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THESIS SUMMARY

The broad objectives of this work are the identification of genes that contribute to the
susceptibility to attention-deficit/hyperactivity disorder (ADHD) and cocaine dependence, two
disorders that co-occur in patients. In this Thesis, we describe (i) the contribution to ADHD of
allele-specific methylation (ASM), an epigenetic mechanism that involves single single-
nucleotide polymorphisms (SNPs) correlating with differential levels of DNA methylation at
CpG sites, (ii) the role of microRNA (miRNA) genes in ADHD, and (iii) a genome-wide
association meta-analysis of cocaine dependence. We also explore the common genetic basis

that explains the comorbidity between these disorders.

The main results from the three studies include:

(1) Common genetic risk variants for ADHD identified in a previous genome-wide association
study (GWAS) that included 20,000 cases and 35,000 controls are enriched in SNPs that
correlate with levels of DNA methylation. Eight ASM SNPs were found significantly
associated with ADHD and correlated with differential methylation at six CpG sites in cis in
different brain areas. These six CpG sites are located at possible promoter regions of six genes
expressed in brain: ARTN, C2orf82, NEURODG6, PIDDI, RPLP2 and GAL. Based on the
bioinformatic functional analyses of these genes, our study highlights the candidacy of ARTN,
C20rf82 and PIDD] genes as potential contributors to ADHD susceptibility.

(i1)) We conducted a case-control association study to investigate the contribution to ADHD of
common genetic variation in 1,761 autosomal miRNAs using pre-existing GWAS data from
20,000 cases and 35,000 controls. We identified significant associations of SNPs with ADHD
that highlight 12 miRNA genes, all located within protein-coding genes. The associated
variants are located in the putative regulatory regions of the miRNA genes or in the promoter
region of the host protein-coding gene. We inspected the target genes, brain expression,
homologs for the miRNAs and we propose miR-7-1 and miR-3666 as promising candidates
since both are brain expressed, have validated brain-expressed targets, and homologs in model
species. Pathway analysis of ADHD-associated miRNAs revealed miRNA-mediated
regulation of serotonin receptor genes, well-known contributors to neurological functions and

diseases.



(iii)) We performed the largest cocaine dependence GWAS meta-analysis in individuals of
European ancestry, including 2,100 cases and 4,300 controls. Although SNP-based analysis
revealed no genome-wide significant associations with cocaine dependence, probably due to
limited sample size, gene-based analysis identified the HISTIH2BD gene, previously
associated with schizophrenia. The estimated SNP-based heritability of cocaine dependence
was estimated as 30%. A significant genetic correlation was found between cocaine
dependence and ADHD, schizophrenia, major depressive disorder and risk-taking behaviour,
suggesting a shared genetic basis across pathologies and traits. Polygenic risk score (PRS)
analysis shows that all the comorbid features analysed (ADHD, schizophrenia, major
depressive disorder, aggressiveness, antisocial personality or risk-taking behaviour) can predict

cocaine dependence.

Overall, we identified common genetic and epigenetic risk factors that underlie the
susceptibility to ADHD and to cocaine dependence. The results reinforce the idea that
epigenetic mechanisms dictate the differential expression of genes that may be causal to
ADHD. Cocaine dependence, which has been widely believed to occur under environmental
and epigenetic influences, is also in part genetically determined. Finally, ADHD and cocaine
dependence are comorbid disorders, and the observed genetic correlation between these

conditions can reflect biological pleiotropy.



RESUM DE LA TESI

Aquest treball t¢ com a objectiu principal la identificacid de gens que contribueixen a la
susceptibilitat al trastorn per deficit d’atencié amb hiperactivitat (TDAH) i a la dependéncia de
cocaina, dos trastorns que es presenten amb freqilieéncia conjuntament en pacients. En aquesta
Tesi es descriu (i) la contribucio al TDAH de la metilacié especifica de 1’al-lel (ASM), un
mecanisme epigenetic pel qual variants polimorfiques presenten correlacié amb nivells
diferencials de metilacié de ’ADN en llocs CpG, (ii) el paper dels gens de microRNAs
(miRNAs) en el TDAH, i (iii) una meta-analisi d’estudis d’associacio a escala genomica de la
dependéncia de cocaina. També explorem la base genética comuna que explica la comorbiditat

entre aquests dos trastorns.
Els principals resultats dels tres estudis son:

(1) Les variants genétiques comunes de risc al TDAH identificades en un estudi previ
d’associaci6 a escala genomica (GWAS) amb 20.000 casos 1 35.000 controls estan enriquides
en variants de canvi d’un sol nucleotid (SNPs) que tenen influéncia sobre la metilacié de
I’ADN. Vuit SNPs de tipus ASM estan associats significativament amb el TDAH 1 presenten
correlacié amb la metilacio diferencial de sis dinucleotids CpG en cis en diferents arees
cerebrals. Aquests sis llocs CpG estan en possibles regions promotores de sis gens que
s’expressen al cervell: ARTN, C2orf82, NEURODG, PIDD1, RPLP2 i GAL. En base a analisis
bioinformatiques d’aquests gens a nivell funcional, el nostre estudi prioritza els gens ARTN,

C2o0rf82 1 PIDD1 com a possibles contribuents a la susceptibilitat al TDAH.

(i1) Hem dut a terme un estudi d'associacié cas-control per investigar la contribucié al TDAH
de la variaci6 genética comuna en 1.761 miRNA autosomics utilitzant dades GWAS
preexistents de 20.000 casos 1 35.000 controls. Hem identificat associacions significatives de
SNPs amb el TDAH que assenyalen 12 gens de miRNAs, tots situats dins de gens que
codifiquen proteines. Les variants associades estan situades en suposades regions reguladores
dels gens de miRNA o a la regié promotora del gen hoste. Hem inspeccionat els gens diana
dels miRNAs, la seva expressio en cervell 1 els gens homolegs en altres especies, 1 proposem
els gens miR-7-1 1 miR-3666 com a candidats prometedors, ja que tots dos son s’expressen al
sistema nervids central, tenen dianes validades que s’expressen també en cervell i tenen

homolegs en especies model. L’analisi de vies a partir dels miRNAs associats al TDAH ha



assenyalat gens de receptors de serotonina regulats pels nostres miRNAs, la relacid dels quals

amb funcions i malalties neurologiques €s ben coneguda.

(ii1) Hem realitzat la metaanalisi més gran fins ara de dades GWAS de dependéncia de cocaina
en individus d'ascendéncia europea, amb 2.100 casos i 4.300 controls. Tot i que 1’analisi basada
en SNPs no ha revelat cap associacid significativa amb la dependeéncia de cocaina,
probablement a causa de la mida mostral limitada, 1’analisi basada en gens ha permes
identificar el gen HISTIH2BD, anteriorment associat a I’esquizofrénia. Hem calculat també
I'heretabilitat basada en SNPs de la dependéncia de cocaina, que seria d’un 30%. Hem detectat
una correlacid genetica significativa entre la dependéncia de cocaina i el TDAH,
I’esquizofrénia, el trastorn depressiu major i els comportaments de risc, tot suggerint que hi ha
una base genética compartida entre patologies i trets. L’analisi de la puntuacié de risc poligénic
(PRS) mostra que totes les caracteristiques comorbides analitzades (TDAH, esquizofrénia,
trastorn depressiu major, agressivitat, personalitat antisocial o comportaments de risc) prediuen

la dependéncia de la cocaina.

En resum, hem identificat factors de risc genctics i epigenctics freqiients a la poblacié que
contribueixen a la susceptibilitat al TDAH 1 a la dependéncia de cocaina. Els resultats reforcen
la idea que els mecanismes epigenctics estan relacionats amb 1'expressio diferencial de gens
que poden contribuir al TDAH. La dependéncia de cocaina, que fins ara s’havia relacionat amb
factors de risc ambientals i epigenétics, també estaria determinada, en part, per factors geneétics.
Finalment, el TDAH i la dependéncia de la cocaina son trastorns comorbids i la correlacid

genctica observada entre aquestes afeccions pot reflectir pleiotropia biologica.
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CHAPTER 1. OVERVIEW

Attention-deficit/hyperactivity  disorder (ADHD) is a common childhood-onset
neurodevelopmental psychiatric condition. It is characterized by impairing symptoms of age-
inappropriate inattention, impulsivity and hyperactivity. The disorder affects around 5-7% of
children and adolescents worldwide!?. According to longitudinal data, ADHD symptoms
persist into adulthood in nearly 65% of the affected individuals®, making it a lifelong state. The
prevalence of adult ADHD is 2.5-5%"3#. The questions on causation, risk, mediating factors

and lifespan trajectory of this disorder remain still poorly understood.

1.1 Clinical symptomatology

In line with the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-V)*>, ADHD symptoms must be discernible before the age of 12 years with significant
debilitation of child’s integration in more than one environment, e.g., school or work, or family
and peers. The previous criterion, according to DSM-IV, for the age of onset of ADHD
symptoms was 7 years®. Based on the associated behavioral symptoms, there are three subtypes
of ADHD (DSM-1V): predominantly hyperactive/impulsive (HI), predominantly inattentive,
or combined. However, DSM-V puts less emphasis on these distinctions’. It is relatively easier
to notice the contrasting subtypes of inattention and HI. However, the presence of the combined
form of ADHD severely disturbs the functioning of an individual®. A greater percentage of
males fall within the HI spectrum, while females tend to present more inattentive symptoms
and often go undiagnosed®®. This may explain, in part, the disparity in the reported incidence

of ADHD between both genders.

1.2 Comorbidities

It is well known that ADHD is highly comorbid with other psychiatric and non-psychiatric
conditions, throughout the life span®. Major comorbidities observed during several stages of
a subject with ADHD are learning disorders, tics, autism spectrum disorders (ASD), conduct
disorder (CD), oppositional defiant disorder (ODD), mood and anxiety disorders, antisocial
behaviors, sleep disorders, major depressive disorder (MDD), substance use disorders (SUDs)

and obsessive-compulsive disorder (OCD)*%-1°,

The comorbidities and their impact often change during the lifetime of patients'®. For example,

children with ADHD might show more CD, ODD and anxiety; while adolescents with ADHD
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are likely to exhibit OCD and SUD*!!. These co-occurring behaviors can be direct outcomes
of the ADHD and increase the severity of the disorder. The relatively poor performance in
education or in work spaces may trigger anxiety and depression in ADHD individuals'!. Social

exclusion may lead to increased loneliness or to antisocial behavior at later stages'?.

1.3 Social problems

The disorder poses impediments that begin in childhood and continue throughout the lifespan
generating a personal burden that can be highly impairing. HI children are more likely to
present aggressiveness or behaviors that are inadequate in sociocultural contexts. This
increases their odds of facing social rejection from their non-ADHD counterparts'>.
Adolescents with ADHD have troubles building peer relationships because of the reported low

esteem, which also exposes them to a greater risk of substance abuse!*.

While the medication benefits the condition, it is certainly not a substitute for interpersonal and
social skills development. There are concealed struggles by ADHD-afflicted in achieving high
working memory, decision making, time management, impulse control, endurance in personal
or professional tasks and follow-through on ideas. In most instances, not all these parameters

are satisfactorily met.

In addition, the stigma attached to ADHD as with many other psychiatric conditions, challenges
the integration of the affected into the society, which is presently still not prepared to accept
the neurodiverse community. Despite the global validity of ADHD as a psychiatric condition,
it is still not prioritized in some societies, which hinders the conditioning and progress of the

suffering individuals.

1.4 Misdiagnosis of ADHD

Multiple issues can complicate and interfere with a clear and uniform diagnosis of ADHD.
First, the clinical presentation of ADHD may vary according to gender, age and stage of
development®'>16. Second, the uniformity of ADHD diagnosis is hindered by the presence of
cultural differences in the expected activity and inattention levels®!>1®. Third, the presence of
comorbid conditions may mask the ADHD symptoms and lead to misdiagnosis'®. In the
presence of multiple manifestations, detailed screenings are needed to figure out the causal
condition and the effects®. Fourth, the inattentive form of ADHD gets more easily unnoticed,

especially in the absence of comorbidities.
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1.5 Therapeutic approaches

ADHD treatment involves a combination of pharmacological and non-pharmacological
interventions in children, adolescents and adults*. Pharmacotherapy relies mainly on the use of
stimulant medications, e.g. methylphenidate, pemoline and dextroamphetamine!”-'8. Mostly
considered safe in structured doses, these molecules may improve the core symptoms of
inattention, hyperactivity and impulsivity'®. The affected children and adolescents benefit from
an increased academic performance and social functioning at school and at home, and adults
tend to cope better with occupational and social dysfunctions while under stimulant
medication?’~23, Nearly all the treatments show the same efficacy, with around 70% of ADHD
patients responding to the available treatments that target mainly the dopaminergic and
noradrenergic systems!”!°. However, there is a need for research into the causal biological
pathways in ADHD to address new targets and for a better outreach. In children, non-
pharmacological interventions involving cognitive-behavioral therapy (CBT) are perceived to
be less efficient than stimulant medication, if used alone?*. However, CBT can assist in
managing comorbid behavior disruptions like CD?. CBT has been shown to be more effective

in adolescents with ADHD than in children?627,
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CHAPTER 2. ETIOLOGY OF ADHD

ADHD etiology is believed to be multifactorial, with genetics contributing significantly to the
cause of the disorder, together with environmental risk factors. ADHD is one of the psychiatric
disorders with the strongest genetic basis according to familial, twin, and SNP-based

statistics .

2.1 Heritability estimates in ADHD

Heritability is a measure to understand how much of the variation in a given trait can be
attributed to genetic factors. Two main approaches are implemented to quantify heritability.
The classic method employs twin studies, where the concordance (or correlation) of a
phenotype is assessed in monozygotic twins (sharing 100% of their genomes) versus dizygotic
twins (sharing 50% of their genomes). Another method identifies the impact of the environment
in addition to the genetic contribution in twins. The environmental risks may not be shared
among siblings. This estimates the genetic (A), shared environment (C) and unique
environment (E) in the twin studies and is therefore termed as ‘ACE’ model®. Twenty twin
studies in ADHD estimated the heritability of this psychiatric disorder as 76%28 and the latest
estimated mean heritability from across 37 twin studies is 74%?2°, retaining consistency over
the decade (Figure 1). This indicates that three quarters of the phenotype variation in ADHD

is due to genetic variation, and therefore ADHD is among the most heritable of psychiatric

disorders.
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Figure 1. A: Estimated heritability of ADHD, based on pooled results from 20 twin studies. B: Heritability of
ADHD from twin studies of ADHD diagnoses or symptom counts.

Adapted from Faraone et al., 2005 and Faraone et al., 2018.
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Although several countries maintain twin registries, especially in Scandinavia and in the USA,
finding an adequate number of twins can be challenging since human twin occurrences are not
very common. Thus, an alternative approach estimates single nucleotide polymorphism (SNP)-
based heritability (SNP-h2) through genome-wide complex trait analysis (GCTA). The starting
point is a genome-wide association study (GWAS), where SNPs covering the whole genome
at regular intervals are genotyped -typically- in a group of patients and a group of controls and
pairwise genetic and phenotypic correlations are computed by employing linkage
disequilibrium (LD) score regression models. The additive effect of common SNPs to the
phenotype is a predictor of SNP-h2. In ADHD, the most recent estimation for SNP-h2 is 0.22
(standard error = 0.01)!. It is important to note that SNP-based heritability accounts for the
genetic contribution to the trait of a certain type of variation (SNPs) with a certain frequency
(greater than 1% or than 5%, depending on the study), neglecting the genetic effects of other

variants (e.g. copy number variants -CNVs- or rare variants).

2.2 Is there an environmental basis for ADHD?

Pre-, peri- and postnatal risk factors may aggravate the development of ADHD symptoms: 1)
Maternal characteristics during pregnancy are counted as prenatal influences, for instance-
presence of illnesses, stressors, exposure to chemicals or substance use. 2) Perinatal factors
involve birth-related indicators like type of delivery, hypoxia, child’s birth weight, infections
in child following birth, among others. 3) Exposures and experiences during early childhood

build the postnatal environment.

Maternal exposure to cigarettes and alcohol prenatally may induce alterations in the

cerebellum?%3!

, a brain region monitoring some of the cognitive functions that are impaired in
ADHD. It may also increase hyperactivity, impulsivity and disruptive behaviours in children,
potentially exposing them to developing psychiatric conditions. Maternal smoking escalates
the ADHD risk in children by twice3? and a positive relation is reported between smoking doses
and hyperactivity*3. Other prenatal factors can lead to very low birth weight in children, which

is associated with a two-fold increase in ADHD?#-3,

Perinatal events like complications during delivery are associated with increased incidence of
ADHD symptoms in children®$. Hypoxic occurrences adversely affect developing brains®’.
Postnatal risks are diverse but mostly reflected by the social conditioning of children and their
dietary imbalances. For instance, a role for iron-deficient diets and unbalanced consumption of

essential fatty acids (omega-3 and omega-6) have been suggested impact ADHD

11
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development®®4°. However, further evidences are needed to validate these speculations.
Exposure to environmental toxins and social adversities like stressful social life at early stages

may also interfere with the neurobehavioral progression and trigger ADHD symptomatology*!.

2.3 Quantifying gene-environment interactions

As several risk factors for ADHD have been identified in addition to the genetic ones, the
models to study the etiology of ADHD have accordingly evolved and are complex. These
models intend to quantify the interactions between genes and environmental exposures. For
instance — It is known that an altered activity of nicotinic receptors disrupts dopaminergic
function*?, a functional pathway known to be relevant to ADHD. So, it is enticing to speculate
on the impact of prenatal smoking to ADHD risk on those subjects bearing genetic risk factors
for ADHD in dopaminergic genes. An example model to estimate the ADHD outcome
considers ADHD risk variants in DRD4 -encoding a dopaminergic receptor- and DAT! -the
dopamine transporter- together with the intensity of prenatal smoking**. Such models may also
help to predict the severity of ADHD symptoms and also its clinical subtypes. Similarly, males
homozygous for the 10-repeat allele of the 40-bp variable number of tandem repeats (VNTR)
polymorphism in DATI who grow up in a context of psychosocial adversity exhibit higher
hyperactivity-impulsivity than non-homozygous DAT/ males or those who grow up in less
adverse conditions. Similarly, significant interactions of the 30-bp VNTR and DAT1 haplotype

with psychosocial adversity on ADHD symptoms have also surfaced*.

12
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CHAPTER 3. MOLECULAR GENETIC STUDIES

3.1 Genome-wide linkage scans

Seven independent genome-wide linkage scans have identified susceptibility loci for ADHD
on chromosomes 5p13, 14q12 and 17p11%. However, the linkage signals on 5p and 17p could
not be replicated in a later high-density SNP linkage scan and suggestive linkage signals were
reported on chromosomes 16923 and 9922 in this same study*’. Other linkage spots appeared
on 4q13.2, 5q33.3, 8q11.23, 11g22, and 17p114% and 16p13*’. A genome scan meta-analysis
(GSMA) was conducted on all seven independent genome-wide linkage scans in ADHD that
identified a genome-wide significant (GWS) linkage on chromosome 16 (16q22—16q24), and
nine genomic regions showing nominal linkage*®. Follow-up studies on these linkage signals
are limited and only a few genes behave been highlighted. For instance - The 9922 locus
pointed at genetic variation in the promoter region of the brain-expressed DIRAS2 gene,
encoding a GTPase of the Ras family, as a risk factor for ADHD and impulsive disorders*. In
addition, fine mapping of the genomic region on chromosome 4 found previously linked to
ADHD narrowed down a segment encompassing exons 4 to 19 of the LPHN3 gene, containing
several functional domains and variants with a potential impact on splice isoform variability>’.

LPHNS3 encodes a G-protein coupled receptor involved in cell-to-cell adhesion.

3.2 Common genetic variation in ADHD
3.2.1 Candidate gene association studies/Hypothesis-driven studies

Research through this approach has focused on neurobiological pathways that are suspected to
be involved in ADHD. Genes that belong to these pathways are proposed to be candidates for
the disorder and subsequently examined in both cases and controls for differences in the

frequency of genetic variants.

Most classic candidate gene studies in ADHD have tagged neurotransmitter systems, mainly
dopamine and serotonin. The fact that the main pharmacological treatments for the disorder
target dopaminergic receptors and the dopamine transporter, has motivated an extensive
scrutiny of this system, with several associations with childhood or adult ADHD found at

genetic loci containing DRD4, DRDS5, DATI 5HTT, HTRIB, and SNAP25°'.

However, an important limiting factor hampers the use of the candidate gene approach: the

knowledge we have on the disease mechanisms is still scarce and fragmented. Also, the

13
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reliability of this approach is limited, as the chances of obtaining false positive results are high,
making it difficult to replicate the findings®. It is worth to note that none of the hypothesis-
driven findings have emerged as Bonferroni significant (P <5 x 107%) in GWASs so far, with
the only exception of FOXP2, a language-related gene that encodes a transcription factor and

found associated with adult ADHD in a study published in 201232,
3.2.2 Genome-wide association studies / Hypothesis-free studies

Initial attempts on 1dentifying genome-wide associations of SNPs with ADHD through GWAS
have been performed on nine independent datasets*. Three of these GWASs were specific to

33755 and another one focused on conduct disorder with ADHD>®, and

the persistent form
studied families. Several of these datasets were part of the first two meta-analyses in
ADHD®7°8, However, neither the individual GWASs nor the meta-analyzed associations
resulted in genome-wide significant loci. Key functions of the top genetic loci from these
ADHD GWASs are central nervous system development, neuronal progression involving

differentiation and activity, neurite outgrowth, synaptic transmission, axon guidance, ligand

binding e.g. to FGFR, and also the activation of ion channels*.

The very first GWS hits in ADHD have been unraveled in a meta-analysis published in 2019
that comprises 20,183 ADHD cases and 35,191 controls from 12 datasets including both
children and adults'. This study highlights 12 independent GWS loci containing 304 SNP
variants. The well annotated genes include FOXP2 (mentioned in the previous section, a
transcription factor involved in learning disabilities and language), SORCS3 (a brain-expressed
receptor with a role in brain plasticity and neuronal development), DUSP6 (with a role in
dopamine homeostasis), SEMA6D (possibly involved in the inhibition of axon growth,
associated with educational attainment) and MEF2C (a transcription factor associated with
other brain conditions). However, there are additional genes (e.g. miR-3666) and intergenic
variants located in these GWS loci! that are not well annotated, but they might be potentially

relevant in understanding ADHD.

The latest findings from the GWAS and, especially, those from the previous linkage studies or
the CGAS continue to present inconsistencies. Presumably, with studies that utilize an even
greater sample size, we expect to achieve replications and more confidence in the findings.
Indeed, a preliminary GWAS that is an extension of the one published in 2019! and includes
more than 100,000 ADHD cases and over 120,000 controls was presented at the World

14
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Congress of Psychiatric Genetics 2019 and has not been published yet. This study released
around 100 independent GWS hits.

3.3 Rare genetic variation and structural variants in ADHD

The contribution of rare genetic variants (minor allele frequency (MAF) <1%) and of structural
variants, also known as copy-number variants or CNVs (involving DNA segments >1 Kb) to
ADHD heritability can be weighted through whole-genome, whole-exome or targeted
sequencing, but also by using genotyping arrays and other methodologies. Rare mutations
(either-single nucleotide variants -SNVs- or CNVs) and high-frequency CNVs are suspected
to explain a considerable fraction of the so-called missing heritability of ADHD. Those genetic
effects would add to those explained by common single-nucleotide variation (SNPs), estimated

to be around 20% for this disorder.

Large rare CNVs (> 100 kb or > 500 kb) are at a greater burden in both child and adult ADHD

patients>6!,

Many of the risk CNVs are found in genomic regions related to
neurodevelopmental processes and are shared with other brain disorders, like intellectual
disability (ID), autism and schizophrenia. Individuals carrying rare risk CNVs may require a

lesser load of common risk variants to develop ADHD.

Rare SNVs in psychiatric disorders have been studied mainly in autism®? and schizophrenia®?
through whole-exome (WES) or whole-genome sequencing (WGS). A recent exome analysis
on a large number of ADHD and ASD cases has ascertained a significantly greater burden of
rare protein-truncating variants, and associated MAPIA, with both disorders®*. A WES study
explored a prioritized set of 52 candidate risk genes in ADHD and found that rare missense
and disruptive variants in these genes were more than twice as prevalent in patients with
persistent ADHD compared to controls®>. A combined linkage analysis and WES approach
identified 38 rare variants within 25 genes where these genes altogether were significantly
associated with persistent ADHD. The A4ED1 gene that can possibly regulate DAT trafticking
through PICK1 binding emerged as gene-wide significant, and a rare variant
in AAEDI (rs151326868) segregated with ADHD®. Also, an exome-wide scan of rare coding
variants for adult ADHD revealed four significant candidate loci at 6q22.1, where NT5DCI
and COL10A1 reside, along with the SEC23IP, PSD and ZCCHC4 loci®’. Putative functional
rare SN'Vs associated with hyperactivity and inattention have been detected in the context of
one of the major common variants of DRD4: a repeat of a 48-bp unit in exon 3 of the gene

(DRD4-7R). It is worth speculating whether these rare variants in DRD4 can be a stronger
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contributor to ADHD symptoms than the classically investigated DRD4 common
variation®®. The brain-derived neurotropic factor gene BDNF, previously related to
impulsive symptoms, is enriched in putatively functional, rare SNVs®®. An investigation on
the etiology of sporadic ADHD highlighted six brain-expressed genes as candidates for the

disorder, based on the load of de novo missense SNVs’°.

3.4 Epigenetics and ADHD

Epigenetic modulators dynamically regulate the expression of many genes, including those that
control the neural cell phenotype and brain function. Thus, modifications of DNA methylation,
histone code, nucleosome positioning, and noncoding RNA-based mechanisms are recognized
epigenetic regulators, all of them relevant to the identification of disease mechanisms. Each
epigenetic modification can contribute multiplicatively to the disease risk’!. Given the
phenomenon of transgenerational epigenetic inheritance’!, a better scrutiny of the epigenetic
landscape may help to elucidate a proportion of the “missing heritability” that accompanies
many common and complex human diseases’®. The first epigenetic studies in ADHD have

already established links between the epigenetic modification of genes and ADHD etiology.

3.4.1 MicroRNAs (miRNAs, miRs) and ADHD

3.4.1.1 MicroRNAs

MiRNAs are 19-21bp long non-coding RNAs (ncRNAs) and have been extensively studied.
They bind to target mRNAs which might lead to either complete degradation of the mRNA or
to an alteration in its translation to protein. A single miRNA can target one or more mRNAs,
and many miRNAs can simultaneously target a single mRNA molecule’?. This therefore
constitutes a critical form of posttranscriptional regulation of gene expression that involves

around 60% of all the protein-coding genes in the human genome’.

The precise identification of miRNAs and their probable targets is not an easy task. The
database miRBase v.21 (http://www.miRBase.org), released in 2014, reports the latest figures
on identified human precursor and mature miRNAs in humans, mice, and other species’. In
humans, 1,881 precursor miRNAs have been identified, resulting in the generation of 2,588

mature miRNAs.

Investigating the mechanisms of action of miRNAs is of upmost importance to our
understanding of the regulation of the cellular function. The human brain contains 70% of all

known miRNAs, making miRNAs a crucial component in neuropsychiatry’®’7. MiRNAs
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define the overall multifold molecular, structural and functional development of the nervous
system’3. Therefore, disentangling the functionality of miRNAs in brain may specifically trace

the underlying neuropsychiatric pathways (Figure 2).

Figure 2. The effect of the
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One of the approaches used involves comparing the mRNA transcriptome and the miRNA
levels from brain biopsies of patients against those of controls. However, because of the
invasive nature of brain biopsies, this technique has ethical issues and necropsies from post-
mortem brains are used instead. An alternate minimally invasive approach might be to study
the levels of cell-free circulating miRNAs in body fluids like saliva, serum, urine, and
cerebrospinal fluid (CSF). MiRNA profiles are highly stable in nearly all fluids, as these

molecules are resistant to RNAse degradation in bloodstream’%7°,

Human plasma carries nearly 10% of all known human miRNAs, including mirtrons,
unconventional precursors to miRNA biogenesis pathways’®. However, how these circulating
miRNAs contribute to the normal and/or altered physiology, remains unclear. Expression

profiling of miRNAs can be valuable in estimating the risk or progression of diseases.
3.4.1.2 MiRNAs and ADHD

In order to evaluate circulating miRNAs as biomarkers in neurodevelopmental conditions,
studies have been attempted in individuals with ADHD, ASD, schizophrenia, anxiety disorder,
bipolar disorder and Tourette syndrome®’®#!. Regarding ADHD, we know that several miRNAs
modulate the expression of genes that have been linked to the disorder, for instance BDNF',
which controls neuronal activity, and DATI, HTR2C, HTRIB and SNAP-25, involved in
neurotransmitter mediation®?. Also, the levels of several miRNAs have been found altered in

peripheral tissues of ADHD patients and in animal models®
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Deregulated miRNAs in ADHD

Five dysregulated miRNAs have been reported in serum samples with significant predictive
values to discriminate between the ADHD and control groups (upregulated: hsa-miR-101-3p,
hsa-miR-130a-3p, hsa-miR-138-5p and hsa-miR-195-5p and downregulated hsa-miR-106b-
5p)%3. miR let-7 is most extensively addressed for its role in neuronal adaptations and
neurodegeneration®*. Reports of miR let-7 in the brains of an ADHD rat model (SHR,
Spontaneously Hypertensive Rat) have confirmed its elevated levels and its role as a
downstream regulator of tyrosine hydroxylase, a critical molecule to dopamine metabolism®°.
The glucocorticoid receptor Nr3c1 is known to undergo a complex miRNA-Bhlhb2 regulation.
In the prefrontal cortex (PFC) of this ADHD animal model, Nr3cl inhibits the expression of
miR-296, 34c, 138 and 138, which in turn target Bhlhb2, encoding a transcription factor, that
becomes overexpressed. Targeted silencing of Bhlhb?2 significantly improves the hyperactivity
behavior in the SHRs®. In the most recent attempts to establish circulating blood miRNAs as
ADHD biomarkers, 13 miRNAs have been reported using next-generation sequencing
(NGS)¥, and also miR-26b-5p, miR-185-5p, and miR-191-5p in a genome-wide miRNA

expression analysis®.

Genetic variation in the miRNA machinery in ADHD

Presence of polymorphisms in miRNA sequences or their target sites may disrupt the binding
strength of miRNAs-mRNAs®®. Moreover, variation in regions involved in the regulation of
miRNA expression may also be functionally relevant. These variants may be located in cis or
in trans with respect to the miRNA gene which expression is affected. Two ADHD-associated
SNPs are located in the 3'UTR of the SNAP-25 gene, which is also a predicted binding region
for miR-510 and miR-641°%°!, A SNP in the pri-miR-34b/c locus has been associated with
ADHD, and their mature forms miR-34b and miR-34c¢ are differentially expressed in the blood
of ADHD subjects. This pri-miR loci targets ADHD-associated genes, either validated
(NOTCH2, HMGA2) or just predicted targets (HTR2C and VAMP2)*?. The 3°UTR of DATI,
encoding the dopamine transporter, has a 40bp-VNTR that contains binding sites for four
miRNAs: mir-1972, miR-30b-5p, miR-1301 and miR-6070°. Interestingly, two SNPs located
downstream from miR-96 in the miR-183-96—182 cluster have been associated with ADHD
without substance use disoders’*. The members of this cluster may target the serotonin receptor
gene HTRIB and also RARG, implicated in the control of the dopamine signaling pathway®”.
Finally, a study explored the contribution of genetic variants in the miRNA biogenesis

machinery, i.e. in genes and found a suggestive association between a SNP in the AGO1 gene
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and ADHD?S. The authors claim for innovation in the diagnostic strategies in ADHD, in the

sense that there is a need to interrogate also the ‘regulators of the regulators’ (Figure 3).

e Variation in miRNA genes

|::> e Variation in downstream ADHD candidate genes

e Variation in other genes and interactors

Genetic
variation in the
miRNA
biogenesis

Figure 3. Novel candidates for exploration of genetic risk factors in ADHD: miRNA biogenesis.

Adapted from Karakas et al., 2017.

3.4.2 DNA methylation and Allele-Specific methylation (ASM)

The methylation of cytosine molecules in CpG dinucleotides through a covalent modification
is known as DNA methylation. It is a stable epigenetic modification with a direct role in
defining chromatin-histone patterns, and in the processes of X-chromosome inactivation,

genomic imprinting, gametogenesis, embryogenesis and silencing of repetitive DNA elements.

Research on DNA methylation patterns in candidate genes for distinct disorders have allowed
identification of aberrant patterns of methylation in several genomic regions and tissues. Often,
these patterns are tissue- or even cell line-specific. In addition, allele-specific DNA methylation

can lead to allele-specific gene expression (ASE)”’.

