumanOmni1-Quad_V1-0_B chip from 

this dataset were used for our association study (493 controls). 

Case and control samples were merged, after QC and ancestry selection, 609 cases and 410 

controls were selected. 

Sample 3 

Cases: The data presented in the current publication is based on the use of study data 

downloaded from the dbGaP website, under dbGaP accession phs000277.v1.p1 (GWAS of 

Heroin Dependence). This dataset is a collaboration of Australian and American researchers. 

Cases and controls were obtained from several large investigations including: the Comorbidity 

and Trauma Study, Heroin Dependence in Western Australia, the OZ-ALC Study, a Twin Study 

of Mole Development in Adolescence, and ongoing genetic studies of substance dependence 

conducted by researchers at Yale and collaborating institutions. Cases met lifetime DSM-IV 

criteria for heroin dependence, but also for cocaine, alcohol or cannabis. Controls included 

screened individuals who did not meet DSM-IV heroin dependence criteria and unscreened 

general population controls.  

Genomic DNA was extracted from whole blood samples. Individuals used in this study were 

genotyped on an Illumina Human660W-Quad_v1_A chip (933 cocaine-dependent individuals 

and 349 controls). Although this dataset includes controls, we added more individuals to 

increase the statistical power. 

Controls: The data presented in the current publication is based on the use of study data 

downloaded from the dbGaP website, under dbGaP accession phs000170.v2.p1. (eMERGE  
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Genome-Wide Association Study on Cataract and Low HDL cholesterol). Only control 

individuals from this dataset were used for our association study, all of them genotyped on an 

Illumina Human660W-Quad_v1_A chip (1,370 controls). 

Case and control samples were merged, and after QC and ancestry assessment, 504 cases and 

1,190 controls were selected. 

Sample 4 

Cases: The data presented in the current publication are based on the use of study data 

downloaded from the dbGaP website, under dbGaP accession phs000425.v1.p1 (Alcohol 

Dependence GWAS in European- and African Americans). The sample includes 1,889 African-

American subjects (1,397 meet DSM-IV criteria for alcohol dependence and 491 are controls) 

and 1,020 European-American (1,010 meet the criteria for alcohol dependence and 9 are 

controls). All cases met criteria for DSM-IV alcohol dependence, but some of them also met 

criteria for cocaine, nicotine and opioid dependence.  

Genotyping was performed with the Illumina HumanOmni1-Quad_V1-0_B chip. This dataset 

includes 1,920 cocaine-dependent individuals and 500 controls.  

Controls: The data presented in the current publication are based on the use of study data 

downloaded from the dbGaP web site, under dbGaP accession phs000524.v1.p1 (Chronic 

Renal Insufficiency Cohort Study (CRIC) GWAS). As this is a cohort study, all individuals were 

included in our analysis (3,541 controls), all of them genotyped with the Illumina 

HumanOmni1-Quad_V1-0_B chip. 

Case and control samples were merged, and after QC and ancestry selection, 504 cases and 

1,409 controls were selected. 

Addictive Diseases 
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The data presented in the current publication is based on the use of study data downloaded 

from the dbGaP website, under dbGaP accession phs001109.v1.p1 (Addictions: Genotypes, 

Polymorphisms, and Function/Human Genetic Correlates of Addictive Diseases). The sample 

includes 864 cases and 797 controls. All cases met the DSM-IV for at least one of the following 

drug of abuse: opioid, cocaine, nicotine, cannabis, stimulant, sedative and other drugs. 

Only a few individuals of European ancestry meet criteria for cocaine dependence, and this 

caused  problems in the analysis of the data; consequently, this dataset was not included in 

the meta-analysis. 

2. Bioinformatics pipeline for quality control and association analyses 

Pre-imputation quality control and imputation were performed using the bioinformatics 

pipeline “Ricopili”, developed by the Psychiatric Genomics Consortium (PGC) Statistical 

Analysis Group [2]. This pipeline generates high quality imputed data to perform association 

analyses and meta-analyses. To avoid potential study effects, all samples were processed 

separately.  

2.1 Pre-imputation quality control 

To reduce batch effect bias, cases and controls from samples 2-4 were merged prior to quality 

control and imputation using PLINK v1.9 (http://pngu.mgh.harvard.edu/purcell/plink/) [3]. In 

the three samples, cases and controls were genotyped with the same genotyping array and 

were built on the same genomic assembly [4–7]. Flowchart in figure S1 summarizes all steps to 

control population stratification.    

Subjects and SNPs were included in the analyses based on the following default quality control 

parameters: SNP call rate > 0.95 (before sample removal), subject call rate > 0.98, autosomal 

heterozygosity deviation (|Fhet| < 0.2), SNP call rate > 0.98 (after sample removal), difference 
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in SNP missingness between cases and controls < 0.02, and SNP Hardy-Weinberg equilibrium 

(HWE) (P > 1e−06 in controls or P > 1e−10 in cases). Furthermore, chromosome X data was 

used to determine sex based on heterozygosity rates, and individuals were removed from the 

analyses if gender in phenotype and genotype data did not match.    

2.2 European subjects selection 

In order to select European subjects from our samples, a principal component analysis (PCA) 

was performed using smartPCA incorporated in the software Eigensoft [8,9] using the 

reference panel data from 1,092 individuals from the 1000 Genomes Project, phase 3 (1KGP3, 

high quality 3,382,774 variants). Only a set of high quality markers were used: autosomal SNPs 

found in all datasets, minor allele frequency (MAF) > 0.05, HWE P > 1e-03, SNP call rate > 0.98, 

which were pruned for linkage disequilibrium (LD) (r
2 

< 0.2 in a 200Kb SNPs window). For this 

analysis AT/GC SNPs (strand ambiguous SNPs), the MHC region (6:25-35Mb) and Chr8 

inversion (8:7-13Mb) were excluded. The subsample of European individuals from 1KGP3 

(combined CEU, FIN, GBR, IBS, TSI) was used to define the center of an ellipsoid based on the 

mean values of principal component (PC) 1 and 2. Then, PC1 and PC2 for all individuals in our 

sample were used to define a genetically homogeneous population, excluding individuals with 

PC values greater than three standard deviations from the reference population. 

Relatedness was tested with the same set of markers using identity-by-descendent (IBD) 

analysis in PLINK v1.9, and one individual was excluded in pairs of subjects with pi_hat > 0.2 

(cases preferred over controls).  

After relatedness and population stratification analysis, another quality control step was 

performed, using the same parameters described above. 
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2.3 Genotype imputation 

Imputation was performed to obtain information about non-genotyped markers. We used the 

pre-phasing software SHAPEIT [10] to estimate haplotypes and subsequently MINIMAC3 

(https://genome.sph.umich.edu/wiki/Minimac3) [11] for imputing the genotypes. Imputation 

was done in chunks of 3 Mb using default parameters. The imputation reference data 

consisted of 2,504 phased haplotypes from the European individuals of the 1000 Genomes 

Project, phase 3  (1KGP3; October 2014, 81,706,022 variants, release 20130502) [12,13]. 

2.4 Genetic outliers and population stratification 

After imputation, population stratification was reevaluated using a set of high quality markers 

(autosomal markers with MAF > 0.05, HWE P > 1e-04 and SNP call rate > 0.98), which were 

pruned for LD (r
2
 < 0.075) resulting in a set of ~30,000 pruned markers. Based on genome-wide 

identity-by-state (IBS) information, PLINK generates metrics to detect the outliers. For a given 

individual, PLINK ranks all other individuals on the basis of how similar (in IBS terms) they are 

to this particular proband individual. Then it checks if the proband's closest neighbour is 

significantly more distant to the proband than all other individuals' nearest neighbour is to 

them. In other words, from the distribution of 'nearest neighbour' scores, one for each 

individual, it can calculate a sample mean and variance and transform this measure into a Z-

score. If an individual has an extremely low Z-score (less than 4 standard deviation units), this 

would indicate that this individual is an outlier with respect to the rest of the sample and 

would be removed.  

Second, a permutation test for between group IBS differences was performed with fixed 

10,000 permutations. To test stratification effects between cases and controls, we reported 

the p-value of testing whether, on average, an individual was less similar to another 

phenotypically-discordant individual than would be expected by chance (denoted as T1 in 
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PLINK). In samples 2 and 3, population stratification was detected (T1 p-value < 0.05). Then, for 

each sample, PCA was repeated following the steps described previously but, in this case, 

individuals with PC1 and PC2 values greater than two standards deviations from the mean 

obtained for European individuals were excluded. After this correction, population 

stratification analysis was repeated and the T1 p-value was > 0.05 in both cases. 

Then, we ran again the “Ricopili” PCA module considering the four samples together to test 

overlap or relatedness across all datasets. This module uses IBD analysis in PLINK v1.9 to 

identify pairs of subjects with pi_hat > 0.2, and one individual for each pair was excluded 

(cases preferred over controls). 

Finally, for each sample PCA was redone after exclusion of genetic outliers. The first 20 PCs 

were tested for association with the phenotype using logistic regression and their impact on 

the genome-wide test statistics was evaluated using λ. The first 10 PCs (PC1 - PC10) were 

included as covariates for all samples. 

3. GWAS and meta-analysis 

Case-control association analyses using the imputed markers (INFO > 0.8 and MAF > 0.01) 

were performed for each sample by logistic regression under the additive model, with the 

derived 10 first PCs as covariates using PLINK v1.9. The summary statistics obtained from the 

different GWASs (in total 2,085 cases and 4,293 controls) were meta-analysed using and 

inverse-variance weighted fixed effects model implemented in METAL software  

(http://csg.sph.umich.edu//abecasis/Metal/) [14]. Finally, the GWAS meta-analysis results 

were filtered by N effective (Neff), so only the markers which were supported by an effective 

sample size greater than 70% (n ≥ 1,964.76) were included (a total of 9,290,362 markers).  

𝑁𝑒𝑓𝑓 = 21𝑁𝑐𝑎𝑠𝑒𝑠 +  1𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 
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Manhattan plot and quantile-quantile plot (Q-Q plot) from each sample and the meta-analysis 

results were performed using the library qqman implemented in R [15] (Figure 1 and Table S1). 

Heterogeneity across studies was tested with the Cochran’s Q test and quantified with the I
2
 

heterogeneity index, in METAL (Figure S2).  

3.1 LD Score intercept evaluation 

A light deviation from null was observed in the distribution of the test statistics in the Q-Q plot 

of the results from the GWAS meta-analysis (Figure 1). This deviation can appear because of 

polygenicity but also due to other confounding factors such as cryptic relatedness, population 

stratification or model misspecification. LD score regression (LDSC) analysis allows to 

differentiate between these two components [16]. Under this model when regressing the chi-

square statistics from GWAS against LD scores for each SNP (pre-computed LD-scores 

downloaded from the GitHub website available on https://github.com/bulik/ldsc), the 

intercept minus one is an estimator for the mean contribution of confounding bias to the 

inflation in the statistic tests. Based on regression of the test statistics from GWAS meta-

analysis, we estimated an intercept close to one (intercept = 1.01 (SE = 0.0068; P = 0.1)). 

Additionally, the ratio (ratio = (intercept-1)/(mean(chi^2)-1)) measures the proportion of the 

inflation in the mean chi-square that the LDSC intercept ascribes to causes other than 

polygenic heritability. Results estimated a ratio = 0.24 (SE = 0.09), that indicates that most of 

the inflation in the distribution of the test statistics is caused by polygenicity, but other 

confounding factors are also present.  

3.2 SNP heritability 

Two approaches were used to estimate SNP heritability (h
2
) in order to evaluate how much of 

the variation in the phenotypic trait could be ascribed to common additive genetic variation. 

Results - Article 2

88 

https://github.com/bulik/ldsc


On the one hand, we used LDSC 1.0.0 (https://github.com/bulik/ldsc/). Only HapMap-3 SNPs 

from summary statistics of the GWAS meta-analyses and pre-computed LD scores (available on 

https://github.com/bulik/ldsc) were used in the analyses.  

On the other hand, we used the genome-based restricted maximum likelihood analysis 

implemented in the software tool genome-wide complex traits analysis (GCTA-GREML; 

https://cnsgenomics.com/software/gcta/#Overview) (Lee et al., 2011). The samples (1-4) used 

for the cocaine dependence GWAS meta-analysis were merged using PLINK v1.9 and filtered 

using strict quality controls, keeping only SNPs with: MAF > 0.01, SNP call rate > 0.98 and 

individual call rate > 0.98 (resulting in 5,957,307 SNPs in 2,083 cases and 4,287 controls). To 

account for population stratification we performed PCA using smartPCA included in Eigensoft 

(previously described), and 10 first PCs and a dummy variable indicating genotyping-study 

were included in the analysis as covariates. 

The SNP heritability was calculated on the liability scale (h
2

liability) using a prevalence of cocaine 

dependence of 1.1% in the population [17]. For LDSC it was estimated to be h
2

liability= 0.30 (SE = 

0.06, P = 2.4e-07) and for GCTA-GREML h
2

liability= 0.26 (SE = 0.03, P < 0.01). 

 

3.3 Partitioning heritability by functional annotation  

Partitioning of the heritability by functional categories was done based on 53 functional 

overlapping annotations described in Finucane et al. (2015), but only 24 annotations were 

considered (annotations of 500bp-windows around each functional category were not 

considered).  The pre-computed LDSC, the baseline model LD scores, regression weights and 

allele frequencies (based on the 1KGP3 European ancestry samples) were downloaded from 

https://data.broadinstitute.org/alkesgroup/LDSCORE/. Enrichment in the heritability of a 

functional category was defined as the proportion of SNP heritability explained divided by the 
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proportion of SNPs [18]. Significance threshold was calculated using the Bonferroni correction 

to control for multiple testing (P = 0.05/24 = 2e-03). The analysis revealed significant 

enrichment in the heritability by SNPs located in intronic regions (enrichment = 2.17; SE = 0.45; 

P = 1.2e-03), and nominal association for conserved regions (enrichment = 23.63; SE = 8.57; P = 

4e-03) (Figure S3). 

4. Functional annotation of SNPs 

4.1 FUMA 

Functional annotation of SNPs was performed using the FUMA web application 

(http://fuma.ctglab.nl/) [19]. This tool can be used to annotate, prioritize, visualize and 

interpret GWAS results. FUMA defines lead SNPs as signals that are significantly associated 

with the disorder (we used P < 1e-05) and independent to each other at r
2
 < 0.1. For each lead 

SNP, FUMA defines a “Genomic risk locus”, including all independent signals that are physically 

close or overlapping in a single locus. To evaluate the potential impact of the variants in the 

“Genomic risk locus”, we considered annotations of functional consequences for those 

variants based on external reference data. In particular, we explored: 

 eQTL: evaluation of expression quantitative trait loci using gene expression data from 

GTEx v6/v7 (https://www.gtexportal.org/home/) [20,21] and BRAINEAC 

(http://www.braineac.org/) [22]. 

 CADD v1.3: A deleterious score of variants computed by integrating 63 functional 

annotations. The higher the score, the more deleterious the variant (12.37 is the 

suggested threshold to be deleterious) (http://cadd.gs.washington.edu/) [23] . 

 ANNOVAR: A variant annotation tool used to obtain functional consequences of SNPs 

on gene function (http://annovar.openbioinformatics.org/en/latest/) [24]. 
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 RegulomeDB v1.1: A categorical score (from 1 to 7) representing regulatory 

functionality of SNPs based on eQTLs and chromatin marks. Score 1a means that those 

SNPs are most likely affecting regulatory elements and 7 means that those SNPs do not 

have any annotations (http://regulomedb.org/index) [25]. 

 15-core chromatin state: The chromatin state represents accessibility of genomic 

regions (every 200bp) with 15 categorical states predicted by ChromHMM based on 5 

chromatin marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3) for 127 

epigenomes. In this study we only used data available for the 13 brain tissues 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html) [26,27]. 

Finally we explored the GWAS-catalog e91 2018-02-06 (https://www.ebi.ac.uk/gwas/) [28], a 

database of reported SNP-trait associations, to see if the identified SNPs were previously 

associated to other traits (Table 2; Figure 2 and  S4). 

4.2 Gene-based association analysis 

Gene-based association with cocaine dependence was estimated by MAGMA 1.05b [14] using 

the summary statistics from the GWAS meta-analysis. The SNP-wise mean model was used, in 

which the test statistic used was the sum of -log(SNP p-value) for SNPs located within the 

transcribed region (defined using NCBI 37.3 gene definitions). The gene p-value was calculated 

using a known approximation of the sampling distribution [29]. MAGMA accounts for gene 

size, number of SNPs in a gene and LD between markers. When using summary statistics in 

estimating gene-based p-values, MAGMA corrects for LD based on estimates from reference 

data with similar ancestry; for this we used the 1KGP3, European ancestry samples, as the 

reference [13]. We applied no padding around genes. 

A total of 18,069 genes were analysed, and HIST1H2BD gene demonstrated significant gene-

wise association with cocaine dependence (surpassing 10% FDR) (Figure S5 and Table S2).  
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4.3 Gene-set association analysis: Canonical pathways, BioCarta and GO gene-

sets 

Gene-set analyses were performed using MAGMA 1.05b. Based on the gene-based p-values 

generated as described in the previous section, we analysed sets of genes in order to test for 

enrichment in association signals in genes belonging to specific biological pathways or 

processes. MAGMA applies a competitive test to analyse whether the genes of a gene set are 

more strongly associated with the trait than other genes, while correcting for a series of 

confounding effects such as gene length and size of the gene set. In our analysis only genes on 

autosomes were included. For gene sets we used “All Canonical Pathways” (1,329 gene sets), 

“Gene Ontology” (4,436 gene sets) and “BioCarta” (217 gene sets) provided from MsigDB 5.1  

(https://software.broadinstitute.org/gsea/msigdb/) [30]. Multiple testing corrections were 

performed for each gene set separately. When gene sets strongly overlap, the Bonferroni 

correction can be quite conservative, and for this reason we used an empirical multiple testing 

correction implemented in MAGMA, based on a permutation procedure.   

None of the gene sets remained significantly associated with the disorder after correction for 

multiple testing (Table S3-5). Interestingly, from the first 10 Gene Ontology gene sets, 7 related 

to synapse organization, glutamatergic neurotransmission or brain functions.  

5. Genetic correlation of cocaine dependence with comorbid conditions  

5.1 Description of the summary statistics from comorbid conditions 

We performed genetic correlation studies between cocaine dependence and previously 

described comorbid disorders or associated phenotypes using publicly available summary 

statistics (Table 2): 
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 Schizophrenia (SCZ) European meta-analysis: 34,241 cases and 45,604 controls, and 

1,235 parent-affected offspring trios. In total: 15,358,498 SNPs [2]. 

 Attention deficit/hyperactivity disorder (ADHD) European meta-analysis: 19,099 cases 

and 34,194 controls. In total: 8,094,095 SNPs [31]. 

 Major depressive disorder (MDD): 59,851 cases and 113,154 controls. In total: 

13,554,490 SNPs [32]. 

 Children’s aggressive behavior (Child-Aggre) GWAS from EAGLE (Early Genetics and 

Lifecourse Epidemology Consortium): 18,988 individuals. Prior to analysis, data from 

this dataset was converted from hg18 to hg19 using the liftOver tool 

(http://genome.ucsc.edu/goldenPath/help/hg18ToHg19LiftOver.html). In total: 

2,200,951 SNPs [33].  

All of them are available on the PGC website, https://www.med.unc.edu/pgc/results-and-

downloads. 

 Antisocial behavior (ASB) meta-analysis: 16,400 individuals. In total: 7,795,277 SNPs 

[34]. Available on BroadABC website (http://broadabc.ctglab.nl/summary_statistics) 

 Risk taking (RT) behavior from the UK Biobank: 325,821 individuals. In total: 

10,894,597 SNPs. Available on 

https://sites.google.com/broadinstitute.org/ukbbgwasresults/home?authuser=0. 

As a negative control we used summary statistics of vitamin D levels from the UK Biobank: 

335,591 individuals. In total: 10,894,597 SNPs. 

5.2 LDSC Genetic correlation 

Genetic correlations (rg) between cocaine dependence and six comorbid disorders/phenotypes 

(ADHD, SCZ, MDD, Child-Aggre, ASB, RT) were calculated using LDSC 1.0.0 [35]. In these 

analyses we used summary statistics from all samples and pre-computed LD scores from 
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HapMap3 SNPs, calculated on 378 phased European-ancestry individuals from the 

1000Genomes Project (available on https://github.com/bulik/ldsc). Only results for markers 

present in the HapMap3 SNPs list with an imputation INFO score > 0.90 (this filter was applied 

only in datasets where this information was available) were included in the analysis. We 

selected a conservative significance threshold to control for multiple testing by applying the 

Bonferroni correction. As we tested genetic correlation between cocaine dependence and 7 

phenotypes, significance threshold was set at P < 7.1e-03 (P < 0.05/7). 

We found significant genetic correlations between cocaine dependence and SCZ (rg = 0.2; SE = 

0.05; P = 1e-04), ADHD (rg = 0.5; SE = 0.08; P = 1.6e-09), MDD (rg = 0.4; SE = 0.08; P = 6.6e-07) 

and RT (rg = 0.35; SE = 0.06; P = 9.1e-08) but not with Child-Aggre (rg = 0.28; SE = 0.23; P = 0.22) 

or ASB (rg = 0.58; SE = 0.28; P = 0.04) (Figure 3A). No significant results were found for the 

negative control (rg = 0.08; SE = 0.15; P = 0.55). 

Furthermore, the genetic correlation of cocaine dependence with other traits available at LD 

Hub (http://ldsc.broadinstitute.org/ldhub/) [36] were evaluated. In total, 832 phenotypes 

were tested for genetic overlap with cocaine dependence, but we obtained valid results only 

for 690 and 109 demonstrated significant correlation after Bonferroni correction (P < 7.24e-

05). Detailed information about significant genetic correlations can be found in Table S6 and 

Figure S6. 

5.3 Polygenic risk scores for cocaine dependence 

Polygenic Risk Scores (PRS) can be used to investigate the shared genetic etiology between 

cocaine dependence and comorbid phenotypes, and to test how these phenotypes can predict 

cocaine dependence. Using GWAS summary statistics results, the PRS on the discovery 

phenotype are calculated, and these are used as predictors of a target phenotype in a 

regression analysis. Using PRSice 2.1.0 software (https://github.com/choishingwan/PRSice) 
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[37] we analysed the proportion of genetic aetiology shared between cocaine dependence and 

comorbid psychiatric disorders (ADHD, SCZ and MDD) or associated phenotypes (RT, Child-

Aggre and ASB).  

In order to perform PRS analysis, the samples (1-4) used for the cocaine dependence GWAS 

meta-analysis were merged using PLINK v1.9 and were used as a target sample. After merging, 

quality control was performed and only SNPs with MAF > 0.01, SNP call rate > 0.98 and 

individual call rate > 0.98 were used (resulting in 5,957,307 SNPs in 2,083 cases and 4,287 

controls). To assess population stratification we performed PCA using smartPCA included in 

Eigensoft (previously described), and 10 first PCs and a dummy variable indicating genotyping-

study were included in the PRS analysis as covariates. 

We used the summary statistics of the comorbid conditions (described above) as independent 

discovery samples. The discovery samples were clumped (r
2 

< 0.1 in a 250-kb window) to 

remove SNPs in LD. Both variants with an imputation INFO score < 0.9 and ambiguous strand 

variants were removed from the analysis. Then, PRSs were estimated for each discovery 

sample using a wild range of meta-analysis p-value thresholds (PT) between PT = 1e-04 and PT = 

1 at increments of 5e-05. Summing over the markers abiding by the p-value threshold in the 

discovery set and weighting by the additive scale effect measure of the marker (log(OR) or β). 

For each PT, the proportion of variance explained (R
2
) by each discovery sample was computed 

by comparing the full model (PRS + covariates (10 PCs and study)) score to a reduced model 

(covariates only). The reported R
2
 value is the difference between R

2
 from the two models. For 

quantitative traits we performed linear regression analysis, and for qualitative traits we 

performed traits logistic regression and Nagelkerke’s pseudo-R
2
 values are shown. 

We selected a conservative significance threshold to control for multiple testing by applying a 

Bonferroni correction. Euesden and colleagues recommend using a significance threshold of at 

least P = 0.004 in order to control for the high-resolution scoring approach of selecting the 
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most predictive PRS [37]. As we tested the most predictive PRS across each of the 7 discovery 

phenotypes, we divided the p-value by the number of tests performed (P = 0.004/7), which 

resulted in a significance threshold of P < 5.7e-04. 

For all discovery samples, PRS significantly predict cocaine dependence: SCZ (pseudo-R
2
 = 

2.28%, PT = 0.4911, P = 1.21e-26), ADHD (pseudo-R
2
 = 1.39%, PT = 0.04275, P = 4.5e-17), ASB 

(R
2
 = 1.33%, PT = 0.4055, P = 2.2e-16), MDD (pseudo-R

2 
= 1.21%, PT = 0.0129, P = 4.35e-15), RT 

(R
2
 = 0.60%, PT = 0.00135, P = 2.7e-08) and Child-Aggre (R

2
 = 0.3%, PT = 0.3552, P = 8.8e-05). No 

significant results were found for the negative control (R
2
 = 0.07%, PT = 0.03075, P = 0.06) 

(Figure 3B, S7 and S8). 
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Figure S1. Flowchart illustrating steps to control for population stratification. MAF: minor 

allele frequency; 1KGP3-Eur: European individuals from 1000 Genomes Project Phase 3 

(combined CEU, FIN, GBR, IBS, TSI); INFO: imputation info score; HWE: Hardy Weinberg 

equilibrium; IBD: identical by descent; IBS: identical by state    

Case sample Control sample 

Matched by geographic area, 
genotyping array and genome assembly 

Merge samples  

 “Ricopilli” QC 

Imputation 

Remove strand ambiguous SNPs,  
SNP call rate < 0.95 and MAF < 0.01  

Selection of high quality SNPs:  
INFO > 0.8, MAF > 0.05, SNP call rate > 

0.98, HWE > 1e-04, LD r
2
 < 0.075 

European-ancestry selection  
(3SD of PC1-2 of 1KGP3-Eur) 

IBS: 
Population stratification 

IBD:  
Remove related individuals 

 (pi_hat > 0.2) and outliers (Z > 4).  

PCA to select 2SD of 
PC1-2 of 1KGP3-Eur T1 p < 0.05 T1 p > 0.05 

No population 
stratification 
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Figure S2. Plots from test for heterogeneity between samples in the GWAS meta-analysis. A) Q-Q plot and B) SNP-based Manhattan plot obtained for the 

heterogeneity test between samples in the cocaine dependence GWAS meta-analysis. Continuous line: threshold for genome-wide significance (P < 5e-08). 

Discontinuous line: threshold for suggestive associations (P < 1e-05). 
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Figure S3. Partitioning of heritability (h2) by functional annotations. Enrichment by 24 functional annotations defined by Finucane et al. (2015). Error bars 

represent 95% confidence intervals. P-values for annotation categories with nominally significant enrichment are shown and * indicates significance after 

Bonferroni correction (P < 2e-03). The horizontal black line indicates no enrichment. 
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Figure S4. Regional plot with genes and functional annotations of genomic risk loci on Chr6 

by FUMA.  Genes prioritized by FUMA are highlighted in red. From the top, GWAS p-value 

(SNPs are colored based on r
2
), CADD score (coding SNPs and other SNPs are colored blue and 

light blue, respectively), RegulomeDB score, 15-core chromatin state in the brain, eQTL p-value 

and chromatin interactions. eQTLs are plotted per gene and colored based on tissue type. 

Tissue/cell 19 types of epigenome ID are the following; E054: Ganglion eminence derived 
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primary cultured neurospheres, E053: Cortex derived primary cultured neurospheres, E071: 

Hippocampus middle, E074: Substantia nigra, E068: Anterior caudate, E069: Cingulate gyrus, 

E072: Inferior temporal lobe, E067: Angular gyrus, E073: Dorsolateral prefrontal cortex, E070: 

Germinal matrix, E082: Fetal brain female, E081: Fetal brain male and E125: NH-A Astrocytes 

primary cells. eQTLs are plotted per gene and colored based on tissue type. 
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Figure S5. Manhattan plot of gene-based p-values in the cocaine dependence meta-analysis. 

Blue line: threshold for 10% FDR significance.   

Results - Article 2

105 



 

Figure S6. Genetic correlation of cocaine dependence with other traits from LDhub. 

Significant genetic correlations between cocaine dependence and other traits after Bonferroni 

correction for testing a total of 690 traits available at LDhub. The most interesting results are 

shown here; see table S6 for the full output of this analysis. Groups defined by colours, from 

the top: In purple, educational achievements; in orange, reproductive traits; in green, alcohol 

and tobacco exposure; in dark blue, familiar situation; in red, exercise; in light blue, 

psychological and psychiatric traits; in brown, physical condition. Error bars indicate 95% 

confidence limits. The significance threshold was set at P < 7.24e-05. 
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Figure S7. Polygenic risk score results from the seven tested phenotypes. A) Schizophrenia, B) 

Attention deficit/hyperactivity disorder, C) Antisocial behavior, D) Major depressive disorder, 

E) Risk-taking behavior, F) Children’s aggressive behavior and G) Negative control (Vitamin D 

levels). P-value threshold (PT) represents the p-value at the cut-off for inclusion of SNPs in the 

polygenic risk score. Values on top of the bars represent p-values for the regression models. 

The significance threshold was set at P < 5.7e-04.  
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Figure S8. Deciles of polygenic risk scores plotted against effects on phenotypes A) 

Schizophrenia, B) Attention deficit/hyperactivity disorder, C) Antisocial behavior, D) Major 

depressive disorder, E) Risk-taking behavior, F) Children’s aggressive behavior and G) Negative 

control (Vitamin D levels). A regression is performed with phenotype as outcome and each 

10% quantile separately, whereby the effect size of each quantile is compared to the central 

quantile as a reference, such that each polygenic score in the quantile in question is coded 1 

and each polygenic score in the reference quantile is coded 0. In each regression, the 

covariates used in the main analyses are included. OR, odds ratio. Error bars indicate 95% 

confidence limits. 

 

Results - Article 2

110 

https://www.sciencedirect.com/topics/neuroscience/phenotype
https://www.sciencedirect.com/topics/medicine-and-dentistry/effect-size
https://www.sciencedirect.com/topics/medicine-and-dentistry/odds-ratio


Results 

111 

SUMMARY ARTICLE 3 

“Explorant l’impacte de la variació comuna en gens de miRNAs en el trastorn per 
dèficit d’atenció amb hiperactivitat” 

El trastorn per dèficit d'atenció amb hiperactivitat (TDAH) és un trastorn neuropsiquiàtric 

multifactorial prevalent l'etiologia del qual és encara força desconeguda. Contribueixen a la patologia 

tant factors genètics com ambientals, amb diversos mecanismes epigenètics també implicats. La 

modulació epigenètica per microRNAs (miRNAs), una classe d’ARN no codificant, s’ha revelat com un 

procés clau en l’origen i desenvolupament dels trastorns neuropsiquiàtrics. Els miRNAs actuen com a 

reguladors de l'expressió gènica en el sistema nerviós, tot modulant el desenvolupament del cervell i 

la neuroplasticitat. En aquest estudi hem dut a terme estudis d'associació basats en SNPs i en gens 

que interroguen tots els miRNAs autosòmics coneguts (~ 1700) utilitzant les dades procedents de 

l’estudi GWAS més gran realitzat fins ara en TDAH (20.000 casos i 35.000 controls). Ens hem centrat 

en variants comunes situades en gens que codifiquen miRNAs i en els seus possibles elements 

reguladors. Hem identificat associacions significatives entre el TDAH i 19 SNPs de 12 miRNAs 

intragènics (situats dins de gens que codifiquen proteïnes). Quatre dels miRNA assenyalats (miR-6079, 

miR-6734, miR-6735, miR-3666) també mostren una associació significativa amb el fenotip en l'anàlisi 

basada en gens. Les variants associades estan situades en potencials regions reguladores de 

l’expressió dels miRNAs, o bé a la regió promotora del gen hoste. Hem investigat, en els miRNA 

associats, l'expressió en cervell, els gens diana, les vies diana i els homòlegs en altres espècies. La 

majoria dels gens diana validats per als miRNAs identificats s’havien relacionat prèviament amb 

d’altres malalties neurològiques. Les anàlisis d'anotació funcional apunten als gens miR-7-1 i miR-3666 

com a candidats prometedors per al trastorn. Les dianes conegudes de miR-7-1 inclouen gens 

prèviament implicats en l'empatia cognitiva (EIF4E) i el trastorn bipolar (EGFR), així com gens 

(SLC17A7) que s'expressen exclusivament en teixits cerebrals. El miR-3666 regula TAC1 i MEOX2, el 

primer associat amb comportaments de risc i nivells elevats de nerviosisme, i el darrer relacionat amb 

el volum intracranial i de diverses regions cerebrals. L'anàlisi de vies funcionals ha assenyalat la 

regulació mediada per miRNAs de gens que codifiquen receptors de serotonina, crucials en la 

regulació de funcions neurològiques i implicats en moltes malalties del sistema nerviós. En aquesta 

mateixa línia, miR-4271 i miR-5193, assenyalats en l’anàlisi basada en SNPs, inhibeixen els gens HTR1D 

i HTR4, respectivament. Els resultats que presentem obren noves vies per a l’estudi del paper dels 

miRNAs en el TDAH. 
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ABSTRACT 

Attention-deficit/hyperactivity disorder (ADHD) is a common multifactorial 

neuropsychiatric disorder which aetiology is still largely unknown. Both genetic and 

environmental factors contribute to the disorder, with epigenetic mechanisms playing a 

role, too. Epigenetic modulation by microRNAs (miRNAs), a class of non-coding RNAs, 

has emerged as a key process in neuropsychiatric disorders. MiRNAs act as regulators of 

gene expression in the nervous system, where they exert their influence on brain 

development and neuroplasticity. In the present study, we conducted SNP-based and gene-

based association studies across all known autosomal miRNAs (~1700) using the largest 

genome-wide association dataset of ADHD to date (20,000 cases and 35,000 controls). We 

focused on common variants located in miRNA genes and in their putative regulatory 

elements. Nineteen SNPs in 12 intragenic miRNAs showed a significant association with 

ADHD in the SNP-based analysis. The associated variants are located in the putative 

regulatory regions of the miRNA genes or in the promoter region of the host protein-coding 

gene. We inspected the brain expression, target genes, target pathways and homologs of the 

associated miRNAs. Most of the validated target genes for the highlighted miRNAs have 

previously been related to other neurological diseases. Our functional annotation results 

point at miR-7-1 and miR-3666 as promising candidates for the disorder. Known targets of 

miR-7-1 include genes previously implicated in cognitive empathy (EIF4E) and bipolar 

disorder (EGFR) as well as genes (SLC17A7) that are expressed exclusively in brain 

tissues. MiR-3666 targets TAC1 and MEOX2, with the former associated with risk-taking 

and feeling nervous traits, and the latter linked to several brain regions and intracranial 

volumes. Pathway analysis revealed a miRNA-mediated regulation of serotonin receptor 

genes, well-known contributors to neurological functions and diseases. In this line, miR-
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4271 and miR-5193, highlighted by our SNP-based analysis, were shown to inhibit HTR1D 

and HTR4, respectively. The present results direct further research to elucidate the precise 

involvement of miRNAs in ADHD. 

  

Results - Article 3

116



 

INTRODUCTION 

Attention-deficit/hyperactivity disorder (ADHD) is a multifactorial neurodevelopmental 

disorder with a high estimated heritability (76%)1–3
. Most often characterized by the 

presence of inattentive and/or hyperactivity symptoms, the disorder affects 5% of the 

children and adolescents worldwide and persists in 2.5% of the adult population
3
. Both 

common
3
 and rare variants

4
 contribute to the impaired neurobiological mechanisms that 

underlie this complex phenotype, in combination with environmental risk factors
2
. We 

know that common variation accounts for a substantial fraction of ADHD liability, with 

single-nucleotide polymorphisms (SNPs) contributing to 22% of the phenotype variance
3
. 

However, the specific molecular underpinnings of the disorder remain still largely 

unknown, with only 12 susceptibility loci in the largest genome-wide association study 

(GWAS) to date that attain genome-wide significance and a few genes showing an 

increased burden of rare variants identified through whole-exome sequencing (WES). Thus, 

the pivotal functional networks in ADHD pathology are not evident yet, probably due to the 

high degree of polygenicity of the disorder, the small effect sizes of individual variants, and 

multiple regulatory and signaling mechanisms. 

MicroRNAs (miRNAs), the most abundant type of small non-coding RNAs
5
, are epigenetic 

modulators of the expression of up to 80% of the genome
6
, including those genes that drive 

the development and function of the central nervous system
7,8

. The genes encoding 

miRNAs are thought to be evolutionarily conserved
9 

and are organized as separate units or 

in clusters. Approximately 57% of miRNA-coding genes are embedded within protein-

coding genes, also termed host genes
6
. MiRNA-mediated regulatory networks operate post-

transcriptionally and are complex due to the ‘multivalent’ or one-to-many and synergic 
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relationships between miRNAs and their targeted transcripts. The expression levels of 

miRNAs are particularly high in brain tissues
10

 and these molecules are often involved in 

neurogenesis, synaptic plasticity, neuronal survival, differentiation, neurite projection and 

memory formation
8,11,12

.  

The role of miRNAs in the development of major psychiatric disorders has extensively 

been addressed, beyond the traditional landscape of protein-coding genes. Individuals and 

groups of miRNAs have been investigated in schizophrenia, bipolar disorder, MDD, ASD 

and ADHD by employing high-throughput sequencing, gene expression analyses of blood 

and post-mortem brain tissues and genetic association case-control study designs
7
. Their 

role is most extensively documented in schizophrenia
6
 where hundreds of miRNAs have 

been reported to be dysregulated
13

, and the condition has recently been associated with a 

global increase in miRNA biogenesis and expression in the cerebral cortex
14

. A genome-

wide examination of miRNA genes in bipolar disorder has implicated nine miRNAs
15

. In 

MDD, miRNAs let-7b, let-7c
16

 and miR-124-3p
17

 have been identified as potential 

biomarkers, as their target genes involve those previously implicated in the disorder. 

Differentially expressed miRNAs are reported in the cerebellar cortex of autistic group, 

whose targets include autism-risk genes like SHANK3 and NRXN1
18

. 
 

The first genome-wide integrative study of miRNA and mRNA profiles in peripheral blood 

mononuclear cells of medication-naive individuals with ADHD identified 79 microRNAs 

that showed aberrant expression levels as compared to controls, with three of them, miR-

26b-5p, miR-185-5p, and miR-191-5p, being highly predictive for diagnostic status in an 

independent dataset of ADHD cases
19

.  Expression studies have further revealed 

significantly altered circulation levels of miR-let-7d
20

, miR-18a-5p, miR-22-3p, miR-24-
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3p, miR-106b-5p, miR-155a-5p and miR-107
21 

in the serum and blood of patients. The 

function of let-7d was further investigated in the spontaneously hypertensive rat (SHR), a 

model for ADHD, where it was suggested to modulate the tyrosine hydroxylase (TH) 

production critical to dopamine pathway, by downregulating TH’s upstream effector 

galectin‐3 in the brain prefrontal cortex22
. A recent study identified 13 potential miRNA 

biomarkers that show differential expression in patients
23

. Interestingly, many of the 

pinpointed miRNAs can be dysregulated in multiple disorders
24

, perhaps lending further 

support to the existence of shared genetics or biological pathways among 

neurodevelopmental disorders
25

. Candidate gene association studies have linked sequence 

variants in the miR-34b/c locus
25

 and the miR-183–96–182 cluster
26

 to ADHD. Finally, two 

of the top 12 loci revealed by the first GWAS on ADHD with genome-wide significant 

signals included miRNA genes (miR3666 and miR9-2). As the potential of sub-threshold 

variants being true risk loci has lately been recognized
27,28

, the plausibility that many of the 

influential miRNA loci might not be revealed in a genome-wide approach cannot be 

ignored.  

We hypothesize that common variants located in miRNA genes or in their putative 

regulatory elements may play a crucial role in the disorder by altering the expression of the 

corresponding protein-coding genes. We hereby present the first study that systematically 

captures common SNP variation in miRNAs, a crucial epigenetic component, at genome-

wide scale, utilizing the largest ADHD GWAS meta-analysis available to date.  

 

MATERIALS AND METHODS 

Selection of miRNA genes 
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We retrieved the genomic locations of all autosomal miRNA precursor sequences from 

miRBase release 21
29

. The miRBase search tool
30

 was used to fetch miRNA sequences 

distributed as clusters that were defined with an inter-miRNA distance of less than 10kb. 

The genomic coordinates of the resultant miRNA clusters were determined by the two 

furthest positions of the miRNA transcripts at the extreme ends of each cluster. All 

coordinates primarily in GRCh38 were converted to their equivalents in GRCh37 using the 

UCSC liftOver tool
31

. 

We assigned miRNAs to one of the following categories, which were also used to establish 

the genomic windows for the inclusion of the putative regulatory elements of these 

miRNAs: (i) each ‘singleton’ non-clustered miRNA gene - a flank of 10 kb upstream and 5 

kb downstream; (ii) clustered miRNAs sequences that are transcribed in the same direction 

- 10 kb upstream and 5 kb downstream from the cluster; (iii) clustered miRNA sequences 

transcribed in different directions - a 10 kb flank at either end of the cluster (Figure 1). We 

then used information from the miRIAD database
32

 to identify miRNAs located within 

protein-coding genes (from now on, host genes) and to define the start position of the host 

genes. In those cases where intragenic miRNAs were transcribed in the same orientation as 

their host genes, we included a 10 kb region upstream from the transcription start site (TSS) 

of the host gene in our analyses.  

Selection of tag variants and case-control association analysis 

Bi-allelic variants with a minimum allele frequency (MAF) of 5% in the EUR 

subpopulation of the 1000 Genomes Phase 3 Project
33

 were extracted for the selected 

genomic regions (including miRNAs and their potential regulatory sequences) by 

employing the VCFtools package
34

. Tagging variants were selected from all the obtained 
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variants on the basis of their pairwise linkage disequilibrium (LD) in the 1000 Genomes 

Phase 3 EUR reference panel and with an r
2 

> 0.85 using Haploview 4.2 software
35

. The 

tags were tested for their association with ADHD using the summary statistics of the 

GWAS meta-analysis carried out by the PGC and iPSYCH on 19,099 cases and 34,194 

controls of European ancestry
3
. The statistically significant associations were corrected for 

multiple testing considering a 5% False Discovery Rate (FDR) calculated using R package 

qvalue
36

.  

Functional annotation of the highlighted miRNAs 

The regional association plots for the 500 kb region centered on the associated variants 

were generated using LocusZoom
37

. Any signal present within the miRNA locus if in a 

high or moderate LD (r
2
>0.6) with the index SNP of the region was considered to be a 

miRNA-associated signal. We explored BrainSpan Atlas
38,39

, miRmine
40

, miRIAD
32

 and 

early human brain development spatio-temporal assessment of microRNA expression from 

Ziats and Rennert
41

 to assess the expression levels of miRNAs in brain tissues. The 

experimentally validated target mRNAs and putative biological pathways were deciphered 

using the Ingenuity Pathway Analysis 8.8 software (IPA) 

(http://www.ingenuity.com/products/ipa; Ingenuity Systems, Redwood city, CA, USA) 

where we used all the highlighted miRNAs as input. We used the human pre-miRNAs 

SNPs reported in miRNASNP2 database
42

 to identify any patterns of LD with the 

significantly associated variants. GTEx data
43

 was utilized to investigate expression 

quantitative trait loci (eQTLs) information. Orthologs for the miRNA genes in other model 

species were searched for in the Alliance of Genome Resources web portal
44

, and the level 

of conservation of the miRNA genes across model species was retrieved using microRNA 
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Viewer
45

. The degree of conservation was calculated as the proportion of identical bases 

between the two sequences
45

. 

Functional annotation of miRNA target genes 

We retrieved the expression levels of the target genes for the highlighted miRNAs in the 

brain tissues from the GTEx database. NHGRI-EBI GWAS Catalog was used to decipher 

whether the target genes had previously been a hit in any psychiatric GWAS
46

. The 

interactive visualization of association p-value results and linkage disequilibrium patterns 

for a genomic region of interest was done using the LDassoc tool
47

. 

RESULTS  

Genome-wide miRNA association analysis 

Our analysis involved 1,761 autosomal miRNA genes of 1,881 published miRNAs 

(miRBase v21), of which 1,355 miRNA sequences are encoded individually and the 

remaining 406 organized into 135 gene clusters. A total of 1,754 miRNA sequences were 

successfully retained post assembly lift over, 879 of those intragenic, i.e. located within 

protein-coding genes. These 1,754 miRNAs were covered by 22,423 tag variants. We 

inspected these variants for association with ADHD in the summary statistics of the largest 

ADHD GWAS meta-analysis of 8,094,094 markers, which contained 76.3% of our tag 

variants. We identified 19 significant associations with ADHD (5% FDR, p≤4.77e-05) 

highlighting 12 miRNAs (Table 1). All these miRNAs are located within introns of host 

protein-coding genes. The associated variants are located in the putative regulatory regions 

of the miRNA genes or in the promoter regions of the host genes (Table 1). Two of the 
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highlighted loci, on chromosomes 1 and 7, have been reported as among the top ADHD 

risk loci in the largest ADHD GWAS meta-analysis published to date
3
.  

 

Follow-up of miRNA associations—regional association plots and miRNA brain 

expression 

A visual inspection of the regional association plots detected miRNA-associated signals for 

six of the nine miRNAs (miR-6079, miR- 6734, miR-6735, miR- 5193, miR-4655, miR-7-

1) (Supplementary Fig 1). Eleven out of the 12 highlighted miRNAs were found to be 

expressed in brain according to various expression databases (Supplementary Tables 1-3). 

For instance, miRIAD shows that six of the 12 highlighted miRNAs are expressed in 

different brain tissues, especially in cerebellum (Supplementary Table 1)), while for the 

rest, this information was not available. In this tissue-wise expression data across the brain, 

cerebellum, heart, testis and kidney, miR-6734 and miR-7-1 were more expressed in the 

brain and cerebellum than in other reported tissues (Supplementary Table 1). Of interest is 

miR-4655, which was shown to be exclusively expressed in the brain (Supplementary 

Table 1). According to miRmine, one mature transcript each of miR-6735 (miR-6735-5p) 

and miR-1273h (miR-1273h-5p), and both mature sequences of miR-7-1 (hsa-miR-7-1-3p 

and hsa-miR-7-5p), are brain-expressed (Supplementary Table 2). The two mature 

transcripts of miR-7-1 are found in nearly equal amounts in the brain (Supplementary Table 

2). In addition, the expression profiles of sixteen cortical and subcortical structures  of 

human brain revealed the presence of miRNAs in cerebellar cortex (miR-7-1, miR-3135a ), 

primary somatosensory cortex (miR-3666, miR-4271, miR-4655-3p), primary visual  

cortex (miR-4655-5p) and ventral parietal cortex (miR-5193) (Supplementary Table 3). 
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Fig 1. IPA pathway analysis for the highlighted miRNAs. All miRNAs were given as input. Nine focal 

miRNAs are depicted in the network. The pathway is redicted to be involved in neurological 

disorder. Serotonin receptors are colored dark. 
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Targets for associated miRNAs  

Three of the highlighted miRNAs - miR-7-1, miR-3666, and miR-1273h have validated 

target sites according to IPA analysis (18, 9 and 1 mRNA targets, respectively) (Table 2). 

The target genes of miR-7-1 include SLC17A7, SNCA, NEFM, SEPT3, RAF1 and MKNK2, 

which are expressed in more than one brain tissue. It is noteworthy that SLC17A7, SNCA, 

NEFM and SEPT3 are expressed exclusively in the brain and not in the other tissues 

reported in GTEx. Of all the target genes, SLC17A7 shows the highest expression in 

cerebellum, cerebellar hemisphere, hippocampus, amygdala and cortex. MiR-3666 targeted 

TAC1 is moderately expressed in the caudate, nucleus accumbens and putamen.  MiR-

1273h has only one validated target, androgen receptor (AR), which shows a low regional 

specificity in human brain. 

 eQTL analysis of associated variants using GTEx data  

We subsequently explored the impact of the identified variants on the expression of the 

nearby miRNA genes. This analysis is particularly relevant, as all the miRNAs identified 

by us lie within protein-coding genes. Since eQTL data for miRNAs are largely 

underrepresented in gene expression datasets, we could not establish miR-eQTL 

connections for our highlighted miRNAs. Nonetheless, we inspected whether the ADHD-

associated variants at our miRNA loci are eQTLs for the host protein-coding genes in brain 

tissues (Supplementary Table 4). Of the 19 miRNA variants significantly associated with 

ADHD, rs3011217 and rs11708763 are eQTLs in brain regions for their host protein-

coding genes ST3GAL3 and KAT2B, respectively, eight variants are eQTLs for protein-

coding genes in the region other than the host gene,  while the remaining nine variants were 

not found to be brain eQTLs for any protein-coding gene (Supplementary Table 4). A 
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single variant appeared as eQTL for multiple genes.  For instance –rs3011217, located in 

the ST3GAL3 on chr1 is an eQTL for ST3GAL3 in cortex but also for ARTN in brain 

regions of cerebellum, hippocampus, putamen, caudate, amygdala, cortex and nucleus 

accumbens. Another variant, rs1799844, located within UBA7 showed up as an eQTL in 

brain regions for eleven genes (Supplementary Table 4).  

Orthologs and conservation in model species 

An orthologous gene with a high degree of evolutionary conservation (97%) has been 

identified in mouse for miR-3666, species in which homologs for only two of the 

highlighted miRNAs (miR-3666 and miR-4271) have been reported. Orthologs for human 

miR-7-1 are present in mouse and rat as mmu-miR-7-1 and rno-miR-7a-1, respectively. 

miR-137 has a known ortholog in mouse as mmu-mir-137.  
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DISCUSSION  

Expression of the miRNAs 

The reported genetic associations for miRNA-coding genes indicate that miRNAs may 

have a role in to the development of ADHD. All 12 significantly associated miRNAs are 

located in host genes and 11 of these are brain-expressed (Supplementary Tables 1-3). 