Multiple studies have tested whether the patterns of DNA methylation of certain candidate
genes for a disorder can be synchronous with the symptoms of the disorder. For instance, a
study conducted on newborns has reported negative associations between childhood ADHD
symptomology and the methylation of genomic regions encompassing DRD4 and 5-HTT*. In
some instances, the co-occurring conditions may weaken or enhance the associations between

the DNA methylation levels and ADHD scores’.

ASM is a prevalent epigenetic mechanism across the genome where different alleles at a
polymorphic site can skew the patterns of DNA methylation. The most widespread is the cis-
effect ASM, where a local genotype is concomitant with allelic DNA methylation on the same
DNA molecule. On the contrary, a minority of ASM events are non-cis, resulting from trans-
acting elements. Even though ASM is cell-type specific, it occurs on 23%~37% heterozygous

SNPs in any given cell line?”. The heterozygous SNPs in the regions of CpG dinucleotides can
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account for up to 80% of ASM regions®’. In consequence, the methylation potential of these
CpG dinucleotides is perturbed, which alters the expression of the regulated genes. Deciphering
the ASM variants and integrating this information with GWAS data is a valid approach to mine

the functional connections from variants to phenotype®”.

3.4.3 Challenges in epigenetic research

Epigenetics research is a promising way to digest the chunks of available information and to
infer the most out of GWAS datasets'?. Efforts in establishing abnormal epigenetic marks in
the genome of ADHD patients are subject to some practical limitations. To begin with, a major
drawback is the difficult access to human brain tissues!®!. Second, the epigenetic patterning is
tissue or even cell-specific, which may limit reproducibility. Third, the human epigenome still
lacks the rich annotation as of the human genome, for instance, (i) an accurate estimation of
human miRNA genes, (ii) validated targets of known miRNAs or (iii) miRNA genes still poorly
explored in terms of their potential as quantitative trait loci (QTL). Nonetheless, owing to the
causal relevance of epigenetic research, alternate methods like the use of proxy tissues and

newer molecular techniques like miRNA-Seq continue to ensure its feasibility!'°!.

3.5 Neuroimaging profiles and genetics in ADHD

ADHD has been postulated as a disorder of impaired neurocognition. The identification of
neuroanatomical changes in ADHD is thus fundamental to ADHD research. Neuroimaging
scans recognize abnormalities in brain anatomy and function in individuals with ADHD. For
instance, smaller volumes and abnormal surface morphologies in basal ganglia have been
associated with ADHD!%%!1%3, In addition to these static changes, brain structures may undergo
delayed maturation development, and these developmental patterns correlate with the
severity and subtypes of ADHD trajectories'®*. The enrichment of neurodevelopmental
genes found in the association studies?® suggest that these genes may underlie the impaired
brain structures and function revealed by neuroimaging studies. Verification of this
hypothesis may concatenate the functionality of the highlighted genetic loci and the brain
phenotypes.
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CHAPTER 4. COMORBID PROFILES IN ADHD

More than 10 psychiatric and behavioral phenotypes are known to be comorbid with ADHD in
both children and adults. The various presentations of ADHD, hyperactive-impulsive,
inattentive and combined, differ in the comorbidity profile '%19, Of these three presentations,
the combined subtype presents a greater risk of developing other psychiatric conditions'%.
Thus, psychiatric comorbidity can be a marker of more severe ADHD as reflected by the

combined subtype symptoms!?>. Several of the comorbid disorders appear to be more strongly

associated with ADHD in females'%°.

4.1 Autism Spectrum Disorders (ASD)

ASD can co-occur with ADHD in up to 50% of the children with ADHD and these disorders
share impairments in developmental and cognitive domains. For instance, patterns of social
and empathy deficits that directly affect the ability to build peer relationships are found in
individuals having ADHD and ASD!%’. More is known about the ADHD-ASD comorbidity in
children than in adults®. Children with ADHD and ASD present augmented ADHD symptoms
along with worsened executive functions (e.g. verbal working memory) when compared to
those with ASD alone*!%7-198_ Tt has also been reported that individuals with the 22q11 deletion
syndrome present with combined ADHD and also ASD, and they may suffer behavioral and/or

learning problems'®.

4.2 Intellectual disability (ID) and learning disabilities (LgD)

ID is also 5-10 times more prevalent in children with ADHD than in those without ADHD*.
Subjects with both ADHD and ID exhibit increased diagnoses of ODD and CD!'?. Learning
disorders are characterized by difficulties in reading, writing and arithmetical skills, which are
experienced by 25-40% of the individuals with ADHD*. Such difficulties are presumably
driven more by inattentive symptoms in ADHD than by hyperactivity/impulsivity. The
prevalence estimates of LgD with ADHD and vice versa vary considerably given the
heterogeneous LgD identification criteria!!'. ADHD+LgD females are also at greater risk to

experience cognitive depression'!2.
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4.3 Tic disorders (TDs)

TDs are neurodevelopmental disorders characterized by an onset of multiple episodes of motor
and/or vocal tics. TDs include Tourette’s disorder, chronic tic disorder (CTD) and transient tic
disorder!!'®. About 20% of children with ADHD also suffer from TD'!* and the likeliness of
developing CTD peaks between the ages of 7 to 10 years!!®. Compared to non-ADHD children,
the incidence of CTD in ADHD kids is nearly three to four times!'>. A Tourette syndrome
(TS)-based study on adults and children could also diagnose ADHD in 60% of the TS patients,
making ADHD the most common comorbidity in TS, together with learning disabilities, social
skill deficits and anger control issues. ADHD+TD may aggregate in families as ADHD and
TD do separately.

4.4 Aggression and rule-breaking behaviors

Aggression has been repeatedly reported to co-occur with ADHD!!S, and this correlation
becomes stronger at older ages. Aggressive behavior results in rule-breaking at later stages'!”.
Direct associations have also surfaced between ADHD and rule-breaking behaviors. In legal
systems, offenders with ADHD tend to re-offend twice than the non-ADHD offenders, leading

to increased chances of legal confinement!!®

. Externalizing behaviors of aggression and rule
breaking, to some extent, are manifestations of emotion dysregulation (ED) typical of

ADHD!'?,

4.5 Mood Disorders

Having ADHD may elevate the risk of developing bipolar disorder by 10% in children and
adolescents and other mood disorders by up to 40%!2%!2!, The occurrence of bipolar disorder
in ADHD can range between 5 and 47%'%. Lifetime ADHD is more comorbid with bipolar
disorder type I than with type I1'2%123 Restlessness, talkativeness, distractibility and fidgeting
are the usual symptoms in cases with both manic bipolar disorder and ADHD®. The prevalence
rates of comorbid depression in ADHD individuals range between 18 to 53%, and nearly 14%
of the children with ADHD may exhibit clinical depression®'?*. ADHD is a common
comorbidity in individuals with bipolar disorder or MDD, with a higher comorbidity rate in the
former group'?3. Individuals with both ADHD and bipolar disorder have an earlier age of onset

of the mood disorder of around 5 years'?,
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4.6 Substance use disorders (SUDs)

SUD is one of the most common comorbid conditions of ADHD, particularly alcohol and/or
nicotine, cannabis, cocaine use. Substance abuse and dependence are nearly twice more
prevalent in individuals with ADHD?. Subjects with persistent ADHD are 4.6 times more likely
to develop SUD, when compared to controls in a major longitudinal study'?. More severe
physical dependency for nicotine has been established in ADHD°’. While various
neurobiological or psychosocial factors trigger the increased incidence of SUDs in individuals
with ADHD, novelty-seeking behavior and higher impulsivity in this cohort remain major

drivers towards the initial contact with the drug as of self-medication’.

The use of stimulant medication like methylphenidate in children can postpone the onset of
substance abuse (cigarette smoking, drug and alcohol misuse) at later ages®!2>!2°, However,
prescribing stimulant medications to high-risk ADHD-SUD groups can be controversial
because of the increased risk of substance misuse and diversion among this group'?®!?’. The
presence of ADHD in individuals with SUD may lower the onset age of substance abuse and
rates of treatment obedience while increasing the odds of developing self-harms and multiple

substance abuse.

4.7 Sleep disorders

Sleep disorders in ADHD children are characterized by significant and consistent disturbances
in the patterns of sleep initiation and sleep duration. Irregular circadian rhythms and melatonin
production are believed to underlie to the occurrence of sleep disorders. Nearly 25-50% of
ADHD patients experience sleep troubles, and worsened ADHD symptoms are reported in
individuals with sleep deficiencies. The latter group is reported to show increased daytime and
cognitive impairments. Circadian rhythm sleep disorder, insomnia, narcolepsy, restless leg

syndrome, sleep-disordered breathing are primary forms of comorbid sleep disorders'?%.

4.8 Obesity and food addiction

Obesity or overweight is a comorbid condition that presents in both child and adult ADHD,
more often reported in males!®. The percentage of reported obesity in individuals with ADHD
can be as high as 50% and it has significantly augmented since the first recorded ADHD-
obesity relationship!?*!*, Impulsivity and inattention lead to abnormal eating patterns which

results in weight gain'3!. Whether the inattentive or the HI ADHD group show a higher
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prevalence of obesity is still unclear'®!32, ADHD is associated with binge eating and food
addiction, and this is more evident in adults than in children'®3. The association between obesity
and ADHD is stated to be bidirectional and attributed to shared underlying neurobiological

131

mechanisms However, the role of ‘reward-deficiency syndrome’ due to altered

dopaminergic receptors has been documented in addictions and in ADHD 32134,

4.9 Conduct Disorder (CD) and Personality Disorder (PD)

Behavioral disruptions if not resolved can perpetuate into personality disorders. 37% of adults
with ADHD have one PD, and 27% have two or more PDs, specifically in cluster C and B
PD!33:136 Increased levels of ED and symptoms of ODD are also present in subjects with
PD+ADHD!3¢, Higher number of PD symptoms are perceived in adolescents with ADHD'?7,
more frequently in girls than in boys!'*’. The HI ADHD group shows a higher incidence of CD
in childhood and antisocial personality traits in late adolescence'’. The prevalence of borderline
personality disorder (BPD) in ADHD individuals can range between 10-45% and lifetime
comorbidity of BPD with ADHD is around 33%!3%!3°. BPD reflects patterns of unstable
identity and interpersonal relationships, pronounced impulsivity and ED'#?. Conducts typically
associated with CD and PD like kleptomania or substance abuse can have criminal, judicial
and financial repercussions. Therefore, these comorbidities are detrimental to the social

environment in addition to the life of sufferers!?.
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Objectives

The broad objectives of this work are the identification of genes that contribute to the
susceptibility to attention-deficit/hyperactivity disorder (ADHD) and cocaine dependence, two
disorders that co-occur in patients. We propose to focus on epigenetic risk factors (allele-
specific methylation and miRNAs) in ADHD, and to scrutinize the genetic basis of cocaine
dependence. We also aim at exploring the common genetic basis that explains the comorbidity

between these disorders.

The specific aims are outlined below:

Chapter 1. Exploring genetic variation that influences brain
methylation in ADHD

1.1 Assessment of the contribution to ADHD of allele-specific methylation (ASM), an
epigenetic mechanism that involves SNPs correlating with differential levels of DNA
methylation at CpG sites.

1.2 Assessment of the possible effects of identified ASM variants on gene expression and

on brain volumes to identify new genes contributing to ADHD.

Chapter 2. Genome-wide association meta-analysis of cocaine
dependence: Shared genetics with comorbid conditions

2.1. Investigation of the variants that underlie cocaine-dependence by meta-analyzing
available genome-wide association study (GWAS) datasets.
2.2. Investigation of shared genetic risk factors between cocaine dependence and its

comorbid conditions, including ADHD.

Chapter 3. Exploring the impact of common variation in
micro-RNA genes in attention-deficit/hyperactivity disorder

3.1. Assessment of the contribution to ADHD of variation in miRNA genes and their

putative regulatory elements through case-control association studies.

3.2. Deciphering of the miRNA-mediated pathways that regulate the expression of genes
potentially causal in ADHD.
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SUMMARY ARTICLE 1

“Explorant la variacio genetica amb efectes sobre la metilacio en cervell en el
deficit d’atencio amb hiperactivitat

El trastorn per déficit d'atencid i hiperactivitat (TDAH) és un trastorn del neurodesenvolupament
causat per la interaccié entre factors genetics i ambientals. L'epigenética és crucial en la generacid de
canvis persistents que afecten l'expressié génica al cervell. Estudis recents suggereixen que la
metilacido de I'ADN tindria un paper clau en el TDAH. Hem explorat la contribucié al TDAH de la
metilacié especifica d'al-lel (ASM), un mecanisme epigenétic pel qual variacions de tipus SNP
presenten correlacio amb nivells diferencials de metilacié de I'ADN en llocs CpG. Hem seleccionat
3.896 tagSNPs que sabem que tenen una influencia sobre la metilacié al cervell i hem realitzat un
estudi d'associacié de tipus cas-control utilitzant els resultats de la meta-analisi GWAS més gran
realitzada en TDAH, que compren 20.183 casos i 35.191 controls. Hem observat un enriquiment de
variants genétiques que confereixen risc al TDAH en el conjunt de SNPs de tipus ASM, i hem identificat
associacions significatives amb vuit tagSNPs (FDR=5%). Aquests SNPs presenten correlacid amb la
metilacié de llocs CpG situats a les regions promotores de sis gens. Ates que la metilacié pot afectar
I'expressid genica, hem investigat si aquests SNPs, juntament amb 52 SNPs en alt desequilibri de
lligament, sén eQTLs en teixits cerebrals i hem observat que tenen un impacte sobre I'expressié de
tres d'aquests gens. Els al-lels de risc al TDAH presenten correlacié amb una major expressid (i
disminucié de la metilacié) d'ARTN i PIDD1 i amb una disminucié de I'expressié (i augment de la
metilacié) de C2orf82. A més, hem predit que aquests tres gens tindrien una expressio alterada en
pacients amb TDAH, i variants genétiques a C2orf82 presenten correlacié amb el volum de
determinades regions del cervell. En resum, hem seguit una estratégia sistematica per identificar
variants de risc al TDAH que correlacionen amb la cis-metilacié diferencial, tot identificant tres nous

gens que contribueixen al trastorn.
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Exploring genetic variation that influences brain
methylation in attention-deficit/hyperactivity
disorder
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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic
and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies
suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation
(ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG
sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-
control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising
20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and
identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs
correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene
expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues
and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with
increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased
methylation) of C20rf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and
genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify
risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to

the disorder.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a
common neurodevelopmental disorder with a worldwide
prevalence of around 5%'. Its main symptoms include
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inattention and/or hyperactivity-impulsivity (DSM-V)?.
ADHD is among the most heritable psychiatric disorders,
with about 76% of its etiology accounted by genetic risk
factors’ and with single-nucleotide polymorphisms
(SNPs) explaining around 22% of the phenotypic var-
iance?. Furthermore, there is molecular evidence of
shared genetic risk factors across many psychiatric dis-
orders’. In ADHD, a recent genome-wide association
study (GWAS) meta-analysis of 12 sample groups unra-
veled some of the specific genetic underpinnings of this
polygenic disorder for the first time*. One of the chal-
lenges of GWAS is to establish the causal relationship
between the associated genetic variants, especially those

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
oy

in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
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located outside genes, and the disorder. In this regard, the
use of epigenetic information can improve the inter-
pretation of functionality of non-coding genetic varia-
tion®. In addition, some studies have hypothesized the
importance of sub-threshold variants derived from
GWAS”®, particularly those located in enhancer regions,
with a potential impact on gene regulation®°.

DNA methylation is one of the most stable epigenetic
mechanisms, involving mainly cytosines of CpG dinu-
cleotides. This mechanism plays an important role in the
regulation of neurogenesis, differentiation, and brain
development'!. Furthermore, epigenetic alterations have
been hypothesized to contribute to neurodevelopmental
disorders'?, including ADHD!3, autism spectrum  dis-
orders (ASD)'*!°, or borderline personality disorder®®.

DNA methylation can be complementary if it involves
both alleles, or non-complementary when it affects only
one allele, as in chromosome X inactivation in females or
allele-specific methylation (ASM)®. ASM is a common
mechanism by which single nucleotide variants determine
differential methylation levels of CpG sites. ASM can alter
promoter activity, leading to allele-specific expression'” in
combination with other still quite unknown factors, such
as environmental effects®. It is quantitative and hetero-
geneous across tissues and individuals®. The environment
affects DNA methylation leading to changes in gene
regulation, although the underlying mechanism is still not
well understood'®. It has been suggested that, during
embryonic development, ASM regions could be especially
sensitive to environmental effects®. Investigating SNPs
that display ASM could help to identify risk variants for
common diseases, including neuropsychiatric disorders'?,
as shown by recent studies of bipolar disorder (BD) and
schizophrenia'®%°,

The present study investigated the possible contribution
of ASM to ADHD using data from the largest GWAS
meta-analysis performed to date in ADHD* We also
assessed its possible effect on gene expression and on
brain volumes to identify new genes contributing to the
disorder.

Materials and methods
Selection of ASM SNPs

SNP selection was made based on the results of two
previous studies**?, which identified ASM variants in
multiple brain regions of post-mortem human samples.
Gibbs et al.*, considered four brain regions (cerebellum,
frontal cortex, caudal pons, and temporal cortex) of
150 subjects and Zhang et al.*?, used only the cerebellum
of 153 subjects. Gibbs et al.®', unlike Zhang et al.?,
excluded those sequences of probes with significant cor-
relation with methylation that contained polymorphisms.
To discard possible artifacts in our results, we checked
and confirmed that none of the probes used to detect the
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six highlighted CpG sites target genomic regions with
SNP variants. The genotyping platforms used in the two
studies were different (Gibbs et al*! used Infinium
HumanHap550 Beadchips and Zhang et al.** used Affy-
metrix GeneChip Mapping 5.0K Array). Both studies
evaluated DNA methylation using the HumanMethyla-
tion27 Beadchips, and performed linear regression ana-
lyses by PLINK* to determine the correlation between
each SNP and methylation of any CpG site*"**. Zhang
et al.”?, unlike Gibbs et al.*' applied quantile normal-
ization to the residuals prior to the linear regression
analyses.

In the study by Zhang et al®’ a total of 12,117
SNP-CpG pairs associations were reported in cerebellum,
and Gibbs et al.*" listed a total of 12,135 SNP—CpG pairs
in frontal cortex, 11,374 in caudal pons, 16,734 in tem-
poral cortex, and 12,102 in cerebellum (Fig. 1). We
combined the information from both studies and obtained
a total of 43,132 SNP-CpG pairs involving 33,944 dif-
ferent SNPs and 5306 CpG sites (Fig. 1). We considered
all the ASM SNPs from all the tissues in the two studies,
as there are multiple SNP—CpG pairs in common between
them (Fig. S1).

We subsequently applied different filters to generate a
sub-list of 3896 SNPs (Figs. 1 and S2) out of these 33,944
variants to minimize redundancy: associations in cis
between the SNP and the CpG site, correlation of the SNP
with methylation levels of the CpG (R%) =0.2, as per-
formed in Gibbs et al. (2010)*!. We considered only
autosomal SNPs and selected tagSNPs for each CpG site
(r* 20.85), by assessing linkage disequilibrium (LD) with
Haploview software®* using the Central European (CEU)
reference panel from 1000 Genomes Project Phase 3°°.

Case-control GWAS datasets

We explored the selected ASM SNPs in the summary
statistics from a meta-analysis of 11 independent GWAS
of ADHD conducted by the Psychiatric Genomics Con-
sortium (PGC) and iPSYCH. This case-control study
investigated 8,047,420 markers in 20,183 cases and 35,191
controls from Europe, USA, Canada, and China, with
patients diagnosed according to the criteria detailed in
Demontis et al. (2019)*.

Statistical analysis

To test whether risk variants for ADHD are enriched in
ASM SNPs, we carried out an enrichment analysis using
the Fisher’s exact test in R at p-value thresholds ranging
from 5E—02 to 5E—08 considering the total number of
ASM SNPs available from the ADHD GWAS meta-
analysis4 (32,884 out of 33,944 SNPs).

From our selection of 3896 ASM tagSNPs, we could
retrieve information on the association with ADHD of
3771 SNPs (96.8%) that were present in the summary
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statistics of the ADHD GWAS meta-analysis (Fig. 1)*.
False discovery rate (FDR) was applied to correct for
multiple testing. We used the g-value package for R*” and
obtained a threshold p-value of 6.78E—05 corresponding
to a 5% FDR. CpG sites highlighted by SNPs that were
significant at this FDR threshold were followed-up in
further analyses (Fig. 1). Additionally, we performed
corrections for multiple testing, using Bonferroni and
Genetic type 1 Error Calculator (GEC) methods (http://
grass.cgs.hkwhk/gec/)”®.  The  Bonferroni-corrected
threshold was set at p < 1.32E—05, which considered all
the SNPs and tests to be independent (0.05/3771 SNPs).
The GEC established the significance threshold at 1.98E
—05, which addressed multiple testing for the set of 3771
dependent SNPs by estimating the independent number
of tests. The LD between SNPs was calculated according
to the 1000 Genomes EUR reference data™.

Finally, we considered and retrieved p-values of those
tagged ASM SNPs in high LD (+* > 0.85) with the previous
ones that also correlated in cis with the methylation levels
of the same CpG sites (R*>0.2) (Fig. 1).

Functional annotation of associated ASM SNPs

We applied four methods to obtain information about
the possible functional impact of the ASM SNPs that were
associated with ADHD. First, we evaluated the presence of
possible enhancer or promoter regions using the Hap-
loreg v4.1 tool”. To do this, we considered histone
modifications related to enhancer regions (H3K4mel and
H3K27ac) and promoters (H3K4me3 and H3K%ac) of 10
different brain regions (hippocampus middle, substantia
nigra, anterior caudate, cingulate gyrus, inferior temporal
lobe, angular gyrus, dorsolateral prefrontal cortex, germ-
inal matrix, and male and female fetal brain). Second, we
evaluated the effect on gene expression through an eQTL
analysis using GTEx data (Release V7)**. We considered
eQTL information for all available brain tissues: amygdala,
anterior cingulate cortex (BA24), caudate basal ganglia,
cerebellar hemisphere, cerebellum, cortex, frontal cortex
(BA9), hippocampus, hypothalamus, nucleus accumbens
basal ganglia, putamen basal ganglia, spinal cord cervical
c-1, and substantia nigra. Third, we considered all the
SNPs, not only ASMs, located within +1 Mb from the
transcription start site (TSS) of each gene to infer if the
genetically determined expressions of genes of interest
correlated with ADHD. This analysis was carried out
using MetaXcan®, the input being the summary statistics
of the ADHD GWAS meta-analysis* and prediction
models trained with RNA-Seq data of 10 GTEx®® brain
tissues and CommonMind®* dorsolateral prefrontal cor-
tex. The SNP covariance matrices were generated using
the 1000 Genomes Project Phase 3> EUR genotypes of
the prediction model SNPs. Bonferroni correction for
multiple testing was considered (p <2.27E—03; 0.05/22
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tests). Finally, we examined the possible influence of the
identified variants on subcortical brain structures. We
obtained the summary statistics of a GWAS meta-analysis
of eight MRI volumetric measures (nucleus accumbens,
amygdala, caudate nucleus, hippocampus, pallidum,
putamen, and thalamus) produced by the Enhancing
Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) consortium®®. This ENIGMA?2 discovery
sample included 13,171 subjects of European ancestry and
contained association results between seven million
markers and variance in the volumes of the mentioned
structures®; we applied the Bonferroni correction (p < 1E
—03; 0.05/50 SNPs).

Results

We investigated the possible association with ADHD of
SNPs that show ASM in brain regions. Starting from two
previous studies®"** that describe ASM in brain tissues
we obtained 43,132 SNP-CpG pairs involving 33,944
SNPs and 5306 CpG sites (Figs. 1 and S1). Genetic risk
variants for ADHD are enriched in those ASM SNPs, as
observed through enrichment analysis at different asso-
ciation p-value thresholds (Table S1).

We detected some overlaps and redundancies between
studies and tissues (Fig. S1), so we performed a selection
process ending up with a list of 3896 ASM tagSNPs (Figs.
1 and S2). Eight ASM tagSNPs were significantly asso-
ciated with ADHD after correcting for multiple compar-
isons (5% FDR, p < 6.78E—05) (Fig. 1 and Table S2). These
eight SNPs correlated with differential methylation at six
CpG sites in cis (three for cg20225915, two for both
€g22930187 and ¢g06207804, and one for each of
cg13047596, cgl11554507, and cg04464446) in different
brain areas (Figs. 2—4 and regional associational plots Figs.
§$3-510, Table S2). Three of the eight ASM tagSNPs
remained associated with ADHD after applying the Bon-
ferroni and GEC corrections, all correlating with differ-
ential methylation at the cg20225915 site (Table S2).

As considering only tagSNPs may overlook true causal
variants, we retrieved association results from all the 52
ASM SNPs tagged by the previous ones (LD; r*>0.85),
ending up with 60 variants in eight LD blocks that show
association with ADHD and correlate with methylation
levels at six CpQG sites (Figs. 2—4 and S11-S15 and Table
$3). We also selected, for each LD block, the SNP showing
the highest number of functional annotations (Table 1), as
a putative causal SNP.

Consistently, the direction of the effect of the risk alleles
on methylation levels is the same for all the SNPs corre-
lating with the same CpG site. Thus, the risk alleles cor-
relate with decreased methylation of ¢g22930187,
¢g06207804, ¢gl11554507 and ¢g20225915 and with
increased methylation of cg13047596 and cg04464446>">>
(Figs. 2—4 and Tables 1, S2, and S3).
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All six CpG sites are located in possible promoter
regions (<5000 bp upstream from a TSS) of six genes
(Table 1), all of them expressed in brain: ARTN
(cg22930187 and ¢g06207804), C20rf82 (cgl3047596),
NEURODS6 (cgl1554507), PIDD1 (cg20225915), RPLP2
(cg20225915), and GAL (cg04464446) (Figs. 2—4). Fur-
thermore, 85% of the 60 ASM SNPs are located within a
region with enhancer or promoter histone marks in at
least one brain area (Figs. 2—4 and Tables S4-S8). All
putative causal SNPs selected from each LD block lie
within a region with histone marks, ranging from 3 to 17
in enhancer regions and from 4 to 16 in promoter regions
(Table 1).

We subsequently assessed the possible effect of those 60
SNPs on gene expression and observed that 57 of them
are eQTLs for different genes in brain regions (Table S3).
Seven out of the eight putative causal SNPs are eQTLs in
brain for at least one gene (Table 1). We focused on
methylation in promoter regions, which is well established
to inversely correlate with gene expression. The eQTLs
for ARTN, C20rf82, and PIDDI correlated with methyla-
tion of CpG sites lying on their possible promoter regions,
showing opposite directions for methylation and gene

expression levels (Figs. 2—4 and Tables 1 and S3). The
ADHD risk alleles are associated with increased expres-
sion of ARTN (in cerebellum and a subcortical region)
and PIDDI1 (in cerebellum and cortex) and with decreased
expression of C20rf82 (in cortical, subcortical, and cere-
bellar regions) (Figs. 2—4 and Tables 1 and S3).

Consistently, the predicted direction of the effect on
gene expression for these three genes is the same when we
consider all variants within =1 MB from the TSS (and not
only the ASM SNPs). We found significant associations of
gene expression with ADHD for the same three genes in
multiple brain tissues using MetaXcan: ARTN, PIDDI1
showed increased expression (3.57 < Z-score <4.19 and
3.57 < Z-score < 5.37, respectively) and C20rf82 with a
decreased expression (—3.64 < Z-score < —3.07) (Table
S7), all of them surviving the Bonferroni correction.

We also evaluated the correlation of the 60 ADHD-
associated SNPs with subcortical brain volume changes in
ENIGMA?2 data. SNPs correlating with methylation at
cg13047596 and at cg04464446 correlate with nucleus
accumbens and/or caudate nucleus volumes, while the
only SNP correlating with cg11554507, which is present in
ENIGMAZ2, correlates with thalamus volume (Table S10).
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Three of the putative causal SNPs showed correlation
with brain volumes (Table 1).

Interestingly, the majority of ASM SNPs that correlate
with methylation levels of cgl3047596, located in the
promoter region of C20rf82, are eQTLs in brain for this
gene, lie in a region with histone marks and correlate with
volume changes of nucleus accumbens and caudate
nucleus (Figs. 2—4, Tables 1 and S3-S8 and S10). All this
functional evidence highlights the C20rf82 gene as a good
candidate for contributing to ADHD.

Discussion

This study is the first comprehensive assessment of the
contribution to ADHD of genetic variants altering
methylation in the brain. We identified a total of 60 var-
iants from eight LD blocks associated with ADHD that
correlate with differential levels of methylation at six
different CpG sites*** (Tables 1 and S3). All the variants
from six out of the eight LD blocks alter the methylation
of CpG sites lying at potential promoter regions and are
also eQTLs for one of the following three genes in

multiple brain regions: ARTN, C20rf82, and PIDD1 (Figs.
2—4 and Tables 1 and S3). It is well known that DNA
methylation in promoter regions inversely correlates with
levels of gene expression'®, and all these ASM variants
associated with ADHD in our study are concordant with
this statement.

The ARTN gene, highlighted by two tagSNPs, encodes
Artemin, a ligand of the GDNF family (glial cell line-
derived neurotrophic factor). Artemin supports the sur-
vival of sensory and sympathetic peripheral neurons in
culture by interacting with GFRa3-RET and possibly also
of dopaminergic neurons of the ventral mid-brain
through activation of GFRal-RET complex®. Gene
Ontology (GO) pathways link it to key neurodevelop-
mental functions: axon guidance (GO:0007411), neuro-
blast proliferation (GO:0007405), and peripheral nervous
system development (GO:0007422). Risk alleles for
ADHD lead to an overexpression of ARTN. Previously,
overexpression of ARTN has been studied in transgenic
mice and been linked to an increase of neuron excitability
that leads to hypersensitivity>>°. Another study in ARTN
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knockout mice reported aberrations in the sympathetic
nervous system related to migration and axonal projec-
tion®”. The C20rf82 gene (also known as SNORC) was
highlighted by one tagSNP and it encodes a proteoglycan
transmembrane protein that is expressed in brain more
than in other tissues™. Little is known about its function.
Finally, PIDD1 was highlighted by three tagSNPs. It is a
cell life regulator gene and it has been linked to apoptotic
and anti-apoptotic pathways. The PIDD protein initiates
apoptosis as a component of the PIDDosome together
with RAIDD (RIP-associated ICH-1/ECD3-homologous
protein with a death domain) and procaspase-2*® and it
also activates an anti-apoptotic pathway involving the
transcription factor NF-kB in response to genotoxic
stress>’.

Alterations in the expression of these three genes
(upregulation of ARTN and PIDD1 and downregulation
of C20rf82) in different brain regions seem to be related
to ADHD. Interestingly, most of these regions are
relevant for this disorder. Neuroimaging studies have
implicated the cerebellum, subcortical and prefrontal
regions in ADHD, suggesting a link to problems in the

processing of temporal information®®.  Structural
anomalies in the cerebellum have been reported in
ADHD individuals through neuroimaging studies*'~*?,
Cerebellar developmental trajectories and hippocampal
volumes are linked to the severity of ADHD symp-
toms**~*®, Structural and functional abnormalities in
cerebellum and basal ganglia have been associated with
motor impairments*’, which are frequent in nearly half
of ADHD cases*®. Subcortical regions identified through
our expression analyses have also been related to
ADHD, for instance: (i) remarkably different shapes of
caudate-putamen basal ganglia and smaller volumes
have been reported in ADHD boys* ™% (ii) in adult
males with ADHD, right caudate volume correlates with
poor accuracy on sensory selection tasks® and also with
hyperactivity/impulsivity>*%; (iii) nucleus accumbens,
caudate nucleus, putamen, amygdala, and hippocampus
are structurally altered in the brains of ADHD
patients®®. Remarkably, all the ASM SNPs in the LD
block for C20rf82 with available information nominally
correlate with increased volumes of nucleus accumbens
and caudate nucleus subcortical regions. Also, the eQTL
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Table 1 Selection of putative causal ASM SNPs associated with ADHD according to functional annotations
SNP Association with Effect on methylation®  Epigenetic marks® Effect on expression (GTEx Effect on brain
ADHD? data)? volumes®
Risk allele p-value Enhancer Promoter
rs2906458 G 301E-05 | ¢cg22930187, 6 0 1 ARTN -
1 cg06207804
1512410334 A 2.87E—-05 17 15 -
rs7558609 A 706E—05 1 cg13047596 14 4 | C2orf82 1T NAc 1 CN
154140961 A 6.05E—05 | cg11554507 3 0 - T
157104929 G 7.89E—-06 | cg20225915 15 4 1 PIDD1 | PNPLA2 ?
rs10902222 T 2.03E—06 17 16 -
rs4131364 A 1.60E—06 17 10 -
rs1054252 G 3.86E—05 1 cg04464446 4 0 1t MRPL21, * MRGPRD | IGHMBP2 | NAc | CN

ASM: Allele-specific methylation, SNP: single nucleotide polymorphism, NAc: nucleus accumbens, CN: caudate nucleus, T: thalamus. Risk allele: all alleles are reported in
the forward strand; Underlined: significant associations between ASM tagSNPs and ADHD overcoming Bonferroni correction for multiple testing and p-value threshold
determined using independent number of tests (GEC); 1: Hypermethylation/overexpression/increased brain volume; |: Hypomethylation/underexpression/decreased
brain volume; “—": No significant data for the SNP; “?": No information available for the SNP; Enhancer: Number of H3K4me1 and H3K27ac marks; Promoter: Number of
H3K4me3 and H3K9ac marks; In bold: genes with the reported CpG sites lying in their possible promoter region

2Data obtained from the PGC+iPSYCH ADHD GWAS meta-analysis*
PDescribed in Zhang et al. 22 and Gibbs et al. 2!

“Histone marks found in brain areas

4eQTL information for brain tissues

®Data from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium®?

effect sizes of these SNPs are the largest for caudate
basal ganglia, which volume correlates with the SNP
genotype variation. There is evidence about the role in
ADHD of cortical thickness, cortical volume and func-
tional connectivity in the anterior cingulate cortex, a
region involved in cognitive control, attention, affect
and drive®’™®3, Furthermore, delayed cortical develop-
ment, e.g. in prefrontal regions has been reported in
ADHD patients®*®® and this appears to be stronger in
ADHD children with below median intelligence quo-
tient®®. All the above mentioned fronto-subcortical
structures and pathways are rich in catecholamines,
the molecular targets in pharmacological treatments for
ADHD*8:52:64.67

Interestingly, the methylation of ¢g20225915 has also
been associated with PIDDI expression in peripheral
blood®®, turning it into a good candidate as a biomarker.
The expression of ARTN was found to be altered in blood
of major depressive disorder (MDD) patients®® and the
C20rf82 gene has been associated to schizophrenia’®”".
Furthermore, C20rf82 was highlighted in a cross-disorder
GWAS of eight psychiatric conditions, including ADHD
and schizophrenia’?, with the rs778353 lead SNP, located
47 kb downstream from the gene, showing a genome-wide
significant association with the phenotype. All three genes
overlap with several CNVs that contribute to autism,
intellectual disability or aggressive behavior, conditions
often comorbid with ADHD (Table S11). It is noteworthy

that some of the CNVs reported in ARTN, C20rf82, and
PIDDI are related to brain-specific and overall develop-
mental delay at both fetal and postnatal stages. Thus, it is
reasonable to assume that altered expression of these
genes might affect brain volumes and cognition. Overall,
the fact that these genes have previously been related to
neuropsychiatric disorders that are often comorbid with
ADHD”? make them appealing candidates to be pursued.

ARTN is the only gene highlighted in our study that is
present in one of the top regions reported in the ADHD
GWAS meta-analysis®, although it did not contain SNPs
surviving genome-wide significance. The GWAS findings
in the region could be accounted for by one of several
genes: ST3GAL3, PTPRF, KDM4A, RP11-184116.4,
XR_246316.1, KDM4A-AS1, and SLC6A9. ST3GAL3 had
the most signals. Although two of the reported ASM
variants associated with ADHD are intronic to ST3GAL3,
this gene was not highlighted in our study as none of the
associated variants correlated with differential methyla-
tion of CpG sites near the ST3GAL3 TSS (distance from
the nearest CpG site: 197 kb) or were eQTLs for the gene
in brain tissues. Instead, these SNPs correlated with a
nearby gene, ARTN, both in terms of methylation and
gene expression. This suggests the importance of finding
functional connections between disease-associated SNPs
and genes, besides considering the genes in the physical
vicinity of variants. Furthermore, another of the high-
lighted genes, PIDD1, although not being among the top
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findings in the ADHD GWAS meta-analysis®, it is pointed
out by the gene-based association analysis performed in
the same study.

Genetic variants surpassing genome-wide significance
in GWAS explain only a small part of the SNP-based
heritability and associations not reaching the significance
threshold also contribute to disease susceptibility*®. An
omnigenic model has been recently proposed suggesting
that the sub-threshold variants could point at regulatory
elements of core genes”®. Indeed, a previous study on a
cardiovascular cardiac phenotype reported that nominally
significant associations are enriched in enhancer regions’,
consistent with our findings. Therefore, although none of
the variants that we identified in our study display
genome-wide significant association with ADHD, they
may contribute to the susceptibility to ADHD, as they do
have a functional impact (methylation, expression, and in
some cases brain structure) via genes that are expressed
in brain.

Brain-specific ASM information has also been utilized
to detect key genes and pathways in BD. Also, a higher
enrichment of brain ASM was observed in a schizo-
phrenia GWAS in comparison to non-psychiatric
GWAS'. This, together with the enrichment of ASM in
ADHD-associated variants found in the present study,
reinforces the rationale of utilizing ASM SNPs to high-
light genes that are relevant to psychiatric disorders from
GWAS data.

There are some strengths and limitations in our study
that should be discussed. Strengths: (i) We used the lar-
gest GWAS meta-analysis of ADHD performed so far,
including around 20,000 cases and 35,000 controls. (ii)
The genetic variants identified as associated with ADHD
have a functional impact on epigenetic regulation,
expression or brain volumes. (iii) Two of the highlighted
genes in this study, ARTN and C20rf82, have previously
been associated with other psychiatric disorders. (iv) For
two of the genes there is more than one LD block showing
the same effect on CpG site methylation. (v) Our results
are concordant with eQTL information that had been
assessed in an independent sample, with all the SNPs
showing the opposite effect on methylation of the pro-
moter region and on the expression of a given gene in
brain (more promoter methylation and less gene expres-
sion or vice versa), even for the different LD blocks from
each region. Limitations: (i) We did not perform a follow-
up study to replicate the association findings in an inde-
pendent sample. (ii) The previous studies that we used for
the selection of ASM SNPs were performed on different
genotyping platforms that do not include all the existing
SNPs in the genome, and therefore we could not test all
possible ASMs. (iii) We only considered cis-associated
ASM variants, which are the vast majority, although non-
cis ASM also occurs. (iv) There is an overrepresentation of
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ASM SNPs from cerebellum compared to the other stu-
died tissues.

To conclude, the present study points to the ARTN,
C20rf82, and PIDDI genes as potential contributors to
ADHD susceptibility. The identified risk variants have an
impact on the methylation levels of different CpG sites
located in promoter regions and they inversely correlate
with expression of the corresponding genes in brain. This
finding is supported by a prediction of increased expres-
sion of ARTN and PIDD1, and a decreased expression of
C20rf82 in ADHD. Moreover, variants correlating with
methylation at cgl13047596 (near C20rf82) influence the
volumes of nucleus accumbens and/or caudate nucleus.
Further studies are required to elucidate the mechanisms
by which these genes contribute to ADHD.

Acknowledgements

Major financial support for this research was received by B.C. from the Spanish
‘Ministerio de Economia y Competitividad' (SAF2015-68341-R, RT12018-100968-
B-100) and AGAUR, ‘Generalitat de Catalunya’ (2017-SGR-738). The research
leading to these results has also received funding from the European Union
Seventh Framework Program [FP7/2007-2013] under grant agreement no.
602805 and from the European Union H2020 Program [H2020/2014-2020]
under grant agreements nos. 667302 and 643051, the latter supporting the
contract of AS. LP-C. and J.C-D. were supported by ‘Generalitat de Catalunya’
(2016 FI_B 00728 and 2015 FI_B 00448, respectively). L.P-C. was also supported
by ‘Ministerio de Educacién, Cultura y Deporte’ (FPU15/03867). N.F.-C. was
supported by contracts of the ‘Centro de Investigacién Biomédica en Red de
Enfermedades Raras’ (CIBERER). V.R. was supported by the Graduate School of
Health from the University of Aarhus. The iPSYCH team acknowledges support
from the Lundbeck Foundation. Finally, S.F. was supported by the European
Union’s Seventh Framework Program for research, technological development
and demonstration under grant agreement no. 602805, the European Union’s
Horizon 2020 research and innovation program under grant agreements nos.
667302 and 728018 and NIMH grants 5R0TMH101519 and U01 MH109536-01.
We are thankful to Roser Corominas (Universitat de Barcelona) for helpful
advice. We are also grateful to the ADHD Working Group of the Psychiatric
Genomics Consortium (PGC) and the iPSYCH team for distributing the
summary statistics of the ADHD GWAS meta-analysis. This study is part of the
International Multicentre persistent ADHD Collaboration (IMpACT); www.
impactadhdgenomics.com). IMpACT unites major research centres working on
the genetics of ADHD persistence across the lifespan and has participants in
The Netherlands, Germany, Spain, Norway, the United Kingdom, the United
States, Brazil and Sweden. Principal investigators of IMpACT are: Barbara Franke
(chair), Andreas Reif (co-chair), Stephen V. Faraone, Jan Haavik, Bru Cormand, J.
Antoni Ramos-Quiroga, Marta Ribasés, Philip Asherson, Klaus-Peter Lesch,
Jonna Kuntsi, Claiton H.D. Bau, Jan Buitelaar, Alejandro Arias-Vasquez, Tetyana
Zayats, Henrik Larsson, Alysa Doyle, and Eugenio H. Grevet. Access to the PGC
ADHD data was obtained through dbGaP project number 10608 that includes
the following datasets: phs000016.v2.p2, phs000407.v1.p1, phs000358.v1.p1,
and phs000490.v1.p1. We thank the ENIGMA consortium for sharing the
summary statistics of genome-wide association meta-analyses of MRI
phenotypes.

Author details

1Departamen‘[ de Genetica, Microbiologia i Estadistica, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Catalonia, Spain. “Centro de Investigacion
Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. “Institut de
Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
“Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat,
Barcelona, Catalonia, Spain. °The Lundbeck Foundation Initiative for Integrative
Psychiatric Research, iPSYCH, Aarhus, Denmark. SCentre for Integrative
Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. "Department of
Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark.
®Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate
Medical University, Syracuse, NY, USA

37


http://www.impactadhdgenomics.com
http://www.impactadhdgenomics.com

Pineda-Cirera et al. Translational Psychiatry (2019)9:242

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/541398-019-0574-7).

Received: 15 August 2018 Revised: 3 July 2019 Accepted: 30 July 2019
Published online: 03 October 2019

References

1.

20.

21.

22.

23.

24,

Polanczyk, G, De Lima, M. S, Horta, B. L, Biederman, J. & Rohde, L. A. The
worldwide prevalence of ADHD: a systematic review and metaregression
analysis. Am. J. Psychiatry 164, 942-948 (2007).

American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders. Arlington, VA, US: American Psychiatric Publishing, Inc. (2013).
Faraone, S. V. et al. Molecular genetics of attention-deficit/hyperactivity dis-
order. Biol. Psychiatry 57, 1313-1323 (2005).

Demontis, D. et al. Discovery of the first genome-wide significant risk loci for
attention deficit/hyperactivity disorder. Nat. Genet. 51, 63-75 (2019).

Anttila, V. et al. Analysis of shared heritability in common disorders of the
brain. Science 360, eaap8757 (2018).

Meaburn, E. L, Schalkwyk, L. C. & Mill, J. Allele-specific methylation in the
human genome: implications for genetic studies of complex disease. Epige-
netics 5, 578-582 (2010).

Boyle, E. A, Li, Y. I. & Pritchard, J. K An expanded view of complex traits: from
polygenic to omnigenic. Cell 169, 1177-1186 (2017).

Liu, X, Li, Y. |. & Pritchard, J. K Trans effects on gene expression can drive
omnigenic inheritance. Cell 177, 1022-1034 (2019).

Wang, X. et al. Discovery and validation of sub-threshold genome-wide
association study loci using epigenomic signatures. £life 5, e10557 (2016).
Gagliano, S. A. et al. Allele-skewed DNA modification in the brain: relevance to
a Schizophrenia GWAS. Am. J. Hum. Genet. 98, 956-962 (2016).

Ladd-Acosta, C. et al. DNA methylation signatures within the human brain.
Am. J. Hum. Genet. 81, 1304-1315 (2007).

Jang, H. S, Shin, W. J, Lee, J. E. & Do, J. T. CpG and non-CpG methylation in
epigenetic gene regulation and brain function. Genes 8, E148 (2017).

Xu, Y. et al. Multiple epigenetic factors predict the attention deficit/hyper-
activity disorder among the Chinese Han children. J. Psychiatr. Res. 64, 40-50
(2015).

Schanen, N. C. Epigenetics of autism spectrum disorders. Hum. Mol. Genet. 15,
R138-R150 (2006).

Grayson, D. R. & Guidotti, A. Merging data from genetic and epigenetic
approaches to better understand autistic spectrum disorder. Epigenomics 8,
85-104 (2016).

Dammann, G. et al. Increased DNA methylation of neuropsychiatric genes
occurs in borderline personality disorder. Epigenetics 6, 1454-1462 (2011).
Gaur, U, Li, K, Mei, S. & Liu, G. Research progress in allele-specific expression
and its regulatory mechanisms. J. Appl. Genet. 54, 271-283 (2013).

Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol.
6, 3019133 (2014).

Do, C. et al. Genetic-epigenetic interactions in cis: a major focus in the post-
GWAS era. Genome Biol. 18, 120 (2017).

Chuang, L-C, Kao, C-F, Shih, W-L. & Kuo, P-H. Pathway analysis using infor-
mation from allele-specific gene methylation in genome-wide association
studies for bipolar disorder. PLoS ONE 8, €53092 (2013).

Gibbs, J. R. et al. Abundant quantitative trait loci exist for DNA methylation and
gene expression in human brain. PLoS Genet. 6, 1000952 (2010).

Zhang, D. et al. Genetic control of individual differences in gene-specific
methylation in human brain. Am. J. Hum. Genet. 86, 411-419 (2010).

Purcell, S. et al. PLINK a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).
Barrett, J. C. Haploview: visualization and analysis of snp genotype. Data. Cold
Spring Harb. Protoc. 4, 1-5 (2009).

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

Results - Article 1
Page 10 of 11

The 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature 526, 68-74 (2015).

R Core Team. R A Language and Environment for Statistical Computing. https.//
www.r-projectorg/ (2014).

Storey, John D. with contributions from Bass, Andrew J. AD and, Robinson D.
qgvalue: Q-value estimation for false discovery rate control. R Package Version
260. http//github.com/jdstorey/qvalue (2015).

Li, M-X, Yeung, J. M. Y, Cherny, S. S. & Sham, P. C. Evaluating the effective
numbers of independent tests and significant p-value thresholds in com-
mercial genotyping arrays and public imputation reference datasets. Hum.
Genet. 131, 747-756 (2012).

Ward, L. D. & Kellis, M. HaploRegv4: systematic mining of putative causal
variants, cell types, regulators and target genes for human complex traits and
disease. Nucleic Acids Res. 44, D877-D881 (2016).

GTEx Consortium et al. The Genotype-Tissue Expression (GTEx) project. Nat.
Publ. Gr. 45, 580-585 (2013).

Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific
gene expression variation inferred from GWAS summary statistics. Nat. Com-
mun. 9, 1825 (2018).

Fromer, M. et al. Gene expression elucidates functional impact of polygenic
risk for schizophrenia. Nat. Neurosci. 19, 1442-1453 (2016).

Hibar, D. P. et al. Common genetic variants influence human subcortical brain
structures. Nature 520, 224-229 (2015).

Baloh, R. H. et al. Artemin, a novel member of the GDNF ligand family,
supports peripheral and central neurons and signals through the GFRa3-RET
receptor complex. Neuron 21, 1291-1302 (1998).

Elitt, C. M. et al. Artemin overexpression in skin enhances expression of TRPV1
and TRPAT in cutaneous sensory neurons and leads to behavioral sensitivity to
heat and cold. J. Neurosci. 26, 8578-8587 (2006).

Elitt, C. M, Malin, S. A, Koerber, H. R, Davis, B. M. & Albers, K. M. Overexpression
of artemin in the tongue increases expression of TRPV1 and TRPAT in tri-
geminal afferents and causes oral sensitivity to capsaicin and mustard oil. Brain
Res. 1230, 80-90 (2008).

Honma, Y. et al. Artemin is a vascular-derived neurotropic factor for devel-
oping sympathetic neurons. Neuron 35, 267-282 (2002).

Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in
activation of caspase-2 in response to genotoxic stress. Science 304, 843-846
(2004).

Janssens, S, Tinel, A, Lippens, S. & Tschopp, J. PIDD mediates NF-kappaB
activation in response to DNA damage. Cell 123, 1079-1092 (2005).

Toplak, M. E, Dockstader, C. & Tannock, R. Temporal information processing in
ADHD: findings to date and new methods. J. Neurosci. Methods 151, 15-29
(2006).

Berquin, P. C. et al. Cerebellum in attention-deficit hyperactivity disorder: a
morphometric MRI study. Neurology 50, 1087-1093 (1998).

Castellanos, F. X. et al. Quantitative brain magnetic resonance imaging in
attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 53, 607-616
(199).

Castellanos, F. X. et al. Quantitative brain magnetic resonance imaging in girls
with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 58, 289-295
(2001).

Mackie, S. et al. Cerebellar development and clinical outcome in
attention deficit hyperactivity disorder. Am. J. Psychiatry 164, 647-655
(2007).

Plessen, K. J. et al. Hippocampus and amygdala morphology in attention-
deficit/hyperactivity disorder. Arch. Gen. Psychiatry 63, 795-807 (2006).
Friedman, L. A. & Rapoport, J. L. Brain development in ADHD. Curr. Opin.
Neurobiol. 30, 106-111 (2015).

Pasini, A. & D'agati, E. Pathophysiology of NSS in ADHD. World J. Biol. Psychiatry
10, 495-502 (2009).

Curatolo, P, D'Agati, E. & Moavero, R. The neurobiological basis of ADHD. ftal. J.
Pediatr. 36, 79 (2010).

Qiu, A. et al. Basal ganglia volume and shape in children with attention deficit
hyperactivity disorder. Am. J. Psychiatry 166, 74-82 (2009).

Greven, C. U. et al. Developmentally stable whole-brain volume reductions
and developmentally sensitive caudate and putamen volume alterations in
those with attention-deficit/hyperactivity disorder and their unaffected sib-
lings. JAMA Psychiatry 72, 490-499 (2015).

Sobel, L. J. et al. Basal ganglia surface morphology and the effects of stimulant
medications in youth with attention deficit hyperactivity disorder. Am. J.
Psychiatry 167, 977-986 (2010).

38


https://doi.org/10.1038/s41398-019-0574-7
https://doi.org/10.1038/s41398-019-0574-7
https://www.r-project.org/
https://www.r-project.org/
http://github.com/jdstorey/qvalue

Pineda-Cirera et al. Translational Psychiatry (2019)9:242

52.

53.

54.

55.

56.

57.

58.

59.

60.

Rubia, K, Alegria, A. A. & Brinson, H. Brain abnormalities in attention-deficit
hyperactivity disorder: a review. Rev. Neurol. 58(Suppl. 1), S3-S16 (2014).
Casey, B. J. et al. Implication of right frontostriatal circuitry in response inhi-
bition and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc.
Psychiatry 36, 374-383 (1997).

Singh, A, Yeh, C. J, Verma, N. & Das, A. K Overview of attention deficit
hyperactivity disorder in young children. Heal Psychol. Res. 3, 23-35 (2015).
Onnink, A. M. H. et al. Brain alterations in adult ADHD: Effects of gender,
treatment and comorbid depression. Eur. Neuropsychopharmacol. 24, 397-409
(2014).

Hoogman, M. et al. Subcortical brain volume differences in participants with
attention deficit hyperactivity disorder in children and adults: a cross-sectional
mega-analysis. Lancet Psychiatry 4, 310-319 (2017).

Shaw, P. et al. Longitudinal mapping of cortical thickness and clinical outcome
in children and adolescents with attention-deficit/hyperactivity disorder. Arch.
Gen. Psychiatry 63, 540-549 (2006).

Ambrosino, S, de Zeeuw, P, Wierenga, L. M, van Dijk, S. & Durston, S. What
can cortical development in attention-deficit/hyperactivity disorder teach us
about the early developmental mechanisms involved? Cereb. Cortex 27,
4624-4634 (2017).

Castellanos, F. X. & Aoki, Y. Intrinsic functional connectivity in attention-deficit/
hyperactivity disorder: a science in development. Biol. Psychiatry Cogn. Neu-
rosci. Neuroimaging 1, 253-261 (2016).

Makris, N. et al. Cortical thinning of the attention and executive function
networks in adults with attention-deficit/hyperactivity disorder. Cereb. Cortex
17, 1364-1375 (2007).

Makris, N. et al. Anterior cingulate volumetric alterations in treatment-naive
adults with ADHD: a pilot study. J. Atten. Disord. 13, 407-413 (2010).

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Results - Article 1
Page 11 of 11

Yang, X-R, Carrey, N, Bernier, D. & MacMaster, F. P. Cortical thickness in young
treatment-naive children with ADHD. J. Atten. Disord. 19, 925-930 (2015).
Qiu, M. et al. Changes of brain structure and function in ADHD children. Brain
Topogr. 24, 243-252 (2011).

Cortese, S. The neurobiology and genetics of Attention-Deficit/Hyperactivity
Disorder (ADHD): what every clinician should know. Eur. J. Paediatr. Neurol. 16,
422-433 (2012).

Shaw, P. et al. Attention-deficit/hyperactivity disorder is characterized by
a delay in cortical maturation. Proc. Natl Acad. Sci. USA 104, 19649-19654
(2007).

de Zeeuw, P. et al. Differential brain development with low and high 1Q in
attention-deficit/hyperactivity disorder. PLoS ONE 7, €35770 (2012).

Pliszka, S. R, Lancaster, J, Liotti, M. & Semrud-Clikeman, M. Volumetric MRI
differences in treatment-naive vs chronically treated children with ADHD.
Neurology 67, 1023-1027 (2006).

Wu, V. et al. Integrative analysis of omics summary data reveals putative
mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).

Otsuki, K et al. Altered expression of neurotrophic factors in patients with
major depression. J. Psychiatr. Res. 42, 1145-1153 (2008).

Schizophrenia Working Group of the Psychiatric Genomics. Biological insights
from 108 schizophrenia-associated genetic loci. Nature 511, 421-427 (2014).
Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for
schizophrenia. Nat. Genet. 45, 1150-1159 (2013).

Lee, P. H. et al. Genome wide meta-analysis identifies genomic relationships,
novel loci, and pleiotropic mechanisms across eight psychiatric disorders.
bioRxiv. 528117 (2019).

Brown T. E. ADHD Comorbidities: Handbook for ADHD Complications in Children
and Adults. Washington, DC, US: American Psychiatric Press (2009).

39



Results - Article 1

Supplementary Material

EXPLORING GENETIC VARIATION THAT INFLUENCES BRAIN

METHYLATION IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER

Frontal Cortex*
(10679 SNPs)

Pons*

#
Cerebellum (9536 SNPs)

(10606 SNPs)

Cerebellum* Temporal cortex*
(9448 SNPs) (13761 SNPs)

Figure S1. Venn diagram showing the overlaps among the initial 33,944 ASM SNPs selected
in the different brain areas. *Cerebellum from the study by Zhang et al. 2010. #*Brain areas from
the study by Gibbs et al. 2010. The overlap accounts for 31% of the ASM SNPs; 12.5% ASM SNPs
are shared between two tissues, 9% are shared between three tissues, 8.5% are shared between
four tissues and only 1% are shared between all the tissues. Sixteen percent of the 9,448 ASM
SNPs identified by Zhang et al., 2010 overlap with the ASM SNPs identified in the Gibbs et al., 2010
study.

40



Results - Article 1

Frontal cortex Temporal cortex
(1333 tagSNPs) (1746 tagSNPs)
Caudal
Cerebellum - Pons
(2129 tagSNPs) (1116 tagSNPs)
236

Figure S2. Venn diagram showing the overlaps among the 3,896 ASM tagSNPs selected in
the different brain areas. The overlap accounts for 33.5% of tagSNPs; 13.5% tagSNPs are shared
between two tissues, 11% are shared between three tissues and 9% are shared between all the

tissues.
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Figure S3. Regional association plot for rs2906458. The SNP represented in the regional plot is
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Figure S6. Regional association plot for rs4140961. The SNP represented in the regional plot is

depicted in purple. Highlighted in blue: region containing the CpG site and the ASM-SNPs of
interest.
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depicted in purple. Highlighted in blue: Region represented in Figure 4.
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Figure S8. Regional association plot for rs7479101. The SNP represented in the regional plot is

depicted in purple. Highlighted in blue: Region represented in Figure 4.
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depicted in purple. Highlighted in blue: Region represented in Figure 4.
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Figure S10. Regional association plot for rs11600377. The SNP represented in the regional plot
is depicted in purple. Highlighted in blue: region containing the CpG site and the ASM-SNPs of
interest.
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Figure S11. Linkage disequilibrium (LD, r?) patterns between the three SNPs associated with ADHD
that also correlate with differential methylation at two CpG sites, ¢g22930187 and cg06207804,

located in the possible promoter region of ARTN.

Figure S12. Linkage disequilibrium (LD, r?) patterns between the 45 SNPs associated with ADHD
that also correlate with differential methylation at the CpG site cg13047596, located in the possible
promoter region of C20rf82.
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Figure S13. Linkage disequilibrium (LD, r?) patterns between the three SNPs associated with ADHD
that also correlate with differential methylation at the CpG site cg11554507, located in the possible
promoter region of NEURODG.
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Figure S14. Linkage disequilibrium (LD, r?) patterns between the 7 SNPs associated with ADHD

that also correlate with differential methylation at the CpG site cg20225915, located in the possible
promoter region of PIDD1.
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Figure S15. Linkage disequilibrium (LD, r?) patterns between the two SNPs associated with ADHD
that also correlate with differential methylation at the CpG site cg04464446, located in the possible
promoter region of GAL.
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Table S1. Enrichment analysis of ASM SNPs at different significance thresholds
in the ADHD GWAS meta-analysis by Demontis et al. (2019).

Significance

Threshold N SNPs N ASM SNPs p-value OR
5.00E-08 303 6 1.70E-03 4.92
5.00E-07 945 8 4.30E-02 2.08
5.00E-06 2,122 15 3.15E-02 1.74
5.00E-05 6,970 35 1.31E-01 1.23
5.00E-04 25,288 139 4.58E-04 1.35
5.00E-03 115,681 527 6.94E-03 1.12
5.00E-02 651,772 2790 5.54E-03 1.05

ASM: Allele-specific methylation; N SNPs: Significant SNPs in the ADHD GWAS
meta-analysis for the corresponding significance threshold; N ASM SNPs:
Significant ASM SNPs in the GWAS meta-analysis; Underlined: Significant
enrichment of ASM SNPs in the list of ADHD-associated SNPs; OR: Odds ratio.
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Table S2. ASM tagSNPs associated with ADHD.

SNP information !Association with ADHD *Correlation with methylation
Alleles Freq Al

SNP Chr Pos Al A2 Cases Controls OR p-value CpGsite Tissue Effect p-value
rs2906458 1 44336389 A G 0.74 0.756 0.94 3.01E-05 ¢g22930187 Crbl N2 5.55E-10
cg06207804 Crbl NA 1.10E-12

rs7412307 1 44433864 C G 0.185 0.172 1.07 2.82E-05 ¢g22930187 Crbl N2 3.59E-11
cg06207804 Crbl NA 1.76E-15

rs11676216 2 233706368 T C 0.646 0.654 0.95 6.78E-05 ¢g13047596 Tctx ™ 1.09E-10
Fctx ™ 2.35E-10

rs4140961 7 31349352 A G 0.597 0.592 1.06 6.05E-05 ¢gl11554507 Pons {  8.45E-25
Tctx I 4.72E-23

rs7104929 11 784340 C G 0.512 0.526 0.94 7.89E-06 g20225915 Pons ¢ 8.17E-10
Tctx NA 1.51E-08

rs7479101 11 802115 A G 0.317 0.33 0.93 b5.90E-06 g20225915 Pons N 2.15E-14
Tctx NA 3.37E-14

rs4131364 11 812188 A G 0.517 0.502 1.07 1.60E-06 g20225915 Pons N2 2.49E-10
rs11600377 11 68785803 A G 0.731 0.72 1.06 4.38E-05 cg04464446 Crbl N 3.14E-08

ASM: Allele-specific methylation; 'Data obtained from the PGC+iPSYCH ADHD GWAS meta-analysis (Demontis et al.,
2019); ’Described in Zhang et al.,, 2010 and Gibbs et al., 2010; SNP: Single Nucleotide Polymorphism; Chr:
Chromosome; Pos: Position (build hg19); Al: Allele 1; A2: Allele 2; All alleles are reported in the forward strand;
Freq Al: Frequency of allele 1; OR: Odds Ratio (calculated on A1l); Effect: Direction of the risk allele effect on DNA
methylation levels; Underlined allele: Risk allele for ADHD; In bold: Significant associations for the association
between ASM tagSNPs and ADHD p-values overcoming Bonferroni correction for multiple testing and p-value
threshold determined using independent number of tests (GEC); Crbl: Cerebellum; Tctx: Temporal cortex; Fctx:
Frontal cortex.
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Table $3. ASM SNPs associated with ADHD.