Multiple studies have identified miRNA-host gene pairs showing cross-species conserved 

co-location, co-expression, and that the intronic miRNAs are derived in parallel from the 

same primary transcripts as their host genes
48,49

. Thus, miRNA host genes’ expression 

profiles might serve as a possible proxy for those of the resident miRNAs
50

, and can 

regulate protein-encoding mRNAs in a synergistic pattern to fine-tune the protein output
51

. 

The more recent miRNA gene families in mammals have an inclination to largely express 

themselves  in two nervous system tissues, cortex and cerebellum
52

. Half of the highlighted 

miRNAs in this study are expressed in cerebellum and hippocampus, which are of known 

importance in ADHD development. MiRNAs show differential expression both within and 

between brain regions
41

. For instance - miR-7-1, one of the highlighted genes in our study, 

is differentially expressed between PFC and cerebellum during late childhood development. 

The greatest shifts in miRNA expression can occur soon after birth, during the transition 

from infancy to early childhood
41

.  

Pathway analysis 

The involvement of miRNAs in ADHD it is grounded on the downstream effects of their 

target genes that were highlighted in the pathway analysis. MiRNA network analysis shows 

that miR-3135a mediates the expression of ADGRE2 (EMR2), SNPs in which have been 
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associated with major depression
53

.. MiR-4271 regulates the YWHAG gene, previously 

found associated with schizophrenia
46,54

 and encoding a protein that mediates signal 

transduction by binding to phosphoserine-containing proteins. MiR-7 targets C3AR1, 

encoding a central protein in the complement system, which has a role in synapse loss in 

psychiatric illnesses beyond the canonical immune functions
55

. C3aR deletion in mouse 

models markedly increased physiological and behavioral responses to innate anxiety-

provoking stimuli
56

.  The gene for the cholecystokinin A receptor (CCKAR), involved in 

dopamine release in the CNS, is targeted by miR-3135a and miR-5193. A SNP in this gene 

was found to modulate  language laterization, and the schizophrenia risk allele of the 

polymorphism was related to reduced functional asymmetry
57

. Variation in the CCKAR 

locus can also affect superior frontal gyrus grey matter volume
46,58

. The orphan receptor 

GPR78, targeted by miR-5193, lies within a region which showed linkage to bipolar 

affective disorder (BPAD) and association with schizophrenia in the Scottish population. 

The GPR78 mRNA also has a potential role in the functioning of the hypothalamic-

pituitary-adrenal (HPA) axis and in pregnancy, thus possibly connecting prenatal insults to 

the pathogenesis of psychiatric illness
59

. A paralog of GPR78 is GPR26, another gene 

shown in the network analysis, targeted by miR-4271 and miR-6734. GPR26 encodes a 

protein distantly related to the serotonin receptors and is expressed exclusively in brain
59,60

. 

This polypeptide is important for emotion regulation in mice, a function probably mediated 

by the phosphorylation of CREB (cAMP responsive element-binding protein (CREB) - 

neuropeptide Y (NPY) signaling)  in the central amygdala
60

. In general, critical functions 

for members of this GPCR family have been demonstrated in neurodevelopment. The 

identified pathway further depicts how miRNAs can interact with neurotransmitter, 
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psychiatric risk and immune gene systems in interwoven networks, and this further 

supports the neuroimmune crosstalk.  

Genes targeted by the associated miRNAs 

MiRNAs that show differential spatio-temporal expression in early human brain 

development have been shown to be highly enriched in genes associated with child-onset 

psychiatric conditions including autism, schizophrenia, bipolar disorder, and depression
41

. 

Overall, a high number of validated targets of miRNAs pinpointed in this study have 

previously been related to psychiatric and neurological diseases. MiR-7-1 targeted EGFR is 

located in one of the top regions of a GWAS for lithium-responsive bipolar disorder
61

 and 

associated with brain thalamus volume. EIF4E, targeted by miR-7-1, is associated with 

cognitive empathy
62

 and depressive episodes in bipolar disorder
63

. SNCA harbors common 

and rare variants implicated in the risk to Parkinson disease 
64

. MKNK1 has been associated 

with schizophrenia in Ashkenazi Jews population
65

.  SLC17A7 (VGLUT1) is expressed in a 

brain-specific manner, and encodes the vesicular glutamate transporter 1 which mediates 

the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory 

neural cells. Altered levels of SLC17A7 have been consistently reported for cognitive 

decline,  schizophrenia, MDD and bipolar disorder
66–68

. MiR-3666 targets the TAC1 gene, 

which encodes several peptide hormones and neuropeptides thought to function as 

neurotransmitters and to induce behavioral responses. SNPs in the TAC1 gene have been 

associated with risk-taking
69 

and feeling nervous traits
70

 in previous large scale GWASs. 

Another miR-3666 target, MEOX2, is associated with brain regions volume,  total 

intracranial and subcortical volumes
71

. Much of the previous literature of miRNAs is in the 

context of greater studied psychiatric disorders, but the extensive pleiotropic mechanisms 
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acting in the human genome under the influence of environment may implicate additional 

disorders, including ADHD. Therefore, supported by brain-expression, validated brain-

expressed targets, and presence of homologs in model species, mirR-7-1 and miR-3666 

arise as strong candidates for further analyses. 

Also, one of the significantly highlighted genes, miR-6079, is located in a region on 

chromosome 1 that showed genome-wide association in the largest GWAS meta-analyses 

of ADHD
3
. As this is a high-LD region, with several protein-coding genes  (ST3GAL3, 

ARTN, KDM4A), but also the miRNA, the locus requires further refinement to infer 

whether the association signal is related to the protein-coding genes and/or also the miRNA 

gene. It is worth mentioning that while around 40% miRNAs are known to be intergenic, 

all the significant signals reported in our genome-wide study arise for the miRNAs located 

within protein-coding genes. How the miRNA expression is regulated continues to be 

largely unknown. Recent studies have identified significant miRNA eQTLs in the mouse 

brain. An enrichment of brain-related pathways has also been shown among miRNA targets 

with significant miRNA-eQTLs
72

.  

The present study investigated common variants at the miRNA loci and flanking sequences 

to capture possible regulatory regions. Our study has to major strengths: (i) The work 

includes the highest set of miRNA genes investigated so far in ADHD and (ii) we 

comprehended the genomic organization of miRNA genes as intragenic, singletons and 

clusters, in addition to the transcriptional orientation, and established the genomic 

coordinates for the gene and its putative regulatory regions. However, one of the 

weaknesses of the approach is that it did not allow for the inquiry of SNPs with trans-eQTL 
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effects on miRNAs and it has been previously suggested that  ~50% of the identified 

miRNA eQTLs are trans-eQTLs
73

. 
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Supplementary Table 4. GTEx (v8) eQTL information for significantly associated miRNA variants 

in brain tissues   

Variant Chr meta-

analysis 

p 

Host 

gene 

eQTL for 

gene 

Gene 

Chr 

Brain Tissue P-Value 

rs839764 1 8.711E-

08 

ELOVL1 TIE1 1 Hippocampus 3.80E-06 

MED8 1 Spinal cord 

(cervical c-1) 

2.20E-05 

rs56319043 1 1.37E-

11 

ST3GAL3 ARTN 1 Cerebellar 

Hemisphere 

1.30E-10 

RP11-7O11.3 1 Caudate 

(basal ganglia) 

3.40E-05 

rs3011216 1 3.53E-

07 

ST3GAL3 ARTN 1 Cerebellar 

Hemisphere 

5.50E-14 

Cerebellum 5.50E-13 

Hippocampus 1.20E-05 

RP11-7O11.3 1 Caudate 

(basal ganglia) 

1.50E-05 

rs3011217 1 1.51E-

08 

ST3GAL3 ARTN 1  Cerebellum 1.80E-25 

ARTN  Cerebellar 

Hemisphere 

2.60E-21 

ARTN Hippocampus 6.20E-08 

ARTN  Putamen 

(basal ganglia) 

2.30E-06 
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ARTN  Spinal cord 

(cervical c-1) 

3.70E-06 

ST3GAL3  Cortex 6.60E-06 

ARTN  Caudate 

(basal ganglia) 

7.80E-06 

ARTN  Amygdala 2.50E-05 

ARTN  Anterior 

cingulate 

cortex (BA24) 

3.50E-05 

ARTN  Cortex 4.00E-05 

ARTN  Nucleus 

accumbens 

(basal ganglia) 

6.00E-05 

rs11708763 3 5.46E-

05 

KAT2B KAT2B 3  Putamen 

(basal ganglia) 

3.00E-06 

    
KAT2B  Cerebellum 2.10E-05 

rs1799844 3 9.03E-

06 

UBA7 GMPPB 3 Cerebellum 6.10E-34 

GMPPB Cerebellar 

Hemisphere 

1.60E-23 

GMPPB Cortex 2.80E-19 

GMPPB Spinal cord 

(cervical c-1) 

2.70E-18 

GMPPB Putamen 

(basal ganglia) 

5.80E-18 

GMPPB Nucleus 

accumbens 

(basal ganglia) 

9.80E-18 

GMPPB Hippocampus 1.00E-16 

GMPPB Caudate 

(basal ganglia) 

1.80E-12 

GMPPB Hypothalamu

s 

7.50E-12 

AMT Cerebellum 6.80E-11 

GMPPB Substantia 

nigra 

7.00E-11 

AMT Cortex 7.80E-11 

GMPPB Anterior 

cingulate 

cortex (BA24) 

9.00E-10 

GMPPB Frontal Cortex 

(BA9) 

9.10E-10 

GMPPB Amygdala 6.80E-09 

RNF123 Cerebellum 7.30E-09 

AMT Hippocampus 3.10E-08 

GPX1 Cortex 6.60E-08 

GPX1 Nucleus 

accumbens 

(basal ganglia) 

9.90E-08 

AMT Caudate 

(basal ganglia) 

9.00E-07 
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GPX1 Caudate 

(basal ganglia) 

1.10E-06 

GPX1 Frontal Cortex 

(BA9) 

1.30E-06 

GPX1 Cerebellum 1.80E-06 

P4HTM Cortex 3.20E-06 

AMT Cerebellar 

Hemisphere 

4.70E-06 

FAM212A Cerebellum 6.20E-06 

AMT Frontal Cortex 

(BA9) 

8.20E-06 

AMT Anterior 

cingulate 

cortex (BA24) 

1.80E-05 

AMT Substantia 

nigra 

1.90E-05 

RNF123 Nucleus 

accumbens 

(basal ganglia) 

4.40E-05 

RBM6 Cortex 4.60E-05 

HYAL3 Spinal cord 

(cervical c-1) 

5.60E-05 

CCDC71 Amygdala 8.20E-05 

AMT Putamen 

(basal ganglia) 

9.60E-05 

RBM6 Cerebellar 

Hemisphere 

1.10E-04 

RNF123 Cerebellar 

Hemisphere 

1.40E-04 

RP11-

694I15.7 

Cerebellum 1.40E-04 

AMT Nucleus 

accumbens 

(basal ganglia) 

1.50E-04 

DALRD3 Cerebellum 1.70E-04 

RBM6 Frontal Cortex 

(BA9) 

2.00E-04 

RBM6 Nucleus 

accumbens 

(basal ganglia) 

2.30E-04 

P4HTM Cerebellum 2.60E-04 

RNF123 Cortex 3.00E-04 

rs10250550 7 4.07E-

05 

MAD1L1 AC110781.3 7 Nucleus 

accumbens 

(basal ganglia) 

8.30E-10 

AC110781.3 Caudate 

(basal ganglia) 

1.10E-07 

AC110781.3 Frontal Cortex 

(BA9) 

1.10E-05 

AC110781.3 Hypothalamu

s 

1.90E-05 
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rs296886 9 3.73E-

05 

HNRNPK GKAP1 9 Cerebellar 

Hemisphere 

6.50E-08 

    
GKAP1 Cerebellum 1.70E-07     
RMI1 Cortex 4.90E-06     
RMI1 Spinal cord 

(cervical c-1) 

1.80E-05 

    
RMI1 Cerebellum 2.00E-05 

rs296894 9 5.28E-

05 

HNRNPK GKAP1 9 Cerebellar 

Hemisphere 

3.40E-07 

GKAP1 Cerebellum 3.80E-07 

RMI1 Cortex 0.00006

2 

rs143942298 16 1.24E-

05 

KIAA043

0 

RP11-

680G24.6 

16 Cerebellum 1.70E-08 

RP11-

680G24.4 

Cerebellum 1.20E-06 

RP11-

680G24.4 

Putamen 

(basal ganglia) 

1.20E-05 

RP11-

680G24.4 

Nucleus 

accumbens 

(basal ganglia) 

8.70E-05 

rs2251802 1 1.68E-

07 

SZT2 None 
   

rs37453 1 1.10E-

07 

ST3GAL3 None 
   

chr3:5031028

6 

3 5.59E-

05 

SEMA3B None 
   

rs58936320 3 2.53E-

05 

C3orf62 None 
   

rs2045292 7 6.06E-

07 

FOXP2 None 
   

rs7782412 7 4.07E-

05 

FOXP2 None 
   

rs7799269 7 4.37E-

06 

FOXP2 None 
   

rs76100764 9 3.28E-

05 

HNRNPK None 
   

rs605921 16 4.77E-

05 

PRKCB None 
   

eQTLs for the significantly associated variants. Host gene: Host gene for the miRNA highlighted by 

the variant. P-value and normalised effect size provided by GTEx.  
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Supplementary Fig 1. Regional association plots for the highlighted miRNAs
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 Supplementary Figure 2. miRIAD (v. 2018) expression levels for significantly associated miRNAs 
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In this work, we studied: 

(i) ADHD from an epigenetic point of view by targeting the systems of miRNAs and 

ASM applying hypothesis free and association studies respectively 

(ii) Genetic basis of cocaine dependence using genome-wide association meta-analysis 

and shared genetics with comorbid conditions.  

The selected methodologies have been discussed in detail. 
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CHAPTER 1. QUESTIONS UNDERLYING THE GENETIC 

ARCHITECTURE OF PSYCHIATRIC DISORDERS 

Psychiatric disorders are complex multifactorial genetic disorders that exhibit no clear-cut 

pattern of Mendelian inheritance. The genetic architecture underlying the pathogenic 

mechanisms of psychiatric disorders like ADHD and cocaine dependence remains still elusive, 

although research performed in recent years starts to shed some light on it. For instance, some 

open questions are: Can we quantify the number of susceptibility and protective genetic 

variants? What are their frequencies and effect sizes? What about unaccounted heritability (h2)? 

How do the variants exert their effects? How do these variants interact with each other and 

with the environmental risk factors? How to construe the genes and biological pathways 

disturbed by these variants? Why do comorbidities appear? Are there shared genetic bases 

underlying comorbid disorders? Does epigenetics play a significant role? Can we identify 

biomarkers for psychiatric disorders141?  We aimed to contribute to these issues in the context 

of ADHD and cocaine dependence. 

1.1 Genetic models for psychiatric disorders 

Much of our fundamental knowledge in computational psychiatric genetics has developed from 

the case studies on schizophrenia which has accumulated huge amounts of data for both 

common and rare variation. Lack of appearance of single causal genes in most individuals 

affected by psychiatric phenotypes gave rise to the theory of polygenicity. This model was 

originally investigated in schizophrenia142, but it is also extensible to all psychiatric phenotypes 

studied so far. As per polygenic model, multiple genetic and non-genetic effects act in 

combination to contribute to disease susceptibility, and they appear to be normally distributed. 

All individuals in a population are assumed to carry genetic risk variants and are exposed to 

non-genetic risk factors; however, it is when the cumulative load exceeds a burden of risk 

threshold that the symptoms of disease develop. 

To break down the questions about the number, frequency, and effect sizes of individual causal 

variants, and the additive or non-additive action of the causal loci, we debate on the following 

models for psychiatric disorders: 

1) Common disease/common variant (CDCV) model – The phenotype is due to the cumulative 

impact of hundreds or thousands of common genetic variants where each variant exerts an 

individual small effect. Here, a drawback is that the functional consequences of the common 
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variants in protein-coding regions can be imprecise or difficult to detect; or much of the 

highlighted variation is located within non-protein coding genomic regions, for which prior 

knowledge is often limited.  

2) Common disease/rare variant (CDRV) model – The phenotype appears as a consequence of 

the effect of various rare genetic variants of strong effect. The causal variants should cluster in 

a set of vital neurodevelopmental and/or neurofunctional genes143. 

Although not so frequently seen, there are also some few cases in psychiatry where a single 

genetic variant is the cause for the disorder. These rare penetrant and damaging mutations have 

been reported for example in ID, ASDs and in schizophrenia, sometimes in single genes and 

others in the form of CNVs that may span more than one gene144–148. Besides, de novo 

mutations in single genes occur in rare number of affected cases145. These de novo mutations 

are the genetic variants present in the DNA of a child but not of parents. Their contribution to 

the risk of disease in the form of effect sizes can be both small and large. WES reveals that de 

novo mutations can have an important role in Mendelian diseases and in also some complex 

conditions like autism and mental retardation. Increased burden of de novo mutations has been 

identified in patients, although in general it is uncertain which specific de novo mutations are 

causal. As de novo mutations are not shared among members of a family, they are unlikely to 

contribute to the heritability.  

Our work on both ADHD and cocaine dependence has focused on the common variant model 

in view of several arguments favouring this paradigm: 1) Most genetic variants are common; 

2) in many cases, causal common variants associated with a continuous endophenotype have 

been associated with disease, and in some cases, these have been confirmed by in vitro 

biochemical assays for structural and regulatory effects149; and 3) expression quantitative trait 

loci (eQTL) analyses have shown that gene expression and splicing are heavily influenced by 

common variants, perhaps for the majority of transcripts149. We therefore studied (i) common 

variants in miRNA genes for their contribution to ADHD, (ii) common variants that display 

ASM in ADHD and (iii) common variants contributing to risk to cocaine dependence.  

1.2 Heritability and missing heritability 

“Unaccounted h2” is the unexplained difference between SNP-based heritability (h2
SNP) 

estimates and twin-based or pedigree-based heritability estimates (twin-h2 or pedigree-h2). 

SNP-based heritability estimated from genome-wide SNP data rely largely on the sample size 
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of the GWAS. However, even with sufficiently sized genomic studies (e.g. in schizophrenia 

GWAS), SNP-h2 usually remains half of the twin-h2 at most 141. However, recently the 

polygenic analyses, have been useful in delineating the “hidden heritability”, i.e., the increase 

from h2
GWS to h2

SNP. It is presumed that with sufficiently large sample sizes, h2
GWS should equal 

h2
SNP (Figure 4). The heritability estimates may differ between populations, across ages and 

when non-genetic factors are counted in the analysis150.   

 

 

 

 

 

 

 

 

1.2.1 Overestimation of heritability from family studies 

Classical heritability estimates have been achieved using full siblings and twins in families, 

who also share non-additive gene combinations and a common environment. These are the 

confounders that can be difficult to adjust for and thus the missing heritability may also reflect 

an overestimation of h2. This difference between estimates of h2 from family data and the “true” 

h2 is termed “phantom heritability”. 

There is a dearth of gene-environment interaction (GxE) studies in family and twin studies 

which could consistently record both interaction and/or correlation between G and E. This 

obscures the impact the environmental risk factors on disease risk, especially in the already 

susceptible individuals because of which the SNP effect sizes in cases may not be accurately 

calculated. 

Figure 4. A hierarchy of heritability. 

Adapted from Wray et al., 2014. 

 



Discussion 

162 

1.2.2 Disease heterogeneity 

As the heritability estimated from large population samples is lower than that estimated from 

twin studies, the presence of greater diagnostic heterogeneity in larger cohorts is hinted at. It 

further leads us to speculate if the larger cohorts may be more representative of the cases 

currently brought together for analysis in genetic studies. Heterogeneity in psychiatric 

disorders often corroborates the subtypes, which may be independent, correlated or 

overlapping. It is correspondingly arguable that a currently recognized disease category may 

turn out to be a diagnostic aggregation of subtypes. Acknowledging the phenotype 

heterogeneity in psychiatric disorders challenges our existing estimates for the proportions of 

phenotype variance due to genetic factors and may cover a part of the missing heritability. 

1.2.3 Variants not tagged by common SNPs 

Missing heritability can be due to the presence of other genomic risk variants not well tagged 

by common SNPs on the SNP chips used to genotype cases and controls. This includes CNVs 

or other rare variants detected through WES/WGS studies. Rare variants require relatively 

larger effect sizes in order to be detected. However, as they have lower frequencies, their 

contribution towards increasing the risk the entire set of population is small. Hence, a massive 

number of rare variants will be needed to lower the percentage of missing heritability.  

1.2.4 Imputation panels 

The significance of small structural variants is currently underrepresented in the genomic 

context; however, they may as well be important, e.g. tandem repeat polymorphisms with an 

impact on biological functions. The SNP-based 1000 Genomes reference panel used for 

imputation may not finely represent the small structural variation. Estimation of h2
SNP based 

on haplotypes constructed from SNPs and not the SNPs alone may provide a way to tag 

uncommon structural variants missing from the imputation reference panels, although this 

approach can be highly sensitive to genotyping errors. 

Heritable variation can be present within genomic features outside the coding sequence in the 

form of epigenetic modification. This includes promoter methylation, histone tail modifications 

and altered expression of non-coding RNAs which mediate gene regulation in normal 

development. Advanced technologies like methylation profiling and miRNA-seq can assist the 

quest for decoding the non-coding heritable variation. For instance, abundant QTLs for DNA 

CpG methylation across the genome have been reported for brain tissues. 
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In our work we computed the SNP heritability for cocaine dependence using GWAS data and 

these methodologies: LD Score (LDSC) regression analysis and the Genome-based REstricted 

Maximum Likelihood analysis implemented in the tool Genome-wide Complex Trait Analysis 

(GCTA-GREML). In both analyses, a population prevalence for cocaine dependence of 1.1% 

was considered151. To inspect if some functional categories of the genome contribute 

disproportionately to the heritability of cocaine dependence, we examined partitioned 

heritability for cocaine dependence (a polygenic condition with high SNP heritability) using 

LDSC based on 24 functional overlapping annotations152. Enrichment in the heritability of a 

functional category was defined as the proportion of SNP heritability explained divided by the 

proportion of SNPs in that category, and the issue of multiple testing was addressed using the 

Bonferroni correction. Our LDSC estimated a SNP heritability in liability scale of h2
SNP = 0.30 

and h2
SNP = 0.27 for GCTA-GREML. Studies with comparable sample sizes have returned 

similar h2
SNP for cocaine dependence, alcohol dependence, ADHD and schizophrenia 

(h2
SNP=0.25-0.33)153–155. Increasing sample size can sometimes lower the SNP-heritability 

estimates e.g. in alcohol dependence (h2
SNP= 0.09)156 and MDD (h2

SNP = 0.09)157, but h2
SNP 

remained the same in schizophrenia and ADHD1,158. This calls for a larger number of samples 

to confirm our results. The partitioned heritability analysis yielded a significant enrichment in 

the heritability by SNPs located in intronic regions, and a nominal result for conserved genomic 

regions. These results are not uncommon in the analyses of complex disorders, where the 

disease-associated variation is more often seen out of exonic regions than in Mendelian 

disorders. 

1.3 Psychiatric epigenetics and epigenomics 

Epigenetics encompasses regulation of DNA sequences without variation in their actual base 

composition, and the epigenetic marks can be both stable and plastic. The operating molecular 

epigenetic mechanisms are multifaceted, much more dynamic than the genetic code, and 

therefore they can be greatly intertwined to decode. Epigenetic dysregulations in CNS are 

associated with both monogenic and polygenic neuropsychiatric illnesses such as Fragile X, 

Rett syndrome, MDD, ASD and schizophrenia. Many characteristics of psychiatric diseases 

can be explained by epigenetics. For example: Epigenetic downregulation of genes is thought 

to underlie the GABAergic neuronal dysfunction observed in schizophrenia159. It is also 

noticeable that histone modifications are present during the development of schizophrenia 

although the precise mechanism of action is ambiguous.  
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The epigenetic model of complex diseases is analogous to the polygenic model. Small 

epigenetic mis-regulations in an individual may add up over time periods until a certain 

threshold is met, after which the disease manifests. The pre-epimutation disturbances that occur 

during the maturation of the germline may initially be tolerated, however over time, 

accumulation of these may increase the risk of attaining a disease. Due to the reversible nature 

of epimutations, their severity may well fluctuate at time points, and can show “remission” and 

“relapse”.  The age of disease onset may be subjected to the effects of tissue differentiation, 

stochastic features, hormones, and external environmental factors like nutrition, infections, 

medications or addictions159. Epigenetic changes often produce gene expression changes, 

which may in turn affect neural circuitry and eventually behavior. 

Epigenetic adaptions are inquisitive as they appear distinct between developmental stages and 

adult life (Figure 5). It is speculated that developmental events may mark broader impressions 

on epigenetic states and neural functions than similar events at later stages in life. Thus, looking 

into the epigenetic mechanisms of gene regulation can help in understanding how prenatal or 

initial lifetime exposures to stimuli (stress, trauma, toxins, viral infections, nutritional deficits) 

shape neuropsychiatric effects for lifetime160. It is now feasible to perform true genome-wide 

assessments of epigenetic marks, such as DNA methylation (methylomes) or chromatin 

modifications (chromatinomes), to interrogate into the proposed questions.  