Results - Article 1

Alleles * Association with ADHD
SNP TagSNP D (RY Chr Pos Al A2 Freq Al FreqAl OR p-value 2 ADHD risk.allele effect 031 CpG ® ADHD risk a}llele effect on gene
cases  controls methylation (ASM studies) expression (GTEx data)
rs2906458*  rs2906458 1 1 44336389 A G 0.74 0.756 0.94 3.01E-05
rs7412307* 157412307 1 1 44433864 c G 0.185 0.172 1.07 2.82E-05 1 cg22930187, cg06207804 ™ ARTN
rs12410334 0.96 1 44442521 A C 0.184 0.171 1.07 2.87E-05
rs2012221 0977 2 233566848 T C  0.642 0.651 0.95 1.67E-04
rs6747645 0977 2 233571033 A G  0.637 0.647 0.95 1.39E-04
rs1022330 0977 2 233577330 A G 0.357 0.348 1.05 1.15E-04
rs6714245 0977 2 233580505 T C  0.643 0.652 0.95 1.12E-04
rs6746294 0977 2 233583050 C G  0.645 0.653 0.95 9.06E-05
rs13003675 0977 2 233584109 T C 0.355 0.346 1.06 6.88E-05
rs13004406 0977 2 233584557 A T 0.642 0.651 0.95 1.49E-04
rs6745879 0.977 2 233590007 A G  0.645 0.654 0.95 6.66E-05
rs6717841 0977 2 233590255 T C 0.355 0.346 1.06 6.42E-05
rs11555646 0977 2 233599904 A C  0.645 0.654 0.95 5.80E-05
rs13013142 0977 2 233600606 A G  0.645 0.654 0.95 5.73E-05
rs6738386 0977 2 233602028 T C  0.645 0.654 0.95 5.06E-05
rs7606090 0954 2 233606740 T C  0.645 0.654 0.95 4.90E-05
rs3817311 0977 2 233612557 T C 0.355 0.346 1.06 5.13E-05
rs11679079 0977 2 233612656 T C 0.355 0.346 1.06 5.29€-05
rs13011298 0977 2 233612996 A G  0.645 0.654 0.95 5.30E-05
rs12474040 0977 2 233615345 T G  0.645 0.654 0.95 5.28E-05
rs12990821 0977 2 233617585 C G  0.645 0.654 0.95 5.09E-05
rs6748027 1.0 2 233629552 T C  0.645 0.654 0.95 4.86E-05
rs1801251 1.0 2 233633460 A G 0.355 0.346 1.06 4.42E-05
rs1446308 1.0 2 233639309 T C  0.645 0.654 0.95 4.67E-05
rs737028 1.0 2 233640750 T C  0.644 0.653 0.95 4.74€-05
rs283486 rs11676216 1.0 2 233644223 A G 0.645 0.653 0.95 4.73E-05 T cg13047596 \ C2orf82
rs283476 1.0 2 233650168 A G 0.657 0.666 0.95 5.09E-05
rs283475 1.0 2 233654381 T G 0.342 0.334 1.06 9.06E-05
rs283474 1.0 2 233654627 A G 0.656 0.665 0.95 7.96E-05
rs283471 1.0 2 233656627 A G 0.342 0.333 1.06 5.30E-05
rs283469 1.0 2 233656997 T G 0.353 0.345 1.06 4.45E-05
rs283468 1.0 2 233658309 T C 0.342 0.333 1.06 5.26E-05
rs2674839 1.0 2 233669040 C G 0.354 0.346 1.06 5.56E-05
rs1867778 0977 2 233679644 T C  0.646 0.655 0.94 4.11E-05
rs7558609 1.0 2 233700379 A G 0.354 0.346 1.06 7.06E-05
rs1446311 1.0 2 233705071 A G 0.646 0.654 0.95 6.97E-05
rs11676216* 1.0 2 233706368 T C  0.646 0.654 0.95 6.78E-05
rs10933412 1.0 2 233707226 C G 0.646 0.654 0.95 6.76E-05
rs3816334 1.0 2 233708806 A G 0.354 0.346 1.06 6.66E-05
rs4973054 1.0 2 233710713 C G 0.646 0.654 0.95 6.82E-05
rs991873 1.0 2 233711046 A G 0.354 0.346 1.06 6.89E-05
rs6437074 1.0 2 233712296 A G 0.646 0.654 0.95 7.05E-05
rs2100053 1.0 2 233719516 T G 0.645 0.653 0.95 8.18E-05
rs4973055 0977 2 233720283 T G  0.639 0.647 0.95 1.07E-04
rs1947105 1.0 2 233721455 A G 0.645 0.654 0.95 7.31E-05
rs7589201 1.0 2 233724536 A G 0.355 0.346 1.06 7.49E-05
rs895430 1.0 2 233725483 A C  0.646 0.655 0.95 9.84E-05
rs2675971 1.0 2 233726154 A G 0.355 0.346 1.06 7.31E-05
rs6963258 0.937 7 31346832 A T 0.401 0.405 0.95 7.43E-05
rs6964113 rs4140961 0.937 7 31347163 c G 0.598 0.593 1.05 8.16E-05 { cg11554507 -
rs4140961* 1 7 31349352 A G 0.597 0.592 1.06 6.05E-05
rs7104929* 157104929 1.0 11 784340 C G 0512 0.526 0.94 7.89E-06
rs4963153 0.941 11 791462 A G 0.492 0.478 1.06 1.04E-05
rs7479101* 1.0 11 802115 A G 0317 0.33 0.93 5.90E-06
rs7479101
rs10902222 0.896 11 810882 T G 0.697 0.683 1.07 2.03E-06 1 cg20225915 M PIDDI |, PNPLA2
rs10902221 0.941 11 802379 T C 0478 0.492 0.93 9.70E-07
rs6597981 rs4131364 0.941 11 803017 A G 0471 0.485 0.94 2.77E-06
rs4131364* 1.0 11 812188 A G 0.517 0.502 1.07 1.60E-06
O oy O U ST A S In OB G S e 1 wnasnono Lo

ASM: Allele-specific methylation; ! Data obtained from the PGC+PSYCH ADHD GWAS meta-analysis (Demontis et al., 2019); Described in Zhang et al., 2010 and Gibbs et al., 2010; 3eqTL
information for brain tissues; SNP: Single Nucleotide Polymorphism; LD: linkage disequilibrium; Chr: Chromosome; Pos: Position (build hg19); Al: Allele 1; A2: Allele 2; All alleles are reported in
the forward strand; Freq Al: Frequency of allele 1; OR: Odds Ratio (calculated on A1l); Underlined allele: Risk allele for ADHD; 1: Hypermethylation/Overexpression; < :
Hypomethylation/Downexpression; "-": No significant data for the SNP; *: Significant tagSNPs overcoming 5% FDR, the other SNPs are ASM SNPs in LD with these significant tagSNPs; In bold:
Significant associations for the association between ASM tagSNPs and ADHD p-values overcoming Bonferroni correction for multiple testing and p-value threshold determined using independent
number of tests (GEC).
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Table S9. MetaXcan prediction of gene expression effects on ADHD for multiple brain tissues.

NSNPsin NSNPs NASM Predicted
2

Gene Brain tissue* Z-score p-value model used SNPs R
Caudate basal ganglia 1.54 1.20E-01 19 16 0 0.10
Cerebellar hemisphere 4.19 2.50E-05 15 15 4 0.37

ARTN Cerebellum 3.57 3.50E-04 31 31 5 0.36
Cortex 3.94 8.10E-05 5 4 2 0.14
Frontal cortex 1.42 1.50E-01 29 24 2 0.09
Hippocampus 1.55 1.10E-01 140 129 2 0.16
Dorsolateral prefrontal cortex -3.50 4.50E-04 58 41 9 0.43
Amygdala -3.07 2.00E-03 92 89 42 0.40
Anterior cingulate cortex -3.55 3.00E-04 11 11 7 0.19
Caudate basal ganglia -3.54 3.00E-04 11 11 8 0.44
Cerebellar hemisphere -3.64 2.00E-04 37 35 6 0.19

C20rf82 Cerebellum -3.50 4.00E-04 30 30 7 0.28
Cortex -3.46  5.00E-04 59 54 7 0.27
Frontal cortex -3.59 3.00E-04 29 28 6 0.45
Hippocampus -3.40 6.00E-04 25 23 8 0.24
Hypothalamus -3.37 7.00E-04 30 28 13 0.17
Nucleus accumbens basal ganglia -3.59 3.00E-04 29 29 11 0.33
Putamen basal ganglia -3.20 1.00E-03 52 43 9 0.52
Dorsolateral prefrontal cortex 471 2.41E-06 4 2 1 0.06

PIDD1 Cerebellar hemisphere 5.00 4.20E-07 32 27 4 0.53
Cerebellum 5.37 7.60E-08 36 27 5 0.49
Cortex 3.57 3.40E-04 64 47 2 0.03

ASM: Allele-specific methylation; *ADHD prediction models were only available for some tissues and genes; Z-
score: Number of standard deviations change in gene expression in ADHD; p-value: Significance of the
association between predicted expression levels and ADHD; N SNPs in model: Number of SNPs used in the
training of prediction models for each gene; N SNPs used: Number of SNPs used from the ADHD GWAS meta-
analysis summary statistics; N ASM SNPs: Number of ASM SNPs included in the model; Predicted R%: Correlation
between the predicted and observed gene expression during prediction model training; In bold: Significant p-
values overcoming Bonferroni correction for multiple testing.
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Table S10. Correlations with sub-cortical brain volumes of the ASM SNPs associated with ADHD.

Acl\:::rl‘eb:sns Amygdala f;l:?::se Hippocampus Pallidum Putamen Thalamus
SNP ASM for CpG site Al A2 Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value Effect p-value
rs2906458* A G 0.2 0.885 0.7 0.784 0.8 0.881 -4.1  0.442 3.9 0.073 89 0.191 3.5 0.628
€g22930187 -
rs7412307* 806207804 cC G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs12410334 A C -06 0.651 2.9 0.341 -1.6  0.795 -3.0 0.624 3.9 0.119 3.9 0.619 -40 0.623
rs2012221 T C 25 0.041 1.7 0.494 10.8 0.040 -25 0.618 0.2 0.923 8.2  0.202 -4.9 0471
rs6747645 A G 25 0.030 1.8 0.473 11.1  0.035 -2.7 0.589 0.5 0.812 8.5 0.187 -4.6 0.49
rs1022330 A G 25 0.029 1.8 0.479 10.8 0.038 -2.6  0.609 0.2 0.908 8.2  0.200 -4.8 0471
rs6714245 T C 2.5 0.038 1.8 0.470 10.7 0.040 -2.8 0.577 0.3 0.880 8.1 0.202 -49 0467
rs6746294 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs13003675 T C 2.5 0.036 1.8 0.465 10.5 0.044 -2.2 0.663 0.3 0.897 79 0.220 -49 0467
rs13004406 A T ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs6745879 A G 25 0.031 1.8 0.468 10.6 0.040 -2.7 0.585 0.3 0.881 8.1 0.201 -49 0456
rs6717841 T C 24 0.044 22 0377 10.1  0.052 -24  0.628 0.2 0.941 7.1  0.268 -4.8 0471
rs11555646 A C 2.5 0.028 1.7 0.478 10.6 0.039 -2.7 0.586 0.2 0.923 79 0.207 -5.1 0435
rs13013142 A G 25 0.028 1.7 0.478 10.6 0.039 -2.7 0.587 0.2 0.922 79 0.207 -5.1  0.435
rs6738386 T C 2.5 0.028 1.8 0.476 10.6 0.039 -2.7 0.587 0.2 0.920 79 0.208 -5.1 0435
rs7606090 T C 25 0.027 1.8 0.470 10.7 0.037 -2.7 0.580 0.2 0912 8.0 0.202 -5.2 0.428
rs3817311 T C 2.5 0.029 1.8 0.472 10.6 0.038 -2.7 0.577 0.2 0.915 7.8 0.212 -5.5 0.405
rs11679079 T C 25 0.029 1.8 0.472 10.6 0.038 -2.7 0.576 0.2 0916 7.8 0.213 -5.5  0.405
rs13011298 A G 25 0.029 1.8 0.472 10.6  0.037 -2.7 0.576 0.2 0916 7.8 0.213 -5.5  0.404
rs12474040 T G 25 0.029 1.8 0473 10.6 0.038 -2.8  0.567 0.2 0.918 7.7 0217 -5.6  0.395
rs12990821 C G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs6748027 T C 25 0.025 1.6 0.512 10.5 0.040 -3.0 0.536 0.2 0.938 7.6 0.224 -5.5  0.396
rs1801251 A G 25 0.025 16 0.516 10.5 0.040 -3.1  0.531 0.2  0.940 7.6 0.224 -5.6  0.394
rs1446308 T C 25 0.025 1.6 0.518 10.5 0.040 -3.1  0.532 0.2 0.937 7.6  0.222 -5.5 0.398
rs737028 T C 25 0.024 16 0.519 10.5 0.040 -3.1  0.530 0.2 0.933 7.7 0.218 -5.4  0.404
rs283486 cg13047596 A G 26 0.023 1.6 0.517 10.5 0.039 -3.1 0.525 0.1 0.944 8.0 0.201 -5.2 0427
rs283476 A G 21 0.068 26 0301 10.5 0.041 -21 0671 -0.7 0.725 6.5 0.307 -3.2  0.634
rs283475 T G 22 0.065 2.6 0.289 104 0.044 -2.1  0.665 -0.7 0.716 6.4 0311 -3.2  0.626
rs283474 A G 22 0.065 26 0301 10.5 0.042 -2.1  0.664 -0.7 0.714 6.5 0.304 -3.2  0.633
rs283471 A G 22 0.062 29 0.252 10.7 0.039 -2.1  0.676 -0.7 0.736 6.3 0.318 -29 0.667
rs283469 T G 26 0.025 1.6 0.506 10.3 0.044 -3.0 0.541 0.1 0974 8.4 0.179 -5.0 0.449
rs283468 T C 2.2 0.064 2.6 0.299 10.5 0.042 -2.2  0.659 -0.8 0.707 6.5 0.308 -3.2  0.630
rs2674839 cC G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs1867778 T C 2.5 0.030 1.6 0.516 10.3 0.044 -3.2  0.508 0.1 0.973 79 0.203 -5.8 0.373
rs7558609 A G 26 0.019 1.5 0.537 10.6  0.037 -3.4 0.484 0.1 0974 8.0 0.202 -6.4  0.326
rs1446311 A G 26 0.020 1.5 0.526 10.3 0.043 -3.1  0.522 0.1 0.967 79 0.202 -6.1  0.348
rs11676216* T C 26 0.020 1.5 0.527 10.5 0.039 -2.9 0.555 0.0 0.992 8.1 0.194 -6.1  0.348
rs10933412 cC G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs3816334 A G 26 0.019 1.6 0.508 10.4 0.042 -3.0 0.536 0.1  0.959 8.1 0.194 -6.2  0.339
rs4973054 cC G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs991873 A G 26 0.019 1.6 0.507 10.4 0.042 -3.0 0.533 0.1  0.960 81 0.194 -6.3  0.337
rs6437074 A G 26 0.020 1.7 0.483 9.9 0.052 -3.0 0.536 0.1 0.948 7.8 0.210 -6.6 0.316
rs2100053 T G 26 0.020 16 0.524 10.1  0.047 -3.2 0514 0.1  0.952 79 0.204 -6.0 0.358
rs4973055 T G 26 0.024 2.1 0.398 9.6 0.063 -3.1 0.526 0.3 0.881 7.8 0.214 -5.0 0.444
rs1947105 A G 26 0.021 1.6 0.499 10.1  0.048 -3.2  0.508 0.1  0.959 7.7 0.213 -6.0 0.361
rs7589201 A G 2.6 0.020 1.6 0.519 10.2 0.046 -3.2  0.507 0.1 0.956 7.8 0.209 -5.9 0.363
rs895430 A C 26 0.020 16 0.517 10.2  0.045 -3.2  0.510 0.1 0.951 7.8 0.208 -5.9  0.367
rs2675971 A G 2.6 0.019 1.6 0.516 10.2 0.045 -3.1  0.522 0.2 0.937 79 0.206 -5.8 0.375
rs6963258 AT ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs6964113 cg11554507 cC G ? ? ? ? ? ? ? ? ? ? ? ? ? ?
rs4140961* A G 16 0147 1.7 0.467 1.9 0.700 7.0 0.147 22 0273 58 0.341 13.5 0.035
rs7104929* c G 7 ? ? ? ? ? ? ? ? ? ? ? ? ?
rs4963153 A G 01 0931 1.7 0.514 -2.4  0.643 -0.6  0.899 0.5 0.795 -3.5 0.588 8.0 0.232
rs7479101* A G 04 0.766 2.5 0.365 -2.0 0.733 -1.4  0.808 0.6 0.798 -1.7 0814 2.1 0.777
rs10902222 €g20225915 T G 05 0715 1.6 0.557 -2.0 0.727 -2.4 0.668 0.5 0.840 -2.1  0.761 -2.6  0.726
rs10902221 T C 0.1 0.940 1.4 0.574 -1.2 0.825 -2.1  0.681 0.6 0.773 2.8 0.663 29 0.662
rs6597981 A G 02 0881 1.6 0.530 -0.7 0.890 -1.9 0.714 0.7 0.734 3.4  0.596 3.6 0.593
rs4131364* A G 0.1 0.941 1.2 0.622 -0.9 0.862 -3.3  0.511 0.6 0.749 0.0 0.998 0.7 0.915
rs1054252 804464446 A G -25 0.037 -1.2 0.651 -11.2  0.038 -2.8  0.587 -1.5 0.477 -3.6  0.583 -1.7 0.804
rs11600377* A G -25 0.038 -0.9 0.741 -11.7 0.030 -29 0.579 -1.9 0.375 -3.7 0573 -2.2  0.751

ASM: Allele-specific methylation; Al: Allele 1; A2: Allele 2; All alleles are reported in the forward strand; Effect: Effect sizes are given in units of mm3 per risk allele; *:
Significant tagSNPs overcoming 5% FDR, the other SNPs are ASM SNPs in LD with these significant tagSNPs; Underlined allele: Risk allele for ADHD; In bold: Nominally
significant p-values; "?": No values retrieved for these SNPs.
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SUMMARY ARTICLE 2

“Meta-analisi de GWAS de dependencia de cocaina: base genetica compartida
amb trastorns comorbids”

La dependeéncia de cocaina és un trastorn neuropsiquiatric complex que presenta un elevat grau de
comorbiditat amb altres trets psiquiatrics. Els resultats obtinguts en estudis d’associacié suggereixen
que les variants genetiques comunes podrien tenir un paper rellevant en la susceptibilitat a la
dependéncia de cocaina. D’altra banda, cada vegada hi ha més evidéncies de |'existéncia de variants
genetiques de risc compartides entre trastorns psiquiatrics. En aquest estudi hem realitzat una meta-
analisi de dependéncia de cocaina emprant dades GWAS de quatre estudis disponibles a la base de
dades dbGaP (2.085 casos i 4.293 controls, tots ells d’ascendéncia europea). Tot i que no s’ha
identificat cap variant que superi el llindar de significacid6 GWAS, en I’analisi basada en gens (gene-
based analysis) s’ha identificat associacié significativa entre el gen HISTH2BD i la dependéncia de
cocaina, que supera correccions per False Discovery Rate del 10%. Aquest gen esta al cromosoma 6 en
una regid enriquida en gens d’histones, la qual ha estat préviament associada a I'esquizofrenia. Els
SNPs amb menor valor p de la regio, el rs806973 i rs56401801 (P = 3,14 x 10° i 3,44 x 10%,
respectivament), son eQTLs (expression Quantitative Trait Loci) per diferents gens de la regio en
multiples arees cerebrals. D’altra banda, s’ha identificat correlacié genetica entre la dependéncia de
cocaina i el trastorn per déficit d’atencié amb hiperactivitat (TDAH), esquizofrenia, trastorn depressiu
major (TDM) i personalitat amb tendéncia a assolir riscos, emprant I'aproximacié LDSC (Linkage
Disequilibrium Score Regression). A més, s’ha vist que tots els fenotips testats permeten predir si un
individu és cas o control per la dependéncia de cocaina mitjancant una analisi PRS (Polygenic Risk
Score): esquizofrénia (R>=2,28%; P =1,21 x 10%), TDAH (R?= 1,39%; P = 4,5 x 10Y7), personalitat amb
tendéncia a assumir riscos (R* = 0,60%; P = 2,7 x 10%), TDM (R?> = 1,21%; P = 4,35 x 10D),
comportament agressiu en nens (R?= 0,3%; P = 8,8 x 10°) i personalitat antisocial (R?=1,33%; P=2,2
x 107%). Aquesta és la meta-analisi de GWAS de dependéncia de cocaina més gran publicada fins ara.
Tot i les limitacions de l'estudi a causa de la mida mostral limitada, s’han identificat regions
potencialment implicades en la dependéncia de cocaina i mostrem evidéncies que hi ha factors

genetics de risc comuns entre aquesta patologia i les condicions comorbides testades.
Reference

Cabana-Dominguez J, Shivalikanjli A, Fernandez-Castillo N, Cormand B. Genome-wide

association meta-analysis of cocaine dependence: Shared genetics with comorbid conditions.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Aug 30;94:109667. doi:
10.1016/j.pnpbp.2019.109667.

67


https://www.ncbi.nlm.nih.gov/pubmed/31212010
https://www.ncbi.nlm.nih.gov/pubmed/31212010

Results - Article 2

Progress in Neuropsychopharmacology & Biological Psychiatry 94 (2019) 109667

Contents lists available at ScienceDirect

Progress in Neuropsychopharmacology
& Biological Psychiatry

journal homepage: www.elsevier.com/locate/pnp

Genome-wide association meta-analysis of cocaine dependence: Shared R

Check for

genetics with comorbid conditions

Judit Cabana-Dominguez®>“‘, Anu Shivalikanjli®™“‘, Noélia Fernandez-Castillo™>>%*!,

Bru Cormand®>&%*!

@ Departament de Genética, Microbiologia i Estadistica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
b Centro de Investigacién Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain

¢ Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain

9 Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain

ARTICLE INFO ABSTRACT

Cocaine dependence is a complex psychiatric disorder that is highly comorbid with other psychiatric traits. Twin
and adoption studies suggest that genetic variants contribute substantially to cocaine dependence susceptibility,
which has an estimated heritability of 65-79%. Here we performed a meta-analysis of genome-wide association
studies of cocaine dependence using four datasets from the dbGaP repository (2085 cases and 4293 controls, all
of them selected by their European ancestry). Although no genome-wide significant hits were found in the SNP-
based analysis, the gene-based analysis identified HISTIH2BD as associated with cocaine-dependence (10%
FDR). This gene is located in a region on chromosome 6 enriched in histone-related genes, previously associated
with schizophrenia (SCZ). Furthermore, we performed LD Score regression analysis with comorbid conditions
and found significant genetic correlations between cocaine dependence and SCZ, ADHD, major depressive dis-
order (MDD) and risk taking. We also found, through polygenic risk score analysis, that all tested phenotypes are
significantly associated with cocaine dependence status: SCZ (R? = 2.28%; P = 1.21e-26), ADHD (R? = 1.39%;
P = 4.5e-17), risk taking (R? = 0.60%; P = 2.7e-08), MDD (R* = 1.21%; P = 4.35e-15), children's aggressive
behavior (R? = 0.3%; P = 8.8e-05) and antisocial behavior (R? = 1.33%; P = 2.2e-16). To our knowledge, this
is the largest reported cocaine dependence GWAS meta-analysis in European-ancestry individuals. We identified
suggestive associations in regions that may be related to cocaine dependence and found evidence for shared
genetic risk factors between cocaine dependence and several comorbid psychiatric traits. However, the sample
size is limited and further studies are needed to confirm these results.

Keywords:

Cocaine addiction
Cocaine dependence
Genetic correlation
GWAS

Poligenic risk score
Meta-analysis

1. Introduction

Cocaine is one of the most used illicit drugs worldwide and its abuse
produces serious health problems. In Europe, around 5.2% of adults
(from 15 to 64 years old) have tried cocaine (EMCDDA, 2017), but at
most 20% will develop addiction (Wagner and Anthony, 2002). This
information allows us to estimate the prevalence of cocaine dependence
in the European population around 1.1%, similar to the prevalence
observed in American populations (Compton et al., 2007).

Cocaine dependence is a complex psychiatric disorder that results
from the interaction of environmental and genetic risk factors. It is one
of the most heritable psychiatric conditions, with an estimated herit-
ability of 65-79% (Ducci and Goldman, 2012). Although many case-

control association studies in candidate genes have been performed,
only a few risk variants for cocaine dependence have been identified
and replicated so far, such as rs16969968 in the CHRNA5 gene, en-
coding the cholinergic receptor nicotinic alpha 5 subunit, and rs806368
in CNR1, coding for the cannabinoid receptor 1 (Biihler et al., 2015). To
date, only one genome-wide association study (GWAS) on cocaine de-
pendence has been performed in European- and African-American in-
dividuals (Gelernter et al., 2014). When combining the two popula-
tions, one genome-wide finding was identified in the FAM53B gene,
using a symptom count approach, but this hit could not be replicated in
a subsequent study (Pineda-Cirera et al., 2018).

Several studies have shown that substance use disorders (SUD), and
especially cocaine dependence, is highly comorbid with other
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psychiatric disorders and related phenotypes like aggressive, antisocial
or risk-taking behaviors (Bezinovi¢ and Malatestini¢, 2009; Hasin and
Kilcoyne, 2012). For example, the occurrence of lifetime SUD in pa-
tients with schizophrenia (SCZ) is 70-80%, in attention deficit/hyper-
activity disorder (ADHD) it is 39.2% and in major depressive disorder
(MDD) it is 16.1% (Currie et al., 2005; Pifieiro-Dieguez et al., 2016;
Westermeyer, 2006). Conversely, about 81% of substance abuse/de-
pendence patients have at least one comorbid mental disorder: 33%
MDD, 11% SCZ and 9% personality disorders (Shantna et al., 2009).
Such comorbidity is associated with an increase of severity for all dis-
orders, although it is unclear whether this relationship is causal or the
result of shared genetic and/or environmental risk factors. Some studies
have started to inspect these relationships using both genetic correla-
tion and polygenic risk score approaches, supporting the hypothesized
role of shared genetic risk factors in the lifetime co-occurrence of sev-
eral psychiatric disorders and SUD (Carey et al., 2016; Du Rietz et al.,
2017; Hartz et al., 2017; Reginsson et al., 2018).

Here we performed a GWAS meta-analysis of cocaine dependence in
samples with European ancestry using datasets from the dbGaP re-
pository. Then we investigated the shared genetics between cocaine
dependence and other psychiatric traits.

2. Experimental procedures

Detailed description of the materials and methods used, as well as
supplementary figures, can be found in the Supplementary Information.

2.1. Subjects

The case-control GWAS meta-analysis was performed using four
datasets from the dbGaP repository (https://www.ncbi.nlm.nih.gov/
gap) under the project 17,170 (Table 1). All cases used met DSM-IV
criteria for cocaine dependence, although most of them are also de-
pendent to other drugs of abuse. Diagnoses for schizophrenia, bipolar
affective disorder or other major psychotic illnesses or gross cognitive
impairment were exclusion criteria for all samples except for SAGE.
Drug abuse or dependence were discarded only in controls of the SAGE
sample, whereas in the other studies general population individuals
were used as controls (see Supplementary Information for detailed
description of subjects used in this study).

Since samples 2—-4 did not have enough controls to perform the
association studies, we used controls from other datasets, strategy
previously followed by others (Johnson et al., 2016). In all cases, pa-
tients and controls were from the same geographic area, they were
genotyped with the same array and using the same genome assembly. In
order to reduce bias, we merged controls with cases prior to quality
control (QC) and imputation (Mitchell et al., 2014; Uh et al., 2012). The
analyses performed to control for population stratification is summar-
ized in Fig. SI.

The study was approved by the ethics committee of our institution,
in accordance with the Helsinki Declaration and with the dbGaP pro-
tocols.
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2.2. Quality control and association analyses

Prior to analysis, stringent QC was performed on the genotyped
markers and individuals in each sample using the standardized pipeline
“Ricopili” (Ripke, 2014). Very briefly, subjects and SNPs were selected
according to “Ricopili” default parameters: SNP and subject call
rate > 0.98, SNP Hardy-Weinberg equilibrium (P > le—06 in con-
trols or P > 1le—10 in cases), autosomal heterozygosity deviation
(|Fnet) < 0.2) and sex check based on X chromosome heterozygosity.
European-ancestry individuals were selected based on principal com-
ponent analysis (PCA): PC1 and PC2 were used to define a genetic
homogenous population, excluding individuals with PC values greater
than three standard deviations from the reference population (Eur-
opean individuals from 1000 Genomes Project Phase 3 (1KGP3)). Re-
lated individuals and genetic outliers were excluded. A permutation test
for between-group IBS differences with fixed 10,000 permutations was
performed to discard population stratification between cases and con-
trols (T1 p-value < 0.05).

After QC, non-genotyped markers were imputed using the European
individuals from the 1KGP3 reference panel in MINIMAC3 (https://
genome.sph.umich.edu/wiki/Minimac3).

In order to identify overlapping or related individuals across all
datasets, we ran the “Ricopili” PCA module considering the four sam-
ples together, and one individual of each pair was excluded.

For each sample, case-control GWAS was conducted using logistic
regression under the additive model in PLINK v1.9 (http://pngu.mgh.
harvard.edu/purcell/plink/). The 10 firsts PCs were included as cov-
ariates to correct for population stratification, and only variants with
imputation INFO score > 0.8 and minor allele frequency
(MAF) > 0.01 were considered. In all samples the genomic inflation
factor (\) was lower than 1.05.

2.3. GWAS meta-analysis

In total, 2085 cases and 4293 controls were meta-analyzed using an
inverse-variance weighted fixed effects model in METAL (http://csg.
sph.umich.edu//abecasis/Metal/)(Willer et al., 2010). Association re-
sults were considered only for variants with an effective sample size
[N = 2/((1/Ncases) + (1/Ncontrols))] > 70% of the full meta-analysis.
Heterogeneity across studies was tested with the Cochran's Q test and
quantified with the I? heterogeneity index, implemented in METAL.

Manhattan plot and Q-Q plot from each sample and the meta-ana-
lysis results were generated with the library “qgman” implemented in
R.

2.4. LD score intercept evaluation

LD score (LDSC) regression analysis was used to calculate LDSC
intercept by regressing the chi-square statistics from GWAS against LD
scores for each SNP (downloaded from GitHub website, https://github.
com/bulik/ldsc) (Bulik-Sullivan et al., 2015b).
2.5. SNP heritability

The proportion of phenotypic variance explained by common SNPs

Table 1

Description of dbGaP samples used in the cocaine dependence GWAS meta-analysis.
Sample N cases %F cases N controls  %F controls  Genotyping chip dbGaP code
Sample 1 (SAGE) 468 39.3% 1284 69.9% Mlumina ILMN_Human-1 phs000092.v1.pl (cases/controls)
Sample 2 609 45.9% 410 50.2% Mlumina HumanOmnil-Quad_v1-0.B  phs000952.v1.p1 (cases/controls) + phs000179.v5.p2 (controls)
Sample 3 504 44.3% 1190 62% Mlumina Human660W-Quad_v1l_A phs000277.v1.pl (cases/controls) + phs000170.v2.p1 (controls)
Sample 4 504 36.7% 1409 41.9% Mlumina HumanOmnil-Quad_v1-0. B phs000425.v1.pl (cases/controls) + phs000524.v1.p1l (controls)
Total 2085 4293

%F = percentage of females
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in the liability scale was assessed using two different methodologies: 8
LDSC 1.0.0 (https://github.com/bulik/ldsc/) and the Genome-based é Tl
REstricted Maximum Likelihood analysis implemented in the tool H 3
Genome-wide Complex Trait Analysis (GCTA-GREML; https:// :; =
cnsgenomics.com/software/gcta/#Overview) (Lee et al., 2011). In ; fg
both analyses, a population prevalence for cocaine dependence of 1.1% % E
was considered (Compton et al., 2007). The GCTA-GREML analysis was ) §
adjusted for the 10 first PCs and a dummy variable indicating geno- ;’—‘2 %
typing-study. E g
Partitioned heritability analysis was performed using LDSC 1.0.0 § g
based on 24 functional overlapping annotations described previously g §
(Finucane et al., 2015). Enrichment in the heritability of a functional 3 g
category was defined as the proportion of SNP heritability explained E 2 g
divided by the proportion of SNPs. The threshold for significance was § k=
calculated using the Bonferroni correction for multiple testing (P < 2e- g‘ é %
.. £ O
& =}
2.6. Functional annotation of risk SNPs é % 2
SNPs were functionally annotated using FUMA (http://fuma.ctglab. g 5 g
nl/)(Watanabe et al., 2017). FUMA define lead SNPs as signals that are ; g 3
significantly associated with the phenotype of interest (we considered g § g
suggestive associations (P < 1le-05)) and independent to each other 5 gz
(r? < 0.1). For each lead SNP, a “Genomic risk locus” is defined, in- iz j =
cluding all independent signals that are physically close or overlapping g ;; % é
in a single locus. The variants located in a “Genomic risk locus” were RS 8 e
explored considering the following functional annotations: eQTL (from = | & = 2
GTEx v6/v7 and BRAINEAC), CADD v1.3, ANNOVAR, Reg- o &
ulomeDB_v1.1, 15-core chromatin state and GWAS-catalog e91. ‘S' 8 ® g S
5 ¢ 854
2.7. Gene-based and gene-set association analyses é g ; ; “: 5 E
Gene-based and gene-set association analyses were performed with sl 8| g g = E‘ &
MAGMA 1.05b (Willer et al., 2010) using the summary statistics from E
the cocaine dependence GWAS meta-analysis. For gene-based analysis, 'g g g é
the SNP-wise mean model was used as the statistic test, considering p- £ g %‘) £ B
values for SNPs located within the transcribed region. For multiple < 5 & g h
testing corrections, 10% False Discovery Rate (FDR) was considered. g R Z ) 5 "
Gene-set analysis was used to test for enrichment in association § :f ‘;“:} 2 ol E
signals in genes belonging to specific biological pathways or processes. —§ P § E‘Fﬁ § § '§ “:é E
We performed a competitive test using: “All Canonical Pathways” (1329 % é % g % %f 'g E E
gene sets), “GO” (4436 gene sets) and “BioCarta” (217 gene sets) pro- g 2|8 E 2 =28s §
vided by MsigDB 5.1 (https://software.broadinstitute.org/gsea/ £ ; 55 é ; g; Eﬁ
msigdb/)(Subramanian et al., 2005). Multiple testing corrections were § .
applied to each gene set separately. When gene sets are strongly over- gl 8 )
lapping, the Bonferroni correction can be quite conservative, and for S § Eg
that reason, we used an empirical multiple testing correction im- E 2w % q 2
plemented in MAGMA, based on a permutation procedure. 4 2|8 < =52k
Q
<
2.8. Shared genetic factors between cocaine dependence and comorbid ;
conditions % g
o E
. 3 e 3
2.8.1. Subjects = g, g
We studied shared genetic factors between cocaine dependence and G g L;
six previously described comorbid conditions using publicly available g " ‘Q 2 &
GWAS summary statistics of SCZ, ADHD, MDD, children's aggressive g T%t g ‘g §
behavior, antisocial behavior and risk-taking behavior (Table 2). ) g 5 IO é
Summary statistics from the vitamin D levels GWAS of the UK Biobank s g g % 873 4
was used as a negative control. 3 E 3 B2 ; é
g |§ & 5
2.8.2. LDSC genetic correlation E g ’E E 7 é %
. . . . @ = T =2 Ex<
Genetic correlation between cocaine dependence and the six se- 5 g € g s;g—g g
lected comorbid disorders/traits was calculated using LDSC 1.0.0 g £ TEE 2 2
(Bulik-Sullivan et al., 2015a). Summary statistics from all samples and ~ ‘g 9 & % £ ',"; £ Té
pre-computed LD scores from HapMap3_SNPs calculated on 378 phased % 8 5 £ g § g 5 E
European-ancestry individuals from 1KGP3 were used (available at S A @
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https://github.com/buligk/ldsc). After Bonferroni correction, the sig-
nificance threshold was adjusted to P < 7.1e-03.

Furthermore, the genetic correlation of cocaine dependence with
other traits available at LD Hub (http://ldsc.broadinstitute.org/ldhub/)
(Zheng et al., 2017) was evaluated (Bonferroni correction threshold
P < 7.2e-05).

2.8.3. Polygenic risk scores for cocaine dependence

Poligenic risk score (PRS) analysis was performed using the PRSice
2.1.0 software (https://github.com/choishingwan/PRSice) (Euesden
et al., 2015).

The four cocaine dependence datasets were merged using PLINK
v1.9 and used as a target sample. After merging, strict QC was applied
resulting in 5,957,307 SNPs in 2083 cases and 4287 controls. To assess
population stratification PCA was performed, and the 10 first PCs and a
dummy variable indicating genotyping-study was included in the PRS
analysis as a covariate.

Summary statistics of the seven phenotypes described above were
used as discovery samples, which were clumped (r*> < 0.1 in a 250-kb
window) to remove SNPs in linkage disequilibrium (LD). Then, PRSs
were estimated for each discovery sample using a wild range of meta-
analysis p-value thresholds (P1) between Py = le-04 and Py = 1 at in-
crements of 5e-05. For each Pr, the proportion of variance explained
(R?) by each discovery sample was computed by comparing the full
model (PRS + covariates) score to a reduced model (covariates only).
The reported R? value is the difference between R? from the two
models. For quantitative traits we performed linear regression analysis,
and for qualitative traits we used logistic regression and Nagelkerke's
pseudo-R? values are shown.

As recommended, we used the significance threshold of P = 0.004
(Euesden et al., 2015). Bonferroni correction was applied considering
the seven tested phenotypes (P < 5.7e-04).

3. Results
3.1. GWAS results

We performed a GWAS meta-analysis of cocaine dependence using
four datasets from the dbGaP repository. In total, we meta-analized
9,290,362 common genetic variants in 2085 cases and 4293 controls of
European ancestry. No marker demonstrated significant heterogeneity
between studies (Fig. S2 and Table S1). The Q-Q plot (Fig. 1A) dis-
played a A of 1.06, comparable to other GWAS. The LDSC analyses
estimated an intercept of 1.01 (SE = 0.006; P = 0.1), not sig-
nificantly > 1, discarding residual population stratification or cryptic
relatedness (Bulik-Sullivan et al., 2015b).

None of the analyzed variants reached the threshold for genome-
wide significance (P < 5e-08) in the SNP-based analysis, although we
identified several suggestive associations (P < 1le-05) (Table SI;
Fig. 1B).

3.2. Polygenic architecture of cocaine dependence

We applied two approaches to assess the proportion of phenotypic
variance explained by common SNPs. For LDSC, the estimated SNP
heritability in liability scale was h?np = 0.30 (SE = 0.06; P = 2.4e-07),
and for GCTA-GREML h?np = 0.27 (SE = 0.03, P < 0.01). Then we
performed partitioned heritability analysis on LDSC based on functional
genomic categories and found significant enrichment in the heritability
by SNPs located in intronic regions (enrichment = 2.17; SE = 0.45;
P =1.2e-03), and a nominal result for conserved genomic regions
(enrichment = 23.63; SE = 8.57; P = 4e-03) (Fig. S3).

3.3. Functional annotation of risk SNPs

To identify potentially interesting regions with FUMA we
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considered the SNPs showing suggestive associations (P < le-05), as
the SNP-based analysis did not reveal genome-wide significant hits
(P < 5e-08). We identified 23 lead SNPs which correspond to 22
genomic risk loci including 112 genes (Table 3). Interestingly, the risk
locus located on chromosome 6 overlaps with a genomic region pre-
viously associated with schizophrenia. This region is defined by two
lead SNPs (rs806973 and rs56401801, GWAS P = 3.1e-06 and 3.4e-06,
respectively) and it includes 77 genes and 458 nominally associated
SNPs. Moreover, most of the SNPs in this region (447) are brain eQTLs
for at least one member of a small group of 12 genes, including
BTN3A2, HIST1H2AK, ZSCAN31, PRSS16 and ZNF184 (Figs. 2 and S4).

3.4. Gene-based and gene-set analyses

The gene-based analysis mapped 3,418,270 SNPs from the GWAS
meta-analysis to 18,069 protein-coding genes (Fig. S5 and Table S2).
The HIST1H2BD gene, located in a genomic region on chromosome 6
that showed a suggestive association in the SNP-based analysis, dis-
played a significant gene-wise association with cocaine dependence
(10% FDR), although it did not overcome the Bonferroni correction for
multiple testing. Then we performed competitive gene-set tests for all
BioCarta, GO and Canonical Pathways. No gene sets attained a sig-
nificant association with cocaine dependence after correction for mul-
tiple testing (Tables S3-5), although the BioCarta immunity pathway
“BIOCARTA TNFR2 PATHWAY” showed a trend (uncorrected
P = 5.38e-04, corrected P = 0.09), being also the most significantly
associated canonical pathway gene set. Furthermore, from the 10 GO
gene sets with lower p-values, seven were related to synapse organi-
zation, glutamatergic neurotransmission and brain functions.

3.5. Cocaine dependence and shared genetic factors with comorbid
conditions

Cocaine dependence is highly comorbid with other psychiatric dis-
orders like SCZ, ADHD and MDD, and also with other phenotypes like
aggressive behavior in children, antisocial behavior or risk taking. In
order to investigate whether these phenotypic correlations are geneti-
cally mirrored, we performed a genetic correlation analysis using LDSC
analysis and found significant genetic correlations (P < 7.1e-03) be-
tween cocaine dependence and SCZ (rg = 0.2; SE = 0.05; P = 1e-04),
ADHD (rg = 0.5; SE = 0.08; P = 1.6e-09), MDD (rg = 0.4; SE = 0.08;
P = 6.6e-07) and risk taking (rg = 0.35; SE = 0.06; P = 9.1e-08)
(Fig. 3A). No significant correlations were found with children's ag-
gression or antisocial behavior, nor with a negative control (Vitamin D
levels).

On the other hand, we tested genetic correlations between cocaine
dependence and all the GWAS summary statistics publicly available in
the LD Hub. From the 690 tested traits, 109 demonstrated significant
correlations after applying the Bonferroni correction for multiple
testing, including negative correlations with educational achievements
(e.g. college completion) or with reproductive traits (e.g. age at first
child) and positive correlations with familiar situation (e.g. tobacco
smoke exposure at home) or with several psychological or psychiatric
traits like neuroticism, depressive symptoms or loneliness (Fig. S6 and
Table S6). The high number of significant associations may be ex-
plained by the high redundancy of the phenotypes of the LD Hub.

We also investigated the shared genetic etiology between cocaine
dependence and comorbid phenotypes through PRS analysis, and tested
whether these phenotypes are associated with cocaine dependence
status. For all the discovery samples tested, PRS was significantly as-
sociated with cocaine dependence: SCZ (pseudo-R* = 2.28%,
Pr = 0.4911, P = 1.21e-26), ADHD (pseudo-R* = 1.39%,
Pr = 0.04275, P = 4.5e-17), antisocial behavior (pseudo-R2 = 1.33%,
Pr = 0.4055, P = 2.2e-16), MDD (pseudo-R® = 1.21%, Py = 0.0129,
P = 4.35e-15), risk taking (R% = 0.60%, Pr = 0.00135, P = 2.7e-08)
and children's aggressive behavior (R? = 0.30%, Pg = 0.3552,
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Fig. 1. Results from the GWAS meta-analysis on cocaine dependence. A) Q-Q plot and B) Manhattan plot. Red line: threshold for genome-wide significance (P < 5e-
08). Blue line: threshold for suggestive associations (P < 1e-05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3

FUMA analysis of genetic risk loci for cocaine dependence as identified from the GWAS meta-analysis.

Genomic locus  Position” Lead SNP SNP position GWAS P-value nSNPs nGenes Genes

1 chr1:15,916,714-16,049,893 rs148069235 15,950,064 9.52e-06 236 6 DNAJC16, AGMAT, DDI2, RSC1A1,
PLEKHM2, SLC25A34

2 chr1:104,966,872-104,966,872  rs72685414 104,966,872 1.87e-06 1 0

3 chr3:50,615,472-51,356,217 rs148179194 50,798,652 7.03e-06 152 3 C3orf18, HEMK1, DOCK3

4 chr3:84,862,871-84,961,810 rs6767407 84,955,841 9.61e-06 27 0

5 chr3:172,170,104-172,214,001 rs57361543 172,212,144 5.09e-06 28 2 GHSR, TNFSF10

6 chr4:82,943,149-83,005,137 157675557 82,970,816 2.28e-06 16 1 RASGEF1B

7 chr4:117,560,979-117,607,439  rs67769911 117,607,070 6.33e-06 18 1 MIR1973

8 chr5:30,884,915-31,001,774 rs62357000 30,884,915 9.20e-06 4 1 CDH6

9 chr5:44,051,305-44,130,776 rs4410642 44,129,423 9.42e-06 61 0

10 chr5:54,436,897-54,754,893 rs334878 54,519,878 7.67e-06 90 9 ESM1, CDC20B, GPX8, MCIDAS, CCNO,
DHX29, SKIV2L2, PLPP1, DDX4

11 chr5:106,788,817-106,796,026  rs71575441 106,788,817 2.37e-06 2 1 EFNAS5

12 chr6:26,148,326-28,301,195 rs806973; 26,148,326; 3.14e-06; 458 77 Locus too broad

rs56401801 27,301,762 3.44e-06

13 chr8:99,193,765-99,226,821 154734387 99,193,765 4.20e-06 35 1 NIPAL2

14 chr9:28,890,331-28,993,271 rs35735220 28,963,289 6.86e-06 113 0

15 chr9:118,176,789-118,273,407 rs10121366 118,244,022 7.33e-06 54 0

16 chr13:36,947,826-37,019,186 1579309473 36,972,202 1.89e-06 26 5 SOHLH2, SPG20, SPG20-AS1, CCNAI,
SERTM1

17 chr13:88,150,884-88,150,884  rs7332726 88,150,884 7.10e-06 1 0

18 chr16:6,654,017-6,695,032 rs112252907 6,675,141 4.43e-06 42 1 RBFOX1

19 chr16:84,581,684-84,590,225 15247831 84,581,893 9.17e-06 8 2 TLDC1, COTL1

20 chr18:43,206,985-43,231,622  rs1484873 43,206,985 4.45e-06 14 1 SLC14A2

21 chr18:73,743,937-73,775,398  rs73973283 73,757,906 6.46e-06 88 0

22 chr20:54,516,338-54,516,338 1511086525 54,516,338 3.01e-06 1 0

? Gene coordinates based on GRCh37/hg19.

NSNPs: Number of nominally associated SNPs per genomic locus.

P = 8.8e-05) (Figs. 3B and S7). In all cases, the quantile plot shows the
positive nature of this relationship as cocaine dependence increases
with greater polygenic load at each discovery dataset (Fig. S8). As ex-
pected, the negative control based on vitamin D levels was not asso-

ciated with
P = 0.06).

cocaine dependence (R? = 0.07%,

Pt = 0.03075,

4. Discussion

To our knowledge, this is the largest GWAS meta-analysis on co-
caine dependence performed so far in individuals with European an-
cestry, although the sample size is still limited. No genome-wide sig-
nificant (GWS) signals emerged from the SNP-based analysis, but the
gene-based study identified HIST1H2BD as significantly associated with
cocaine dependence. This gene is located in a region of chromosome 6
enriched in immune system and histone-related genes. These pathways
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have previously been associated with other psychiatric disorders like
schizophrenia, major depressive disorder and bipolar disorder
(O'Dushlaine, 2015). Despite the lack of GWS findings in this region, we
identified many subthreshold variants. Based on the omnigenic model
that has recently been proposed for complex disorders, these variants
could point at regulatory elements of core genes (Boyle et al., 2017;
Wray et al., 2018) and, therefore, contribute to the susceptibility to
cocaine dependence, as most of them are brain eQTLs. Interestingly,
this region overlaps with the genomic region that has been most con-
sistently associated with schizophrenia. Indeed, it contains five SNPs
(rs16897515, rs17693963, rs34706883, rs41266839 and rs55834529)
nominally associated with cocaine dependence (P < 1le-04) that had
previously been associated with schizophrenia and with bipolar dis-
order, being the risk allele the same in all studies. The genetic variant
most consistently associated with schizophrenia is rs17693963, re-
ported in five different studies (Bergen et al., 2012; Ripke et al., 2011;
2014; Ruderfer et al., 2014; Sleiman et al., 2013), which is a brain eQTL
for PRSS16, ZSCANY9, ZNF184 and ZSCAN31. Furthermore, a tran-
scriptomic study performed in lymphoblastoid cell lines of 413 in-
dividuals with schizophrenia and 446 controls found that the top dif-
ferentially expressed genes are located in this region (e.g. HISTIH2BD,
HIST1H2BC, HIST1H2BH, HISTIH2BG and HIST1H4K) (Sanders et al.,
2013).

Cocaine dependence is a highly heritable disorder (around 65-79%
(Ducci and Goldman, 2012)). Our analyses estimate that SNPs sig-
nificantly capture more than one third of cocaine dependence herit-
ability, as estimated using two different methods (LDSC hwp = 0.30;
GCTA-GREML hZyp = 0.27). Interestingly, studies with comparable
sample sizes obtained similar results for cocaine dependence
(h2oraL = 0.65-0.79; hZyp = 0.28) (Huggett and Stallings, 2019), al-
cohol dependence (h%orar = 0.55-0.69; hdyp = 0.33) (Mbarek et al.,
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Fig. 2. Circo-plot from genomic risk loci on chro-
mosome 6 by FUMA. The most outer layer is the
Manhattan plot (only SNPs with P < 0.05 are dis-
played). SNPs in genomic risk loci are colour-coded
as a function of their maximum r? to the lead SNPs in
the locus, as follows: red (r> > 0.8), orange
(> > 0.6), green (r* > 0.4), blue (> > 0.2) and
grey (r* < 0.2). The rs ID of the top SNPs in the risk
locus is displayed in the most outer layer. Y-axis is
ranged between 0 to the maximum -log; o(p-value) of
the SNPs. The second layer is the chromosome ring,
with the genomic risk locus highlighted in blue. Here
genes are mapped by chromatin interactions (or-
ange) or eQTLs (green). When the gene is mapped by
both, it is colored in red. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

2015) and for other psychiatric disorders like ADHD
(h3oraL = 0.77-0.88; hZyp = 0.28) and schizophrenia
(h%otaL = 0.7-0.8; h2yp = 0.28) (Cross-Disorder Group of the PGC
et al., 2013). Increasing sample size has resulted in lower SNP-herit-
ability estimates in some studies (e.g. alcohol dependence, hZwp = 0.09
(Walters et al., 2018) and MDD, hZyp = 0.12 (Wray et al., 2018)), but in
others they remained similar (e.g. schizophrenia, h3yp = 0.26 (Ripke
et al., 2014) and ADHD, hZyp = 0.22 (Demontis et al., 2019)). For this
reason, larger samples are needed to confirm our results.

It is well known that most psychiatric disorders are highly co-
morbid. About 73.4% of cocaine abuse/dependence patients have co-
morbid mental disorders: 49.7% have personality disorders (e.g. 5.3%
schizoid and 17% antisocial personality) and 61.5% other mental dis-
orders (e.g. 23.4% MDD and 20.5% anxiety) (Arias et al., 2013).
However, the reasons for these covariations remain largely unknown.
We investigated whether the phenotypic correlations between cocaine
dependence and six comorbid psychiatric traits are genetically mirrored
by performing genetic correlation analyses using LDSC. For the first
time we found significant genetic correlation with ADHD, SCZ, MDD
and risk-taking behavior, although these results should be taken with
caution and need to be followed up in a larger sample of cocaine-de-
pendent individuals. Furthermore, we used the PRS method that, in
contrast to LDSC, uses individual-level SNP data, resulting in higher
statistical power and allowing for direct testing of interaction effects.
According to our results, all the tested comorbid conditions are asso-
ciated with cocaine dependence status, suggesting that cocaine de-
pendence is more likely in individuals with many risk alleles for the
tested conditions than in those with fewer risk alleles. To our knowl-
edge, this is the first report of a shared genetic etiology between cocaine
dependence and ADHD, antisocial behavior, risk-taking behavior and
children's aggressive behavior based on genome-wide data. Previous
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Fig. 3. Shared genetic factors between cocaine dependence and comorbid
conditions. A) Results from LD Score (LDSC) regression analysis showing ge-
netic correlation (rg) between cocaine dependence and several traits. Error bars
indicate 95% confidence limits. The significance threshold was setto P < 7.1e-
03. B) Best fit results from Polygenic Risk Score (PRS) analysis for each tested
phenotype. Values displayed next to each bar represent the p-value for sig-
nificance for the most predictive models. The significance threshold was set at
P < 5.7e-04.

studies have reported significant PRS associations between cocaine
dependence and SCZ or MDD (Carey et al., 2016; Hartz et al., 2017;
Reginsson et al., 2018), and also between SUD and other psychiatric
disorders (Du Rietz et al., 2017; Gurriaran et al., 2018), although our
study used the largest sample of cocaine dependence for this type of
analysis so far. This correlation can reflect biological pleiotropy, where
similar genetic mechanisms influence more than one trait, or mediated
pleiotropy, where one phenotype is causally related to a second phe-
notype, so that the variants associated with this phenotype are in-
directly associated with the second one. A recent study performed a
GWAS meta-analysis of eight psychiatric disorders, and found that 75%
of the LD-independent associated regions (109 out of 146) were asso-
ciated with more than one disorder (Cross-Disorder Group of the PGC
et al., 2019). Supporting the idea that the high comorbidity of psy-
chiatric disorders can be explained, in part, because some of the genetic
risk factors are shared among them (Brainstorm Consortium et al.,
2018; Martin et al., 2018).

An important and controversial consideration in association studies
for substance dependence is the selection of the control sample. Some
studies use control individuals that have been exposed to the drug at
least once (Agrawal et al., 2018; Gelernter et al., 2014). In this case, the
association study would capture the predisposing genetic component
involved in the transition from use to addiction, but not the ones related
to the initiation in the consumption (e.g. impulsivity or risk-taking
behavior). Our study shows evidence of shared genetic risk factors
between cocaine dependence and risk-taking behavior, estimating a
high genetic correlation (rg = 0.35) and identifying a significant asso-
ciation also in the PRS analysis. For the above reasons, we have used
unscreened controls from the general population in our study (except
for the SAGE controls, where dependence was discarded). It is also true
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that this approach could eventually dilute positive findings due to the
presence of some cases in the control sample. However, based on the
prevalence of cocaine dependence in the general population (about
1.1%), the probability of false negative results due to this effect is low.
Similar controls were used in other GWAS of drug addiction (Ikeda
et al., 2013; Johnson et al., 2016).

This study has strengths and limitations that need some discussion.
We performed a GWAS meta-analysis using all the cocaine dependence
datasets available at the dbGaP repository, but we could not find any
GWS association at the SNP-based level, as expected given the limited
sample size, with a total of around 6000 subjects, one third of them
cases. However, these data allowed us to detect genetic correlations
between cocaine dependence and several co-occurring conditions. Also,
we calculated polygenic risk scores that explain a small fraction of the
variance in the target phenotype, with figures that are similar to those
obtained for other pairs of psychiatric conditions. To obtain a more
comprehensive picture of the etiological overlap between cocaine de-
pendence and comorbid conditions, larger studies will be needed, and
other genetic factors should be included in the analyses (e.g. CNVs and
rare variants). It is important to note that the high comorbidity across
the tested traits could influence our results on genetic correlation and
PRS. However, several studies have shown that this high co-occurrence
is due, at least in part, to shared genetic risk factors (Brainstorm
Consortium et al., 2018; Martin et al., 2018). On the other hand, some
of the dbGaP datasets used included only cases but not control in-
dividuals. For this reason, we used controls from other datasets that can
introduce potential biases into the experimental design. Nevertheless,
we performed very strict quality controls to avoid population stratifi-
cation: the paired case and control samples were genotyped with the
same platform and are from the same geographical area, the merging of
the different datasets was performed prior to quality control and im-
putation, and after that a permutation test was performed to discard
population stratification (Mitchell et al., 2014). Population admixture is
one of the main sources of false positive findings in association studies.
For this reason, we performed ancestry selection using genetic data,
which allowed us to discard a relatively high number of individuals
with non-European ancestry (ranging from 8 to 30% depending on the
dataset). This highlights the importance of using genetic data rather
than self-reported ancestry, as previously discussed by others (Shraga
et al., 2017). Moreover, the LDSC analyses confirmed that most of the
observed inflation (A =1.06) can be attributed to polygenicity rather
than to residual population stratification or cryptic relatedness (Bulik-
Sullivan et al., 2015b). Finally, the disease phenotype has not been
excluded in most of the control samples, which may potentially dilute
positive findings in the association study (but not lead to false positive
results).

5. Conclusion

In conclusion, we reported the largest cocaine dependence GWAS
meta-analysis on individuals of European ancestry, even though no
GWS hits could be identified. Enlarging the sample size of this study
would increase the chances to detect significant associations. However,
the fact that our analyses highlighted a region on chromosome 6 that
also pops-up in several schizophrenia GWAS supports the idea of shared
genetic risk factors in these two comorbid disorders. This is in line with
the significant results derived from the genetic correlation and PRS
analyses in our study and in others. Finally, it would also be interesting
to investigate the genetic pathways and neurobiological mechanisms
that underlie the genetic overlap between cocaine dependence and
comorbid traits.
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SUPPLEMENTARY MATERIALS AND METHODS

1. Detailed description of samples

A brief overview of the samples included can be found in Table 1.

All datasets used in this work were obtained from dbGaP (database of Genotypes and
Phenotypes / National Center for Biotechnology Information, National Library of Medicine
(NCBI/NLM), https://www.ncbi.nlm.nih.gov/gap) under the project “17170: Meta-analysis of

cocaine dependence GWAS”.

All affected subjects included in this study meet DSM-IV criteria for cocaine dependence,
although most of them are also dependent to other drugs of abuse. Diagnoses for
schizophrenia, bipolar affective disorder or other major psychotic illnesses or gross cognitive
impairment were exclusion criteria. Only for the SAGE controls, drug abuse or dependence

could be discarded; for the other studies general population individuals were used as controls.

Sample 1 (SAGE)

The data presented in the current publication was downloaded from the dbGaP website, under
dbGaP accession phs000092.v1.p1l. SAGE (Study of Addiction: Genetics and Environment) and
it is part of the Gene Environment Association Studies initiative (GENEVA,
www.genevastudy.org) funded by the National Human Genome Research Institute. Cases and
controls included in this study belong to three large, complementary datasets: the
Collaborative Study on the Genetics of Alcoholism (COGA), the Family Study of Cocaine
Dependence (FSCD), and the Collaborative Genetic Study of Nicotine Dependence (COGEND).

All three studies include measures of basic socio-demographic variables (e.g: age, sex,
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race/ethnicity, family income...) and other important covariates and/or potential moderators
of genetic effects (e.g: comorbid addictions and age at initiation of use for cigarettes, alcohol
and drugs). Coding for both individual variables and indices has been standardized across
studies and all subjects were assessed in person by trained research assistants. In total this
dataset includes 1,897 European-American and African-American alcohol dependent subjects
and 1,932 unrelated controls [1]. All cases met criteria for DSM-IV alcohol dependence, but
some of them also met the criteria for other drug dependencies such as cocaine, tobacco or

cannabis.

Genomic DNA was extracted from whole blood samples and genotyping was performed on an
Illumina ILMN_Human-1 chip (Illumina, Inc., San Diego, CA, USA). This dataset includes 1,130
cocaine-dependent individuals and 1,967 controls. After quality control (QC) and ancestry

selection, 468 cases and 1,284 controls were selected.

The following datasets did not have controls that meet the inclusion criteria for the association
study, so general population individuals with European ancestry genotyped with the same chip

were obtained for each dataset of cases:

Sample 2

Cases: The data for the present analysis was downloaded from the dbGaP website, under
dbGaP accession phs000952.v1.p1 (Substance Dependence GWAS in European- and African-
Americans). Samples were collected in the course of three projects: studies focused on alcohol
dependence genetics, on cocaine and opioid dependence genetics. This dataset includes 1,531
self-reported African-American subjects and 1,339 self-reported European-American subjects

that meet DSM-IV criteria for opioid, cocaine or alcohol dependence.

Genotyping was performed on an lllumina HumanOmnil-Quad_V1-0_B chip. This dataset

includes 2,433 cocaine-dependent individuals and 61 controls.
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Controls: The data presented in the current publication is based on the use of study data
downloaded from the dbGaP website, under dbGaP accession phs000179.v5.p2 (Genetic
Epidemiology of COPD (COPDGene) funded by the National Heart, Lung, and Blood Institute).
Only control individuals genotyped with the lllumina HumanOmnil-Quad_V1-0_B chip from

this dataset were used for our association study (493 controls).

Case and control samples were merged, after QC and ancestry selection, 609 cases and 410

controls were selected.

Sample 3

Cases: The data presented in the current publication is based on the use of study data
downloaded from the dbGaP website, under dbGaP accession phs000277.v1.p1 (GWAS of
Heroin Dependence). This dataset is a collaboration of Australian and American researchers.
Cases and controls were obtained from several large investigations including: the Comorbidity
and Trauma Study, Heroin Dependence in Western Australia, the OZ-ALC Study, a Twin Study
of Mole Development in Adolescence, and ongoing genetic studies of substance dependence
conducted by researchers at Yale and collaborating institutions. Cases met lifetime DSM-IV
criteria for heroin dependence, but also for cocaine, alcohol or cannabis. Controls included
screened individuals who did not meet DSM-IV heroin dependence criteria and unscreened

general population controls.

Genomic DNA was extracted from whole blood samples. Individuals used in this study were
genotyped on an lllumina Human660W-Quad_v1_A chip (933 cocaine-dependent individuals
and 349 controls). Although this dataset includes controls, we added more individuals to

increase the statistical power.

Controls: The data presented in the current publication is based on the use of study data

downloaded from the dbGaP website, under dbGaP accession phs000170.v2.pl. (eMERGE
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Genome-Wide Association Study on Cataract and Low HDL cholesterol). Only control
individuals from this dataset were used for our association study, all of them genotyped on an

Ilumina Human660W-Quad_v1_A chip (1,370 controls).

Case and control samples were merged, and after QC and ancestry assessment, 504 cases and

1,190 controls were selected.

Sample 4

Cases: The data presented in the current publication are based on the use of study data
downloaded from the dbGaP website, under dbGaP accession phs000425.v1.p1 (Alcohol
Dependence GWAS in European- and African Americans). The sample includes 1,889 African-
American subjects (1,397 meet DSM-IV criteria for alcohol dependence and 491 are controls)
and 1,020 European-American (1,010 meet the criteria for alcohol dependence and 9 are
controls). All cases met criteria for DSM-IV alcohol dependence, but some of them also met

criteria for cocaine, nicotine and opioid dependence.

Genotyping was performed with the Illumina HumanOmnil-Quad_V1-0_B chip. This dataset

includes 1,920 cocaine-dependent individuals and 500 controls.

Controls: The data presented in the current publication are based on the use of study data
downloaded from the dbGaP web site, under dbGaP accession phs000524.v1.p1 (Chronic
Renal Insufficiency Cohort Study (CRIC) GWAS). As this is a cohort study, all individuals were
included in our analysis (3,541 controls), all of them genotyped with the Illlumina

HumanOmnil-Quad_V1-0_B chip.

Case and control samples were merged, and after QC and ancestry selection, 504 cases and

1,409 controls were selected.

Addictive Diseases
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The data presented in the current publication is based on the use of study data downloaded
from the dbGaP website, under dbGaP accession phs001109.v1.p1 (Addictions: Genotypes,
Polymorphisms, and Function/Human Genetic Correlates of Addictive Diseases). The sample
includes 864 cases and 797 controls. All cases met the DSM-IV for at least one of the following
drug of abuse: opioid, cocaine, nicotine, cannabis, stimulant, sedative and other drugs.
Only a few individuals of European ancestry meet criteria for cocaine dependence, and this
caused problems in the analysis of the data; consequently, this dataset was not included in

the meta-analysis.

2. Bioinformatics pipeline for quality control and association analyses

Pre-imputation quality control and imputation were performed using the bioinformatics
pipeline “Ricopili”, developed by the Psychiatric Genomics Consortium (PGC) Statistical
Analysis Group [2]. This pipeline generates high quality imputed data to perform association
analyses and meta-analyses. To avoid potential study effects, all samples were processed

separately.

2.1 Pre-imputation quality control

To reduce batch effect bias, cases and controls from samples 2-4 were merged prior to quality

control and imputation using PLINK v1.9 (http://pngu.mgh.harvard.edu/purcell/plink/) [3]. In

the three samples, cases and controls were genotyped with the same genotyping array and
were built on the same genomic assembly [4-7]. Flowchart in figure S1 summarizes all steps to

control population stratification.

Subjects and SNPs were included in the analyses based on the following default quality control
parameters: SNP call rate > 0.95 (before sample removal), subject call rate > 0.98, autosomal

heterozygosity deviation (|Fne:| < 0.2), SNP call rate > 0.98 (after sample removal), difference
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in SNP missingness between cases and controls < 0.02, and SNP Hardy-Weinberg equilibrium
(HWE) (P > 1e-06 in controls or P > 1e-10 in cases). Furthermore, chromosome X data was
used to determine sex based on heterozygosity rates, and individuals were removed from the

analyses if gender in phenotype and genotype data did not match.

2.2 European subjects selection

In order to select European subjects from our samples, a principal component analysis (PCA)
was performed using smartPCA incorporated in the software Eigensoft [8,9] using the
reference panel data from 1,092 individuals from the 1000 Genomes Project, phase 3 (1KGP3,
high quality 3,382,774 variants). Only a set of high quality markers were used: autosomal SNPs
found in all datasets, minor allele frequency (MAF) > 0.05, HWE P > 1e-03, SNP call rate > 0.98,
which were pruned for linkage disequilibrium (LD) (r* < 0.2 in a 200Kb SNPs window). For this
analysis AT/GC SNPs (strand ambiguous SNPs), the MHC region (6:25-35Mb) and Chr8
inversion (8:7-13Mb) were excluded. The subsample of European individuals from 1KGP3
(combined CEU, FIN, GBR, IBS, TSI) was used to define the center of an ellipsoid based on the
mean values of principal component (PC) 1 and 2. Then, PC1 and PC2 for all individuals in our
sample were used to define a genetically homogeneous population, excluding individuals with

PC values greater than three standard deviations from the reference population.

Relatedness was tested with the same set of markers using identity-by-descendent (IBD)
analysis in PLINK v1.9, and one individual was excluded in pairs of subjects with pi_hat > 0.2

(cases preferred over controls).

After relatedness and population stratification analysis, another quality control step was

performed, using the same parameters described above.
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2.3 Genotype imputation

Imputation was performed to obtain information about non-genotyped markers. We used the
pre-phasing software SHAPEIT [10] to estimate haplotypes and subsequently MINIMAC3

(https://genome.sph.umich.edu/wiki/Minimac3) [11] for imputing the genotypes. Imputation

was done in chunks of 3 Mb using default parameters. The imputation reference data
consisted of 2,504 phased haplotypes from the European individuals of the 1000 Genomes

Project, phase 3 (1KGP3; October 2014, 81,706,022 variants, release 20130502) [12,13].

2.4 Genetic outliers and population stratification

After imputation, population stratification was reevaluated using a set of high quality markers
(autosomal markers with MAF > 0.05, HWE P > 1e-04 and SNP call rate > 0.98), which were
pruned for LD (r* < 0.075) resulting in a set of ~30,000 pruned markers. Based on genome-wide
identity-by-state (IBS) information, PLINK generates metrics to detect the outliers. For a given
individual, PLINK ranks all other individuals on the basis of how similar (in IBS terms) they are
to this particular proband individual. Then it checks if the proband's closest neighbour is
significantly more distant to the proband than all other individuals' nearest neighbour is to
them. In other words, from the distribution of 'nearest neighbour' scores, one for each
individual, it can calculate a sample mean and variance and transform this measure into a Z-
score. If an individual has an extremely low Z-score (less than 4 standard deviation units), this
would indicate that this individual is an outlier with respect to the rest of the sample and

would be removed.