In this Thesis we targeted two epigenetic mechanisms, DNA methylation and miRNAs, for 

their involvement in ADHD (detailed in Chapter 4). 

 

 

 

 

 

 

 

  
Figure 5. Possible contribution of epigenetic mechanisms to psychopathology. 

Adapted from Chapter 19 - Epigenetics of Psychiatric Disorders, 2016 by M.Kundakovic. 
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1.4 From association to function - Mapping variants to genes and/or pathways 

As psychiatric GWASs have identified multiple genetic signals associated with disorders, it 

has become clear that nominating the associated SNPs does not immediately lead to the 

identification of causal variants or to those genes and proteins which alteration is responsible 

for the phenotype. To be able to infer the real picture of deregulated genes and pathways to pin 

potential drug targets, it is necessary to map functional connections of the GWS and sub-

threshold GWS variants from GWASs. In this Thesis we used and integrated the following 

established methods to aid translation of the detected associations into functions (detailed in 

Chapter 4).  

1.4.1 eQTL mapping  

An approach to distinguish molecular mechanisms underlying complex traits is to intersect 

GWAS hits with quantitative trait loci for molecular-level traits, like gene expression or 

methylation, which paves the way for linking genotype to disease. Cis-regulatory QTLs are 

particularly informative, as the vast majority of GWAS hits are found in noncoding regions.  

With this perspective in mind, we used eQTL mapping to assess the contribution to ADHD of 

genetic variants altering cis-methylation levels in the brain. Starting from a number of 

differentially methylated CpG sites identified (influenced by SNPs that are associated with 

ADHD), we filtered those mapping into potential promoter regions of genes for which they 

were also eQTLs. This analysis resulted in several genetic variants affecting the methylation 

of six CpG sites, which in turn affected the regulation of three genes, ARTN, C2orf82 

and PIDD1, in multiple brain regions.  

In addition to methylation, we investigated the possible contribution of miRNA dysregulation 

in ADHD. Our search revealed ADHD-associated variants located in the putative regulatory 

regions of miRNAs or in the promoter regions of their host protein-coding genes. We mined 

public databases for eQTL evidences on the ADHD-associated miRNA variants, although the 

effect of genetic variations on ncRNAs, including miRNAs, has been poorly explored. 

Therefore, given the eQTL annotation bias towards protein-coding genes, it is still difficult to 

functionally annotate ADHD-associated variants based on the expression levels of miRNAs. 

Recently, some studies have started to catalogue genetic variants associated with miRNAs 

whose genotypes affect gene expression in the human genome161. Interestingly, nearly half of 

the cis-miR-eQTLs are located 300–500 kb upstream from their associated intergenic 
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microRNAs. These cis-miR-eQTLs are highly enriched for cis-mRNA-eQTLs and regulatory 

SNPs and some of these have been associated with complex traits in prior GWAS162.  

1.4.2 Genome-Wide Pathway Analysis (GWPA)  

GWPA uses GWAS or WGS data to aggregate all the individual SNPs into genes and gene-

sets or pathways for the appearance of any over-represented/significant functional groups. 

Using annotation databases, any pathway analysis program maps individual variants to their 

respective genomic location, and the genes are positioned into gene sets or pathways. A 

cumulative p-value is calculated for each gene group or pathway from the p-values of the input 

SNPs and this cumulative p-value, if overcoming the significance threshold, will represent an 

enrichment of the corresponding functional group (Figure 6)163. 

 

1.4.3 Candidate and Hypothesis-Free Pathway Analysis 

Candidate pathway analysis is a hypothesis‐driven approach to investigate the enrichment of 

specific pathways, or gene sets of interest that are selected based on prior knowledge. The 

output from the candidate input pathways is a gene set or a list of gene sets that overcome the 

significance threshold in an association study with the disorder. However, factors such as the 

number of genes contained in each pathway can have an impact on the results. Also, 

hypothesis-free approaches can be used in pathway analysis that test all pathways in a given 

Figure 6. Overall protocol for pathway 

based GWAS/WGS analysis. 

Adapted from White et al., 2018. 
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database (e.g. GO or Biocarta) for association with a given phenotype. Enrichment scores for 

the known pathways are calculated, which are used to investigate whether there is an over-

representation of genes in a certain pathway that are associated with the phenotype. These 

methods still do not necessarily prioritize the enriched sets for further analyses, as the p-value 

may not reflect the strength of association or significance of these gene sets.  

Methods such as FORGE or SETSCREEN highlight the pathways comprising genes with 

multiple, independent association signals (both strong and weak), while others as ALIGATOR 

or INRICH pick up the single most significant SNP in a gene to assign significance to genes 

and will thus use those genes showing individually, stronger associations to detect enriched 

pathways. The generated pathway rankings from different methods are generally in accordance 

with each other. 

In psychiatric genetics, pathway analyses carried out using GWAS data have reported 

significant associations of several biological processes to the disorders and show that the risk 

variants for psychiatric disorders aggregate in particular biological pathways. The underlying 

pathways are often common across these disorders. It is however debatable whether this 

observation can be due to annotation bias or if genuine pleiotropy exists across the underlying 

mechanisms as there are only tens of thousands genes for millions of traits164. 

In our study on the genetic basis of ADHD we constructed networks for the 12 miRNAs 

highlighted for ADHD. Two biological pathways were predicted arising from direct targets of 

the ADHD-associated miRNAs. One of the pathways showed a miRNA-mediated regulation 

of serotonin receptor genes (HTR1D and HTR4) and was suggested to be involved in 

neurological diseases and functions. This seems reasonable in the context of ADHD, given the 

reward deficiency mechanisms prominent in ADHD etiology. 

In our work on the genetics of cocaine dependence we used MAGMA to evaluate both gene-

based and gene-set associations using the summary statistics from our GWAS meta-analysis. 

For gene-based analysis, the p-values for SNPs located within the transcribed region were 

considered for the statistic test (SNP-wise mean model). A threshold of 10% false discovery 

rate (FDR) was applied to correct for multiple testing. In the gene-set analysis, we employed a 

competitive test procedure using: “All Canonical Pathways” (1329 gene sets), “GO” (4436 

gene sets) and “BioCarta” (217 gene sets) provided by MsigDB and each gene set was 

individually corrected for multiple testing using permutation based empirical correction built 



Discussion 

168 

in MAGMA. We refrained from using Bonferroni correction in gene-set analysis as the 

categorised gene sets are strongly overlapping and Bonferroni test prove to be quite 

conservative in such cases. Our gene-based analysis mapped approximately three million SNPs 

from the GWAS meta-analysis to around 18,000 protein-coding genes, and a histone H2B type 

1-D protein-coding gene (HIST1H2BD) showed a significant gene-wise association with 

cocaine dependence. One of the BioCarta immunity pathways “BIOCARTA TNFR2 

PATHWAY” showed a trend (uncorrected P = 5.38e-04, corrected P = 0.09), being the most 

significantly associated among the canonical pathway gene sets. Seven of the ten GO gene sets 

with lower p-values, seven were reported from the processes of synapse organization, 

glutamatergic neurotransmission and brain functions innately relevant to the psychiatric 

abnormalities. 

1.5 Shared genetics underlie psychiatric disorders 

Multiple studies have attempted to find pairwise genetic correlations for psychiatric diseases141. 

The genetic correlation between pairs of disorders can be estimated using SNP data from 

GWAS, and these estimates determine if the disorders share genetic risk factors. For example, 

in Figure 7, the genetic correlation between bipolar disorder and schizophrenia is calculated as 

0.6. For two disorders that are genetically correlated, some shared risk SNPs may appear for 

both disorders that may not appear for the individual disorders.  Thus, by combining the 

polygenic risk score (PRS) analyses and GWAS, both coinciding and disease-specific genetic 

risk factors can be highlighted. In our study we calculated genetic correlation between cocaine 

dependence and six selected comorbid traits using LDSC and PRS (Detailed in Chapter 2), 

showing that comorbidity between disorders that is seen at the clinical level may be due, at 

least in part, to shared genetics. 

 

 

 

 

  

Figure 7. Pairwise genetic 

correlations for four 

psychiatric disorders. 

Adapted from Geschwind 

and Flint, 2015. 
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1.6 Endophenotypes 

The idea that some phenotypes (the so-called endophenotypes) bear a closer relationship to the 

biological processes that give rise to psychiatric illness than diagnostic categories is appealing. 

Endophenotypes include e.g. electroencephalographic variances or heritable behaviours that 

are recorded from laboratory standards such as neurocognitive execution deficits or impaired 

facial emotion recognition. Thus, endophenotypes may improve the odds of detecting genetic 

variants that predispose individuals to an illness. They are measured in both affected and 

unaffected subjects and as these are specific to disorders, they are perceived to be diagnostic 

biomarkers.  

Endophenotypes in psychiatric illnesses are being increasingly researched on because (i) these 

are easier to work with than the psychiatric illness itself, (ii) they can enable the detection of 

genetic risk variants and genes using smaller samples, since the effect sizes of genetic loci 

contributing to individual endophenotypes are larger than those contributing to disease 

susceptibility.  

Lookup 

The current scenario is conducive for decoding the mechanisms of onset and progression of 

psychiatric disorders thanks to the advances in genomic technology, bio-computational 

methods, and to the initiatives of international consortia for building large clinical cohorts and 

for data sharing. In brief, to dissect a psychiatric disorder for both polygenicity (the small 

effects of individual loci), and large-effect rare loci, one of the needs has been to gather 

sufficiently large clinical cohorts. In practice, this implies that depth of phenotyping is likely 

to be lowered to be able to achieve huge cohorts143. However, methods like GCTA-GREML, 

network construction, eQTL mapping, targeting epigenetic systems are functional even if 

sample sizes are lesser, and these functional studies remain essential in recovering the “missing 

biology” and “missing heritability”. As the prevalence of neuropsychiatric disorders is on the 

rise, the quest for genetic or epigenetic biomarkers can assist in the development of novel 

therapeutics. 
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CHAPTER 2. IS THE COMORBIDITY BETWEEN ADHD AND 

COCAINE DEPENDENCE EVIDENT AND GENETICALLY 

DETERMINED? 

2.1 Comorbidity between ADHD and cocaine dependence  

Over the past decade, the clinical association between ADHD and SUD has become an 

increasing focus of investigation. Individuals reaching out to seek treatment for SUD 

commonly demonstrate the symptoms of ADHD. The very earlier community-based studies 

surveying the disorders occurring in population did not include adult ADHD. However, after 

the inclusion of ADHD in community-based surveys, the National Comorbidity Survey 

Replication (NCS-R) estimated the prevalence of adult ADHD to be 4.4%. The comorbidity 

survey uncovered that ~15% of individuals with adult ADHD also met DSM-IV criteria for a 

SUD as compared to ~5% of individuals without ADHD. This difference turns to be significant 

with an odds ratio of 3.0. It was also revealed that ~10% of the individuals with SUD meet 

criteria for adult ADHD, in contrast to the 4% individuals without SUD127. It is curious that 

while ADHD has long been documented to be a childhood onset condition and the symptoms 

of which can be discerned before the age of 12, SUDs are more noticeable only during 

adolescence and early adulthood. This observation is mostly attributed to the underlying 

ADHD symptoms of impulsivity, emotional dysregulation and so accordingly the poor social 

interaction and academic performances, which in turn enhance the overall setup for developing 

SUDs.  

Findings on whether cocaine in particular is the preferred substance of choice in individuals 

with ADHD, and so the rates of cocaine abuse surpasses that of other SUDs in the ADHD 

group, remain inconclusive165. It was speculated that cocaine being a powerful psychostimulant 

may be used more frequently to self-medicate the symptoms of ADHD (knowingly or 

unknowingly) than alcohol, nicotine or cannabis. However, this is difficult to conclude as 

numerous factors like the legal availability of a substance, financial means to access it, 

individual’s awareness about the harmful effects of the drug and individual response to the 

pharmacological action of drugs causing pleasant or unpleasant effects also dictate the extent 

of abuse of substances.  

What is ambiguous is whether this relationship between ADHD and cocaine dependence is 

causal by nature possibly in these ways: (i) ADHD leads to self-medication with substances 
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including cocaine, (ii) ADHD subjects are impulsive and this favors the first contact with the 

drug, or (iii) substance use leads to ADHD through dysregulation of neurotransmitter systems. 

If not causal by nature, could this co-occurrence be the result of overlapping risk factors such 

as shared genetics and/or environment? 

2.2 Is the comorbidity between ADHD and cocaine dependence genetically 

determined? 

We now know that many psychiatric disorders that are comorbid or share some 

symptomatology do share common genetic risk factors as shown by several studies including 

heritable conditions like autism, ADHD, bipolar disorder, major depression, schizophrenia, 

anorexia, OCD, Tourette syndrome, anxiety disorders and post-traumatic stress disorder 

(PTSD)155,166. Similar to these most-widely studied disorders, substance use disorders are also 

heritable (h2 = 40–70%), and highly comorbid with other psychopathologies167,168. Family 

studies have been equivocal about the co-occurrence of SUDs and severe psychiatric conditions 

like schizophrenia and bipolar disorder167,169. On the contrary, data from twin studies170 suggest 

that the genetic factors entailing common psychopathologies also augment the general risk for 

substance use.   

So far, only a few studies have explored the role of shared genetic influences on the 

comorbidity between substance use disorders and psychiatric conditions, and the causality of 

this correlation remains even less articulated. To be able to test whether shared genetic risk 

factors underlie the lifetime co-occurrence of psychiatric disorders, many bioinformatic 

approaches have been applied: PRS, genetic correlation, Mendelian randomization (MR) and 

multi-trait analysis of GWAS (MTAG). Using these methods, significant genetic overlaps have 

emerged between cocaine dependence and schizophrenia or MDD171–173 and also between 

substance use disorders and other psychiatric disorders174,175. PRS generated from the 

Psychiatric Genomics Consortium (PGC) cross-disorder meta-analysis explained about 1% of 

the variance in general substance involvement factor in the target SAGE sample that is enriched 

for substance use171.  

PRS analysis reveals that the genetic variation underlying risk for clinically diagnosed ADHD 

also contributes to higher risk taking, and substance use (alcohol and nicotine; cocaine samples 

not included)174. PRS analyses now substantiate that genetic liability to ADHD is associated 

with a higher risk of SUD in individuals with ADHD. Although other risk factors like comorbid 

ODD/CD, male sex, parental factors (SUD, low paternal income, low maternal education, etc.) 
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also mediate the appearance of SUD in ADHD, the association between the common genetic 

liability to ADHD and SUD exists above what could be explained by other risk factors for 

SUD. Altogether, higher PRS-ADHD heightened the risk of any SUD, multiple SUD types and 

their severities64. In a GWAS meta-analysis of eight psychiatric disorders, it was found that 

75% of the LD-independent associated regions were associated with more than one disorder176. 

These findings support that the co-occurrence of several traits with ADHD is explained, at least 

in part, by shared genetic risk factors. 

In this Thesis we have investigated whether the phenotypic associations between cocaine 

dependence and six comorbid psychiatric/behavioral traits (ADHD, schizophrenia, MDD, risk-

taking behavior, antisocial behavior and children’s aggressive behavior) are genetically 

mirrored by performing genetic correlation analyses using two approaches: LDSC and PRS. 

For the first time, we found a significant genetic correlation of cocaine dependence with 

ADHD, MDD and risk-taking behavior, although these results should be taken with caution 

and need to be followed up in a larger sample of cocaine-dependent individuals. The PRS 

analysis included the individual-level SNP data, resulting in higher statistical power and 

allowed for direct testing of interaction effects. According to our results, all the tested comorbid 

conditions are associated with cocaine dependence status, suggesting that cocaine dependence 

is more likely in individuals with many risk alleles for the tested conditions than in those with 

fewer risk alleles. 

So far in this section, we have elaborated on the shared genetics between disorders at genome-

wide level, using methods that provide general figures of overlapping but do not point at 

specific biological functions. It has been hypothesized that because of the involvement of 

dopamine in both cocaine use disorders and ADHD, there might be some shared genetic bases 

underlying the co-occurrences of these disorders. Hypothesis-driven case-control association 

studies help to identify such overlapping genetic risk factors. An association exists between 

cocaine dependence symptoms and dopamine-related genes at the biological system level 

according to a genetic risk score based on SNPs from selected dopaminergic genes177. In this 

study, a cocaine dopaminergic genetic risk score accounts for variance in cocaine dependence 

symptoms that is largely independent of the variance coupled to other substance dependencies.  

Dopamine is one of the key neurotransmitter systems in generating the rewarding effects of 

cocaine use and candidate gene studies support that specific variants underlying dopaminergic 

genes affect risk for cocaine dependence (Figure 8)177. For instance, polymorphisms in 
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SLC6A3, encoding the dopamine transporter (DAT/DAT1), have been repeatedly examined for 

response to cocaine and have been shown to confer risk of cocaine dependence and also 

overdoses/fatalities177,178. The differential expression of the same gene, SLC6A3, due to the 

presence of polymorphic variants, influences self-regulation skills and ADHD symptoms 179–

182. This receptor remains a favored target for pharmacogenetic drugs like methylphenidate for 

ADHD and disulfiram treatment for cocaine addiction182,183. 

 

Similarly, variants in another dopaminergic gene encoding the dopamine D2 receptor (DRD2) 

have been associated with multiple addictions like drug dependency, alcoholism, smoking, 

pathological gambling and also ADHD and compulsive behaviors184. Besides adding to disease 

susceptibility individually, the dopamine receptor genes may show significant gene-gene 

interactions to form heteromers (like DRD2-DRD4, DRD2-DAT1) which upsurge impulsivity, 

novelty-seeking, addiction susceptibility, and ADHD-like symptoms178,185–187.  

Another noteworthy involvement relates to Human Immunodeficiency Virus Type I Enhancer 

Binding Protein 2 (HIVEP2), a dopaminergic transcriptional regulator in DA neurons. HIVEP2 

can activate SLC6A3 by targeting its intronic sequence and significant HIVEP2-SLC6A3 

interactions were observed for SUD in male rat models and male clinical subjects188. The fact 

that HIVEP2 is functionally related to an ADHD gene, and that it is involved in the regulation 

of diverse neurodevelopmental pathways makes it pertinent to the genetics of ADHD. De novo 

likely damaging variants occurring in HIVEP2 have been associated with intellectual disability 

Figure 8. Ability of cocaine-identified 

dopaminergic genetic risk score to 

predict sample variance in cocaine, 

alcohol, nicotine, and marijuana 

dependence symptoms. 

Adapted from Derringer et al., 2012. 
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and developmental delay in humans, and HIVEP2-knockout mice likewise exhibit several 

working memory deficits, increased anxiety, and hyperactivity189–191. 

The shared genetic bases between these two conditions may well extend beyond the 

dopaminergic system. Evidences are now emerging for serotonergic neurotransmission (e.g. 

HTR2A) in the genetic elements that underlie the predisposition to cocaine addiction192,193, and 

the genes modelling the serotonergic system have long been highlighted as important risk 

factors for the development of ADHD (e.g. HTR2A, 5-HT1B)194–197. Even the polymorphisms 

in dopaminergic genes can alter serotonergic signaling as seen in the case of the rare DAT 

p.Ala559Val variant, found in ADHD cases and associated to drug-related behaviors. DAT 

Val559 mice models lack a locomotor response to cocaine and this arises from SERT blockade 

and an enhanced 5-HT signaling relative to the cocaine actions in wildtype mice198. More 

recently, ADGRL3 (LPHN3), a brain-specific member of the latrophilin subfamily of G-

protein-coupled receptors has been found to confer ADHD susceptibility and mediate 

methylphenidate pharmacogenetics. The gene is also most strongly expressed in brain regions 

implicated in the neurophysiological basis of ADHD. Interactions of ADGRL3  variants with 

variants located on chromosome 11q improve the prediction of ADHD development and 

medication response199. An added possible functional role for ADGRL3 has surfaced in 

modulating drug-seeking behavior, and ADGRL3 is identified as a risk gene for SUD in 

different populations regardless of the type of abused substance. The variants in ADGRL3 may 

also mediate individual susceptibility to the long-term protective effects of cocaine medication 

treatment200.  

In our meta-analysis of cocaine dependence, no genome-wide association was identified with 

any SNP, due to limited sample size (2,100 cases and 4,300 controls). However, we 

investigated the suggestive associations (p-value for association<1e-05) for functional 

relevance and found 22 genomic risk loci containing 112 genes. One of these risk loci is a 

genomic region on chromosome 6 (6p22.1) enriched in immune system and histone-related 

genes that also pops up in several schizophrenia GWAS. This observation supports the 

presence of shared genetic risk factors in these two comorbid disorders, although this should 

be further investigated in larger samples. The shared genomic region is defined by two lead 

SNPs and encompasses 77 genes and 458 nominally associated SNPs. All the SNPs in this 

region emerge as brain eQTLs for a small group of genes including BTN3A2, HIST1H2AK, 

ZSCAN31, PRSS16 and ZNF184.  
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2.3 SUDs and late-onset ADHD 

What is also curious is that ADHD is now being thought of more than a pediatric condition, 

with reports claiming the onset of ADHD in adults or late-onset of ADHD201. However, this is 

a controversial issue, as ‘adult-onset ADHD’ may reflect individuals not properly diagnosed in 

childhood or subthreshold subjects showing many of the ADHD symptoms before their formal 

clinical categorization4. In light of this, new dimensions surface for exploration. For example, 

whether individuals with SUDs and with no history of childhood ADHD can present ADHD 

symptoms during adolescence or adulthood. If so, what are the odds that this late-onset of 

ADHD in adulthood will contribute to the development of SUDs? With the availability of a 

longitudinal data for individuals, studying together the comorbid behaviors may also help in 

identifying the genetic, epigenetic, and environmental mediators. 

Lookup 

ADHD goes together with an expansive comorbid spectrum, which anticipates a worse lifetime 

trajectory; hence, a true diagnosis and treatment of ADHD is dependent on the accurate 

identification of the symptoms and subtypes. Understanding the presence of any comorbid 

phenotype enables the determination of a most debilitating disorder in an individual during the 

clinical screening, so that the associated behavioral symptoms are treated early. It is also not 

unlikely that various conditions might follow during the later course of ADHD or post 

diagnosis; hence a precise understanding of the comorbidities can help anticipating the ones to 

appear together with ADHD symptoms. What is important to remember is that ADHD might 

not be fatal by itself but be accompanied by behaviors/disorders that can be so in multiple ways. 

Being able to understand the genetic bases of the comorbidities is the first step towards devising 

predictors of the risk of comorbidities in an individual. For instance - A late diagnosis of ADHD 

(after age 13 years) is a novel risk factor identified for SUD175. This will help an individual to 

undertake any precautions and measures like CBT or pharmacological interventions to cope up 

with developing the condition or altogether circumvent the comorbidity.  
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CHAPTER 3. VALIDITY OF METHODS USED  

There are multiple key issues that have to be considered in any genetic association analysis to 

attain robust results. Thus, importance of proper selection of patients and controls, sample size, 

accurate definition of disease phenotype, consideration of linkage disequilibrium, correction 

for multiple comparisons, and the need for functional assessment of disease-associated 

polymorphisms should guide a basic association design. While many of the methods in 

conducting a genetic association study are uniformly acknowledged, others can be specific to 

the study, or debatable and thus need to be tackled. We address here the methodologies used 

in our work, and the strategies to deal with challenging points. 

3.1 Association studies in complex trait genetics 

Genetic association studies compare the frequencies of alleles or genotypes at common variants 

in the affected group and controls. Both large-scale and small-scale association studies are 

widely used to determine variants contributing to genetic susceptibility in complex diseases. 

The studies can be carried out on families or on unrelated individuals; and the control 

individuals can be selected from unaffected family members, or community or hospital-based 

sources (Figure 9)202. 

Setting up family-based design can be challenging in terms of recruitment of related affected 

individuals and potential ascertainment bias; however, it is not affected by population 

admixture. On the contrary, recruiting unrelated groups is easier, but can contain population 

admixture. A cohort (prospective) design recruits individuals from a pre-defined population 

and independent of disease status. All these recruited individuals are followed longitudinally 

for the development of the disease. On the other hand, a case-control design is reflective 

(retrospective) in nature where individuals are ascertained by disease status202. The latter is the 

experimental design chosen for the association studies performed in this Thesis: A case-control 

GWAS in cocaine dependence (detailed in Chapter 4 ) and two case-control association studies 

with focus on SNPs with a potential impact on epigenetic variation (miRNAs and methylation) 

(Chapter 4). In both cases, the samples have been recruited in a clinical setting. 
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3.1.1 Genome-wide association studies (GWAS) 

GWAS highlights new risk loci or genes by inspecting a massive number of variants across the 

genome in a hypothesis-free manner. Over the last decade, GWAS has  remarkably contributed 

to the detection of reproducible genomic loci associated with common traits not limited to 

somatic disorder like breast and ovarian cancers, coronary artery disease or type 2 diabetes203. 