Second, a permutation test for between group IBS differences was performed with fixed
10,000 permutations. To test stratification effects between cases and controls, we reported
the p-value of testing whether, on average, an individual was less similar to another

phenotypically-discordant individual than would be expected by chance (denoted as T1 in
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PLINK). In samples 2 and 3, population stratification was detected (T1 p-value < 0.05). Then, for
each sample, PCA was repeated following the steps described previously but, in this case,
individuals with PC1 and PC2 values greater than two standards deviations from the mean
obtained for European individuals were excluded. After this correction, population

stratification analysis was repeated and the T1 p-value was > 0.05 in both cases.

Then, we ran again the “Ricopili” PCA module considering the four samples together to test
overlap or relatedness across all datasets. This module uses IBD analysis in PLINK v1.9 to
identify pairs of subjects with pi_hat > 0.2, and one individual for each pair was excluded

(cases preferred over controls).

Finally, for each sample PCA was redone after exclusion of genetic outliers. The first 20 PCs
were tested for association with the phenotype using logistic regression and their impact on
the genome-wide test statistics was evaluated using A. The first 10 PCs (PC1 - PC10) were

included as covariates for all samples.

3. GWAS and meta-analysis

Case-control association analyses using the imputed markers (INFO > 0.8 and MAF > 0.01)
were performed for each sample by logistic regression under the additive model, with the
derived 10 first PCs as covariates using PLINK v1.9. The summary statistics obtained from the
different GWASs (in total 2,085 cases and 4,293 controls) were meta-analysed using and
inverse-variance weighted fixed effects model implemented in METAL software

(http://csg.sph.umich.edu//abecasis/Metal/) [14]. Finally, the GWAS meta-analysis results

were filtered by N effective (N.s), so only the markers which were supported by an effective

sample size greater than 70% (n = 1,964.76) were included (a total of 9,290,362 markers).

Neff = 1 1
Ncases + Ncontrols
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Manhattan plot and quantile-quantile plot (Q-Q plot) from each sample and the meta-analysis

results were performed using the library ggman implemented in R [15] (Figure 1 and Table S1).

Heterogeneity across studies was tested with the Cochran’s Q test and quantified with the I

heterogeneity index, in METAL (Figure S2).

3.1 LD Score intercept evaluation

A light deviation from null was observed in the distribution of the test statistics in the Q-Q plot
of the results from the GWAS meta-analysis (Figure 1). This deviation can appear because of
polygenicity but also due to other confounding factors such as cryptic relatedness, population
stratification or model misspecification. LD score regression (LDSC) analysis allows to
differentiate between these two components [16]. Under this model when regressing the chi-
square statistics from GWAS against LD scores for each SNP (pre-computed LD-scores

downloaded from the GitHub website available on https://github.com/bulik/Idsc), the

intercept minus one is an estimator for the mean contribution of confounding bias to the
inflation in the statistic tests. Based on regression of the test statistics from GWAS meta-
analysis, we estimated an intercept close to one (intercept = 1.01 (SE = 0.0068; P = 0.1)).
Additionally, the ratio (ratio = (intercept-1)/(mean(chi*2)-1)) measures the proportion of the
inflation in the mean chi-square that the LDSC intercept ascribes to causes other than
polygenic heritability. Results estimated a ratio = 0.24 (SE = 0.09), that indicates that most of
the inflation in the distribution of the test statistics is caused by polygenicity, but other

confounding factors are also present.

3.2 SNP heritability

Two approaches were used to estimate SNP heritability (h?) in order to evaluate how much of

the variation in the phenotypic trait could be ascribed to common additive genetic variation.
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On the one hand, we used LDSC 1.0.0 (https://github.com/bulik/ldsc/). Only HapMap-3 SNPs
from summary statistics of the GWAS meta-analyses and pre-computed LD scores (available on

https://github.com/bulik/Idsc) were used in the analyses.

On the other hand, we used the genome-based restricted maximum likelihood analysis
implemented in the software tool genome-wide complex traits analysis (GCTA-GREML;
https://cnsgenomics.com/software/gcta/#Overview) (Lee et al., 2011). The samples (1-4) used
for the cocaine dependence GWAS meta-analysis were merged using PLINK v1.9 and filtered
using strict quality controls, keeping only SNPs with: MAF > 0.01, SNP call rate > 0.98 and
individual call rate > 0.98 (resulting in 5,957,307 SNPs in 2,083 cases and 4,287 controls). To
account for population stratification we performed PCA using smartPCA included in Eigensoft
(previously described), and 10 first PCs and a dummy variable indicating genotyping-study

were included in the analysis as covariates.

The SNP heritability was calculated on the liability scale (hz.iabmty) using a prevalence of cocaine
dependence of 1.1% in the population [17]. For LDSC it was estimated to be hzﬁabi“ty: 0.30 (SE =

0.06, P = 2.4e-07) and for GCTA-GREML hznabmty: 0.26 (SE=0.03, P<0.01).

3.3 Partitioning heritability by functional annotation

Partitioning of the heritability by functional categories was done based on 53 functional
overlapping annotations described in Finucane et al. (2015), but only 24 annotations were
considered (annotations of 500bp-windows around each functional category were not
considered). The pre-computed LDSC, the baseline model LD scores, regression weights and
allele frequencies (based on the 1KGP3 European ancestry samples) were downloaded from

https://data.broadinstitute.org/alkesgroup/LDSCORE/. Enrichment in the heritability of a

functional category was defined as the proportion of SNP heritability explained divided by the
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proportion of SNPs [18]. Significance threshold was calculated using the Bonferroni correction
to control for multiple testing (P = 0.05/24 = 2e-03). The analysis revealed significant
enrichment in the heritability by SNPs located in intronic regions (enrichment = 2.17; SE = 0.45;
P =1.2e-03), and nominal association for conserved regions (enrichment = 23.63; SE = 8.57; P =

4e-03) (Figure S3).

4. Functional annotation of SNPs

4.1 FUMA

Functional annotation of SNPs was performed using the FUMA web application

(http://fuma.ctglab.nl/) [19]. This tool can be used to annotate, prioritize, visualize and

interpret GWAS results. FUMA defines lead SNPs as signals that are significantly associated
with the disorder (we used P < 1e-05) and independent to each other at r? < 0.1. For each lead
SNP, FUMA defines a “Genomic risk locus”, including all independent signals that are physically
close or overlapping in a single locus. To evaluate the potential impact of the variants in the
“Genomic risk locus”, we considered annotations of functional consequences for those

variants based on external reference data. In particular, we explored:

e eQTL: evaluation of expression quantitative trait loci using gene expression data from

GTEx v6/v7  (https://www.gtexportal.org/home/) [20,21] and BRAINEAC

(http://www.braineac.org/) [22].

e CADD v1.3: A deleterious score of variants computed by integrating 63 functional
annotations. The higher the score, the more deleterious the variant (12.37 is the

suggested threshold to be deleterious) (http://cadd.gs.washington.edu/) [23] .

e ANNOVAR: A variant annotation tool used to obtain functional consequences of SNPs

on gene function (http://annovar.openbioinformatics.org/en/latest/) [24].
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e RegulomeDB v1.1: A categorical score (from 1 to 7) representing regulatory
functionality of SNPs based on eQTLs and chromatin marks. Score 1a means that those
SNPs are most likely affecting regulatory elements and 7 means that those SNPs do not

have any annotations (http://regulomedb.org/index) [25].

e 15-core chromatin state: The chromatin state represents accessibility of genomic
regions (every 200bp) with 15 categorical states predicted by ChromHMM based on 5
chromatin marks (H3K4me3, H3K4mel, H3K36me3, H3K27me3, H3K9me3) for 127
epigenomes. In this study we only used data available for the 13 brain tissues

(https://egg2.wustl.edu/roadmap/web portal/chr state learning.html) [26,27].

Finally we explored the GWAS-catalog €91 2018-02-06 (https://www.ebi.ac.uk/gwas/) [28], a

database of reported SNP-trait associations, to see if the identified SNPs were previously

associated to other traits (Table 2; Figure 2 and S4).

4.2 Gene-based association analysis

Gene-based association with cocaine dependence was estimated by MAGMA 1.05b [14] using
the summary statistics from the GWAS meta-analysis. The SNP-wise mean model was used, in
which the test statistic used was the sum of -log(SNP p-value) for SNPs located within the
transcribed region (defined using NCBI 37.3 gene definitions). The gene p-value was calculated
using a known approximation of the sampling distribution [29]. MAGMA accounts for gene
size, number of SNPs in a gene and LD between markers. When using summary statistics in
estimating gene-based p-values, MAGMA corrects for LD based on estimates from reference
data with similar ancestry; for this we used the 1KGP3, European ancestry samples, as the

reference [13]. We applied no padding around genes.

A total of 18,069 genes were analysed, and HISTIH2BD gene demonstrated significant gene-

wise association with cocaine dependence (surpassing 10% FDR) (Figure S5 and Table S2).
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4.3 Gene-set association analysis: Canonical pathways, BioCarta and GO gene-

sets

Gene-set analyses were performed using MAGMA 1.05b. Based on the gene-based p-values
generated as described in the previous section, we analysed sets of genes in order to test for
enrichment in association signals in genes belonging to specific biological pathways or
processes. MAGMA applies a competitive test to analyse whether the genes of a gene set are
more strongly associated with the trait than other genes, while correcting for a series of
confounding effects such as gene length and size of the gene set. In our analysis only genes on
autosomes were included. For gene sets we used “All Canonical Pathways” (1,329 gene sets),
“Gene Ontology” (4,436 gene sets) and “BioCarta” (217 gene sets) provided from MsigDB 5.1

(https://software.broadinstitute.org/gsea/msigdb/) [30]. Multiple testing corrections were

performed for each gene set separately. When gene sets strongly overlap, the Bonferroni
correction can be quite conservative, and for this reason we used an empirical multiple testing

correction implemented in MAGMA, based on a permutation procedure.

None of the gene sets remained significantly associated with the disorder after correction for
multiple testing (Table S3-5). Interestingly, from the first 10 Gene Ontology gene sets, 7 related

to synapse organization, glutamatergic neurotransmission or brain functions.

5. Genetic correlation of cocaine dependence with comorbid conditions

5.1 Description of the summary statistics from comorbid conditions

We performed genetic correlation studies between cocaine dependence and previously
described comorbid disorders or associated phenotypes using publicly available summary

statistics (Table 2):
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e Schizophrenia (SCZ) European meta-analysis: 34,241 cases and 45,604 controls, and
1,235 parent-affected offspring trios. In total: 15,358,498 SNPs [2].

e Attention deficit/hyperactivity disorder (ADHD) European meta-analysis: 19,099 cases
and 34,194 controls. In total: 8,094,095 SNPs [31].

e Major depressive disorder (MDD): 59,851 cases and 113,154 controls. In total:
13,554,490 SNPs [32].

e Children’s aggressive behavior (Child-Aggre) GWAS from EAGLE (Early Genetics and
Lifecourse Epidemology Consortium): 18,988 individuals. Prior to analysis, data from
this dataset was converted from hgl8 to hgl9 using the liftOver tool
(http://genome.ucsc.edu/goldenPath/help/hg18ToHg19LiftOver.html). In total:

2,200,951 SNPs [33].

All of them are available on the PGC website, https://www.med.unc.edu/pgc/results-and-

downloads.

e Antisocial behavior (ASB) meta-analysis: 16,400 individuals. In total: 7,795,277 SNPs

[34]. Available on BroadABC website (http://broadabc.ctglab.nl/summary_statistics)

e Risk taking (RT) behavior from the UK Biobank: 325,821 individuals. In total:
10,894,597 SNPs. Available on

https://sites.google.com/broadinstitute.org/ukbbgwasresults/home?authuser=0.

As a negative control we used summary statistics of vitamin D levels from the UK Biobank:

335,591 individuals. In total: 10,894,597 SNPs.

5.2 LDSC Genetic correlation

Genetic correlations (ry) between cocaine dependence and six comorbid disorders/phenotypes
(ADHD, SCZ, MDD, Child-Aggre, ASB, RT) were calculated using LDSC 1.0.0 [35]. In these

analyses we used summary statistics from all samples and pre-computed LD scores from
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HapMap3 SNPs, calculated on 378 phased European-ancestry individuals from the

1000Genomes Project (available on https://github.com/bulik/Idsc). Only results for markers

present in the HapMap3 SNPs list with an imputation INFO score > 0.90 (this filter was applied
only in datasets where this information was available) were included in the analysis. We
selected a conservative significance threshold to control for multiple testing by applying the
Bonferroni correction. As we tested genetic correlation between cocaine dependence and 7

phenotypes, significance threshold was set at P < 7.1e-03 (P < 0.05/7).

We found significant genetic correlations between cocaine dependence and SCZ (ry = 0.2; SE =
0.05; P = 1e-04), ADHD (rg = 0.5; SE = 0.08; P = 1.6e-09), MDD (rg = 0.4; SE = 0.08; P = 6.6e-07)
and RT (r, = 0.35; SE = 0.06; P = 9.1e-08) but not with Child-Aggre (r; = 0.28; SE =0.23; P = 0.22)
or ASB (ry = 0.58; SE = 0.28; P = 0.04) (Figure 3A). No significant results were found for the

negative control (ry = 0.08; SE = 0.15; P = 0.55).

Furthermore, the genetic correlation of cocaine dependence with other traits available at LD

Hub (http://Idsc.broadinstitute.org/Idhub/) [36] were evaluated. In total, 832 phenotypes

were tested for genetic overlap with cocaine dependence, but we obtained valid results only
for 690 and 109 demonstrated significant correlation after Bonferroni correction (P < 7.24e-
05). Detailed information about significant genetic correlations can be found in Table S6 and

Figure S6.

5.3 Polygenic risk scores for cocaine dependence

Polygenic Risk Scores (PRS) can be used to investigate the shared genetic etiology between
cocaine dependence and comorbid phenotypes, and to test how these phenotypes can predict
cocaine dependence. Using GWAS summary statistics results, the PRS on the discovery
phenotype are calculated, and these are used as predictors of atarget phenotypein a

regression analysis. Using PRSice 2.1.0 software (https://github.com/choishingwan/PRSice)
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[37] we analysed the proportion of genetic aetiology shared between cocaine dependence and
comorbid psychiatric disorders (ADHD, SCZ and MDD) or associated phenotypes (RT, Child-

Aggre and ASB).

In order to perform PRS analysis, the samples (1-4) used for the cocaine dependence GWAS
meta-analysis were merged using PLINK v1.9 and were used as a target sample. After merging,
quality control was performed and only SNPs with MAF > 0.01, SNP call rate > 0.98 and
individual call rate > 0.98 were used (resulting in 5,957,307 SNPs in 2,083 cases and 4,287
controls). To assess population stratification we performed PCA using smartPCA included in
Eigensoft (previously described), and 10 first PCs and a dummy variable indicating genotyping-

study were included in the PRS analysis as covariates.

We used the summary statistics of the comorbid conditions (described above) as independent
discovery samples. The discovery samples were clumped (r* < 0.1 in a 250-kb window) to
remove SNPs in LD. Both variants with an imputation INFO score < 0.9 and ambiguous strand
variants were removed from the analysis. Then, PRSs were estimated for each discovery
sample using a wild range of meta-analysis p-value thresholds (P;) between P; = 1e-04 and P; =
1 at increments of 5e-05. Summing over the markers abiding by the p-value threshold in the
discovery set and weighting by the additive scale effect measure of the marker (log(OR) or B).
For each P, the proportion of variance explained (R?) by each discovery sample was computed
by comparing the full model (PRS + covariates (10 PCs and study)) score to a reduced model
(covariates only). The reported R? value is the difference between R? from the two models. For
guantitative traits we performed linear regression analysis, and for qualitative traits we

performed traits logistic regression and Nagelkerke’s pseudo-R? values are shown.

We selected a conservative significance threshold to control for multiple testing by applying a
Bonferroni correction. Euesden and colleagues recommend using a significance threshold of at

least P = 0.004 in order to control for the high-resolution scoring approach of selecting the
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most predictive PRS [37]. As we tested the most predictive PRS across each of the 7 discovery
phenotypes, we divided the p-value by the number of tests performed (P = 0.004/7), which

resulted in a significance threshold of P < 5.7e-04.

For all discovery samples, PRS significantly predict cocaine dependence: SCZ (pseudo-R® =
2.28%, Py = 0.4911, P = 1.21e-26), ADHD (pseudo-R2 = 1.39%, Py = 0.04275, P = 4.5e-17), ASB
(R* = 1.33%, P; = 0.4055, P = 2.2e-16), MDD (pseudo-R* = 1.21%, Pr= 0.0129, P = 4.35e-15), RT
(R* = 0.60%, P; = 0.00135, P = 2.7e-08) and Child-Aggre (R* = 0.3%, P = 0.3552, P = 8.8e-05). No
significant results were found for the negative control (R*> = 0.07%, P; = 0.03075, P = 0.06)

(Figure 3B, S7 and S8).
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Figure S1. Flowchart illustrating steps to control for population stratification. MAF: minor
allele frequency; 1KGP3-Eur: European individuals from 1000 Genomes Project Phase 3
(combined CEU, FIN, GBR, IBS, TSI); INFO: imputation info score; HWE: Hardy Weinberg

equilibrium; IBD: identical by descent; IBS: identical by state
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Figure S2. Plots from test for heterogeneity between samples in the GWAS meta-analysis. A) Q-Q plot and B) SNP-based Manhattan plot obtained for the
heterogeneity test between samples in the cocaine dependence GWAS meta-analysis. Continuous line: threshold for genome-wide significance (P < 5e-08).

Discontinuous line: threshold for suggestive associations (P < 1e-05).
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Figure S3. Partitioning of heritability (h2) by functional annotations. Enrichment by 24 functional annotations defined by Finucane et al. (2015). Error bars
represent 95% confidence intervals. P-values for annotation categories with nominally significant enrichment are shown and * indicates significance after
Bonferroni correction (P < 2e-03). The horizontal black line indicates no enrichment.
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Figure S4. Regional plot with genes and functional annotations of genomic risk loci on Chré
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primary cultured neurospheres, E053: Cortex derived primary cultured neurospheres, E071:
Hippocampus middle, EO74: Substantia nigra, E068: Anterior caudate, E069: Cingulate gyrus,
E072: Inferior temporal lobe, EO67: Angular gyrus, EO73: Dorsolateral prefrontal cortex, EQ70:
Germinal matrix, E082: Fetal brain female, E0O81: Fetal brain male and E125: NH-A Astrocytes
primary cells. eQTLs are plotted per gene and colored based on tissue type.
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Job involves heavy manual or physical work (P=1e-13) ——

Mood swings (P=1.3e-10)

Fed-up feelings (P=1.7e-08)
Neuroticism score (P=2.3e-06)
Depressive symptoms (P=2.8e-06)
Miserableness (P=4.3e-06)

Seen a psychiatrist for nerves anxiety tension or
depression (P=5.6e-06)

Sleeplessness / insomnia (P=7.7e-06)
Loneliness/ isolation (P=1.9e-05)
Tense / highly strung (P=3.5e-05)
Sensitivity / hurt feelings (P=3.2e-05)
Body fat percentage (P=6.7e-05) il
11 -09 -07 05 03 01 01 03 05 07 09 11

Figure S6. Genetic correlation of cocaine dependence with other traits from LDhub.
Significant genetic correlations between cocaine dependence and other traits after Bonferroni
correction for testing a total of 690 traits available at LDhub. The most interesting results are
shown here; see table S6 for the full output of this analysis. Groups defined by colours, from
the top: In purple, educational achievements; in orange, reproductive traits; in green, alcohol
and tobacco exposure; in dark blue, familiar situation; in red, exercise; in light blue,
psychological and psychiatric traits; in brown, physical condition. Error bars indicate 95%
confidence limits. The significance threshold was set at P < 7.24e-05.
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Figure S7. Polygenic risk score results from the seven tested phenotypes. A) Schizophrenia, B)
Attention deficit/hyperactivity disorder, C) Antisocial behavior, D) Major depressive disorder,
E) Risk-taking behavior, F) Children’s aggressive behavior and G) Negative control (Vitamin D
levels). P-value threshold (Py) represents the p-value at the cut-off for inclusion of SNPs in the
polygenic risk score. Values on top of the bars represent p-values for the regression models.
The significance threshold was set at P < 5.7e-04.
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Figure S8. Deciles of polygenic risk scores plotted against effects on phenotypes A)
Schizophrenia, B) Attention deficit/hyperactivity disorder, C) Antisocial behavior, D) Major
depressive disorder, E) Risk-taking behavior, F) Children’s aggressive behavior and G) Negative
control (Vitamin D levels). A regression is performed with phenotype as outcome and each
10% quantile separately, whereby the effect size of each quantile is compared to the central
quantile as a reference, such that each polygenic score in the quantile in question is coded 1
and each polygenic score in the reference quantile is coded 0. In each regression, the
covariates used in the main analyses are included. OR, odds ratio. Error bars indicate 95%
confidence limits.
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SUMMARY ARTICLE 3

“Explorant I'impacte de la variacié comuna en gens de miRNAs en el trastorn per
deficit d’atencido amb hiperactivitat”

El trastorn per déficit d'atenci6 amb hiperactivitat (TDAH) és un trastorn neuropsiquiatric
multifactorial prevalent I'etiologia del qual és encara forca desconeguda. Contribueixen a la patologia
tant factors genétics com ambientals, amb diversos mecanismes epigenétics també implicats. La
modulacid epigenética per microRNAs (miRNAs), una classe d’ARN no codificant, s’ha revelat com un
procés clau en 'origen i desenvolupament dels trastorns neuropsiquiatrics. Els miRNAs actuen com a
reguladors de |'expressié génica en el sistema nervids, tot modulant el desenvolupament del cervell i
la neuroplasticitat. En aquest estudi hem dut a terme estudis d'associacié basats en SNPs i en gens
gue interroguen tots els miRNAs autosomics coneguts (~ 1700) utilitzant les dades procedents de
I’estudi GWAS més gran realitzat fins ara en TDAH (20.000 casos i 35.000 controls). Ens hem centrat
en variants comunes situades en gens que codifiquen miRNAs i en els seus possibles elements
reguladors. Hem identificat associacions significatives entre el TDAH i 19 SNPs de 12 miRNAs
intragenics (situats dins de gens que codifiquen proteines). Quatre dels miRNA assenyalats (miR-6079,
miR-6734, miR-6735, miR-3666) també mostren una associacio significativa amb el fenotip en I'analisi
basada en gens. Les variants associades estan situades en potencials regions reguladores de
I’expressio dels miRNAs, o bé a la regid promotora del gen hoste. Hem investigat, en els miRNA
associats, I'expressié en cervell, els gens diana, les vies diana i els homolegs en altres espécies. La
majoria dels gens diana validats per als miRNAs identificats s’havien relacionat préviament amb
d’altres malalties neurologiques. Les analisis d'anotacié funcional apunten als gens miR-7-1 i miR-3666
com a candidats prometedors per al trastorn. Les dianes conegudes de miR-7-1 inclouen gens
previament implicats en l'empatia cognitiva (EIF4E) i el trastorn bipolar (EGFR), aixi com gens
(SLC17A7) que s'expressen exclusivament en teixits cerebrals. El miR-3666 regula TAC1 i MEOX2, el
primer associat amb comportaments de risc i nivells elevats de nerviosisme, i el darrer relacionat amb
el volum intracranial i de diverses regions cerebrals. L'analisi de vies funcionals ha assenyalat la
regulacio mediada per miRNAs de gens que codifiquen receptors de serotonina, crucials en la
regulacié de funcions neurologiques i implicats en moltes malalties del sistema nervids. En aquesta
mateixa linia, miR-4271i miR-5193, assenyalats en I’analisi basada en SNPs, inhibeixen els gens HTR1D
i HTR4, respectivament. Els resultats que presentem obren noves vies per a I'estudi del paper dels

miRNAs en el TDAH.
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ABSTRACT

Attention-deficit/hyperactivity  disorder (ADHD) is a common multifactorial
neuropsychiatric disorder which aetiology is still largely unknown. Both genetic and
environmental factors contribute to the disorder, with epigenetic mechanisms playing a
role, too. Epigenetic modulation by microRNAs (miRNAs), a class of non-coding RNAs,
has emerged as a key process in neuropsychiatric disorders. MiRNAs act as regulators of
gene expression in the nervous system, where they exert their influence on brain
development and neuroplasticity. In the present study, we conducted SNP-based and gene-
based association studies across all known autosomal miRNAs (~1700) using the largest
genome-wide association dataset of ADHD to date (20,000 cases and 35,000 controls). We
focused on common variants located in miRNA genes and in their putative regulatory
elements. Nineteen SNPs in 12 intragenic miRNAs showed a significant association with
ADHD in the SNP-based analysis. The associated variants are located in the putative
regulatory regions of the miRNA genes or in the promoter region of the host protein-coding
gene. We inspected the brain expression, target genes, target pathways and homologs of the
associated miRNAs. Most of the validated target genes for the highlighted miRNAs have
previously been related to other neurological diseases. Our functional annotation results
point at miR-7-1 and miR-3666 as promising candidates for the disorder. Known targets of
miR-7-1 include genes previously implicated in cognitive empathy (EIF4E) and bipolar
disorder (EGFR) as well as genes (SLCI7A7) that are expressed exclusively in brain
tissues. MiR-3666 targets TACI and MEOX2, with the former associated with risk-taking
and feeling nervous traits, and the latter linked to several brain regions and intracranial
volumes. Pathway analysis revealed a miRNA-mediated regulation of serotonin receptor

genes, well-known contributors to neurological functions and diseases. In this line, miR-
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4271 and miR-5193, highlighted by our SNP-based analysis, were shown to inhibit HTR1D
and HTRA4, respectively. The present results direct further research to elucidate the precise

involvement of miRNAs in ADHD.
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INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a multifactorial neurodevelopmental
disorder with a high estimated heritability (76%)'”. Most often characterized by the
presence of inattentive and/or hyperactivity symptoms, the disorder affects 5% of the
children and adolescents worldwide and persists in 2.5% of the adult population®. Both
common® and rare variants®_contribute to the impaired neurobiological mechanisms that
underlie this complex phenotype, in combination with environmental risk factors”. We
know that common variation accounts for a substantial fraction of ADHD liability, with
single-nucleotide polymorphisms (SNPs) contributing to 22% of the phenotype variance”.
However, the specific molecular underpinnings of the disorder remain still largely
unknown, with only 12 susceptibility loci in the largest genome-wide association study
(GWAS) to date that attain genome-wide significance and a few genes showing an
increased burden of rare variants identified through whole-exome sequencing (WES). Thus,
the pivotal functional networks in ADHD pathology are not evident yet, probably due to the
high degree of polygenicity of the disorder, the small effect sizes of individual variants, and

multiple regulatory and signaling mechanisms.

MicroRNAs (miRNAs), the most abundant type of small non-coding RNAs’, are epigenetic
modulators of the expression of up to 80% of the genomeﬁ, including those genes that drive
the development and function of the central nervous system’®. The genes encoding
miRNAs are thought to be evolutionarily conserved’ and are organized as separate units or
in clusters. Approximately 57% of miRNA-coding genes are embedded within protein-
coding genes, also termed host genes6. MiRNA-mediated regulatory networks operate post-

transcriptionally and are complex due to the ‘multivalent’ or one-to-many and synergic
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relationships between miRNAs and their targeted transcripts. The expression levels of
miRNAs are particularly high in brain tissues'® and these molecules are often involved in
neurogenesis, synaptic plasticity, neuronal survival, differentiation, neurite projection and

memory formation®'"'2,

The role of miRNAs in the development of major psychiatric disorders has extensively
been addressed, beyond the traditional landscape of protein-coding genes. Individuals and
groups of miRNAs have been investigated in schizophrenia, bipolar disorder, MDD, ASD
and ADHD by employing high-throughput sequencing, gene expression analyses of blood
and post-mortem brain tissues and genetic association case-control study designs7. Their
role is most extensively documented in schizophrenia6 where hundreds of miRNAs have
been reported to be dysregulated13, and the condition has recently been associated with a
global increase in miRNA biogenesis and expression in the cerebral cortex . A genome-
wide examination of miRNA genes in bipolar disorder has implicated nine miRNAs". In
MDD, miRNAs let-7b, let-7¢'® and miR—124—3p17 have been identified as potential
biomarkers, as their target genes involve those previously implicated in the disorder.
Differentially expressed miRNAs are reported in the cerebellar cortex of autistic group,

whose targets include autism-risk genes like SHANK3 and NRXN1 8,

The first genome-wide integrative study of miRNA and mRNA profiles in peripheral blood

mononuclear cells of medication-naive individuals with ADHD identified 79 microRNAs

that showed aberrant expression levels as compared to controls, with three of them, miR-

26b-5p, miR-185-5p, and miR-191-5p, being highly predictive for diagnostic status in an
19

independent dataset of ADHD cases . Expression studies have further revealed

significantly altered circulation levels of miR-let-7d*°, miR-18a-5p, miR-22-3p, miR-24-
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3p, miR-106b-5p, miR-155a-5p and miR-107*" in the serum and blood of patients. The
function of let-7d was further investigated in the spontaneously hypertensive rat (SHR), a
model for ADHD, where it was suggested to modulate the tyrosine hydroxylase (TH)
production critical to dopamine pathway, by downregulating TH’s upstream effector
galectin-3 in the brain prefrontal cortex*”. A recent study identified 13 potential miRNA
biomarkers that show differential expression in patients™. Interestingly, many of the
pinpointed miRNAs can be dysregulated in multiple disorders®, perhaps lending further
support to the existence of shared genetics or biological pathways among
neurodevelopmental disorders™. Candidate gene association studies have linked sequence
variants in the miR-34b/c locus® and the miR-183-96—182 cluster*® to ADHD. Finally, two
of the top 12 loci revealed by the first GWAS on ADHD with genome-wide significant
signals included miRNA genes (miR3666 and miR9-2). As the potential of sub-threshold

variants being true risk loci has lately been recognized®’>*

, the plausibility that many of the
influential miRNA loci might not be revealed in a genome-wide approach cannot be

ignored.

We hypothesize that common variants located in miRNA genes or in their putative
regulatory elements may play a crucial role in the disorder by altering the expression of the
corresponding protein-coding genes. We hereby present the first study that systematically
captures common SNP variation in miRNAs, a crucial epigenetic component, at genome-

wide scale, utilizing the largest ADHD GWAS meta-analysis available to date.

MATERIALS AND METHODS

Selection of miRNA genes
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We retrieved the genomic locations of all autosomal miRNA precursor sequences from
miRBase release 21%. The miRBase search tool’® was used to fetch miRNA sequences
distributed as clusters that were defined with an inter-miRNA distance of less than 10kb.
The genomic coordinates of the resultant miRNA clusters were determined by the two
furthest positions of the miRNA transcripts at the extreme ends of each cluster. All
coordinates primarily in GRCh38 were converted to their equivalents in GRCh37 using the

UCSC liftOver tool’'.

We assigned miRNAs to one of the following categories, which were also used to establish
the genomic windows for the inclusion of the putative regulatory elements of these
miRNAs: (1) each ‘singleton’ non-clustered miRNA gene - a flank of 10 kb upstream and 5
kb downstream; (ii) clustered miRNAs sequences that are transcribed in the same direction
- 10 kb upstream and 5 kb downstream from the cluster; (ii1) clustered miRNA sequences
transcribed in different directions - a 10 kb flank at either end of the cluster (Figure 1). We
then used information from the miRIAD database™ to identify miRNAs located within
protein-coding genes (from now on, host genes) and to define the start position of the host
genes. In those cases where intragenic miRNAs were transcribed in the same orientation as
their host genes, we included a 10 kb region upstream from the transcription start site (TSS)

of the host gene in our analyses.
Selection of tag variants and case-control association analysis

Bi-allelic variants with a minimum allele frequency (MAF) of 5% in the EUR
subpopulation of the 1000 Genomes Phase 3 Project™ were extracted for the selected
genomic regions (including miRNAs and their potential regulatory sequences) by

employing the VCFtools package™. Tagging variants were selected from all the obtained

120



Results - Article 3

variants on the basis of their pairwise linkage disequilibrium (LD) in the 1000 Genomes
Phase 3 EUR reference panel and with an > > 0.85 using Haploview 4.2 software™. The
tags were tested for their association with ADHD using the summary statistics of the
GWAS meta-analysis carried out by the PGC and iPSYCH on 19,099 cases and 34,194
controls of European ancestry3. The statistically significant associations were corrected for
multiple testing considering a 5% False Discovery Rate (FDR) calculated using R package

qvalue36.
Functional annotation of the highlighted miRNAs

The regional association plots for the 500 kb region centered on the associated variants
were generated using LocusZoom”". Any signal present within the miRNA locus if in a
high or moderate LD (r*>0.6) with the index SNP of the region was considered to be a
miRNA-associated signal. We explored BrainSpan Atlas®™®*, miRmine®’, miRIAD* and
early human brain development spatio-temporal assessment of microRNA expression from
Ziats and Rennert’' to assess the expression levels of miRNAs in brain tissues. The
experimentally validated target mRNAs and putative biological pathways were deciphered
using the Ingenuity Pathway Analysis 8.8 software (IPA)
(http://www.ingenuity.com/products/ipa; Ingenuity Systems, Redwood city, CA, USA)
where we used all the highlighted miRNAs as input. We used the human pre-miRNAs
SNPs reported in miRNASNP2 database™ to identify any patterns of LD with the
significantly associated variants. GTEx data® was utilized to investigate expression
quantitative trait loci (€QTLs) information. Orthologs for the miRNA genes in other model
species were searched for in the Alliance of Genome Resources web portal*, and the level

of conservation of the miRNA genes across model species was retrieved using microRNA
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Viewer®. The degree of conservation was calculated as the proportion of identical bases

4
between the two sequences ’,

Functional annotation of miRNA target genes

We retrieved the expression levels of the target genes for the highlighted miRNAs in the
brain tissues from the GTEx database. NHGRI-EBI GWAS Catalog was used to decipher
whether the target genes had previously been ahit in any psychiatric GWAS*. The
interactive visualization of association p-value results and linkage disequilibrium patterns

for a genomic region of interest was done using the LDassoc tool*’.
RESULTS
Genome-wide miRNA association analysis

Our analysis involved 1,761 autosomal miRNA genes of 1,881 published miRNAs
(miRBase v21), of which 1,355 miRNA sequences are encoded individually and the
remaining 406 organized into 135 gene clusters. A total of 1,754 miRNA sequences were
successfully retained post assembly lift over, 879 of those intragenic, i.e. located within
protein-coding genes. These 1,754 miRNAs were covered by 22,423 tag variants. We
inspected these variants for association with ADHD in the summary statistics of the largest
ADHD GWAS meta-analysis of 8,094,094 markers, which contained 76.3% of our tag
variants. We identified 19 significant associations with ADHD (5% FDR, p<4.77e-05)
highlighting 12 miRNAs (Table 1). All these miRNAs are located within introns of host
protein-coding genes. The associated variants are located in the putative regulatory regions

of the miRNA genes or in the promoter regions of the host genes (Table 1). Two of the
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highlighted loci, on chromosomes 1 and 7, have been reported as among the top ADHD

risk loci in the largest ADHD GWAS meta-analysis published to date’.

Follow-up of miRNA associations—regional association plots and miRNA brain

expression

A visual inspection of the regional association plots detected miRNA-associated signals for
six of the nine miRNAs (miR-6079, miR- 6734, miR-6735, miR- 5193, miR-4655, miR-7-
1) (Supplementary Fig 1). Eleven out of the 12 highlighted miRNAs were found to be
expressed in brain according to various expression databases (Supplementary Tables 1-3).
For instance, miRIAD shows that six of the 12 highlighted miRNAs are expressed in
different brain tissues, especially in cerebellum (Supplementary Table 1)), while for the
rest, this information was not available. In this tissue-wise expression data across the brain,
cerebellum, heart, testis and kidney, miR-6734 and miR-7-1 were more expressed in the
brain and cerebellum than in other reported tissues (Supplementary Table 1). Of interest is
miR-4655, which was shown to be exclusively expressed in the brain (Supplementary
Table 1). According to miRmine, one mature transcript each of miR-6735 (miR-6735-5p)
and miR-1273h (miR-1273h-5p), and both mature sequences of miR-7-1 (hsa-miR-7-1-3p
and hsa-miR-7-5p), are brain-expressed (Supplementary Table 2). The two mature
transcripts of miR-7-1 are found in nearly equal amounts in the brain (Supplementary Table
2). In addition, the expression profiles of sixteen cortical and subcortical structures of
human brain revealed the presence of miRNAs in cerebellar cortex (miR-7-1, miR-3135a ),
primary somatosensory cortex (miR-3666, miR-4271, miR-4655-3p), primary visual

cortex (miR-4655-5p) and ventral parietal cortex (miR-5193) (Supplementary Table 3).
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Targets for associated miRNAs

Three of the highlighted miRNAs - miR-7-1, miR-3666, and miR-1273h have validated
target sites according to IPA analysis (18, 9 and 1 mRNA targets, respectively) (Table 2).
The target genes of miR-7-1 include SLC17A7, SNCA, NEFM, SEPT3, RAFI and MKNK2,
which are expressed in more than one brain tissue. It is noteworthy that SLC17A7, SNCA,
NEFM and SEPT3 are expressed exclusively in the brain and not in the other tissues
reported in GTEx. Of all the target genes, SLCI7A7 shows the highest expression in
cerebellum, cerebellar hemisphere, hippocampus, amygdala and cortex. MiR-3666 targeted
TACI is moderately expressed in the caudate, nucleus accumbens and putamen. MiR-
1273h has only one validated target, androgen receptor (AR), which shows a low regional

specificity in human brain.

eQTL analysis of associated variants using GTEx data

We subsequently explored the impact of the identified variants on the expression of the
nearby miRNA genes. This analysis is particularly relevant, as all the miRNAs identified
by us lie within protein-coding genes. Since eQTL data for miRNAs are largely
underrepresented in gene expression datasets, we could not establish miR-eQTL
connections for our highlighted miRNAs. Nonetheless, we inspected whether the ADHD-
associated variants at our miRNA loci are eQTLs for the host protein-coding genes in brain
tissues (Supplementary Table 4). Of the 19 miRNA variants significantly associated with
ADHD, rs3011217 and rs11708763 are eQTLs in brain regions for their host protein-
coding genes ST3GAL3 and KAT2B, respectively, eight variants are eQTLs for protein-
coding genes in the region other than the host gene, while the remaining nine variants were

not found to be brain eQTLs for any protein-coding gene (Supplementary Table 4). A
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single variant appeared as eQTL for multiple genes. For instance —rs3011217, located in
the ST3GAL3 on chrl is an eQTL for ST3GAL3 in cortex but also for ARTN in brain
regions of cerebellum, hippocampus, putamen, caudate, amygdala, cortex and nucleus
accumbens. Another variant, rs1799844, located within UBA7 showed up as an eQTL in

brain regions for eleven genes (Supplementary Table 4).

Orthologs and conservation in model species

An orthologous gene with a high degree of evolutionary conservation (97%) has been
identified in mouse for miR-3666, species in which homologs for only two of the
highlighted miRNAs (miR-3666 and miR-4271) have been reported. Orthologs for human
miR-7-1 are present in mouse and rat as mmu-miR-7-1 and rno-miR-7a-1, respectively.

miR-137 has a known ortholog in mouse as mmu-mir-137.
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DISCUSSION
Expression of the miRNAs

The reported genetic associations for miRNA-coding genes indicate that miRNAs may
have a role in to the development of ADHD. All 12 significantly associated miRNAs are
located in host genes and 11 of these are brain-expressed (Supplementary Tables 1-3).
Multiple studies have identified miRNA-host gene pairs showing cross-species conserved
co-location, co-expression, and that the intronic miRNAs are derived in parallel from the
same primary transcripts as their host genes48’49. Thus, miRNA host genes’ expression
profiles might serve as a possible proxy for those of the resident miRNAs>, and can
regulate protein-encoding mRNAs in a synergistic pattern to fine-tune the protein 0utput51.
The more recent miRNA gene families in mammals have an inclination to largely express
themselves in two nervous system tissues, cortex and cerebellum’”. Half of the highlighted
miRNAs in this study are expressed in cerebellum and hippocampus, which are of known
importance in ADHD development. MiRNAs show differential expression both within and
between brain regions41. For instance - miR-7-1, one of the highlighted genes in our study,
is differentially expressed between PFC and cerebellum during late childhood development.
The greatest shifts in miRNA expression can occur soon after birth, during the transition

from infancy to early childhood™*".
Pathway analysis

The involvement of miRNAs in ADHD it is grounded on the downstream effects of their
target genes that were highlighted in the pathway analysis. MiRNA network analysis shows

that miR-3135a mediates the expression of ADGRE2 (EMR2), SNPs in which have been
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associated with major depression™.. MiR-4271 regulates the YWHAG gene, previously

. . . . 46.54
found associated with schizophrenia*®”

and encoding a protein that mediates signal
transduction by binding to phosphoserine-containing proteins. MiR-7 targets C3ARI,
encoding a central protein in the complement system, which has a role in synapse loss in
psychiatric illnesses beyond the canonical immune functions™. C3aR deletion in mouse
models markedly increased physiological and behavioral responses to innate anxiety-
provoking stimuli®. The gene for the cholecystokinin A receptor (CCKAR), involved in
dopamine release in the CNS, is targeted by miR-3135a and miR-5193. A SNP in this gene
was found to modulate language laterization, and the schizophrenia risk allele of the
polymorphism was related to reduced functional asymmetry57. Variation in the CCKAR
locus can also affect superior frontal gyrus grey matter volume*®®. The orphan receptor
GPR78, targeted by miR-5193, lies within a region which showed linkage to bipolar
affective disorder (BPAD) and association with schizophrenia in the Scottish population.
The GPR78 mRNA also has a potential role in the functioning of the hypothalamic-
pituitary-adrenal (HPA) axis and in pregnancy, thus possibly connecting prenatal insults to
the pathogenesis of psychiatric illness™. A paralog of GPR78 is GPR26, another gene
shown in the network analysis, targeted by miR-4271 and miR-6734. GPR26 encodes a
protein distantly related to the serotonin receptors and is expressed exclusively in brain®”®.
This polypeptide is important for emotion regulation in mice, a function probably mediated
by the phosphorylation of CREB (cAMP responsive element-binding protein (CREB) -
neuropeptide Y (NPY) signaling) in the central amygdala®. In general, critical functions

for members of this GPCR family have been demonstrated in neurodevelopment. The

identified pathway further depicts how miRNAs can interact with neurotransmitter,
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psychiatric risk and immune gene systems in interwoven networks, and this further

supports the neuroimmune crosstalk.
Genes targeted by the associated miRNAs

MiRNAs that show differential spatio-temporal expression in early human brain
development have been shown to be highly enriched in genes associated with child-onset
psychiatric conditions including autism, schizophrenia, bipolar disorder, and depression“.
Overall, a high number of validated targets of miRNAs pinpointed in this study have
previously been related to psychiatric and neurological diseases. MiR-7-1 targeted EGFR is
located in one of the top regions of a GWAS for lithium-responsive bipolar disorder®" and
associated with brain thalamus volume. EIF4E, targeted by miR-7-1, is associated with
cognitive empathy62 and depressive episodes in bipolar disorder®. SNCA harbors common
and rare variants implicated in the risk to Parkinson disease ®*. MKNK1 has been associated
with schizophrenia in Ashkenazi Jews population®. SLCI7A7 (VGLUTI) is expressed in a
brain-specific manner, and encodes the vesicular glutamate transporter 1 which mediates
the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory
neural cells. Altered levels of SLC17A7 have been consistently reported for cognitive
decline, schizophrenia, MDD and bipolar disorder®® %, MiR-3666 targets the TAC!I gene,
which encodes several peptide hormones and neuropeptides thought to function as
neurotransmitters and to induce behavioral responses. SNPs in the TACI gene have been
associated with risk—taking69 and feeling nervous traits’® in previous large scale GWASs.
Another miR-3666 target, MEOX2, is associated with brain regions volume, total
intracranial and subcortical volumes’'. Much of the previous literature of miRNAs is in the

context of greater studied psychiatric disorders, but the extensive pleiotropic mechanisms
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acting in the human genome under the influence of environment may implicate additional
disorders, including ADHD. Therefore, supported by brain-expression, validated brain-
expressed targets, and presence of homologs in model species, mirR-7-1 and miR-3666

arise as strong candidates for further analyses.

Also, one of the significantly highlighted genes, miR-6079, is located in a region on
chromosome 1 that showed genome-wide association in the largest GWAS meta-analyses
of ADHD’. As this is a high-LD region, with several protein-coding genes (ST3GAL3,
ARTN, KDM4A), but also the miRNA, the locus requires further refinement to infer
whether the association signal is related to the protein-coding genes and/or also the miRNA
gene. It is worth mentioning that while around 40% miRNAs are known to be intergenic,
all the significant signals reported in our genome-wide study arise for the miRNAs located
within protein-coding genes. How the miRNA expression is regulated continues to be
largely unknown. Recent studies have identified significant miRNA eQTLs in the mouse
brain. An enrichment of brain-related pathways has also been shown among miRNA targets

with significant miRNA-eQTLs"%.

The present study investigated common variants at the miRNA loci and flanking sequences
to capture possible regulatory regions. Our study has to major strengths: (i) The work
includes the highest set of miRNA genes investigated so far in ADHD and (i) we
comprehended the genomic organization of miRNA genes as intragenic, singletons and
clusters, in addition to the transcriptional orientation, and established the genomic
coordinates for the gene and its putative regulatory regions. However, one of the

weaknesses of the approach is that it did not allow for the inquiry of SNPs with trans-eQTL
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effects on miRNAs and it has been previously suggested that ~50% of the identified

miRNA eQTLs are frans-eQTLs"".
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TABLES AND FIGURES

Table 1. miRNA variants associated with ADHD overcoming 5% FDR
Table 2. Experimentally validated targets of miRNAs
Figure 1. IPA pathway analysis for the highlighted miRNAs

SUPPLEMENTARY MATERIAL

Supplementary Table 1: miRIAD (v. 2018) expression levels for significantly associated
miRNAs

Supplementary Table 2: miRmine (v. Jan2017) expression levels for significantly
associated miRNAs

Supplementary Table 3: BrainSpan atlas expression levels for significantly associated
miRNAs

Supplementary Table 4. GTEx (v8) eQTL information for significantly asssociated miRNA
variants in brain tissues

Supplementary Figure 1. Regional association plots for the highlighted miRNAs

Supplementary Figure 2. miRIAD (v. 2018) expression levels for significantly associated
miRNAs
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Supplementary Table 1: miRIAD (v. 2018) expression levels for significantly associated miRNAs

mMiRNAs Expression Data Available Expressed in Brain
miR-6734 Yes Yes
miR-6735 Yes Yes
miR-3135a Yes Yes
miR-4655 Yes Yes
miR-7-1 Yes Yes
miR-6506 Yes Yes
miR-6079 No _
miR-4271 No _
miR-5193 No _
miR-3666 No _
miR-1273h No _
miR-6872 No

Availability of expression data of the highlighted miRNAs in brain.

Supplementary Table 2: miRmine (v. Jan2017) expression levels for significantly associated miRNAs

Mature miRNAID Precursor miRNA ID

MAX observed
expression level level

Tissue with the highest expression

SRX375448
(Brain)

hsa-miR-1273h-5p
hsa-miR-6735-5p
hsa-miR-7-1-3p
hsa-miR-7-5p
hsa-miR-1273h-3p
hsa-miR-3135a
hsa-miR-3666
hsa-miR-4271
hsa-miR-4655-3p
hsa-miR-4655-5p
hsa-miR-5193
hsa-miR-6079
hsa-miR-6506-3p
hsa-miR-6506-5p
hsa-miR-6734-3p
hsa-miR-6734-5p
hsa-miR-6735-3p
hsa-miR-6872-3p
hsa-miR-6872-5p

hsa-mir-1273h
hsa-mir-6735
hsa-mir-7-1
hsa-mir-7-1
hsa-mir-1273h
hsa-mir-3135a
hsa-mir-3666
hsa-mir-4271
hsa-mir-4655
hsa-mir-4655
hsa-mir-5193
hsa-mir-6079
hsa-mir-6506
hsa-mir-6506
hsa-mir-6734
hsa-mir-6734
hsa-mir-6735
hsa-mir-6872
hsa-mir-6872

13079.7 ERX358449 (Hair follicle)
190.1 SRX513283 (Breast)
974 SRX513286 (Breast)
50782.4 SRX290620 (Pancreas)
522.1 SRX513284 (Breast)
2.7 SRX386680 (Blood)
0 SRX375448 (Brain)
0 SRX375448 (Brain)
0.9 SRX262193 (Plasma)
1.1 SRX362362 (Plasma)
87 SRX513284 (Breast)
0 SRX375448 (Brain)

0.1 SRX386681 (Blood)
13079.7 ERX358449 (Hair follicle)
1.6 SRX666579 (Blood)

432.1 SRX349069 (Serum)
10301.7 ERX358443 (Hair follicle)
0.1 DRX011927 (Bladder)
1.2 SRX262196 (Placenta)

0.6
0.6
59.1
60.4

(=)

OO C OO0 O0OO0O0CO0O OO0 OO OO

MAX observed expression level: Expression counts for miRNA transcripts in transcripts per million. Tissue IDs corresponds to

those in miRmine.
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Supplementary Table 3: BrainSpan atlas expression levels for significantly

associated miRNAs

miRNA

Max observed
RNA-seq count

Structure with Max RNA-
seq count

Structure

hsa-miR-3135a
hsa-miR-3666
hsa-miR-4271
hsa-miR-4655-3p
hsa-miR-4655-5p
hsa-miR-5193
hsa-miR-7-1-3p

7 H376_VI_50-CBC-L
2 H376_VI_50-S1C-L

1 H376_VIIl_51_S1C-R

1 H376_X_53-S1C-L
2 H376_X_50_V1C-L
5 H376_VI_52_IPC-L
1769 H376_IX_52-CBC-L

Cerebellar cortex

somatosensory cortex
somatosensory cortex
somatosensory cortex

(striate cortex, area

(ventral) parietal cortex

Cerebellar cortex

Raw RNA-seq read-count data for microRNAs contained for the isolated small RNA samples

from the indicated structures and specimens.

Supplementary Table 4. GTEx (v8) eQTL information for significantly associated miRNA variants

in brain tissues

Variant Chr meta- Host eQTL for Gene Brain Tissue P-Value
analysis gene gene Chr
p
rs839764 1 8.711E- ELOVLI TIE1 1 Hippocampus 3.80E-06
08 MEDS8 1 Spinal cord 2.20E-05
(cervical c-1)
rs56319043 1 1.37E- ST3GAL3 ARTN 1 Cerebellar 1.30E-10
11 Hemisphere
RP11-7011.3 1 Caudate 3.40E-05
(basal ganglia)
rs3011216 1 3.53E- ST3GAL3 ARTN 1 Cerebellar 5.50E-14
07 Hemisphere
Cerebellum 5.50E-13
Hippocampus  1.20E-05
RP11-7011.3 1 Caudate 1.50E-05
(basal ganglia)
rs3011217 1 1.51E- ST3GAL3  ARTN 1 Cerebellum 1.80E-25
08 ARTN Cerebellar 2.60E-21
Hemisphere
ARTN Hippocampus 6.20E-08
ARTN Putamen 2.30E-06

(basal ganglia)
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ARTN Spinal cord 3.70E-06
(cervical c-1)

ST3GAL3 Cortex 6.60E-06

ARTN Caudate 7.80E-06
(basal ganglia)

ARTN Amygdala 2.50E-05

ARTN Anterior 3.50E-05
cingulate
cortex (BA24)

ARTN Cortex 4.00E-05

ARTN Nucleus 6.00E-05
accumbens

(basal ganglia)

rs11708763 3 5.46E- KAT2B KAT2B 3 Putamen 3.00E-06
05 (basal ganglia)
KAT2B Cerebellum 2.10E-05
rs1799844 3 9.03E- UBA7 GMPPB 3 Cerebellum 6.10E-34
06 GMPPB Cerebellar 1.60E-23
Hemisphere
GMPPB Cortex 2.80E-19
GMPPB Spinal cord 2.70E-18
(cervical c-1)
GMPPB Putamen 5.80E-18
(basal ganglia)
GMPPB Nucleus 9.80E-18
accumbens
(basal ganglia)
GMPPB Hippocampus 1.00E-16
GMPPB Caudate 1.80E-12
(basal ganglia)
GMPPB Hypothalamu  7.50E-12
s
AMT Cerebellum 6.80E-11
GMPPB Substantia 7.00E-11
nigra
AMT Cortex 7.80E-11
GMPPB Anterior 9.00E-10
cingulate
cortex (BA24)
GMPPB Frontal Cortex 9.10E-10
(BA9)
GMPPB Amygdala 6.80E-09
RNF123 Cerebellum 7.30E-09
AMT Hippocampus 3.10E-08
GPX1 Cortex 6.60E-08
GPX1 Nucleus 9.90E-08
accumbens
(basal ganglia)
AMT Caudate 9.00E-07

(basal ganglia)
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GPX1 Caudate 1.10E-06
(basal ganglia)
GPX1 Frontal Cortex 1.30E-06
(BA9)
GPX1 Cerebellum 1.80E-06
P4HTM Cortex 3.20E-06
AMT Cerebellar 4.70E-06
Hemisphere
FAM212A Cerebellum 6.20E-06
AMT Frontal Cortex 8.20E-06
(BA9)
AMT Anterior 1.80E-05
cingulate
cortex (BA24)
AMT Substantia 1.90E-05
nigra
RNF123 Nucleus 4.40E-05
accumbens
(basal ganglia)
RBM6 Cortex 4.60E-05
HYAL3 Spinal cord 5.60E-05
(cervical c-1)
CCDC71 Amygdala 8.20E-05
AMT Putamen 9.60E-05
(basal ganglia)
RBM6 Cerebellar 1.10E-04
Hemisphere
RNF123 Cerebellar 1.40E-04
Hemisphere
RP11- Cerebellum 1.40E-04
694115.7
AMT Nucleus 1.50E-04
accumbens
(basal ganglia)
DALRD3 Cerebellum 1.70E-04
RBM6 Frontal Cortex 2.00E-04
(BA9)
RBM6 Nucleus 2.30E-04
accumbens
(basal ganglia)
P4HTM Cerebellum 2.60E-04
RNF123 Cortex 3.00E-04
rs10250550 7 4.07E- MADI1L1 AC110781.3 Nucleus 8.30E-10
05 accumbens
(basal ganglia)
AC110781.3 Caudate 1.10E-07
(basal ganglia)
AC110781.3 Frontal Cortex 1.10E-05
(BA9)
AC110781.3 Hypothalamu  1.90E-05

S
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rs296886 9 3.73E- HNRNPK  GKAP1 9 Cerebellar 6.50E-08
05 Hemisphere
GKAP1 Cerebellum 1.70E-07
RMI1 Cortex 4.90E-06
RMI1 Spinal cord 1.80E-05
(cervical c-1)
RMI1 Cerebellum 2.00E-05
rs296894 9 5.28E- HNRNPK  GKAP1 9 Cerebellar 3.40E-07
05 Hemisphere
GKAP1 Cerebellum 3.80E-07
RMI1 Cortex 0.00006
2
rs143942298 16 1.24E- KIAAO43  RP11- 16 Cerebellum 1.70E-08
05 0 680G24.6
RP11- Cerebellum 1.20E-06
680G24.4
RP11- Putamen 1.20E-05
680G24.4 (basal ganglia)
RP11- Nucleus 8.70E-05
680G24.4 accumbens
(basal ganglia)
rs2251802 1 1.68E- SZT2 None
07
rs37453 1 1.10E- ST3GAL3 None
07
chr3:5031028 3 5.59E- SEMA3B  None
6 05
rs58936320 3 2.53E- C3orf62  None
05
rs2045292 7 6.06E- FOXP2 None
07
rs7782412 7 4.07E- FOXP2 None
05
rs7799269 7 4.37E- FOXP2 None
06
rs76100764 9 3.28E- HNRNPK  None
05
rs605921 16 4.77E- PRKCB None
05

eQTLs for the significantly associated variants. Host gene: Host gene for the miRNA highlighted by
the variant. P-value and normalised effect size provided by GTEx.

Supplementary Fig 1. Regional association plots for the highlighted miRNAs
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Supplementary Figure 2. miRIAD (v. 2018) expression levels for significantly associated miRNAs
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Discussion

In this work, we studied:

(1) ADHD from an epigenetic point of view by targeting the systems of miRNAs and
ASM applying hypothesis free and association studies respectively
(i1))  Genetic basis of cocaine dependence using genome-wide association meta-analysis

and shared genetics with comorbid conditions.

The selected methodologies have been discussed in detail.
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Discussion

CHAPTER 1. QUESTIONS UNDERLYING THE GENETIC
ARCHITECTURE OF PSYCHIATRIC DISORDERS

Psychiatric disorders are complex multifactorial genetic disorders that exhibit no clear-cut
pattern of Mendelian inheritance. The genetic architecture underlying the pathogenic
mechanisms of psychiatric disorders like ADHD and cocaine dependence remains still elusive,
although research performed in recent years starts to shed some light on it. For instance, some
open questions are: Can we quantify the number of susceptibility and protective genetic
variants? What are their frequencies and effect sizes? What about unaccounted heritability (h?)?
How do the variants exert their effects? How do these variants interact with each other and
with the environmental risk factors? How to construe the genes and biological pathways
disturbed by these variants? Why do comorbidities appear? Are there shared genetic bases
underlying comorbid disorders? Does epigenetics play a significant role? Can we identify
biomarkers for psychiatric disorders'*'? We aimed to contribute to these issues in the context

of ADHD and cocaine dependence.

1.1 Genetic models for psychiatric disorders

Much of our fundamental knowledge in computational psychiatric genetics has developed from
the case studies on schizophrenia which has accumulated huge amounts of data for both
common and rare variation. Lack of appearance of single causal genes in most individuals
affected by psychiatric phenotypes gave rise to the theory of polygenicity. This model was
originally investigated in schizophrenia'#?, but it is also extensible to all psychiatric phenotypes
studied so far. As per polygenic model, multiple genetic and non-genetic effects act in
combination to contribute to disease susceptibility, and they appear to be normally distributed.
All individuals in a population are assumed to carry genetic risk variants and are exposed to
non-genetic risk factors; however, it is when the cumulative load exceeds a burden of risk

threshold that the symptoms of disease develop.

To break down the questions about the number, frequency, and effect sizes of individual causal
variants, and the additive or non-additive action of the causal loci, we debate on the following

models for psychiatric disorders:

1) Common disease/common variant (CDCV) model — The phenotype is due to the cumulative
impact of hundreds or thousands of common genetic variants where each variant exerts an

individual small effect. Here, a drawback is that the functional consequences of the common
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variants in protein-coding regions can be imprecise or difficult to detect; or much of the
highlighted variation is located within non-protein coding genomic regions, for which prior

knowledge is often limited.

2) Common disease/rare variant (CDRV) model — The phenotype appears as a consequence of
the effect of various rare genetic variants of strong effect. The causal variants should cluster in

a set of vital neurodevelopmental and/or neurofunctional genes'#3.

Although not so frequently seen, there are also some few cases in psychiatry where a single
genetic variant is the cause for the disorder. These rare penetrant and damaging mutations have
been reported for example in ID, ASDs and in schizophrenia, sometimes in single genes and
others in the form of CNVs that may span more than one gene'4*!%8, Besides, de novo

145 These de novo mutations

mutations in single genes occur in rare number of affected cases
are the genetic variants present in the DNA of a child but not of parents. Their contribution to
the risk of disease in the form of effect sizes can be both small and large. WES reveals that de
novo mutations can have an important role in Mendelian diseases and in also some complex
conditions like autism and mental retardation. Increased burden of de novo mutations has been
identified in patients, although in general it is uncertain which specific de novo mutations are

causal. As de novo mutations are not shared among members of a family, they are unlikely to

contribute to the heritability.

Our work on both ADHD and cocaine dependence has focused on the common variant model
in view of several arguments favouring this paradigm: 1) Most genetic variants are common,;
2) in many cases, causal common variants associated with a continuous endophenotype have
been associated with disease, and in some cases, these have been confirmed by in vitro
biochemical assays for structural and regulatory effects'*’; and 3) expression quantitative trait
loci (eQTL) analyses have shown that gene expression and splicing are heavily influenced by
common variants, perhaps for the majority of transcripts'4’. We therefore studied (i) common

variants in miRNA genes for their contribution to ADHD, (i1) common variants that display

ASM in ADHD and (iii) common variants contributing to risk to cocaine dependence.

1.2 Heritability and missing heritability

“Unaccounted h?” is the unexplained difference between SNP-based heritability (hsnp)
estimates and twin-based or pedigree-based heritability estimates (twin-h? or pedigree-h?).

SNP-based heritability estimated from genome-wide SNP data rely largely on the sample size

160



Discussion

of the GWAS. However, even with sufficiently sized genomic studies (e.g. in schizophrenia
GWAS), SNP-h? usually remains half of the twin-h? at most '*!. However, recently the
polygenic analyses, have been useful in delineating the “hidden heritability”, i.e., the increase
from h?Gws to h%snp. It is presumed that with sufficiently large sample sizes, h’gws should equal
h%snp (Figure 4). The heritability estimates may differ between populations, across ages and

when non-genetic factors are counted in the analysis!™°.
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1.2.1 Overestimation of heritability from family studies

Classical heritability estimates have been achieved using full siblings and twins in families,
who also share non-additive gene combinations and a common environment. These are the
confounders that can be difficult to adjust for and thus the missing heritability may also reflect
an overestimation of h. This difference between estimates of h? from family data and the “true”

h? is termed “phantom heritability”.

There is a dearth of gene-environment interaction (GXE) studies in family and twin studies
which could consistently record both interaction and/or correlation between G and E. This
obscures the impact the environmental risk factors on disease risk, especially in the already
susceptible individuals because of which the SNP effect sizes in cases may not be accurately

calculated.
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1.2.2 Disease heterogeneity

As the heritability estimated from large population samples is lower than that estimated from
twin studies, the presence of greater diagnostic heterogeneity in larger cohorts is hinted at. It
further leads us to speculate if the larger cohorts may be more representative of the cases
currently brought together for analysis in genetic studies. Heterogeneity in psychiatric
disorders often corroborates the subtypes, which may be independent, correlated or
overlapping. It is correspondingly arguable that a currently recognized disease category may
turn out to be a diagnostic aggregation of subtypes. Acknowledging the phenotype
heterogeneity in psychiatric disorders challenges our existing estimates for the proportions of

phenotype variance due to genetic factors and may cover a part of the missing heritability.
1.2.3 Variants not tagged by common SNPs

Missing heritability can be due to the presence of other genomic risk variants not well tagged
by common SNPs on the SNP chips used to genotype cases and controls. This includes CNVs
or other rare variants detected through WES/WGS studies. Rare variants require relatively
larger effect sizes in order to be detected. However, as they have lower frequencies, their
contribution towards increasing the risk the entire set of population is small. Hence, a massive

number of rare variants will be needed to lower the percentage of missing heritability.

1.2.4 Imputation panels

The significance of small structural variants is currently underrepresented in the genomic
context; however, they may as well be important, e.g. tandem repeat polymorphisms with an
impact on biological functions. The SNP-based 1000 Genomes reference panel used for
imputation may not finely represent the small structural variation. Estimation of h?sxp based
on haplotypes constructed from SNPs and not the SNPs alone may provide a way to tag
uncommon structural variants missing from the imputation reference panels, although this

approach can be highly sensitive to genotyping errors.

Heritable variation can be present within genomic features outside the coding sequence in the
form of epigenetic modification. This includes promoter methylation, histone tail modifications
and altered expression of non-coding RNAs which mediate gene regulation in normal
development. Advanced technologies like methylation profiling and miRNA-seq can assist the
quest for decoding the non-coding heritable variation. For instance, abundant QTLs for DNA

CpG methylation across the genome have been reported for brain tissues.
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In our work we computed the SNP heritability for cocaine dependence using GWAS data and
these methodologies: LD Score (LDSC) regression analysis and the Genome-based REstricted
Maximum Likelihood analysis implemented in the tool Genome-wide Complex Trait Analysis
(GCTA-GREML). In both analyses, a population prevalence for cocaine dependence of 1.1%
was considered'®!. To inspect if some functional categories of the genome contribute
disproportionately to the heritability of cocaine dependence, we examined partitioned
heritability for cocaine dependence (a polygenic condition with high SNP heritability) using

LDSC based on 24 functional overlapping annotations'>?

. Enrichment in the heritability of a
functional category was defined as the proportion of SNP heritability explained divided by the
proportion of SNPs in that category, and the issue of multiple testing was addressed using the
Bonferroni correction. Our LDSC estimated a SNP heritability in liability scale of h’sxp = 0.30
and h%sne=0.27 for GCTA-GREML. Studies with comparable sample sizes have returned
similar h’sxp for cocaine dependence, alcohol dependence, ADHD and schizophrenia
(h2snp=0.25-0.33)!33155_ Increasing sample size can sometimes lower the SNP-heritability
estimates e.g. in alcohol dependence (h%snp=0.09)!3¢ and MDD (hsne =0.09)'37, but h%snp
remained the same in schizophrenia and ADHD"!38, This calls for a larger number of samples
to confirm our results. The partitioned heritability analysis yielded a significant enrichment in
the heritability by SNPs located in intronic regions, and a nominal result for conserved genomic
regions. These results are not uncommon in the analyses of complex disorders, where the
disease-associated variation is more often seen out of exonic regions than in Mendelian

disorders.