In psychiatric genetics, more than 80 loci associated with depression have been successfully 

replicated in GWASs, which seems to end the debate on the lack of replicability of GWAS. 

Increasing sample sizes - despite introducing more phenotype heterogeneity - has led to the 

identification of large number of genetic variants. Thus, GWAS for depression used more 

lenient - “minimal” phenotyping to facilitate attaining of larger sample sizes to identify 

additional risk variants157. 

The GWAS landscape has appropriately expanded to employ complex approaches of large and 

cross-disorder meta-analysis, pleiotropy and MR. Many of these new methodologies involve 

re-analysis of summary statistics results from GWAS. Full P-value summary statistics are 

defined as the aggregate P-values and association data for every variant analyzed in an 

independent GWAS. GWS variants are not necessarily causal and may tag the real causal 

variant(s). 

Our work on ADHD is founded on the association strategy that benefits from the summary 

statistics of the largest and well-powered available ADHD meta-analysis, performed on 12 

case-control samples from different populations. We used this dataset to interrogate SNPs that 

Figure 9. Methods to select 

individuals for a genetic 

association study. 

Adapted from Newton-Cheh et 

al., 2005. 
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influence methylation, or SNPs with potential to alter miRNA expression. The strength and 

direction of association were deciphered from the original ADHD meta-analysis, but the top 

findings among those disease-associated SNPs potentially related to epigenetic changes were 

determined post corrections for our numbers of analyzed SNPs (i.e. SNPs with potential 

epigenetic effects). On the other hand, the association study with cocaine dependence required 

performing a GWAS meta-analysis ourselves, using previous data from four independent 

GWAS datasets.  One of the previously GWASed samples (SAGE) included both cases and 

controls, which were non-dependent unrelated subjects. The other three samples, all accessed 

via the public repository dbGAP, included only cases, and therefore we used independent 

control samples, which included unscreened unrelated individuals with the same ethnic origin. 

3.1.2 Meta-analysis of GWAS 

Meta‐analysis is the method to combine the results of multiple studies that perform genome‐

wide genotyping to improve power for finding true associations. Meta-analyses have led to the 

identification of thousands of genotype‐trait associations. For instance - meta-analyses 

coalescing primary datasets have led to a better understanding of complex traits including 

height, body mass, Crohn’s disease and Type 2 diabetes mellitus, and the method has been 

extended by the PGC for illuminating the genetic architecture of schizophrenia, MDD, bipolar 

disorder, ADHD and autism, among other psychiatric conditions. Therefore, meta-analysis has 

become essential in human complex trait genetics204. We performed meta-analysis using four 

reported GWAS on cocaine dependence since individual genome‐wide genotype data can often 

be underpowered. A study-specific GWA QC for each SNP was carried out, and genome-wide 

SNP array data was imputed. We then computed association statistics for each SNP, including 

effect size estimates, allele frequencies, and p-values. In most GWAS meta-analyses, the 

unavailability of individual participant data in accordance with data sharing guidelines creates 

unique analytical challenges for QC, requiring specific statistical and graphical tools to track 

errors in the study-specific analysis from the available aggregated data205. This was not the case 

for our study, as we gained access to individual genotype data from all individuals in our 

cocaine dependence genetic association study, through the dbGAP platform. 

3.2 Hypothesis-free versus hypothesis-driven analyses 

The two main approaches in SNP selection for association studies are: (i) hypothesis-free 

association study (GWAS), in which a huge number of SNPs in the range of several hundred 
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thousand to over a million are studied for association with a phenotype in cases versus controls; 

and (ii) a hypothesis-based approach, in which SNPs from relevant, hypothesis-driven 

pathways are examined. These approaches are however not as dualistic as they may seem. For 

instance - A GWAS in schizoaffective disorder, bipolar type pointed to involvement of gamma-

aminobutyric acid (GABA)A receptor β1 subunit, GABRB1, which was then a starting point 

for a hypothesis-driven examination of variants in genes encoding GABA receptor subunits in 

several bipolar phenotypes. This genetic association was found to be remarkably specific to a 

precise sub-phenotype in the studied diagnostic category206.  

GWAS is independent of the prior bias of traditional biology and thus it improves the odds of 

an all-inclusive description of the genetic causes of complex diseases. Although tagged 

“hypothesis-free”, GWAS are reliant on underlying or a priori hypotheses and dictated by the 

design of genotyping platforms and analysis methodologies. The implicit hypotheses in a 

GWAS are: (i) common disease/common variant hypothesis, (ii) genotyped SNPs are the 

genetic variants responsible for the disorder or are proxies for the causal variants, and (iii) 

genetic predisposition to complex disorders is convened by independent effects of SNPs. 

Therefore, the outcomes of any psychiatric GWAS are principally determined by the extent to 

which these hypotheses hold true207. Thus, our work to discern the genomic regions that 

underlie cocaine dependence using GWAS relies on the existence of a significant SNP-based 

heritability for the studied phenotype, i.e. on the assumption that a relevant fraction of the 

heritability of the disorders is due to SNP variation. 

In the present Thesis, we also use a mixed hypothesis-driven/hypothesis-free approach for the 

association study of ADHD with SNPs in miRNA genes: Hypothesis-driven because we 

targeted a group of functional elements of the genome (miRNAs), that we suspect may be 

involved in ADHD etiology because of their regulatory role; and hypothesis-free because we 

targeted all miRNAs in the genome.. Thus, we systematically interrogated those SNPs or small 

indels that tag the genomic regions encompassing the miRNA genes. 

Similarly, our exploration of ASM in ADHD revolved around the hypothesis that SNPs 

influencing DNA methylation in cis may be involved in the etiology of the disorder based on 

their potential impact on gene regulation. We built our work on two existing studies, each of 

which identified SNPs at genome-wide scale that correlated with differential levels of 

methylation in brain tissues. Here, we consider that changes observed in brain tissues will 
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directly bridge the ADHD biology. Again, our rationale is based on a mixed hypothesis-

driven/hypothesis-free approach.    

3.3 Selection of genes and polymorphisms in candidate systems  

In hypothesis-driven association studies, the common genetic variants are chosen based on 

revelations or speculations from clinical, genetic, pharmacological or animal model studies, 

among other inputs.  

Our investigation of the ASM system in ADHD was hypothesis-driven in the sense that the 

SNPs selected for the analyses were based on evidences from two previous studies. These 

studies identified abundant QTL for DNA CpG methylation across the genome, i.e. SNPs 

influencing methylation in multiple brain regions of post-mortem human samples. We mined 

our set of candidate variants from these two published integrated datasets that defined mQTLs 

or eQTLs as correlation between SNP genotypes and DNA methylation or expression.  

Our work on the role of miRNA variation in ADHD started with a systematic selection of SNP 

variants that encompass all reported miRNA genes. We did that in a hypothesis-free manner 

(we explored all miRNAs) in view of these factors: (i) Until recently, only specific miRNAs 

have been explored in psychiatric disorders and a complete investigation of the miRNA 

common variation is yet lacking; (ii) there is a scarcity of studies documenting SNPs that 

dysregulate miRNA expression. Moreover, we systematically addressed miRNA-specific 

intricacies like (i) the presence of clustered miRNA genes versus singleton miRNAs; (ii) the 

intragenic versus intergenic location of miRNAs; and (iii) a majority -but not all- of intragenic 

miRNAs are transcribed in the same direction as the host gene, and in this situation they can 

share regulatory elements. Integrating all these conditioning factors, we selected small SNP 

and indel variants that tag miRNA genomic regions. 

3.4 Technical decisions in the association workflows 

3.4.1 Phenotype heterogeneity 

In psychiatric genetics, one of the most crucial issues while performing a case-control study is 

how to define the cases and controls. Studying complex phenotypes necessitates an adequate 

selection of the sample. To facilitate the identification of genetic risk factors, the patient group 

needs to be as homogeneous as possible. However, while selecting patients with addiction 
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disorders, it becomes challenging to control the variability because of the practice of multi-

drug abuse by the substance users208. For our study, subjects who received a diagnosis for 

cocaine dependence per DSM-IV guidelines, involving the standardized Structured Clinical 

Interview (SCID), form the case samples.  

Although a large proportion of these patients had also received diagnosis for other drug abuses 

or dependencies: 41.1% alcohol, 35.6% cannabis, 22.7% opiate and 6.8% benzodiazepines, 

they all have in common the addition to cocaine. In any case, comorbidity is the rule rather 

than the exception in all psychiatric illnesses. Approximately three-quarters (73.4%) of patients 

with cocaine abuse or dependence also present comorbidities, such as MDD, schizophrenia, 

ADHD, anxiety or personality disorders209. Such comorbidities may interfere with the true 

associations, and a potential solution to uncover these true associations is to compare the results 

from multiple individual disorder-based case studies and inspect the replicated hits. However, 

as of now, there is a scarcity of studies that focus on a single drug use due to limited availability 

of samples and therefore, selecting the multi-drug abusers as cases seem to be the sole choice 

in studying illicit SUDs like cocaine-use disorder. 

3.4.2 Selection of the controls 

Another debated issue for association studies in substance use disorders is the selection of 

controls as in terms of exposed and non-exposed controls. Some experts in the field argue that 

an appropriate set of controls for drug dependence studies are the individuals who have been 

exposed to the drug of interest at least once in their lives and have not developed a dependency 

to that drug210,211. In such a scenario, the association study would capture the predisposing 

genetic component involved in the transition from use to addiction, but it would exclude all 

possibilities for examination of key risk factors for drug dependence i.e. impulsivity and risk-

taking behavior. These risk factors are the primary compelling drivers for individuals’ first 

contact with drugs and show a high genetic component212. Other experts favor the practice of 

using control individuals who do not show dependency to any drug of abuse, irrespective of 

their exposure status to the drug213,214. Most published genetic studies in addiction tend to 

utilize unexposed controls which is suitable for assessing dependencies to drugs but may lead 

to a reduced power when analyzing intermediate or later stages of addiction215. GWASs of 

alcohol and nicotine dependence typically use exposed controls. However, for studying illicit 

drug dependency, this can severely reduce the sample size of the control group.  
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In order not to miss those risk factors that explain the initial steps that lead to drug addiction 

(e.g. risk-taking behaviors), we used unscreened controls from the general population accessed 

from blood donors from the Blood and Tissue Bank of Barcelona. The blood donation protocol 

excludes individuals who have ever injected non-prescribed drugs. We also estimated that any 

probable contamination of cocaine-dependent individuals in our control sample from the 

general population is less than 1% (given that 3.4% of adults in Spain consume cocaine at least 

once in their lives216, and some 15-16% of these individuals will develop dependence within 

10 years of first cocaine use217). This approach, due to the presence of some cases in the control 

sample, may possibly cause us to miss a few true association (false negatives), but should not 

generate false positives. Therefore, the likelihood of obtaining altered results due to this 

selection bias if any would be negligible.  

3.4.3 Confounding factors 

The samples selected for association studies may be a mix of individuals belonging to different 

groups because of ethnicity differences, or due to technical disparities in genotyping. The 

presence of subgroups in the study sample may reflect a population stratification bias. In an 

association design, both cases and controls should be represented in an equivalent manner in 

terms of existing subgroups, else the population stratification may cause false positive 

associations: i.e. the differences observed in the allelic or genotypic frequencies between cases 

and controls would be due to the factor that differentiates the subgroups rather than the 

phenotype investigated for218. It is therefore imperative to construct genetically homogeneous 

samples of cases and controls with individuals from the same region and/or same ethnic group. 

We therefore limited our cases and controls to individuals of European ancestry. 

More confounding variables can exist besides population stratification, again leading to false 

positive associations if not corrected for. For instance, sex of an individual is known to be a 

confounding variable in association studies on cocaine dependence as this disorder shows a 

higher prevalence in males. To control for this confounder, we maintained the same gender 

proportion in both cases and controls. Yet another possible confounder is age, with a 

differential distribution in cases and controls, and this was included as a covariate in our 

analysis.  

In GWAS studies confounding factors can be readily detected due to the availability of large 

numbers of genotypes. Statistical method like multidimensional scaling (MDS) and principal 
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component analysis (PCA) allow for the identification of any underlying population 

stratification and confounding variables (like age, sex and related individuals)219. We used PCA 

to identify the principal components (PCs) to be used as covariates in our case-control 

association design219. As a general rule, the first 10 or 20 PCs are considered covariates, to 

eliminate the need of figuring out the possible confounders, and this approach reduces the bias 

in the downstream analyses. The four GWASs used for our meta-analysis on cocaine 

dependence had also addressed the issue of population stratification and other confounding 

variables through these approaches. 

3.4.4 Genotyping errors  

Genome-wide association studies start with automated genotyping of a massive number of 

evenly distributed polymorphisms, typically SNPs, in a large number of samples, and erroneous 

allocation of genotypes may arise when the observed genotype for an individual does not 

correspond to the true genotype. It is therefore usual to include some sample duplicates in the 

genotyping plates, samples with known genotypes and negative controls to test the technical 

consistency of the results. Poor quality or low DNA concentration are the main contributors to 

errors in genotyping220. To restrict spurious results arising from genotyping errors, the 

genotyping rate is determined per variant and per individual and the markers not meeting a 

certain threshold (80-90%) were eliminated from our analysis. Genotyping errors harbored in 

the assay can be spotted in the form of SNPs that show deviations from Hardy-Weinberg 

equilibrium (HWE)221. We applied the HWE checks and a high genotyping rate to resolve any 

low-quality genotyped markers prior to imputation.  

3.4.5 Genotype imputation and controls from other studies 

Genotype imputation is a technique that allows for an accurate evaluation of the evidence for 

association of a phenotype with genetic markers that are not directly genotyped, based on the 

patterns of LD among these markers in a reference sample (Figure 10). Imputation is an 

essential tool in GWAS design and increases the power of GWAS. It is particularly useful for 

standardizing and combining the association results across studies that rely on different 

genotyping platforms222, also an issue encountered in our work. The genotype data across 

different studies is required to be grouped prior to the imputation222 and in an ideal scenario, 

these data should be generated using the same genotyping platforms. We observed that 

grouping cases and controls from the same study but genotyped on different chips would still 
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show evidences of population stratification. To resolve this known erroneous source, we 

selected the controls from other studies but genotyped on the same platform and restated the 

analysis using this matched set of controls.  

 

As a good quality imputation relies on the reference panel employed, the panel must 

comprehend as many individuals as possible and must be genetically/ethnically similar to the 

target sample223. A key issue in imputation hereafter is deciding which markers are taken 

forward for analysis. Not all markers can be well imputed, and different measures have been 

suggested to help identify satisfactorily imputed markers. For example – including genotypes 

that are imputed with >90% certainty (the average probability that an imputed genotype call is 

correct) or utilize the r2 coefficient that captures the correlation between imputed genotype 

calls and the true underlying genotypes222. We incorporated a set of only high-quality markers 

where autosomal SNPs were found in all datasets, MAF > 0.05, HWE P value > 1e-03, SNP 

call rate > 0.98, and which were finally pruned for LD (with r2 < 0.2 in a 200Kb SNPs window). 

Figure 10. Genotype 

imputation within a sample 

of apparently unrelated 

individuals in three 

consecutive steps (A, B, C). 

Adapted from Li et al., 2010. 
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 3.4.6 Sample size and statistical power 

The statistical power in any association study refers to the probability of detecting a real 

association and is directly dependent on the sample size used. Multiple factors can influence 

the estimation of statistical power, such as disease prevalence, sample size, the allelic 

frequencies of markers associated with the disease, odds-ratio of these markers (i.e. the risk 

they confer) and the inheritance model224. In our association study on cocaine dependence we 

have aggregated cases and controls from four previous works, together with additional control 

individuals. As a result, the overall sample size has increased and so has the statistical power 

to detect true associations than in either of the input studies when taken individually. However, 

although our GWAS meta-analysis comprises the largest sample of cocaine-dependent cases 

of European descent, the statistical power is still insufficient to detect significant associations 

at genome-wide scale.  

3.4.7 Multiple testing correction 

As a massive number of polymorphic variants are tested for in GWASs, the number of 

statistical comparisons performed to detect associations increases, and concurrently increases 

the likelihood of detecting random associations or false positives. Different rigorous thresholds 

for correcting multiple comparisons are therefore applied to control the false positives, 

although there is no single universal method. The most rigorous of the methods curtails the 

false positives but may increase the false negative associations; and vice versa. We 

implemented the following two methods to control for multiple tests: 

(i) Bonferroni correction: Bonferroni determined threshold restricts the probability of finding 

false positives to less than 5%. A new threshold of significance (α') is established based on the 

number of independent tests performed (n) and is calculated as α' = α / n, where α = 0.05 and 

the null hypothesis is rejected only if the p-value is less than the α’. The method is highly 

conservative and assumes tests independence (which is often not the case), in a way that the 

probability of false negatives increases considerably, when a high number of tests are 

performed. 

(ii) FDR: It estimates the proportion of false positive associations from all the associations 

obtained.  It can be expressed as fp/fp + tp where fp is the number of false-positive associations 

and tp is the number of true-positive associations. The FDR correction is much less likely to 
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eliminate true associations (false negatives) at the expense of having an acceptable proportion 

of false-positive associations.    

While the Bonferroni false positive rate of 0.05 means that 5% of all results will be truly 

negative, the FDR value of 0.05 means that 5% of declared positive results are truly negative. 

Some authors argue that the most preferable approach is FDR225. For our association studies of 

ADHD with miRNA variation and ASM-variants, we applied FDR corrections; although in 

both these works, we also obtain results that attain Bonferroni significance. On the other hand, 

GWAS use a universal genome-wide significance Bonferroni corrected threshold of 5x10-8 

(0.05/106), considering one million independent tests assuming that each SNP is independent 

of each other.  However, this is not the case given the dependent nature of genetic data, where 

SNPs in LD are correlated to some degree226. Therefore, a second threshold has been 

established at 1x10-5 to discover variants showing a suggestive association, as meaningful 

associations can lie 'hidden' below current thresholds and these 'sub-threshold' signals may 

represent novel loci227.  

Lookup 

In an attempt to identify reliable disease-associated signals through our studies, we applied 

methodologies adapted to the psychiatric association studies. Both hypothesis-free and 

hypothesis-driven approaches were incorporated to test multiple hypotheses underlying the 

disease etiology of ADHD and cocaine dependence and shared risk factors. We investigated 

potentially functional SNP sets with impact on epigenetic variation (methylation or miRNAs), 

and also SNPs on a genome-wide scale. We applied stringent statistical measures to control for 

false positive signals and possible confounders (like population stratification, gender or 

genotyping errors). While we used the largest pre-existing summary statistics for ADHD to 

detect associations in two epigenetic systems, the sample size of the GWAS performed on 

cocaine dependence is still limited and needs further amplification. 
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CHAPTER 4. INTERPRETING THE UTILITY OF DETECTED 

GENETIC ASSOCIATIONS – AND THE CHALLENGES 

4.1 Utility of associations identified in three systems 

The three systems in question - miRNA genes and DNA methylation in ADHD and protein-

coding genes in cocaine dependence - essentially vary in nature and so do the methods that 

substantiate the highlighted genetic loci in these systems. We used a number of bioinformatic 

tools together with annotation resources to connect the contributions of associated variants to 

gene expression or phenotype. Below we elaborate on the prioritization of association signals.  

4.1.1 System 1: miRNA genes in ADHD 

Our analysis involved a total of 1,761 autosomal miRNA genes out of 1,881 published miRNAs 

(miRBase v21) that were flagged by approximately 22,000 tagSNPs.  Inspection of tagSNPs in 

the summary statistics of ADHD meta analyses (that contained 76.3% of the tag variants) 

revealed 19 significant associations with ADHD and highlighted 12 miRNAs. All these 

miRNAs are located within introns of host protein-coding genes. The associated variants lie in 

the putative regulatory regions of the miRNA genes or in the promoter regions of the host 

protein-coding genes; however this is not that rare since the actual miRNA gene is only 19-21 

nucleotides long, and the likelihood of a tagSNP actually falling within few base pairs can be 

ultra-low. Also, about 51% of the miRNAs in the genome are located within the sequence of a 

protein-coding gene. In any case, our results raise the question whether the disorder associates 

with the host protein-coding gene or with the miRNA contained in it. Notably, two of the 

highlighted loci in this analysis, on chromosomes 1 and 7, have been reported as among the 

top ADHD risk loci in the source ADHD GWAS meta-analysis. 

We annotated the highlighted miRNAs using (i) brain-expression data (ii) target gene analysis, 

and (iii) pathway analysis.  

(i) Brain-expression data 

Around 75% of annotated miRNAs are detectable in human brain228 and 70% in the mouse 

brain229. There are many miRNAs that are specifically or highly expressed in the mammalian 

brain compared to other organs, and they are differentially distributed between distinct brain 

areas228,229. For instance - miR-128 and miR-124 are brain-enriched miRNAs and miR-9-1 is 

brain-specific229. Even among the closely related cells of the developing brain, miRNA 
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abundance exhibits cell type-specific patterns and highly dynamic changes in the expression 

(Figure 11)230.  

Therefore, looking into the miRNAs’ expression profiles across brain tissues is essential to 

prioritize the relevant miRNAs. All but one of the 12 highlighted miRNAs are brain-expressed 

according to the information from different expression databases. In a tissue-wise expression 

dataset across the brain, cerebellum, heart, testis and kidney (https://bmi.ana.med.uni-

muenchen.de/miriad/), miR-6734 and miR-7-1 were more expressed in the brain and 

cerebellum than in other reported tissues. Of interest is miR-4655, which is seen to be expressed 

solely in the brain. The expression profiles from the cortical and subcortical structures of 

human brain revealed the presence of miRNAs in cerebellar cortex (miR-7-1, miR-3135a), 

primary somatosensory cortex (miR-3666, miR-4271, miR-4655-3p), primary visual  cortex 

(miR-4655-5p) and ventral parietal cortex (miR-5193). MiR-7-1 was also found to be 

differentially expressed between PFC and cerebellum during late childhood development. PFC 

is critical for ‘high-level’ executive functions, including working memory, sustained attention, 

decision-making, and emotional control231 (Figure 12). ADHD is believed to result from 

weaker structure and function of PFC circuits, especially in the right hemisphere. In adolescent 

SHR, a model for ADHD, the diminished function of glutamate receptor (AMPARs) is 

observed in the PFC, which can be restored by the administration of a clinically relevant dose 

A. B. 

Figure 11. A: Examples of miRNAs that shape gene networks during the evolution of human and non-human 

primate brain development. B: miRNA function in neuronal and glial cell fate determination. 

Adapted from Prodromidou and Matsas, 2019; and Rajman and Schratt, 2017. 
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of methylphenidate231. Likewise, all effective pharmacologic treatments for ADHD enhance 

catecholamine signaling in the PFC and strengthen its regulation of attention and behavior 

(Figure 13)232.   

  

 

 

 

 

 

 

 

 

 

 

 

A. B. 

Figure 12. A: Out-of-tune PFC in ADHD. B: Additional dysfunctions within the PFC–limbic network that result 

in comorbidities associated with ADHD. 

Adapted from basicmedicalkey.com. 

 

Figure 13. Chronic treatment with 

atomoxetine in ADHD. NE: norepinephrine; 

DA:  dopamine; VMAT2: Vesicular transporter. 

Adapted from basicmedicalkey.com. 
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(ii) Target gene analysis  

Analysis of miRNA targets has gained momentum in psychiatric phenotypes and is useful in 

connecting the underlying regulatory mechanisms. Investigations on schizophrenia have 

identified the role of putative miR-137 target genes through over-expression experiments of 

miR-137 in vitro. Among the several loci significantly associated with schizophrenia is the 

SNP within an intron of a host gene that encodes a long non-coding RNA (lncRNA) and 

contains the miR-137 gene. Interestingly, four of the other identified GWS hits in schizophrenia 

were predicted to be targets of miR-137, which tied the functionality of the pri-miR-137 SNP 

in schizophrenia. MiR-137-mediated regulation of the four genes was further confirmed in vitro 

by luciferase assays233. A gene, RORa, associated with both autism and schizophrenia, was 

found to be directly repressed by miR-137234. Likewise, in MDD,  downregulation of primate 

specific miR-1202 is observed in the PFC. Bioinformatic and in vitro studies supported a 

glutamate receptor gene, GRM4, as a target of miR-1202, which was subsequently implicated 

in anxiety-related behaviors and forms an attractive drug target235.  

Along these lines, we investigated connections of ADHD-associated miRNAs with genes 

known to be associated with traits that underlie ADHD. Three of the highlighted miRNAs - 

miR-3666, miR-7-1 and miR-1273h have validated target sites - 9, 18 and 1 mRNA, 

respectively. Some of these target genes have previously been reported as associated with 

psychiatric traits in the NHGRI-EBI Catalog of human genome-wide association studies 

(https://www.ebi.ac.uk/gwas/). The EGFR gene, targeted by miR-7-1, is located in one of the 

top regions for lithium-responsive bipolar disorder. Another gene targeted by miR-7-1 is 

EIF4E, which is associated with cognitive empathy and depressive episodes in bipolar disorder. 

Additionally, SNPs in the miR-3666-targeted TAC1 gene have been found associated with 

general risk-taking and feeling nervous traits in previous large-scale GWASs. MEOX2, targeted 

by miR-3666, is associated with brain region and intracranial volumes. We observe using the 

Genotype-Tissue Expression (GTEx) data that the targets of miR-7-1 (e.g. SLC17A7, SNCA) 

are highly expressed in brain relative to other tissues, while the targets of miR-3666 show low 

to moderate expression in brain.  It is likely that, as additional genes will be identified in even 

larger ADHD GWASs, expression of some brain-expressed genes found associated with 

ADHD may be directly shaped by the variation contained in miRNAs, as observed in the case 

of schizophrenia.  
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(iii) Pathway analysis 

Pathway analysis helps to characterize the biological functions controlled by the miRNAs and 

interpret those which would be dysregulated due to altered miRNA-mRNA binding or to 

altered levels of the miRNA (Figure 14). The rationale is the following: i) Every single miRNA 

has multiple targets, ii) several microRNAs may contribute to ADHD susceptibility, iii) not all 

the genes targeted by these miRNAs do contribute to ADHD susceptibility, and iv) finding that 

several of the targeted genes belong to a functional pathway that is relevant to brain function 

would help to identify the relevant ones. We conducted pathway analyses using Ingenuity 

Pathway Analysis (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), and included 

only experimentally validated gene targets to avoid potentially erroneous miRNA targeting. 

 

 

 

 

 

 

 

We found two biological pathways that arise from the direct regulation of ten and nine focal 

miRNAs respectively. One of the pathways is involved in neurological diseases and arises from 

the miRNA-mediated regulation of two serotonin receptor genes - HTR1D and HTR4. In this 

pathway, miR-4271 and miR-5193 inhibit HTR1D and HTR4, respectively, including several 

other genes. Another gene targeted by miR-4271 in the network is YWHAG, previously found 

associated with schizophrenia and encoding a protein that mediates signal transduction by 

binding to phosphoserine-containing proteins. 

Aggregating these functional annotations, we propose at least miR-7-1 and miR-3666 as 

promising candidates since both are brain-expressed miRNAs, have validated brain-expressed 

targets, and homologs in model species. 

Figure 14. Dysregulated pathways 

due to the genetic variants that 

modify the miRNA-mRNA 

relationship. 

Adapted from Wilk and Braun, 

2018. 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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4.1.2 System 2: Genetic variation that influences brain methylation in ADHD 

We examined the possibility of a connection between ADHD and genetic variants that have 

been reported to alter methylation in the brain. In the process, we identified a total of 60 variants 

from eight LD blocks that are associated with ADHD and which were then found to correlate 

with differential levels of methylation at six different CpG sites.  

We carried out a four-fold functional annotation of the significant ASM-SNPs:  

(i) HaploReg and ENCODE data 

One of the popular methods to annotate non-coding variants is the HaploReg tool, which 

annotates variants with respect to ENCODE data. HaploReg has effectively characterized SNPs 

associated with cardiovascular disease, autoimmune disorders, cancer, diabetes, and 

neurological disorders236. It can be used to find if the SNP of interest or nearby loci are 

positioned in defined promoters, enhancers, or protein binding sites. Active promoters are 

enriched for H3K4me3 and histone H3 or H4 acetylation. Primed enhancers are marked by 

H3K4me1 together with the depletion of H3K4me3, whereas active enhancers are enriched for 

H3K4me1 and H3K27ac237 (Figure 15). An increasing number of methylation-related 

functions of specific sites (like H3K4, H3K9, H3K27 etc.) are implicated in major psychiatric 

diseases. For instance, increased levels of H3K4 methylation mark are found in the 

hippocampus during memory formation, and modifiers of H3K4 methylation are mutated in 

cognitive impairments238. Similarly, genetic risk variants for seven major psychiatric traits 

(including ADHD) are found to be enriched in cortical H3K27ac domains239.  

Figure 15. Genetic variants 

are associated with 

epigenetic regulation, 

including DNA methylation 

(A), histone modification 

(B), and regulatory 

elements (C). 

Adapted from Ye et al., 

2020. 
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We therefore annotated the regions containing those ASM-SNPs found associated with ADHD 

for the presence of histone modifications related to enhancer regions (H3K4me1 and H3K27ac) 

and promoters (H3K4me3 and H3K9ac) in 10 different brain regions. We observed that 85% 

of the 60 ASM-SNPs are located within a region with an enhancer or promoter histone mark 

in at least one brain area. Correspondingly, all the SNPs in the LD blocks of ASM-SNPs lie 

within regions with histone marks, ranging from 3 to 17 in enhancer regions and from 4 to 16 

in promoter regions. 

(ii) eQTL analysis 

One of the first methods developed to map the functional effects of non-coding variants is the 

inspection of the eQTLs, that is, SNPs at which the genotype correlates with expression of one 

or more genes. Mapping of eQTLs within haplotype blocks drawn in from the ASM association 

results can point genes whose genetically regulated expression is implicated in the phenotype. 

To date, inquiries into cis-acting eQTLs are more common than those that operate in trans 

since resolving trans-acting eQTLs can present computational challenges99. 

We analyzed eQTLs through the GTEx portal for all available brain tissues: amygdala, anterior 

cingulate cortex (BA24), caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex, 

frontal cortex (BA9), hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen 

basal ganglia, spinal cord cervical c-1, and substantia nigra. Seven out of the eight putative 

causal SNPs are eQTLs for a minimum of one gene in the brain. Fifty-two additional SNPs 

marked by the tagSNPs are also eQTLs for different genes in brain regions. We focused on 

methylation occurring in promoter regions, which is well established to alter gene expression. 

The eQTLs for ARTN, C2orf82, and PIDD1 correlated with methylation of CpG sites lying in 

their possible promoter regions and presented opposite directions for methylation and gene 

expression levels.  

It is well known that DNA methylation in promoter regions inversely correlates with the levels 

of gene expression18, and the observed effects of all the ASM variants associated with ADHD 

in our study are in concordance with this statement. The ADHD risk alleles are associated with 

increased expressions of ARTN (in cerebellum and subcortical region), PIDD1 (in cerebellum 

and cortex), and with a decreased expression of C2orf82 (in cortical, subcortical, and cerebellar 

regions). The eQTL analysis helps to get insight on the functions that are altered in the disorder, 

as they connect the ‘aseptic’ genetic variants to actual genes. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776507/#CR18
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 (iii) Transcriptome imputation 

A recently developed approach called transcriptome imputation integrates genotype data and 

publicly accessible expression data to predict altered gene expression in traits. Most of the 

predicted expression-trait associations by transcriptome imputation overlay the GWAS risk 

loci, so this method can capably identify potential causal genes within established risk loci240 

(Figure 16). We used a generalized framework called MetaXcan that can incorporate the results 

of multiple transcriptome-wide association studies (TWAS) and colocalization methods (eQTL 

and GWAS signals) to investigate the gene to phenotype relationship across more than 100 

phenotypes with greater power and fewer false positives241. FUSION is another such software 

for transcriptome imputation.  

 

 

 

 

 

 

 

 

 

 

 

For the MetaXcan run, the input was the summary statistics of ADHD GWAS meta-

analysis, and prediction models were trained with RNA-Seq data of 10 GTEx brain tissues and 

CommonMind dorsolateral prefrontal cortex. The SNP covariance matrices were generated 

Figure 16. Schematic illustration 

of the TWAS approach in the 

case of Schizophrenia. 

Adapted from Gusev et al., 2018. 
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using the 1000 Genomes Project Phase 3 EUR genotypes of the prediction model SNPs. We 

imputed all the SNPs, together with the ASMs (to account for LD) located within ±1 Mb from 

the transcription start site (TSS) of each gene. The imputation results can help infer if the 

overall genetically determined expression of the genes (using the input SNPs) correlated with 

ADHD. We found significant associations between predicted expression levels of genes and 

ADHD. ARTN and PIDD1 again showed statistically significant increased expression in three 

and four brain tissues respectively, while a decreased expression of C2orf82 was observed in 

eleven brain tissues. 

 (iv) Influence of SNPs on subcortical brain structures 

Structural MRI data has established that patients with ADHD have altered brains and the 

reported brain differences are independent of the symptom severity, comorbid disorders, or 

medication effects, and robustly related to the ADHD diagnosis itself. Accumbens, amygdala, 

caudate, hippocampus, and putamen are reported to have smaller volumes in ADHD patients. 

The largest effect was found in the amygdala and is of particular importance since this region 

links ADHD to problems in emotional regulation242. We therefore obtained the summary 

statistics of the GWAS meta-analysis of eight MRI volumetric measures of nucleus accumbens, 

amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus produced by the 

Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium243. We 

investigated in this summary statistics if the associated ASM-SNPs can as well influence the 

subcortical brain structures (Figure 17). We found that three of the putative causal SNPs that 

correlate with methylation of three different CpGs also correlate with volumes of nucleus 

accumbens, caudate nucleus and thalamus. Moreover, all the ASM-SNPs in the LD block 

for C2orf82 nominally correlate with increased volumes of nucleus accumbens and caudate 

nucleus subcortical regions.  

Figure 17. A model of 

integration of brain 

imaging data and 

GWAS summary data. 

Adapted from Knuston 

and Pan, 2020. 
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The stated four-fold functional evidences (Figure 18) emphasize the candidacy of ARTN and 

C2orf82 in ADHD development and lends more confidence for performing downstream 

functional analyses, e.g. by generating genetically modified animal models. 

 

 

 

 

4.1.3 System 3: Protein-coding genes in cocaine-dependence 

We conducted a GWAS meta-analysis of cocaine dependence using datasets from the dbGaP 

repository and identified 22 independent regions that contain at least one variant with a 

suggestive association (P < 1e-05). No genome-wide significant finding was identified in our 

study. 

Results from GWAS do not directly translate into causal variants in general, as the majority of 

hits are within non-coding regions, and the LD present among the variants causes the effects 

to statistically spread out across multiple variants244. GWAS SNPs are enriched for functional 

annotations, with 81% of GWAS LD regions containing at least one functional SNP245. Earlier 

developed resources and tools did annotate SNPs only across coding regions, but newer 

methods feature also the non-coding regions. However, the interpretation of the extracted 

biological information from various available repositories is not always straightforward or 

error-free. Two methods that have been specifically developed for the analysis of GWAS data 

are FUMA GWAS (Functional Mapping and Annotation of Genome-Wide Association 

Studies) and INFERNO (INFERring the molecular mechanisms of Noncoding genetic 

variants), and they successfully integrate many forms of functional genomics annotations236. 

FUMA GWAS represents a statistical framework that functionally annotates GWAS findings 

and prioritizes the most likely causal SNPs and genes by accumulating positional, eQTL and 

chromatin interaction mappings from 18 of the publicly available datasets246 (Figure 19). 

FUMA has successfully annotated GWAS variants associated with schizophrenia, depression 

and volumetric variations of human brain. INFERNO is another method to annotate GWAS 

Figure 18. A model of integration of mQTL, eQTL and GWAS data. 

Adapted from Zhao et al., 2019. 
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summary statistics by identifying nearby SNPs that are likely causal using similar datasets as 

FUMA (Figure 19).  

 

 

 

 

To identify potentially interesting regions with FUMA, we considered SNPs that showed a 

suggestive level of association (P < 1e-05), in absence of any GWS hit (P < 5e-08) in our SNP-

based analysis. We identified 23 lead SNPs which correspond to 22 genomic risk loci 

containing 112 genes. Interestingly, the risk locus located on chromosome 6 (6p22.1) contains 

the maximum number of suggestive associations and overlaps with a region associated with 

schizophrenia. This region is defined by two lead SNPs (rs806973, P = 3.1e-06 and rs56401801 

with P=3.4e-06) and includes 77 genes and 458 nominally associated SNPs. The genomic 

region is highly enriched  for genes that encode histones and proteins of the immune system, 

two functional groups known to be associated with psychiatric illnesses247. Moreover, most of 

the SNPs in this region (447) are brain eQTLs for at least one member of a small group of 12 

genes, including BTN3A2, HIST1H2AK, ZSCAN31, PRSS16 and ZNF184. 

These functional results coupled with the genetic correlations between phenotypes point 

towards a shared genetic basis to the clinical co-occurrence of schizophrenia and cocaine 

dependence. 

Figure 19. FUMA 

pipeline to 

annotate and 

prioritize SNPs 

and genes from 

GWAS summary 

statistics. 

Adapted from 

Watanabe et al., 

2017. 
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4.2 Challenges in functional mapping of associations 

Our analysis on these candidate systems highlighted some gaps that persist in the omics 

knowledge and can mask the relevance of newly discovered associations. Below we review 

some of these obstacles. 

4.2.1 Current deficiencies in functional annotations 

GWASs have found that a majority of the associated SNPs do not lie within genes, which can 

imply that the non-coding regions are clinically pertinent too. International consortiums like 

ENCODE developed methods to annotate transcription factor binding sites, chromatin states, 

DNA methylation, RNA-protein interactions, and three-dimensional chromatin interactions 

(Figure 20). Additional programs like the NIH Roadmap characterized chromatin marks 

throughout the genome, and modENCODE performed ENCODE framework in model systems 

such as yeast, worms, and flies. This information now benefits tools like HaploReg and 

RegulomeDB that annotate variants for regulatory roles. Despite these continued efforts, 

genome-wide exploration of non-coding regions for their contribution to disease phenotypes 

still lacks insight into functional aspects. And merely a handful of studies have addressed how 

the genetic variation can influence the non-coding genome mediated regulation.  

 

 

  

Figure 20. Data production by ENCODE project for the identification of functional elements. 

Adapted from encodeproject.org. 
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4.2.1.1 SNP-miRNA-mRNA connections or miRNA-eQTLs 

The follow-up of any SNP-based association results includes the inspection of the influence of 

a SNP on the expression of nearby protein-coding genes (eQTL analysis). However, 

connections between SNPs and the expression of miRNAs is still in its infancy (Figure 21). 

Most studies have reported miRNA-eQTLs using whole blood, a straightforwardly available 

tissue. A whole blood miRNA-eQTL mapping discovered that cis-miRNA-eQTLs are enriched 

for cis-mRNA-eQTLs and regulatory SNPs and >50% of cis-miRNA-eQTLs are located 

upstream of mature/primary miRNAs. Notably, 11 mature miRNAs from intragenic miRNAs 

shared cis eQTLs with their host protein-coding genes, and numerous cis-miRNA-eQTLs were 

found associated with complex diseases/traits in GWAS248. A key question here is whether the 

genetic control of gene expression is similar in brain and blood tissues, and if whole blood is a 

useful ‘proxy’ for investigating brain eQTLs. An overlap has been demonstrated between blood 

and brain eQTLs from various studies249, but it sometimes happens that the observed co-

expression is due to the contamination of brain tissue with blood during extraction. Whole 

blood investigations may extend well to a set of genes that show tissue-independent expression 

unlike miRNAs that can be brain-specific250. The best approach remains to infer eQTLs in a 

tissue-specific manner wherever feasible249,250. 

Only recently, studies are emerging to fill this deficiency in the miRNA-eQTL literature by 

providing resources specific to brain tissue. For instance, in mouse brain, expression levels of 

881 miRNAs and 1,416 genomic locations were studied to identify miRNA-eQTLs. Of the 38 

significant miRNA-eQTLs identified, 10 miRNAs had target genes enriched for brain-related 

pathways and mapped to four miRNA-eQTL hotspots251. On the other hand, brain tissue from 

humans has not been the focus of any genome-wide miRNA-eQTL analyses despite the known 

Figure 21. A model for miRNA eQTL association networks. sig.: Significantly associated 

Adapted from Branco et al., 2018. 
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importance of miRNAs in brain-related diseases (Figure 22). This limits us in studying the 

impact of the identified variants on the cis-miRNA gene expression in brain. 

 

 

 

4.2.1.2 Brain expression of miRNAs 

There are now over 2700 miRNAs discovered in humans of which 75% are expressed in the 

brain228. Curiously, until now, merely a handful of miRNAs are expressed in a brain-specific 

or brain-enriched manner252. Fewer human brain samples have been mined for the expression 

levels of miRNAs relative to other more available tissue types, and most studies do not focus 

on all brain structures. Even with a paucity of data of brain expression of miRNAs, a number 

of brain-specific miRNAs have been linked with the shaping of human cognition and 

neuropsychiatric disorders so far81.  

Resources like human miRNA Tissue Atlas (https://ccb-web.cs.uni-saarland.de/tissueatlas/) 

have quantified the abundance of miRNAs in 61 tissue biopsies of different organs from two 

individuals. The project focused on ~2000 miRNAs, but it lacks expression data for the newly 

referenced miRNAs and for individuals showing disordered phenotypes. A more widespread 

resource like BrainSpan, Atlas of the Developing Human Brain (https://www.brainspan.org) 

provides annotations for over 16 structures across 13 developmental stages. Other resources 

like miRIAD or miRmine have also annotated a proportion of the miRNAs. However, there 

exist different annotations for the same miRNA across multiple platforms, and it is unclear 

which annotation is more reliable. For instance, miR-4655 and miR-5193 are brain-expressed 

according to BrainSpan, but not so by miRmine. The inconsistencies pose questions on the 

study methods used for data generation, and the need to have systematized protocols. 

Disorder 

Figure 22. MiRNA-eQTL analyses across GWAS regions associated with a disorder. 

Adapted from Branco et al., 2018. 

 

https://ccb-web.cs.uni-saarland.de/tissueatlas/
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Many studies use microarray technology, which limits the number of miRNAs quantified and 

the discovery of novel miRNAs. To address this limitation, novel methods like small RNA-seq 

have been developed that uncovered 99 putative novel miRNAs from 93 post-mortem human 

prefrontal cortex samples253. This yields the possibility that there are brain-specific miRNAs 

yet to be discovered. Also, for cross-species miRNA comparability, similar pipelines are in 

progress that estimate miRNA expression in mouse across cell types within nervous system 

tissues254.   

4.2.1.3 MiRNA targets 

MiRNA targets are identified by three general approaches: bioinformatic target prediction, 

biochemical isolation of miRNA/mRNA complexes, and transcriptomic/proteomic analysis. 

The essential basis of target binding used by bioinformatic methods is the 6-nucleotides long 

seed sequence of the miRNA to which mRNAs can bind. But complementary base-pairing rule 

applied to this small seed sequence usually yields a large number of target genes, many of 

which are likely to be false negatives. To improve the accuracy of target prediction, additional 

factors including sequence conservation, flanking sequence determinants, and compensatory 

pairing outside the seed region are incorporated by some tools (Figure 23A). miRNA targeting 

can occur anywhere along the entire mRNA (Figure 23B); however, many algorithms limit the 

predicted targets to mRNA 3′ UTRs  as this area is assumed to be the most frequently targetable 

by miRNAs255.  

 

Figure 23. A: Additional base-pairing beyond the seed sequences with the 3’ end of miRNA in miRNA 
targeting. B: miRNA-mRNA binding outside of 3’UTR of target mRNA. 

Adapted from Broughton et al., 2016, and McGeary et al., 2019. 
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As it stands, a confident prediction of miRNA targets remains disguised given a lack of 

validation of the predictions. It will be particularly useful to integrate more datasets from the 

biochemical and transcriptomic approaches that isolate co-expressed miRNA-mRNAs and 

quantify the protein outputs, so as to refine the existing bioinformatic target prediction models. 

4.2.1.4 MiRNA annotation in model species  

Analysis of miRBase shows a large difference between the number of miRNAs referenced in 

human (2656 mature miRNAs, 1917 precursors), mouse (1978 mature miRNAs, 1234 

precursors), and in rat (764 mature miRNAs, 496 precursors)75. Thus, it seems reasonable to 

state that a large percentage of the miRNAs expressed in the two model species have not been 

uncovered yet. Elucidation of miRNAs in the model species is a key factor in devising 

functional experiments for brain-related disorders, as a high percentage of miRNAs can be 

expressed in rat or mouse brain. For instance, 365 of 495 known rat miRNAs were found to be 

expressed in five CNS structures (Figure 24). In addition, 90 novel miRNAs that regulate the 

functions of neurons were discovered in rats with some of them having orthologs in mouse or 

human256. 

  

 

4.2.1.5 Gender-specific annotations 

Gender differences in the prevalence of psychiatric disorders, including ADHD and addiction, 

is among the established findings in psychiatry. Sex hormone regulated miRNAs have been 

implicated in diseases, including psychiatric, autoimmune or metabolic phenotypes. Initial 

attempts have been made to identify the sex-specific eQTLs (ss-eQTLs) and understand how 

the gender of an individual interacts with genotypes to produce different phenotypes. Co-

localization of ss-eQTLs and variants that correlate with complex traits may imply a 

participation of the ss-eQTL loci in the appearance of sexually dimorphic traits. Further well-

powered tissue-specific studies are needed to uncover sex-specific eQTLs and genes 

differentially expressed between the genders257. 

Figure 24. 

Enrichment/depletion 

of miRNAs in 

structures of rat CNS. 

Adapted from Soula et 

al., 2018. 
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4.2.2 Lack of data integration in bioinformatics  

The need to fill-in the missing epigenetics has accelerated the creation of novel resources. 

Unfortunately, the enigma expands when it comes to the versatility of these methods in 

annotating one’s own data. Current methods like Ensembl Variant Effect Predictor (VEP), 

RegulomeDB and FunciSNP can annotate the effect of variants on miRNA and regulatory 

regions using only functional genomics information. There also exist more dedicated tools that 

determine the probability of a variant to interfere with miRNA-mediated gene regulation in 

view of base pairing, thermodynamics, sequence conservation, number of targets sites per 

transcript, and miRNA expression level.  

Very often, a new tool is created to address a missing but complementary functionality rather 

than integrating it to the existing tool (Figure 25A). Hence, we see so many methods but not a 

gold standard tool for assured functional results (Figure 25B). For example, it has been reported 

that 52% of SNPs in the dbSNP could generate novel miRNA binding sites258. Even though 

bioinformatic tools allow for this estimation of the effect of a variant on the miRNA binding 

site, the overlap between prediction results can be very low and ranges from 5% to 70%259. 

 

 

Thus, for miRNA target prediction, there is no consensual target prediction tool, and most of 

the predicted targets are admittedly false positives (Figure 26). These inconsistencies confound 

the selection of SNPs and miRNAs for functional testing. To resolve the redundancy and yield 

A. B. 

Figure 25. A: miRNA prediction methods and software. B: Broad classification of miRNA databases and 

applications for target prediction or regulatory networks construction. 

Adapted from Yu et al., 2020. 
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more confidence in predictions, perhaps a practical solution would be to integrate the 

independent predictions and provide an overall confidence score to a SNP or miRNA target. 

While inferring any predictions, it should be kept in mind that all prediction-based methods 

employ training sets that incorporate functional annotations from databases. These methods are 

prone to biases present in the underlying annotations such as enrichments of variants near 

genes, gaps in functional annotations, or insufficient training data. Thus, all methods will miss 

functional elements that do not coincide with known annotation co-occurrence patterns260. The 

power of these predictions will increase with an increase in the experimental validation of 

putative causal SNPs and genes. Efforts are underway to generate reliable, curated functional 

information for mammalian miRNAs. For example, two new bioinformatic data sets deliver 

Gene Ontology annotations associated with over 500 miRNAs and over 2400 experimentally 

validated miRNA-target interactions261. 

 

 

 

We also observe that many variant annotation tools report the annotation anticipated from a 

single queried variant only, overlooking the variants in LD with the lead SNP (e.g., 

RegulomeDB, CADD/DANN, deltaSVM). To be able to accurately use these methods, one 

must use additional tools that return all SNPs in LD with the lead one (e.g. LDlink). 

Nonetheless, other methods like FunciSNP, HaploReg, GWAS3D integrate LD SNPs on their 

own260. 

Given these heterogeneous data sources, it is tempting to try out all available methods on our 

own data. The need to try more resources is even exacerbated when we must compare or 

reproduce the results from our study to the existing ones. It happens that a part of the available 

information originates from the specific needs of a certain group; hence it may not be suitable 

for obtaining a generic solution for varied questions. Not all tools are regularly enhanced, and 

it is not uncommon that many tools are quickly abandoned after publications. This causes more 

time being spent in trying new methods than analyzing data. Annotation resources require 

Figure 26. Overlap of results from 

different miRNA target prediction 

programs. 

Adapted from info.abmgood.com. 
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continual updating with the exploding data growth. A few long-term well-maintained tools that 

allow users to run several annotation models in parallel, will be more effective than searching 

through an array of computational platforms (Figure 27). 

  

 

 

 

 

 

 

 

 

4.2.3 Methods to replicate the identified associations 

The replication of association results is an important facet as (i) it provides reliable validation 

of the scientific discoveries, by confirming their true-positive status; and (ii) it allows for an 

assessment of any sources of bias in case of a lack of replication. One way to assess replication 

of association results is to use the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/), 

which includes associations with a suggestive statistical evidence (P<10−5) from 

3567 publications that describe a total of 71,693 associations for different traits262. In Figure 

28, we observe that that most of the top hits included in the GWAS Catalog had already been 

reported in previous publications, and hence correspond to replications of known SNP-trait 

associations263. A positive association at variants in strong LD with the lead variants also 

evidences replication for the original marker-disease association. 

Figure 27. Bioinformatic tools 

classified according to their main 

functionality, and sample tools 

for each category. 

Adapted from Akhtar et al., 

2016. 
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Our association results from global analyses of miRNA loci is the first for ADHD. We observe 

that the NHGRI-EBI GWAS catalog till date documents only ~180 miRNA genes for 

association with miscellaneous traits. This reveals the lack of case-control genome-wide 

association analyses on miRNA genes which deters any attempts for replication for this system. 

Additional genome-wide ADHD studies will remain crucial to establish the patterns of 

emergence of associations. 

For cocaine-dependence, while many case-control association studies have been performed on 

candidate genes, only a few risk variants have been identified and replicated; such as 

rs16969968 in the CHRNA5 gene, encoding the cholinergic receptor nicotinic alpha 5 subunit, 

and rs806368 in CNR1, coding for the cannabinoid receptor 1264. The only existing GWAS of 

cocaine-dependence has been performed on the African-American (AA) and European-

American subjects (EA)265. The strongest (and GWS) finding in the combined AA and EA 

sample using the Sympcount model is an intronic SNP rs2629540 at the FAM53B locus on 

chromosome 10. Although the association signal was stronger in AAs, it was supported in both 

populations. This hit could not be replicated in a subsequent study with a Spanish Caucasian 

sample of substance dependence where 59% of the subjects were cocaine-dependent266.  

Similarly, three GWAS of illicit drug use collectively reported four significant associations: 

two in EA population and one each in EA and AA populations213,267,268. One of these significant 

associations (rs2952621) was replicated under the dominant model, the risk allele (T) being the 

same as identified in its originating study266. The SNP is located near an uncharacterized gene 

Figure 28. Discoveries of new loci 

and re-discovery of previously 

discovered loci for 60 diseases 

included in the GWAS Catalog with 

>15 discovered SNPs. 

Adapted from Marigorta et al., 

2018. 



Discussion 

207 

and a long intergenic non-protein coding RNA gene, which makes it difficult to determine its 

role in the predisposition to dependence. 

The lack of replication of results between studies can be attributed to multiple factors, such as 

the sample features (ethnicity, sample size, delineation of cases and controls) and association 

workflow (control for covariates, multiple testing, genetic model, insufficient number of 

genetic markers). A factor quite likely to interfere with the replicability of associations from 

our cocaine dependence GWAS with the GWAS by Gelernter et al. would be the experimental 

design. (i) In the previous GWAS, the AA and EA samples were combined, and the former 

showed a greater weight in the association signal. Our GWAS design outlined individuals of 

European ancestry only. (ii) Additionally, the proportion of cases and controls in the previous 

study was skewed, with cases being four times the controls. We therefore increased the number 

of controls in our analysis to achieve a balance of cases and controls. (iii) The controls used by 

Gelernter et al., were individuals that had been exposed to cocaine, at least once in their lives, 

but had not developed addictions. In contrast, we considered controls from the general 

population, irrespective of their drug exposure status.  

While replication can effectively benchmark the disease associations for follow-up 

experiments, the replication constraint may cloud the true genetic effects especially when 

samples originate from distinct geographic or ethnic base269. The patterns of replicability of 

variants or lack of, thereof, can be a function of disease heterogeneity and can provide clues 

into it263. For instance, racial differences can cause large heterogeneity in odds ratios in a way 

that an allele exerting protective effect in some samples can turn out to be a risk factor in 

others269. Thus, current practice of replication of a GWAS result can be thought of as the 

replication of a specific statistical design270.  

The essential unit of replication for a GWAS should be the genomic region within which the 

variants in strong LD with the lead signal must undergo assessment270. Subsequently, evidences 

surfacing from gene-specific and pathway-specific information should be included for the 

genetic associations in question (Figure 29)269. This is valuable since effects from multiple 

variants can aggregate to reach a certain threshold at which the symptoms for a disorder will 

appear. All in all, digging into the functional hierarchy will indeed be more insightful into the 

mechanisms of disorder progression than achieving a statistical model dependent variant 

replication. 

https://www.sciencedirect.com/science/article/pii/S0278584619301101#bb0105
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Lookup 

The detailed association analyses substantiate the involvement of the three systems in two 

psychiatric phenotypes investigated for. An important aim of this work is to understand if and 

how the epigenetic modules can be successfully bridged to genetics by means of the available 

resources. As shown in the case of ADHD-associated ASM SNPs, epigenetics research can be 

key to understanding the means of gene dysregulation in disorders. The work also underlines 

the importance of structural and functional evidences from human brain tissues in connecting 

the sequence variation to the brain alterations established in psychiatric traits. We also inform 

the methods and obstacles for genetic and epigenetic association analyses. By and large, the 

foremost direction for any association study is a reliable selection of the most promising 

signals. Bioinformatics backed by the functional genomics data integration remains the leading 

approach for the prioritization process. Both coding and non-coding variation can now be 

effectively mapped for alterations in the protein-coding genome. That said, in the pipeline is 

the regulatory genome. Challenges in evaluating the effects of genomic variation on regulatory 

gene expression are manifold. Present day research is at the point of attempting to untangle the 

complexities, however it necessitates more bioinformatics development. The inflation in 

computational tools and data has not been synonymous with the presence of meaning as yet. 

We reckon that more high-throughput omics will expand our knowledge of the noncoding 

genomic landscape which can help overcome the obstacles in bioinformatic analyses and will 

empower further decryption of the (epi)genetic control in psychiatric phenotypes. 

Figure 29. Methods to 

divide candidate SNPs 

into tiers for evaluation 

based on statistical 

results and biological 

information. 

Adapted from Greene et 

al., 2009. 
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CHAPTER 5. NEW WAYS FORWARD 

The fundamentals of psychiatric disorders are now known more than ever before. However, 

there is still a long way to go. The exciting discoveries so far have put more research questions 

on the agenda, with the final aim of designing interventions that can minimize the damaging 

effects of these disorders. I hereby list some of the prospects in psychiatry research for the 

upcoming years. 

Objective 1. Accelerating epigenetic research and its integration with genetics 

Objective 2. Finding more common variants and also rare  

Objective 3. Prioritizing likely causal genes for functional follow up 

Objective 4. Establishing the genetic architecture of the disorders 

Objective 5. Linking genetics to intermediate phenotypes 

Objective 6. Understanding genetic pleiotropy and unraveling causal relationships among traits 

Objective 7. Deep phenotyping and big data projects 

Objective 8. Modelling psychiatric disorders  

Objective 9. Psychiatric therapy and precision medicine 
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Objective 1. Accelerating epigenetic research and its integration with genetics 

The last couple of decades have established that non-coding genome is not equivalent to a non-

functional genome. DNA methylation, histone modifications, non-coding RNAs, and others 

regulate the expression of genes. Psychiatric epigenetic research needs to be pursued driven by 

the evidences that epigenetic mechanisms fine-tune physiological processes in real-time for 

cell’s response to intrinsic and/or extrinsic conditions (Figure 30)271. Studies on model 

organisms emphasize that some genes, more than others are susceptible to environmental 

modulations and  that this may confer evolutionary advantages272.  

 

In order for the epigenetic data to be useful, accounting for several factors like tissue-

specificity, age, gender, comorbidities, medication, environmental events and multiple time-

points is needed because of the dynamic nature of epigenetic processes. Genome-wide 

epigenetics need efforts from large collaborative consortium projects. In the absence of 

organized efforts, most epigenetic study designs are likely to be case-control, cross-sectional 

and can be small with insufficient statistical power, and epigenotyping costs can as well be a 

limiting factor. To control for possible data inconsistencies and enable comparability in data 

integration, consensus designs with stringent controls should be adopted by individual 

studies273. It is arguable that the epigenetic variation may appear post the development of a trait 

and may not be the causal to the disorder. However, the value of biomarkers lies not only in 

predicting the source of disease, but also in the ability to track disease progression and the 

treatment274. Moreover, the peripheral epigenetic biomarkers can be afterwards linked to the 

changes in brain using postmortem brain samples. The PsychENCODE initiative 

 
Figure 30. Sources of 

epigenetic and phenotypic 

variation. The formation of 

any phenotype results from 

a series of processes 

starting with gene 

expression. 

Adapted from Angers et al., 

2020. 
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(www.psychencode.org) provides both depth and breadth of brain-omics data from a large 

number of individuals with SCZ, ASD, and bipolar disorder while collecting  multifarious types 

of data from the same individuals and can be beneficial to prioritize epigenetic factors that 

induce brain-specific outcomes273.  

A handful of studies have endeavored integration of epigenetic and genetic methods to trace 

altered genetic regulation. As an example, integrating epigenetic, genetic and gene-set 

enrichment analyses allowed to connect NOTCH to PTSD’s etiology, which would not have 

been possible through a mere candidate gene association study275. mQTLs form another useful 

tool to refine functional/regulatory GWAS loci as both adult and fetal brains mQTLs are found 

to be enriched amongst schizophrenia-associated risk loci276–278. The method can as well be 

extended to other disorders including ADHD and cocaine-dependence whose risk loci should 

be evaluated for the presence of mQTLs.  

Objective 2. Finding more common variants and also rare  

GWASs in ADHD, SUDs and other less studied disorders will expand in terms of sample size, 

and additional GWS loci will be identified as seen with major psychiatric disorders. However, 

cracking any psychiatric disorder will require aggregation of sub-threshold common variants 

in addition to the GWS loci, that can explain a much larger portion of the genetic variation. For 

example - in the case of schizophrenia, hundreds or thousands of sub-threshold variants with 

low effect sizes are now believed to confer risk. Take the case of the first 12 discovered 

independent GWS loci for ADHD, where only one gene - FOXP2 - emerged that had previously 

been implicated in ADHD and in a phenotype, severe speech and language problems, observed 

in ADHD individuals52. Surprisingly, none of the GWS loci contained any candidates clearly 

belonging to gene systems like dopaminergic neurotransmission, classically implicated in 

ADHD. It is possible that larger GWAS are needed to implicate some of the classical candidate 

genes, as the variants located within these genes can exert small effect sizes for which the 

current sample sizes remain underpowered; or the other possibility is that the variants from 

dopaminergic genes aggregate in the group of sub-threshold variants, if not finally emerging 

as GWS loci (Figure 31). But even with the current absence of previous candidate genes in 

genome-wide findings, these remain valuable as targets of the most common pharmacological 

treatments for ADHD. Thus, classical candidate genes might still be relevant to the 

neurobiology of a disorder279. The etiology of ADHD and SUDs is likely to unfold with 

uncovering of more common variation. 



Discussion 

212 

 

Very importantly, it has now been realized that individuals with ADHD and individuals with 

ASD share a similar burden of rare protein-truncating variants in evolutionarily constrained 

genes271. However, investigation of rare mutations in ADHD trail behind ASD, even though 

they are highly comorbid conditions. The role of ultra-rare deleterious variants too was limited 

to autism and schizophrenia, and only recently, highly evolutionary conserved gene sets have 

been found to carry ultra-rare deleterious variants in ADHD280. Similarly, the extensive genetic 

pleiotropy seen across psychiatric disorders includes CNVs. Thus genomic regions spanned by 

CNVs associated with an increased risk of ADHD are also associated with autism and 

schizophrenia279. Prioritization of CNV genes for ADHD by an integration of CNV studies 

spotted POLR3C and RBFOX1 of a several hundred high-priority ADHD candidates, and the 

two genes also map within ADHD-GWS regions281. Hence, this study establishes a possible 

convergence of rare and common variants in ADHD.  

Objective 3. Prioritizing likely causal genes for functional follow up  

Traditionally, GWASs have provided variants that merely flag genomic regions without 

necessarily explaining the connection of the variant/loci to underlying biological mechanisms. 

Figure 31. BD GWAS have reported a total of 20 GWS loci. 12 of the previously reported loci are not GWS in 

this GWAS meta-analysis, but all have P ≤ 1.3 × 10−5. Labels correspond to gene symbols previously reported 

for published loci (black) and the nearest genes for newly identified loci (blue) 

Adapted from Stahl et al., 2019. 
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The organization, difficulties and costs associated with conducting functional studies, makes it 

important to prioritize the likely causal genes. As the sample size of GWASs has increased, 

more genes have been identified with high confidence. Which genes of all should be pursued 

for follow-up experiments rely on numerous factors, some of which being the replication status 

of the gene, involvement in other brain disorders, possible effect of the genetic change on the 

protein or on the regulation of gene expression, overlap with pathogenic CNVs or other 

variants, the effect size of the genetic variant, expression of the gene in brain tissues,  being 

part of a disease-implicated protein network, or conservation across species, among others. The 

success of GWAS has conventionally been weighted by the number of genes discovered for a 

phenotype, however this is simply one aspect of what the method has to offer. Even a single 

GWAS finding that can lead to an effectual treatment is rationally an indubitable success282. 

One way to test the possible causality of genes within highlighted loci is to apply the Mendelian 

Randomization (MR) framework to integrate evidences from GWAS with eQTL data. The 

method allows to unravel the causal relations isolated from the effects of confounders and 

modifiable risk factors (Figure 32), such as the environmental influences or stress that impact 

the manifestation or severity of nearly all psychiatric disorders. MR is less likely to be affected 

by confounding bias or reverse causation present in the traditional observational studies. 

However, an effective MR requires well assessed assumptions and an adequate number of 

genetic markers linked with the exposure to increase the strength of the detection of causal 

relationship157. A recent bioinformatic tool called Integrated MEntal-disorder GEnome Score 

(iMEGES) can employ personal genomes (whole-genome sequencing data of individual 

patients) for the prioritization of variants and genes that influence each patient’s susceptibility 

to mental disorders (Figure 33) in a patient-specific manner283.  

Figure 32. Assumptions in 

Mendel Randomization. (a)  

Robust association between 

genetic variant and exposure, 

(b) absence of (direct/indirect) 

association between genetic 

variant and confounding factors 

and (c) absence of other 

pathways between genetic 

variants. 

Adapted from Verduijn et al., 

2010. 
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Objective 4. Establishing the genetic architecture of the disorders 

The common disease–common variant (CDCV) model (<100 of common variants with small-

to- moderate effects) has been the foundation of most GWAS. But of late, alternate models of 

genetic architecture for psychiatric traits have been projected that accommodate an increasing 

number of discovered common variation and that also reserve a place for contributions from 

rare variation and environmental effects (Figure 34). 

 
B. 

Figure 34. A: Type 1 GxE questions about the biology through which an environmental exposure 

contributes to the psychiatric illness. B: Type 2 GxE questions about the environmental conditions under 

which a genetic liability to a psychiatric illness is discerned. 

Adapted from Belsky et al., 2015. 

Figure 33. Schematic 

overview of iMEGES. 

Adapted from Khan et 

al., 2018. 

A. 
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These newer models to explain heritability are (i) the infinitesimal model – a large number 

(»100) of small-effect common variants operate, (ii) the rare allele model - large number of 

rare variants, including CNVs with relatively large effects act, (iii) the broad-sense 

heritability model - besides the additive effects of common variants, heritability is due to rare 

variants, non-additive GxG (dominance, epistasis) and GxE interactions as well as epigenetic 

effects, and (iv) the omnigenic model (Figure 35) - the genetic architecture of complex traits is 

exemplified by a huge number of peripheral, more general genes and a lesser number of “core” 

or disease-specific genes157.  

 

 

 

 

 

 

Any psychiatric disorder, irrespective of the underlying genetic architecture will rarely 

manifest in isolation and defining the complete genetic architecture therefore rests on how 

complete the comorbid spectrum is in the study designs. ADHD is strongly comorbid with ID 

and with lower IQ, and shared heritability explains much of the correlation of comorbid 

conditions with ADHD symptomatology. Unfortunately, studies on ADHD do not share a 

unanimous criterion for the cut-off of IQs in cases. While some studies include IQs of 70 and 

above, others cut-off is an IQ of 80, and no IQ is considered in others. Despite the known fact 

that individuals with ADHD are more likely to have lower IQs, studies on ADHD often exclude 

participants based on lower than average IQ (i.e., between 70 and 85). Exclusion of ADHD 

participants with lower IQ limits the cognitive spectrum being studied and thus the applicability 

of the results. At the same time it masks the true genetic relationship of comorbidities and can 

lead to ineffective treatment or have negative repercussions284. It should be also be noted that 

presence of ID has not been a condition for exclusion in the case studies on autism and 

schizophrenia even though ID can co-occur with both disorders279. Only recently, DSM-V 

established that ASD is no longer an exclusion criterion in ADHD studies, in contrast to DSM-

Figure 35. 

Omnigenic model. 

Adapted from 

Franke et al., 2017. 

 



Discussion 

216 

IV285. Research specifically focused on comorbid conditions like ADHD, ASD, ID and lower 

IQ and ADHD and SUDs should be attempted to resolve the underlying architecture with a 

greater power arising from phenotypic and genetic similarities among psychiatric disorders285.  

The eventual goal of delineating the genetic architecture of complex disorders is to understand 

how the discoveries from large populations will contribute to illness in an individual. Correct 

genetic inferences need target datasets that are from different ancestries. A critical limitation 

of psychiatric genetics is the lack of inclusion of population diversity. The majority of GWASs 

have been conducted on individuals of European ancestry or African-American  ancestry. Only 

a small proportion of studies have employed Asian populations like Han Chinese, Japanese, 

Korean, Indian, Pakistani, or populations originating from Africa or South America. From a 

genetics point of view, including lesser studied ancestral groups in GWAS (transethnic GWAS) 

can help narrow blocks of LD and fine-map the genetic architecture of disorders157,273.  

Objective 5: Linking genetics to intermediate phenotypes 

The trajectory of manifestation of a psychiatric phenotype involves a number of intermediate 

disruptions of neural circuits starting from the genetic variation286. Thus, the intermediate traits 

or phenotypes are scattered between genetic variation and the end phenotype (Figure 36). 

Personality traits, brain activity and brain structural variation are some known intermediate 

phenotypes in psychiatric genetics287. For instance - motion tracking-based hyperactivity factor 

and a reduced eye movement control can be candidate intermediate phenotypes in ADHD, as 

the inability to sustain attention or ocular fixation will lead to a reduction in optimal 

performance in everyday cognitive and behavioral activities288,289. Altered brain structure with 

decreased gray matter volumes in the right inferior frontal gyrus and an increased white matter 

volume in the posterior right inferior fronto-occipital fasciculus are observed in ADHD 

individuals290. Exploratory locomotion, a behavioral phenotype is a predictor of vulnerability 

to addiction, and inversely correlates with spontaneous anxiety and depression-like 

behaviors291.   

Each intermediate phenotype is structured by relatively fewer risk alleles than the global 

phenotype286. Thus, they form a more precise connection to the underlying genetics than to the 

disorder and are attractive for gene discovery273,287. Although not clearly evidenced, the genetic 

variants can exert greater effect sizes on intermediate phenotypes than on the disorder traits, so 

GWASs of intermediate phenotypes could perhaps be more powerful in portraying the genetics 

of the disorder. Somehow, the idea is to divide the phenotype in pieces that are more heritable, 
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and investigate each of them separately, to end up by joining the pieces again. This would be 

important as the pattern of risk alleles that shape the overall disease phenotype is turning out 

to be far more complex than initially anticipated.  

  

 

 

 

 

 

Neuroimaging can reveal neuronal mechanisms that underlie emotion, reward, and craving that 

drive both ADHD and cocaine addiction. For example - positive reward in reward circuits is 

accompanied by an activation of ventral striatum and other brain areas that can be seen through 

neuroimaging techniques. Emotional and stressful stimuli images activate amygdala mediated 

by the serotonin transporter SLC6A4 and monoamine oxidase (MAOA). Similarly, PFC is 

activated during cognitive tasks and the impairment of PFC is linked to catechol-O-methyl 

transferase (COMT) and MAOA variation. It is already known that the biology of addiction, 

anxiety, impulsivity and reward is influenced by SLC6A4, MAOA and COMT (that 

metabolizes dopamine, norepinephrine, and catecholamines). The role of genetic variation 

identified in these genes might fit in better for one of these intermediate phenotype than the 

end symptomalogy292. 

As with shared genetic factors, intermediate phenotypes can as well be shared across comorbid 

conditions. For instance, stress resiliency and externalizing behaviors of disinhibition, 

aggression, and impulsivity, are thought to underlie the comorbidity between addictions and 

other psychiatric diseases293. An interesting connection can be made in the co-occurrence of 

cocaine-dependence and ADHD as different routes of cocaine administration can lead to 

equally different neurocognitive impairment profiles. The smoked cocaine dependence group 

(in contrast to insufflated cocaine dependence) was specifically associated with deficits in 

attention and executive functions. The differential profiles may not (only) be due direct effects 

of cocaine but also because of cognitive and biological differences in key executive functioning 

Figure 36. The 

relationship between 

genes, intermediate 

phenotypes and 

psychiatric illness. 

Adapted from Preston 

and Weinberger, 2005. 
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and attention areas294. Externalizing problems can also dictate both intermediate and 

independent phenotypes in ADHD and ASD295. Attentional control is also a likely intermediate 

phenotype shared by both autism and ADHD, where atypical development of attentional 

control restricts adaptive functioning in later stages like education, life and social skills in an 

autism and ADHD-like manner296.  

In psychiatric illnesses, the nature of human brain can confound the discovery for genetic 

origins as individual neurons can display distinct transcriptomes and phenotypes. The genetic 

variants that appear weak at the full-disease level may be highly robust for the intermediate 

level. Thus, the variants that impact the brain function and structure should be followed up to 

reveal the underlying neurobiological mechanisms even if those are not the causative genetic 

factors286.   

Objective 6. Understanding genetic pleiotropy and unraveling causal 

relationships among traits 

Pleiotropy and redundancy are key aspects of the biological pathways that underlie psychiatric 

disorders (Figure 37). A genetic variant can influence two or more phenotypes through the 

phenomenon of pleiotropy, and the same function can be controlled by multiple systems 

through redundancy. The  genetic overlap in psychiatric disorders is not a novel notion 

anymore and is a rule rather than the exception279,297.  

 

 

 

 

 

 

Figure 37. Pleiotropic 

mechanisms underlying 

cross-phenotype 

associations. 

Adapted from Lee et al., 

2020. 
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Genetic risk variants discovered for specific conditions may also have broader pleiotropic 

effects; for example, genetic risk variants for ADHD reflect a genetic liability toward broad 

childhood psychopathology in the general population298. Finding genes that can trigger more 

than one disorder might enlighten the shared pathogenesis among different psychiatric 

disorders. 

Will alterations in some genes then make us more susceptible to multiple disorders? In a study 

across eight disorders, 109 pleiotropic loci where found to contribute to at least two psychiatric 

disorders, and 23 loci were pleiotropic for four disorders or more. One of most highly 

pleiotropic loci related to all eight disorders corresponded to the DCC gene, a master regulator 

of white matter projections that mediates axonal guidance during neuronal development and 

the adolescent expansion of mesocorticolimbic dopaminergic connections to prefrontal cortex 

(Figure 38)299. Interestingly, this work also showed that certain loci can exert antagonistic 

effects on multiple disorders, which can partially explain that psychiatric drugs designed to 

treat one condition might worsen another inadvertently. Indeed, in psychiatric genetics, it is 

difficult to find genetic variants that would confer risk to solely one phenotype. To be able to 

Figure 38. Examples of single-gene pleiotropy associated with psychiatric disorders. (A) Cell adhesion 

protein NRXN1. (B) Transcription factor TCF4. (C) DCC, a master regulator that governs axon guidance 

during early neurodevelopment and mediation of media. 

Adapted from Lee et al., 2020. 
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tell apart the horizontal (a genetic variation can affect two or more phenotypes independently) 

and vertical pleiotropy (when genetic variation affects one phenotype, the expression of which 

mediates a second phenotype) would have implications on causal theories of 

psychopathologies300. Future analysis should embrace subjects with ADHD only (if any), with 

ADHD and other highly comorbid conditions like ID or SUDs, and with the comorbid traits 

only. It is important that the number of subjects recruited for each phenotype is proportional, 

as a lower number of subjects from lesser studied disorders might mask true pleiotropic effects. 

In addition to the shared genetic effects among psychiatric disorders, pervasive pleiotropy 

exists between psychiatric and immune-mediated disorders. Pleiotropic loci are known to 

cluster into histone methylation, synaptic biology, immune and neurotrophic pathways, 

neurodevelopment, glutamate receptor signalling and voltage-gated calcium channel 

signalling301. In fact, the chromosome 6 locus identified in our work that exhibits pleiotropic 

effects for cocaine dependence and schizophrenia is enriched in immune function and histone-

related genes. Previously, the MHC region on chromosome 6 emerged important, along with 

regions like cytoband 1p13.2 in mediating pleiotropic effects on two systems302. How 

psychiatric disorders and immune system disorders are related genetically is yet another 

intriguing dimension for exploration. 

Pleiotropy can further transform our view of individual psychiatric disorders into interrelated 

components of a syndrome. The present diagnostic categories can be subtypes under one 

umbrella term. Autism was once considered as childhood schizophrenia, until the 1970s. If 

pleiotropic mechanisms underlie the manifestation of comorbid conditions, can the same 

genomic patterns of pleiotropy recognize disorders, perhaps as categories that can be more 

meaningful than the existing symptomatic approach? The meta-analysis across eight disorders 

identified that ADHD shares 37% and 27% of its common genetic variation of risk with ASD 

and Tourette syndrome respectively, and the three disorders were so clustered as ‘early-onset 

neurodevelopmental disorders’. Similarly, the underlying genetics of schizophrenia, MDD and 

bipolar disorder clustered these into one group - Mood and psychotic disorders -, and a third 

group ‘Disorders with compulsive behaviours’ clustered together OCD, anorexia nervosa and 

Tourette syndrome again. Thus, genetic correlations revealed three subgroups of highly 

genetically related disorders among eight psychiatric disorders, and this grouping based on 

shared genomics (pleiotropic effects) is starkly different from that of DSM. However, the 

discovery of shared biology does not simply imply that clinical categories are entirely 
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collapsible, mainly because the genetics can be continuous rather than categorical and clear 

genetic signatures or boundaries that can define neuropsychiatric syndromes will be a rarity301.  

Objective 7. Deep phenotyping and big data projects 

Identification of the factors that predict disease course and outcome requires suitably powered 

clinical data routinely collected over extended time periods. Attaining sufficient sample sizes 

lie beyond the reach of a single group, and several consortia were born that coalesce data from 

research groups across countries and continents to make it accessible for researchers all over. 

‘Big data’ is required on a longitudinal perspective and not only a cross-sectional one, and is 

more meaningful when achieved through deep phenotyping. Some consortia (like the PGC) 

accumulate population cohorts for GWAS, while others provide neuroimaging for genetics 

(like ENIGMA). There are more consortium projects that gather phenotype data for traits like 

personality, sleep, smoking, brain volume, cognitive functions (e.g. PsychENCODE), and 

others for deep phenotyping (e.g., Philadelphia Neurodevelopmental Cohort)273.  

The so-called ‘big data’ can dramatically change our ways to do research, especially when we 

are starting to assess the developmental trajectory of mental disorders. However, in order to 

have truly informative data, the study methods can be refined further. For instance - Psychiatric 

neuroimaging has largely followed the case-control model and include individuals that meet a 

clinical construct for a particular diagnosis. A minority of newer studies have examined clinical 

cohorts using continuous symptom measures rather than the case-control setup. Studies 

perform individual-level repeated neuroimaging to record highly stable signal estimates, or 

individual-level neuroimaging, using repeated assessments of a single individual and record 

session-to-session variations in signals. However, the two approaches are hardly integrated and 

there is still a lack of large-scale attempts for “deep neural phenotyping” in psychopathology. 

Also, findings from current MRI-based studies should be treated with caution since MRI 

signals are sensitive to frequent confounders like weight, stress, mental state, alcohol, 

substance use, and even head movement and breathing303. 

The boom in genomic data due to GWAS and NGS and backing of Electronic Health Records 

(EHR) in medicine have opened the prospects to unify phenotype and genotype data into 

medical records. Biobanks (like the UK Biobank, Mayo Clinic) paired with EHR are a 

straightforward way to build large datasets. EHRs store longitudinal data that can be used to 

structure phenotypes of patients and support personalized medicine. The PsycheMERGE 
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leverages the resources and existing infrastructure of the Electronic Medical Records and 

Genomics (eMERGE) network, the PGC, and local EHR and biobanks for psychiatric disorders 

(including Vanderbilt, MGH, Philadelphia Neurodevelopmental Cohort) to build powerful 

opportunity for psychiatric genetics304. Otherwise, the present EHR-biobank projects lack a 

major emphasis on psychiatric disorders yet273.  

Still, even comprehensive EHRs can lack high-quality data due to issues like incompleteness, 

inaccuracy, complexity and bias. The EHR is not a perfect image of the individual and 

physiology but is rather a reflection of the health care recording procedure with noise and 

feedback loops. Therefore, variability and imprecision in the clinical documentation challenges 

the phenotyping in the EHR305.  To synchronize phenotype studies, a universal terminology 

and ontology should be used while labelling phenotypes. The Human Phenotype Ontology 

project is which is also linked to the Online Mendelian Inheritance in Man (OMIM) resource 

is one way to achieve consistent labelling. Ontologies can be used to calculate phenotype 

similarity metrics between patients and ‘high-throughput phenotyping’ can thus be built that 

will reduce the knowledge engineering effort (Figure 39)306.  

 

 

 

 

 

 

 

Longitudinal deep phenotyping efforts can as well support a much-desired N-of-1 study design. 

In this design, individuals may receive multiple acute interventions, along with control 

 

Figure 39. Phenotyping and 

discovery. 

Adapted from Hripcsak and 

Albers, 2012. 
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interventions, so that the effect of the intervention can be statistically tested for that individual. 

N-of-1 studies are considered to be at the top of the hierarchy of evidence-based medicine 

methods307. In-depth phenotyping is also being applied to refine the taxonomy of psychiatric 

disorders. The symptom-based diagnostic categories often poorly align with the findings on 

dysfunctions in brain circuits or neurobiological pathways, where the identified dysfunctions 

are shared by different DSM/ICD diagnoses and are transdiagnostic. The Biological 

Classification of Mental Disorders (BeCOME) study aims to identify classes of mental 

disorders that are based on the biology gleaned from in-depth phenotyping procedures and 

several levels of omics, cellular, imaging and psychophysiological assessments308. PsyCourse, 

another transdiagnostic study on affective‐to‐psychotic continuum combines longitudinal deep 

phenotyping of positive, depressive, and manic symptoms. The study advocates the 

introduction of a psychosis spectrum disorder as in day-to-day reality the psychotic symptoms 

between schizophrenia and bipolar disorder show a major overlap309. 

Environmental exposures are known drivers of psychiatric behaviors and disease outcomes. 

‘Exposome’ studies that pursue the effects of exposures on behaviors and disease risk across 

the life course require high-quality environmental exposure data. In the Netherlands a platform 

has been setup by the Geoscience and hEalth Cohort COnsortium (GECCO) and the Global 

Geo Health Data Center (GGHDC) that centralizes and shares environmental variables as 

personal exposures. This includes a range of environmental data including high spatial and 

temporal resolution information on urban infrastructure, physicochemical exposures, 

availability of community services; but this data was scattered until it was centralized by 

GECCO. The resource now supplements 23 cohort studies and is a blueprint to set up similar 

big data  projects310. Data from different regions will be shaped by different environmental risk 

factors. Indeed, if correctly interpreted, it might be a unique opportunity to assess cultural and 

regional differences in social and environmental factors pertaining to mental health.  

If all is achieved, research using big data will still have some inherent challenges. Data security 

and privacy remains a major issue when it comes to ambulatory assessments, which 

necessitates geolocation and information relating to behaviors such as substance use. There is 

also high variability in ethical requirements across countries for research, making it difficult to 

uniformize research practices. Patients reaching institutional care settings may feel undue 

pressure to participate in research and may harbor fears that outcomes emerging from study 

participation might negatively affect their status311. 
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Objective 8. Modeling psychiatric disorders 

Animal models for psychiatric illnesses have been long established to elucidate their 

pathophysiology and to test novel treatment strategies. Unfortunately, but unsurprisingly, the 

utility of current animal models is limited in terms of translatability of the findings, probably 

because the models do not simulate the complex disorders wholly. The function of individual 

genes prioritized by GWAS can be assessed in gene knockout models (without reproducing the 

actual genetic variation), but the feasibility of incorporating the true nature of disease-

associated genetic variants is questionable. How can one model the common variants of small 

effects leading or not to gene and/or protein changes in mouse orthologues of human genes? 

And also, how to deal with polygenicity in an animal model? 

Take the case of DISC1, a candidate gene for schizophrenia and affective disorders - Several 

animal models have investigated mutations in the DISC1 gene that were identified in families, 

but only one, found in a particular family from Scotland, showed a comparable phenotype 

expression as the human allele. Thus, achieving a valid construct requires need for attention 

for each associated mutation. Another example is the neuroligin 3 (NLGN3) p.R451C missense 

mutation identified in ASD patients. NLGN3R451C mouse displayed social impairment but this 

phenotype was not seen in the NLGN3 knockout mouse. This suggests that a gain-of-function 

cannot be modelled with traditional approaches312. High-penetrance disease-associated rare 

variants can be modelled in rodents through CRISPR-based technologies but even so, the 

variant-endophenotype-behaviour inferences drawn from rodent models must be treated with 

caution before translation because of the extreme pleiotropy and redundancy observed in 

human313. 

Besides individual genetic manipulations, how can we create animal models that do not simply 

mimic the phenotypic appearance but epitomize the psychiatric etiology314? Projecting the 

progression of these disorders from initiatory states to full-blown stages in animal models is 

the key to understand the development of abnormal networks scattered over time points in order 

to target apt treatment strategies. Much of the animal modelling has overlooked the 

incorporation of spatial and temporal components to generate valid constructs. Models that 

incorporate environmental components trail behind genetic constructs, while models that aim 

to combine genetics and environment are even rare312. 
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Lately, phenotypic assessment in animal models, particularly mice is in progress and can be 

particularly useful to choose those mice that will serve as better models. Some strains more 

than others due to their genetic background will match the behaviors that are observed in 

psychiatric diseases. For instance, in contrast to the commonly used inbred mouse strain 

C57/BL6, another strain, BTBR T+tf/J, displays less reciprocal social interaction, more 

grooming and different ultrasonic vocalizations. Thus, the  phenotypic attributes of BTBR mice 

makes it a better model to study genetics of autism and antisocial-like behaviors314.  

There is a scope to continue refining animal models utilizing the phenotype-matched animals 

and optogenetics models (Figure 40) which are very much advanced than the traditional gene 

knock-out and knock-in mice315. However, given the intrinsic caveats in animal models - 80–

90 million years of evolutionary divergence, different selection pressures due to the 

evolutionary niches, significant differences in the neural cells types and neural circuits, 

especially, but not limited to prefrontal cortex and its projection, none of the models can 

replicate the relapsing–remitting nature of the disease, and it seems increasingly unlikely that 

Figure 40. Major steps creating a 

behavioral experiment involving 

optogenetic tools. 

Adapted from Czéh et al., 2015. 
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modelling these diseases in animals will depict the ‘model’ of a psychiatric disorder and not a 

‘disorder-like’ behavior145,314–316.  

Perhaps more sophisticated approaches to overcome these hurdles include cellular models 

engendered by stem cell technology, and which can contain the entire genetic background of 

the donor. Readily available human cells such as skin fibroblasts can be reprogrammed into 

neurons and glial cells in vitro either directly or through an intermediate cell (Figure 41). 

Induced pluripotent stem cell (iPSC) models that can generate patient-derived neurons are 

under testing for psychiatric disorders including schizophrenia, bipolar disorder, and Rett 

syndrome; and  in some cases, they have uncovered gene-associated phenotypes in processes 

of progenitor cell proliferation, synaptic maturation, neuronal morphology and activity. iPSC-

derived neurons may have downsides like limited epigenetic memory, immaturity of neurons, 

but it is possible to recapitulate the epigenetic modifications post neuronal maturation in 

vitro317. The original epigenetic landscape can also be preserved using transdifferentiation i.e. 

directly inducing a somatic cell like fibroblast into functional-induced neurons (iNs) without a 

transient  stage of  pluripotent stem cells (Figure 41)318. Therefore, iNs are a powerful valid 

alternative for the modeling of neuropsychiatric diseases, as it will retain much of epigenetic 

changes present in the somatic cells of the patients. 

 

 

 

Even superior models that can mimic brain development and disorders are three-dimensional 

iPSC-derived brain organoids313. Brain organoids, with its complex tissue structure have the 

potential to recapitulate developing neural circuits and circuit level interactions, and are  

responsive to drug treatment too. Brain organoids generated from ASD patients captured 

maturation-related signatures including an increased production of GABAergic neurons, and 

Figure 41. 

Neuronal 

differentiation. 

Adapted from Parr 

et al., 2017. 
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have been used to model Timothy syndrome, a severe neurodevelopmental disease 

characterized by ASD and epilepsy317,319. The organoid field is young and currently lacks some 

of the brain cell types but is highly promising, with much room for improvement.  

Objective 9. Psychiatric therapy and precision medicine 

Pharmacogenetics research into psychiatric diseases is in its early stages. Each drug is tested 

in fewer than 5000 samples and 75% of psychiatric drugs fail to effectively treat the patient’s 

condition. The low efficacy of psychiatric drugs arises from a dearth of insights into the 

pathogenesis of psychiatric traits, together with indistinct diagnoses based on symptom counts.  

How soon will today’s genetics research help clinicians and patients?  Can the risk variants in 

absence of the knowledge of causal genes contribute to treatment? Indeed, the identified 

variants from the GWASs so far are valuable for genomic risk prediction and to identify 

druggable targets157. While GWASs aim to detect reproducible disease-associated loci, 

genomic risk prediction doesn’t necessarily require a causal interpretation. This means that as 

a greater number of identified variants are discovered, more robust risk prediction models can 

be developed. The variants should be evaluated for an association with clinical features of  

disorders including early-onset, recurrence, severity, and anatomical and functional 

differences157. Multiple data types from neuroimaging, genetic and clinical predictors improve 

the performance of the models and so can the pervasive pleiotropy among psychiatric 

phenotypes320. One example is that of 22q11 deletions, which is a strong susceptibility factor 

for a range of psychiatric disorders including ASD, ADHD, ID, anxiety, mood disorders, as 

well as subsyndromal cognitive and psychiatric impairments109. Estimation of disease risk is 

applicable for individuals that carry 22q11 deletion to assist with genetic counseling.  

Not all risk variants will be present in all individuals, as population and inter-individual genetic 

differences play a part. Risk allele weights derived from the major ancestral populations are 

needed to predict genetic risk scores (GRS). The failure to include diverse, multi-ethnic 

populations in genetic studies exacerbates health disparities as the therapeutic models would 

mostly work on the Europeans but can be potentially dangerous if extended to other ethnic 

groups273. Thus, a lack of ancestral diversity in current GWAS can impede the clinical use of 

GRS globally. A personalized analysis of variants and genes (through iMEGES) can therefore 

aid the identification of potential risk factors in patients, so that the risk predictions and 

treatment would be more effective283.  
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For an effective drug therapy, affected individuals with similar neurophysiological 

abnormalities should be clustered or grouped, and novel interventions that would work with  a 

degree of specificity for groups should be developed and tested (Figure 42)313. Well powered 

GWASs designed to investigate the efficacy and side effects of treatment can  predict 

appropriate drug target choices than current candidate genes (like CYP2D6 and CYP2C19)273.  

Phenome-wide association studies (PheWAS) is another promising way to aid drug 

development using data from electronic medical records, disease-agnostic cohorts and GWAS, 

but is largely untapped for prioritization of drug targets. With PheWAS, associations between 

a specific genetic variant and a range of physiological, clinical, and phenotypic outcomes can 

be tested, while accounting for the pleiotropic effects. PheWAS can elucidate mechanisms of 

drug action, identify alternative indications, and  adverse drug events (ADEs)321. Targeting loci 

that have pleiotropic effects on disorders can provide broad-spectrum therapeutic effects. 

 

In addition to the conventional ‘genetic’ or ‘protein-based’ drug targets, epigenetic 

modifications due to their reversible nature might represent novel targets for therapeutic 

improvement (Figure 43). A new class of medication, ‘epidrugs’, has emerged to modulate 

epigenetic signaling. In the earliest stages, three classes of molecules are potentially efficacious 

Figure 42. Precision medicine to tailor healthcare to individual patients four key areas (risk prediction, 

patient stratification, pharmacogenomic and molecular diagnostics). 

Adapted from Rees and Owen, 2020. 
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including histone demethylase inhibitors (HMT), histone deacetylase inhibitors (HDAC), and 

DNA methyltransferase (DNMT) inhibitors acting on DNA methylation. The role of DNMT 

inhibitors as anti-cancer drugs in cancer treatment has been widely recognized but their 

therapeutic potential in the treatment of psychiatric disorders is still at the preclinical stage. 

Targeted epigenetic strategies can be aimed to correct only the putative pathogenic marks and 

leave the homeostatic ‘beneficial’ marks unchanged322.  

 

 

 

 

 

 

 

 

 

The success of medications in psychiatric disorders can be greatly enhanced by personalized 

biopsychosocial interventions that sometimes are undervalued. The critical developmental 

windows are instrumental to long‐term deleterious epigenetic effects, and so the correction of 

early epigenetic disruptions is proving to be a key influence in psychiatric therapies. For 

instance - prevention of early psycho-trauma in rodents has been shown to alleviate long‐term 

detrimental impacts and is one such successful environmental/epigenetic intervention. 

Implementing a supportive enriched environment (EE) can also convalesce depression more 

effectively than antidepressant drugs, alleviate anxiety and cognitive impairments, as seen in 

young adult mice. The positive effects in EE intervention result from an epigenetic 

reprogramming of genes encoding receptors like BDNF or CRH, the key factors in stress 

response, and these positive effects can persist across generations. Thus it is hinted that initial 

interventions can go a long way in improving genetic predispositions to impairments induced 

by early life stress322. 

Figure 43. Clinical opportunities brought by epigenetic studies in psychiatry. 

Adapted from Kular and Kular., 2018. 
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Lookup 

The genetics of psychiatric disorders is evolving exponentially, and continues to reveal the 

incredible layers of complexity, heterogeneity and pleiotropy. Given the marked progress in 

psychiatric illnesses to date because of GWAS, WGS, WES, and new analytical approaches, 

these methods will continue to expand, covering more disorders, phenotypes, diverse 

populations, drug responses in the gene and drug discovery efforts. The clustering and splitting 

of psychiatric disorders are likely to continue, on newly found grounds of biological insights 

steering a more bottom-up classification of psychiatric disorders. There remain critical glitches 

to be solved before psychiatry can finally support each and every patient - many risk variants 

have not yet been uncovered, inclusion of more ethnicities, we are yet to fully appreciate the 

ability of studying the comorbidities together, the mechanisms of action of pleiotropic loci, 

improving model systems and more. Nonetheless, the current omics, informatics and state-of-

the-art technologies altogether have built an empirical platform upon which psychiatry can now 

progress these issues. What is important to remember is that the current genetic findings have 

the power to make an immediate impact on psychiatry; by testing rare pathogenic CNVs in 

patients, detection of brain abnormalities, screening for comorbidities, genetic risk assessment, 

counselling and biopsychosocial interventions. The decades of psychiatric research have 

gradually diminished the clinical and genetic boundaries and have established that psychiatric 

genetics is no longer peripheral but is a more natural driver for clinical psychiatry.  
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CHAPTER 6: FUTURE WORK 

6.1. Expanding research on the miRNA system 

So far, we have explored the role of common variation in miRNA genes in the predisposition 

to ADHD. As a next step, we aim to investigate the impact of genetic variation located in the 

miRNA target sites in the 3’UTR of mRNAs, known as poly-miRTSs. Approximately 11% of 

known SNPs are located in the 3'UTR regions of 16,810 genes323. A variation in a 3′-UTR can 

either introduce or remove miRNA target sequences or change the binding efficiency, which 

in turn can alter the gene expression. 

6.2. Studying epigenetic risk factors in other comorbid disorders 

We plan to investigate the role of miRNAs and ASM also in ASD, highly comorbid with 

ADHD. The most recent genome-wide association meta-analysis of ASD, including 18,381 

cases and 27,969 controls, published in 2019, revealed five GWS loci. It would be interesting 

to investigate the epigenetic underpinnings in ASD and find any possible overlap with ADHD 

biology. Joint analysis for comorbid disorders will be pursued to find genetic specificity but 

also shared risk factors. 

6.3. Attempting larger cocaine-dependence GWAS 

We aim to increase the sample size for cocaine-dependence GWAS so as to establish higher 

levels of significance for confident identification of common susceptibility variants. The 

different GWASs performed so far in a number of psychiatric disorders indicate that only after 

reaching around 10,000 cases the first GWS findings emerge. Keeping this figure in mind, we 

are in touch with different research groups from different centers (e.g. Aarhus University, Vall 

d’Hebron Institut de Recerca or Universidade Federal do Rio Grande do Sul, Porto Alegre, 

among others) that are currently genotyping several thousands of additional patients. In 

parallel, the PGC also intends to genotype a larger number of subjects that are dependent on 

different drugs, including cocaine, opiates, cannabis and alcohol, which may be also useful. 

6.4. Trans-ancestry studies 

Individuals from East Asian and African American descent are now being increasingly studied 

as this will help in both achieving a finer resolution in GWAS and eliminating health 

disparities. Thus, replicating the epigenetic and genetic signals that we have identified in 
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European samples in samples from other ancestries remains a challenge and a commitment that 

the scientific community should take. 

6.5. Functional follow-up of candidate genes 

We are following up the C2orf82 gene, one of our prioritized candidates in ADHD, using a 

gene-knockout mouse model. Our studies involve extensive behavioral testing that have 

already revealed abnormalities like hypolocomotion and impulsivity. Interestingly, the 

depletion of the gene also causes decreased motivation for cocaine, indicating that it may have 

pleiotropic effects. In parallel, the group investigates the effect of genes pointed in studies that 

focus on cocaine dependence, such as PLCB1, encoding the signaling molecule phospholipase 

C beta 1, also through mouse modelling. Zebrafish is also used by us to study genes involved 

in several psychiatric conditions or traits, including aggressive behavior or ASD. Although we 

are aware that we are modelling conditions that are polygenic and in general explained by the 

effect of common variants, investigating single-gene knockouts provides valuable information 

on the impact on the brain associated with the malfunction of such genes.  
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Exploring genetic variation that influences brain methylation in attention-

deficit/hyperactivity disorder (ADHD) 

1. Common genetic risk variants for ADHD identified in a previous genome-wide 

association study (GWAS) that included 20,000 cases and 35,000 controls are enriched 

in SNPs that correlate with levels of DNA methylation. 

2. Eight Allele-Specific Methylation tagSNPs are significantly associated with ADHD 

and correlate with differential methylation at six CpG sites in cis in different brain areas. 

3. These six CpG sites are located at possible promoter regions of six genes expressed in 

brain: ARTN, C2orf82, NEUROD6, PIDD1, RPLP2 and GAL. 

4. For three of these six genes, SNPs associated with ADHD and correlating with 

methylation levels are eQTLs in brain. Consistently, methylation and gene expression 

show opposite directions: ARTN and PIDD1 (reduced methylation, increased 

expression), C2orf82 (increased methylation, reduced expression). 

5. ADHD risk alleles are associated with increased brain expression of ARTN and PIDD1 

and with decreased brain expression of C2orf82. 

6. SNPs in C2orf82 correlate with changes in brain volumes. 

7. In summary, our study highlights the ARTN, C2orf82 and PIDD1 genes as potential 

contributors to ADHD susceptibility. 

Genome-wide association meta-analysis of cocaine dependence: Shared 

genetics with comorbid conditions 

1. We have performed the largest cocaine dependence GWAS meta-analysis in individuals 

of European ancestry, including 2,100 cases and 4,300 controls.  

2. Although the SNP-based analysis revealed no genome-wide significant associations 

with cocaine dependence, probably due to limited sample size, the gene-based analysis 

identified the HIST1H2BD gene, previously associated with schizophrenia.  

3. The estimated SNP-based heritability of cocaine dependence is approximately 30%. 

4. A significant genetic correlation has been observed between cocaine dependence and 

ADHD, schizophrenia, major depressive disorder and risk-taking behaviour, suggesting 

a shared genetic basis across pathologies and traits. 

5. Polygenic risk score (PRS) analysis shows that all the comorbid features analysed 

(ADHD, schizophrenia, major depressive disorder, aggressiveness, antisocial 

personality or risk-taking behaviour) can predict cocaine dependence. 
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Exploring the impact of common variation in miRNA genes on attention-

deficit/hyperactivity disorder  

1. We have performed a case-control association study to investigate the contribution to 

ADHD of common genetic variation in 1,761 autosomal miRNAs using pre-existing 

GWAS data from 20,000 cases and 35,000 controls.  

2.  We have identified 19 significant associations of SNPs with ADHD that highlight 12 

miRNA genes, all located within protein-coding genes. 

3. The associated variants are located in the putative regulatory regions of the miRNA 

genes or in the promoter region of the host protein-coding gene. 

4. Two of the 12 highlighted miRNA loci, miR-6079 and miR-3666, overlap with 

genome-wide association findings from the pre-existing ADHD meta-analysis that was 

used as a starting dataset for the present study. 

5. Six of the 12 highlighted miRNAs are expressed in different brain tissues, specifically 

in cerebellum, whereas for the rest this information is not yet available. 

6. Three of the highlighted miRNAs - miR-3666, miR-7-1 and miR-1273h - have 

validated target mRNAs.  

7. Pathway analysis of ADHD-associated miRNAs revealed two biological pathways. 

One of the pathways involves miRNA-mediated regulation of serotonin receptor genes 

and it is likely to be involved in neurological functions and diseases. 

In summary, our studies have contributed to identify common genetic and epigenetic risk 

factors that underlie the susceptibility to ADHD and to cocaine dependence. The results 

reinforce the idea that epigenetic mechanisms dictate the differential expression of genes that 

may be causal to ADHD. Cocaine dependence, which has been widely believed to occur under 

environmental and epigenetic influences, is also in part genetically determined. Finally, ADHD 

and cocaine dependence are comorbid disorders, and the observed genetic correlation between 

these conditions can reflect biological pleiotropy. 
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