1.3 Psychiatric epigenetics and epigenomics

Epigenetics encompasses regulation of DNA sequences without variation in their actual base
composition, and the epigenetic marks can be both stable and plastic. The operating molecular
epigenetic mechanisms are multifaceted, much more dynamic than the genetic code, and
therefore they can be greatly intertwined to decode. Epigenetic dysregulations in CNS are
associated with both monogenic and polygenic neuropsychiatric illnesses such as Fragile X,
Rett syndrome, MDD, ASD and schizophrenia. Many characteristics of psychiatric diseases
can be explained by epigenetics. For example: Epigenetic downregulation of genes is thought
to underlie the GABAergic neuronal dysfunction observed in schizophrenia!®. It is also
noticeable that histone modifications are present during the development of schizophrenia

although the precise mechanism of action is ambiguous.
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The epigenetic model of complex diseases is analogous to the polygenic model. Small
epigenetic mis-regulations in an individual may add up over time periods until a certain
threshold is met, after which the disease manifests. The pre-epimutation disturbances that occur
during the maturation of the germline may initially be tolerated, however over time,
accumulation of these may increase the risk of attaining a disease. Due to the reversible nature
of epimutations, their severity may well fluctuate at time points, and can show “remission’ and
“relapse”. The age of disease onset may be subjected to the effects of tissue differentiation,
stochastic features, hormones, and external environmental factors like nutrition, infections,
medications or addictions'>®. Epigenetic changes often produce gene expression changes,

which may in turn affect neural circuitry and eventually behavior.

Epigenetic adaptions are inquisitive as they appear distinct between developmental stages and
adult life (Figure 5). It is speculated that developmental events may mark broader impressions
on epigenetic states and neural functions than similar events at later stages in life. Thus, looking
into the epigenetic mechanisms of gene regulation can help in understanding how prenatal or
initial lifetime exposures to stimuli (stress, trauma, toxins, viral infections, nutritional deficits)
shape neuropsychiatric effects for lifetime'®. It is now feasible to perform true genome-wide
assessments of epigenetic marks, such as DNA methylation (methylomes) or chromatin

modifications (chromatinomes), to interrogate into the proposed questions.

In this Thesis we targeted two epigenetic mechanisms, DNA methylation and miRNAs, for

their involvement in ADHD (detailed in Chapter 4).

Environmental exposures

In utero development

Early life experiences/childhood

Transgenerational
epigenetic inheritance
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Figure 5. Possible contribution of epigenetic mechanisms to psychopathology.

Adapted from Chapter 19 - Epigenetics of Psychiatric Disorders, 2016 by M.Kundakovic.
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1.4 From association to function - Mapping variants to genes and/or pathways

As psychiatric GWASs have identified multiple genetic signals associated with disorders, it
has become clear that nominating the associated SNPs does not immediately lead to the
identification of causal variants or to those genes and proteins which alteration is responsible
for the phenotype. To be able to infer the real picture of deregulated genes and pathways to pin
potential drug targets, it is necessary to map functional connections of the GWS and sub-
threshold GWS variants from GWASs. In this Thesis we used and integrated the following
established methods to aid translation of the detected associations into functions (detailed in

Chapter 4).
1.4.1 eQTL mapping

An approach to distinguish molecular mechanisms underlying complex traits is to intersect
GWAS hits with quantitative trait loci for molecular-level traits, like gene expression or
methylation, which paves the way for linking genotype to disease. Cis-regulatory QTLs are

particularly informative, as the vast majority of GWAS hits are found in noncoding regions.

With this perspective in mind, we used eQTL mapping to assess the contribution to ADHD of
genetic variants altering cis-methylation levels in the brain. Starting from a number of
differentially methylated CpG sites identified (influenced by SNPs that are associated with
ADHD), we filtered those mapping into potential promoter regions of genes for which they
were also eQTLs. This analysis resulted in several genetic variants affecting the methylation
of six CpG sites, which in turn affected the regulation of three genes, ARTN, C2orf82
and PIDD]1, in multiple brain regions.

In addition to methylation, we investigated the possible contribution of miRNA dysregulation
in ADHD. Our search revealed ADHD-associated variants located in the putative regulatory
regions of miRNAs or in the promoter regions of their host protein-coding genes. We mined
public databases for eQTL evidences on the ADHD-associated miRNA variants, although the
effect of genetic variations on ncRNAs, including miRNAs, has been poorly explored.
Therefore, given the eQTL annotation bias towards protein-coding genes, it is still difficult to
functionally annotate ADHD-associated variants based on the expression levels of miRNAs.
Recently, some studies have started to catalogue genetic variants associated with miRNAs
whose genotypes affect gene expression in the human genome!¢!. Interestingly, nearly half of

the cis-miR-eQTLs are located 300-500 kb upstream from their associated intergenic
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microRNAs. These cis-miR-eQTLs are highly enriched for cis-mRNA-eQTLs and regulatory

SNPs and some of these have been associated with complex traits in prior GWAS!62,

1.4.2 Genome-Wide Pathway Analysis (GWPA)

GWPA uses GWAS or WGS data to aggregate all the individual SNPs into genes and gene-
sets or pathways for the appearance of any over-represented/significant functional groups.
Using annotation databases, any pathway analysis program maps individual variants to their
respective genomic location, and the genes are positioned into gene sets or pathways. A
cumulative p-value is calculated for each gene group or pathway from the p-values of the input
SNPs and this cumulative p-value, if overcoming the significance threshold, will represent an

enrichment of the corresponding functional group (Figure 6)'%3.
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1.4.3 Candidate and Hypothesis-Free Pathway Analysis

Candidate pathway analysis is a hypothesis-driven approach to investigate the enrichment of
specific pathways, or gene sets of interest that are selected based on prior knowledge. The
output from the candidate input pathways is a gene set or a list of gene sets that overcome the
significance threshold in an association study with the disorder. However, factors such as the
number of genes contained in each pathway can have an impact on the results. Also,

hypothesis-free approaches can be used in pathway analysis that test all pathways in a given
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database (e.g. GO or Biocarta) for association with a given phenotype. Enrichment scores for
the known pathways are calculated, which are used to investigate whether there is an over-
representation of genes in a certain pathway that are associated with the phenotype. These
methods still do not necessarily prioritize the enriched sets for further analyses, as the p-value

may not reflect the strength of association or significance of these gene sets.

Methods such as FORGE or SETSCREEN highlight the pathways comprising genes with
multiple, independent association signals (both strong and weak), while others as ALIGATOR
or INRICH pick up the single most significant SNP in a gene to assign significance to genes
and will thus use those genes showing individually, stronger associations to detect enriched
pathways. The generated pathway rankings from different methods are generally in accordance

with each other.

In psychiatric genetics, pathway analyses carried out using GWAS data have reported
significant associations of several biological processes to the disorders and show that the risk
variants for psychiatric disorders aggregate in particular biological pathways. The underlying
pathways are often common across these disorders. It is however debatable whether this
observation can be due to annotation bias or if genuine pleiotropy exists across the underlying

mechanisms as there are only tens of thousands genes for millions of traits'®4,

In our study on the genetic basis of ADHD we constructed networks for the 12 miRNAs
highlighted for ADHD. Two biological pathways were predicted arising from direct targets of
the ADHD-associated miRNAs. One of the pathways showed a miRNA-mediated regulation
of serotonin receptor genes (HTRID and HTR4) and was suggested to be involved in
neurological diseases and functions. This seems reasonable in the context of ADHD, given the

reward deficiency mechanisms prominent in ADHD etiology.

In our work on the genetics of cocaine dependence we used MAGMA to evaluate both gene-
based and gene-set associations using the summary statistics from our GWAS meta-analysis.
For gene-based analysis, the p-values for SNPs located within the transcribed region were
considered for the statistic test (SNP-wise mean model). A threshold of 10% false discovery
rate (FDR) was applied to correct for multiple testing. In the gene-set analysis, we employed a
competitive test procedure using: “All Canonical Pathways” (1329 gene sets), “GO” (4436
gene sets) and “BioCarta” (217 gene sets) provided by MsigDB and each gene set was

individually corrected for multiple testing using permutation based empirical correction built
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in MAGMA. We refrained from using Bonferroni correction in gene-set analysis as the
categorised gene sets are strongly overlapping and Bonferroni test prove to be quite
conservative in such cases. Our gene-based analysis mapped approximately three million SNPs
from the GWAS meta-analysis to around 18,000 protein-coding genes, and a histone H2B type
1-D protein-coding gene (HISTIH2BD) showed a significant gene-wise association with
cocaine dependence. One of the BioCarta immunity pathways “BIOCARTA TNFR2
PATHWAY” showed a trend (uncorrected P = 5.38e-04, corrected P = 0.09), being the most
significantly associated among the canonical pathway gene sets. Seven of the ten GO gene sets
with lower p-values, seven were reported from the processes of synapse organization,
glutamatergic neurotransmission and brain functions innately relevant to the psychiatric

abnormalities.

1.5 Shared genetics underlie psychiatric disorders

Multiple studies have attempted to find pairwise genetic correlations for psychiatric diseases!4!.
The genetic correlation between pairs of disorders can be estimated using SNP data from
GWAS, and these estimates determine if the disorders share genetic risk factors. For example,
in Figure 7, the genetic correlation between bipolar disorder and schizophrenia is calculated as
0.6. For two disorders that are genetically correlated, some shared risk SNPs may appear for
both disorders that may not appear for the individual disorders. Thus, by combining the
polygenic risk score (PRS) analyses and GWAS, both coinciding and disease-specific genetic
risk factors can be highlighted. In our study we calculated genetic correlation between cocaine
dependence and six selected comorbid traits using LDSC and PRS (Detailed in Chapter 2),
showing that comorbidity between disorders that is seen at the clinical level may be due, at

least in part, to shared genetics.
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1.6 Endophenotypes

The idea that some phenotypes (the so-called endophenotypes) bear a closer relationship to the
biological processes that give rise to psychiatric illness than diagnostic categories is appealing.
Endophenotypes include e.g. electroencephalographic variances or heritable behaviours that
are recorded from laboratory standards such as neurocognitive execution deficits or impaired
facial emotion recognition. Thus, endophenotypes may improve the odds of detecting genetic
variants that predispose individuals to an illness. They are measured in both affected and
unaffected subjects and as these are specific to disorders, they are perceived to be diagnostic

biomarkers.

Endophenotypes in psychiatric illnesses are being increasingly researched on because (i) these
are easier to work with than the psychiatric illness itself, (i1) they can enable the detection of
genetic risk variants and genes using smaller samples, since the effect sizes of genetic loci
contributing to individual endophenotypes are larger than those contributing to disease

susceptibility.

Lookup

The current scenario is conducive for decoding the mechanisms of onset and progression of
psychiatric disorders thanks to the advances in genomic technology, bio-computational
methods, and to the initiatives of international consortia for building large clinical cohorts and
for data sharing. In brief, to dissect a psychiatric disorder for both polygenicity (the small
effects of individual loci), and large-effect rare loci, one of the needs has been to gather
sufficiently large clinical cohorts. In practice, this implies that depth of phenotyping is likely
to be lowered to be able to achieve huge cohorts'**. However, methods like GCTA-GREML,
network construction, eQTL mapping, targeting epigenetic systems are functional even if
sample sizes are lesser, and these functional studies remain essential in recovering the “missing
biology” and “missing heritability”. As the prevalence of neuropsychiatric disorders is on the
rise, the quest for genetic or epigenetic biomarkers can assist in the development of novel

therapeutics.
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CHAPTER 2. IS THE COMORBIDITY BETWEEN ADHD AND
COCAINE DEPENDENCE EVIDENT AND GENETICALLY
DETERMINED?

2.1 Comorbidity between ADHD and cocaine dependence

Over the past decade, the clinical association between ADHD and SUD has become an
increasing focus of investigation. Individuals reaching out to seek treatment for SUD
commonly demonstrate the symptoms of ADHD. The very earlier community-based studies
surveying the disorders occurring in population did not include adult ADHD. However, after
the inclusion of ADHD in community-based surveys, the National Comorbidity Survey
Replication (NCS-R) estimated the prevalence of adult ADHD to be 4.4%. The comorbidity
survey uncovered that ~15% of individuals with adult ADHD also met DSM-IV criteria for a
SUD as compared to ~5% of individuals without ADHD. This difference turns to be significant
with an odds ratio of 3.0. It was also revealed that ~10% of the individuals with SUD meet
criteria for adult ADHD, in contrast to the 4% individuals without SUD'?’. It is curious that
while ADHD has long been documented to be a childhood onset condition and the symptoms
of which can be discerned before the age of 12, SUDs are more noticeable only during
adolescence and early adulthood. This observation is mostly attributed to the underlying
ADHD symptoms of impulsivity, emotional dysregulation and so accordingly the poor social
interaction and academic performances, which in turn enhance the overall setup for developing

SUDs.

Findings on whether cocaine in particular is the preferred substance of choice in individuals
with ADHD, and so the rates of cocaine abuse surpasses that of other SUDs in the ADHD
group, remain inconclusive'®. It was speculated that cocaine being a powerful psychostimulant
may be used more frequently to self-medicate the symptoms of ADHD (knowingly or
unknowingly) than alcohol, nicotine or cannabis. However, this is difficult to conclude as
numerous factors like the legal availability of a substance, financial means to access it,
individual’s awareness about the harmful effects of the drug and individual response to the
pharmacological action of drugs causing pleasant or unpleasant effects also dictate the extent

of abuse of substances.

What is ambiguous is whether this relationship between ADHD and cocaine dependence is

causal by nature possibly in these ways: (i) ADHD leads to self-medication with substances
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including cocaine, (ii) ADHD subjects are impulsive and this favors the first contact with the
drug, or (iii) substance use leads to ADHD through dysregulation of neurotransmitter systems.
If not causal by nature, could this co-occurrence be the result of overlapping risk factors such

as shared genetics and/or environment?

2.2 Is the comorbidity between ADHD and cocaine dependence genetically
determined?

We now know that many psychiatric disorders that are comorbid or share some
symptomatology do share common genetic risk factors as shown by several studies including
heritable conditions like autism, ADHD, bipolar disorder, major depression, schizophrenia,
anorexia, OCD, Tourette syndrome, anxiety disorders and post-traumatic stress disorder
(PTSD)!%:166, Similar to these most-widely studied disorders, substance use disorders are also
heritable (h* = 40-70%), and highly comorbid with other psychopathologies!'®”!% Family
studies have been equivocal about the co-occurrence of SUDs and severe psychiatric conditions

167,169 On the contrary, data from twin studies'’° suggest

like schizophrenia and bipolar disorder
that the genetic factors entailing common psychopathologies also augment the general risk for

substance use.

So far, only a few studies have explored the role of shared genetic influences on the
comorbidity between substance use disorders and psychiatric conditions, and the causality of
this correlation remains even less articulated. To be able to test whether shared genetic risk
factors underlie the lifetime co-occurrence of psychiatric disorders, many bioinformatic
approaches have been applied: PRS, genetic correlation, Mendelian randomization (MR) and
multi-trait analysis of GWAS (MTAG). Using these methods, significant genetic overlaps have
emerged between cocaine dependence and schizophrenia or MDD!7"!-!73 and also between
substance use disorders and other psychiatric disorders'’*!75, PRS generated from the
Psychiatric Genomics Consortium (PGC) cross-disorder meta-analysis explained about 1% of
the variance in general substance involvement factor in the target SAGE sample that is enriched

for substance use!”!.

PRS analysis reveals that the genetic variation underlying risk for clinically diagnosed ADHD
also contributes to higher risk taking, and substance use (alcohol and nicotine; cocaine samples
not included)!’*. PRS analyses now substantiate that genetic liability to ADHD is associated
with a higher risk of SUD in individuals with ADHD. Although other risk factors like comorbid

ODD/CD, male sex, parental factors (SUD, low paternal income, low maternal education, etc.)
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also mediate the appearance of SUD in ADHD, the association between the common genetic
liability to ADHD and SUD exists above what could be explained by other risk factors for
SUD. Altogether, higher PRS-ADHD heightened the risk of any SUD, multiple SUD types and
their severities®. In a GWAS meta-analysis of eight psychiatric disorders, it was found that
75% of the LD-independent associated regions were associated with more than one disorder!7®.
These findings support that the co-occurrence of several traits with ADHD is explained, at least

in part, by shared genetic risk factors.

In this Thesis we have investigated whether the phenotypic associations between cocaine
dependence and six comorbid psychiatric/behavioral traits (ADHD, schizophrenia, MDD, risk-
taking behavior, antisocial behavior and children’s aggressive behavior) are genetically
mirrored by performing genetic correlation analyses using two approaches: LDSC and PRS.
For the first time, we found a significant genetic correlation of cocaine dependence with
ADHD, MDD and risk-taking behavior, although these results should be taken with caution
and need to be followed up in a larger sample of cocaine-dependent individuals. The PRS
analysis included the individual-level SNP data, resulting in higher statistical power and
allowed for direct testing of interaction effects. According to our results, all the tested comorbid
conditions are associated with cocaine dependence status, suggesting that cocaine dependence
is more likely in individuals with many risk alleles for the tested conditions than in those with

fewer risk alleles.

So far in this section, we have elaborated on the shared genetics between disorders at genome-
wide level, using methods that provide general figures of overlapping but do not point at
specific biological functions. It has been hypothesized that because of the involvement of
dopamine in both cocaine use disorders and ADHD, there might be some shared genetic bases
underlying the co-occurrences of these disorders. Hypothesis-driven case-control association
studies help to identify such overlapping genetic risk factors. An association exists between
cocaine dependence symptoms and dopamine-related genes at the biological system level
according to a genetic risk score based on SNPs from selected dopaminergic genes'’’. In this
study, a cocaine dopaminergic genetic risk score accounts for variance in cocaine dependence

symptoms that is largely independent of the variance coupled to other substance dependencies.

Dopamine is one of the key neurotransmitter systems in generating the rewarding effects of
cocaine use and candidate gene studies support that specific variants underlying dopaminergic

genes affect risk for cocaine dependence (Figure 8)!7. For instance, polymorphisms in
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SLC6A3, encoding the dopamine transporter (DAT/DAT1), have been repeatedly examined for
response to cocaine and have been shown to confer risk of cocaine dependence and also

overdoses/fatalities'’”!”®, The differential expression of the same gene, SLC6A43, due to the

presence of polymorphic variants, influences self-regulation skills and ADHD symptoms 7%~

182 This receptor remains a favored target for pharmacogenetic drugs like methylphenidate for

ADHD and disulfiram treatment for cocaine addiction!82:183,
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Similarly, variants in another dopaminergic gene encoding the dopamine D2 receptor (DRD?2)
have been associated with multiple addictions like drug dependency, alcoholism, smoking,
pathological gambling and also ADHD and compulsive behaviors'84. Besides adding to disease
susceptibility individually, the dopamine receptor genes may show significant gene-gene
interactions to form heteromers (like DRD2-DRD4, DRD2-DAT1) which upsurge impulsivity,
novelty-seeking, addiction susceptibility, and ADHD-like symptoms!78:185-187,

Another noteworthy involvement relates to Human Immunodeficiency Virus Type I Enhancer
Binding Protein 2 (HIVEP2), a dopaminergic transcriptional regulator in DA neurons. HIVEP2
can activate SLC6A3 by targeting its intronic sequence and significant HIVEP2-SLC6A3
interactions were observed for SUD in male rat models and male clinical subjects!®®. The fact
that HIVEP2 is functionally related to an ADHD gene, and that it is involved in the regulation
of diverse neurodevelopmental pathways makes it pertinent to the genetics of ADHD. De novo

likely damaging variants occurring in H/VEP2 have been associated with intellectual disability
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and developmental delay in humans, and HIVEP2-knockout mice likewise exhibit several

working memory deficits, increased anxiety, and hyperactivity '#-191,

The shared genetic bases between these two conditions may well extend beyond the
dopaminergic system. Evidences are now emerging for serotonergic neurotransmission (e.g.

192,193’ and

HTR2A4) in the genetic elements that underlie the predisposition to cocaine addiction
the genes modelling the serotonergic system have long been highlighted as important risk
factors for the development of ADHD (e.g. HTR2A, 5-HT1B)"*'°7. Even the polymorphisms
in dopaminergic genes can alter serotonergic signaling as seen in the case of the rare DAT
p.Ala559Val variant, found in ADHD cases and associated to drug-related behaviors. DAT
Val559 mice models lack a locomotor response to cocaine and this arises from SERT blockade
and an enhanced 5-HT signaling relative to the cocaine actions in wildtype mice!'?%. More
recently, ADGRL3 (LPHN3), a brain-specific member of the latrophilin subfamily of G-
protein-coupled receptors has been found to confer ADHD susceptibility and mediate
methylphenidate pharmacogenetics. The gene is also most strongly expressed in brain regions
implicated in the neurophysiological basis of ADHD. Interactions of ADGRL3 variants with
variants located on chromosome 11q improve the prediction of ADHD development and
medication response!®. An added possible functional role for ADGRL3 has surfaced in
modulating drug-seeking behavior, and ADGRL3 is identified as a risk gene for SUD in
different populations regardless of the type of abused substance. The variants in ADGRL3 may
also mediate individual susceptibility to the long-term protective effects of cocaine medication

treatment2%?,

In our meta-analysis of cocaine dependence, no genome-wide association was identified with
any SNP, due to limited sample size (2,100 cases and 4,300 controls). However, we
investigated the suggestive associations (p-value for association<le-05) for functional
relevance and found 22 genomic risk loci containing 112 genes. One of these risk loci is a
genomic region on chromosome 6 (6p22.1) enriched in immune system and histone-related
genes that also pops up in several schizophrenia GWAS. This observation supports the
presence of shared genetic risk factors in these two comorbid disorders, although this should
be further investigated in larger samples. The shared genomic region is defined by two lead
SNPs and encompasses 77 genes and 458 nominally associated SNPs. All the SNPs in this
region emerge as brain eQTLs for a small group of genes including BTN342, HISTIH2AK,
ZSCAN31, PRSS16 and ZNF'184.
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2.3 SUDs and late-onset ADHD

What is also curious is that ADHD is now being thought of more than a pediatric condition,
with reports claiming the onset of ADHD in adults or late-onset of ADHD?"!'. However, this is
a controversial issue, as ‘adult-onset ADHD’ may reflect individuals not properly diagnosed in
childhood or subthreshold subjects showing many of the ADHD symptoms before their formal
clinical categorization®. In light of this, new dimensions surface for exploration. For example,
whether individuals with SUDs and with no history of childhood ADHD can present ADHD
symptoms during adolescence or adulthood. If so, what are the odds that this late-onset of
ADHD in adulthood will contribute to the development of SUDs? With the availability of a
longitudinal data for individuals, studying together the comorbid behaviors may also help in

identifying the genetic, epigenetic, and environmental mediators.

Lookup

ADHD goes together with an expansive comorbid spectrum, which anticipates a worse lifetime
trajectory; hence, a true diagnosis and treatment of ADHD is dependent on the accurate
identification of the symptoms and subtypes. Understanding the presence of any comorbid
phenotype enables the determination of a most debilitating disorder in an individual during the
clinical screening, so that the associated behavioral symptoms are treated early. It is also not
unlikely that various conditions might follow during the later course of ADHD or post
diagnosis; hence a precise understanding of the comorbidities can help anticipating the ones to
appear together with ADHD symptoms. What is important to remember is that ADHD might
not be fatal by itself but be accompanied by behaviors/disorders that can be so in multiple ways.
Being able to understand the genetic bases of the comorbidities is the first step towards devising
predictors of the risk of comorbidities in an individual. For instance - A late diagnosis of ADHD
(after age 13 years) is a novel risk factor identified for SUD!7>. This will help an individual to
undertake any precautions and measures like CBT or pharmacological interventions to cope up

with developing the condition or altogether circumvent the comorbidity.
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CHAPTER 3. VALIDITY OF METHODS USED

There are multiple key issues that have to be considered in any genetic association analysis to
attain robust results. Thus, importance of proper selection of patients and controls, sample size,
accurate definition of disease phenotype, consideration of linkage disequilibrium, correction
for multiple comparisons, and the need for functional assessment of disease-associated
polymorphisms should guide a basic association design. While many of the methods in
conducting a genetic association study are uniformly acknowledged, others can be specific to
the study, or debatable and thus need to be tackled. We address here the methodologies used

in our work, and the strategies to deal with challenging points.

3.1 Association studies in complex trait genetics

Genetic association studies compare the frequencies of alleles or genotypes at common variants
in the affected group and controls. Both large-scale and small-scale association studies are
widely used to determine variants contributing to genetic susceptibility in complex diseases.
The studies can be carried out on families or on unrelated individuals; and the control
individuals can be selected from unaffected family members, or community or hospital-based

sources (Figure 9)%°2.

Setting up family-based design can be challenging in terms of recruitment of related affected
individuals and potential ascertainment bias; however, it is not affected by population
admixture. On the contrary, recruiting unrelated groups is easier, but can contain population
admixture. A cohort (prospective) design recruits individuals from a pre-defined population
and independent of disease status. All these recruited individuals are followed longitudinally
for the development of the disease. On the other hand, a case-control design is reflective
(retrospective) in nature where individuals are ascertained by disease status?’2. The latter is the
experimental design chosen for the association studies performed in this Thesis: A case-control
GWAS in cocaine dependence (detailed in Chapter 4 ) and two case-control association studies
with focus on SNPs with a potential impact on epigenetic variation (miRNAs and methylation)

(Chapter 4). In both cases, the samples have been recruited in a clinical setting.
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3.1.1 Genome-wide association studies (GWAS)

GWAS highlights new risk loci or genes by inspecting a massive number of variants across the
genome in a hypothesis-free manner. Over the last decade, GWAS has remarkably contributed
to the detection of reproducible genomic loci associated with common traits not limited to
somatic disorder like breast and ovarian cancers, coronary artery disease or type 2 diabetes?*?
In psychiatric genetics, more than 80 loci associated with depression have been successfully
replicated in GWASSs, which seems to end the debate on the lack of replicability of GWAS.
Increasing sample sizes - despite introducing more phenotype heterogeneity - has led to the
identification of large number of genetic variants. Thus, GWAS for depression used more
lenient - “minimal” phenotyping to facilitate attaining of larger sample sizes to identify

additional risk variants!’.

The GWAS landscape has appropriately expanded to employ complex approaches of large and
cross-disorder meta-analysis, pleiotropy and MR. Many of these new methodologies involve
re-analysis of summary statistics results from GWAS. Full P-value summary statistics are
defined as the aggregate P-values and association data for every variant analyzed in an
independent GWAS. GWS variants are not necessarily causal and may tag the real causal

variant(s).

Our work on ADHD is founded on the association strategy that benefits from the summary
statistics of the largest and well-powered available ADHD meta-analysis, performed on 12

case-control samples from different populations. We used this dataset to interrogate SNPs that
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influence methylation, or SNPs with potential to alter miRNA expression. The strength and
direction of association were deciphered from the original ADHD meta-analysis, but the top
findings among those disease-associated SNPs potentially related to epigenetic changes were
determined post corrections for our numbers of analyzed SNPs (i.e. SNPs with potential
epigenetic effects). On the other hand, the association study with cocaine dependence required
performing a GWAS meta-analysis ourselves, using previous data from four independent
GWAS datasets. One of the previously GWASed samples (SAGE) included both cases and
controls, which were non-dependent unrelated subjects. The other three samples, all accessed
via the public repository dbGAP, included only cases, and therefore we used independent

control samples, which included unscreened unrelated individuals with the same ethnic origin.

3.1.2 Meta-analysis of GWAS

Meta-analysis is the method to combine the results of multiple studies that perform genome-
wide genotyping to improve power for finding true associations. Meta-analyses have led to the
identification of thousands of genotype-trait associations. For instance - meta-analyses
coalescing primary datasets have led to a better understanding of complex traits including
height, body mass, Crohn’s disease and Type 2 diabetes mellitus, and the method has been
extended by the PGC for illuminating the genetic architecture of schizophrenia, MDD, bipolar
disorder, ADHD and autism, among other psychiatric conditions. Therefore, meta-analysis has

become essential in human complex trait genetics?%*

. We performed meta-analysis using four
reported GWAS on cocaine dependence since individual genome-wide genotype data can often
be underpowered. A study-specific GWA QC for each SNP was carried out, and genome-wide
SNP array data was imputed. We then computed association statistics for each SNP, including
effect size estimates, allele frequencies, and p-values. In most GWAS meta-analyses, the
unavailability of individual participant data in accordance with data sharing guidelines creates
unique analytical challenges for QC, requiring specific statistical and graphical tools to track
errors in the study-specific analysis from the available aggregated data’>. This was not the case

for our study, as we gained access to individual genotype data from all individuals in our

cocaine dependence genetic association study, through the dbGAP platform.

3.2 Hypothesis-free versus hypothesis-driven analyses

The two main approaches in SNP selection for association studies are: (i) hypothesis-free

association study (GWAS), in which a huge number of SNPs in the range of several hundred
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thousand to over a million are studied for association with a phenotype in cases versus controls;
and (ii) a hypothesis-based approach, in which SNPs from relevant, hypothesis-driven
pathways are examined. These approaches are however not as dualistic as they may seem. For
instance - A GWAS in schizoaffective disorder, bipolar type pointed to involvement of gamma-
aminobutyric acid (GABA)a receptor B1 subunit, GABRBI, which was then a starting point
for a hypothesis-driven examination of variants in genes encoding GABA receptor subunits in
several bipolar phenotypes. This genetic association was found to be remarkably specific to a

precise sub-phenotype in the studied diagnostic category?%S.

GWAS is independent of the prior bias of traditional biology and thus it improves the odds of
an all-inclusive description of the genetic causes of complex diseases. Although tagged
“hypothesis-free”, GWAS are reliant on underlying or a priori hypotheses and dictated by the
design of genotyping platforms and analysis methodologies. The implicit hypotheses in a
GWAS are: (1) common disease/common variant hypothesis, (ii) genotyped SNPs are the
genetic variants responsible for the disorder or are proxies for the causal variants, and (iii)
genetic predisposition to complex disorders is convened by independent effects of SNPs.
Therefore, the outcomes of any psychiatric GWAS are principally determined by the extent to
which these hypotheses hold true?®’. Thus, our work to discern the genomic regions that
underlie cocaine dependence using GWAS relies on the existence of a significant SNP-based
heritability for the studied phenotype, i.e. on the assumption that a relevant fraction of the

heritability of the disorders is due to SNP variation.

In the present Thesis, we also use a mixed hypothesis-driven/hypothesis-free approach for the
association study of ADHD with SNPs in miRNA genes: Hypothesis-driven because we
targeted a group of functional elements of the genome (miRNAs), that we suspect may be
involved in ADHD etiology because of their regulatory role; and hypothesis-free because we
targeted all miRNAs in the genome.. Thus, we systematically interrogated those SNPs or small

indels that tag the genomic regions encompassing the miRNA genes.

Similarly, our exploration of ASM in ADHD revolved around the hypothesis that SNPs
influencing DNA methylation in cis may be involved in the etiology of the disorder based on
their potential impact on gene regulation. We built our work on two existing studies, each of
which identified SNPs at genome-wide scale that correlated with differential levels of

methylation in brain tissues. Here, we consider that changes observed in brain tissues will
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directly bridge the ADHD biology. Again, our rationale is based on a mixed hypothesis-
driven/hypothesis-free approach.

3.3 Selection of genes and polymorphisms in candidate systems

In hypothesis-driven association studies, the common genetic variants are chosen based on
revelations or speculations from clinical, genetic, pharmacological or animal model studies,

among other inputs.

Our investigation of the ASM system in ADHD was hypothesis-driven in the sense that the
SNPs selected for the analyses were based on evidences from two previous studies. These
studies identified abundant QTL for DNA CpG methylation across the genome, i.e. SNPs
influencing methylation in multiple brain regions of post-mortem human samples. We mined
our set of candidate variants from these two published integrated datasets that defined mQTLs

or eQTLs as correlation between SNP genotypes and DNA methylation or expression.

Our work on the role of miRNA variation in ADHD started with a systematic selection of SNP
variants that encompass all reported miRNA genes. We did that in a hypothesis-free manner
(we explored all miRNAs) in view of these factors: (i) Until recently, only specific miRNAs
have been explored in psychiatric disorders and a complete investigation of the miRNA
common variation is yet lacking; (i1) there is a scarcity of studies documenting SNPs that
dysregulate miRNA expression. Moreover, we systematically addressed miRNA-specific
intricacies like (1) the presence of clustered miRNA genes versus singleton miRNAs; (i1) the
intragenic versus intergenic location of miRNAs; and (ii1) a majority -but not all- of intragenic
miRNAs are transcribed in the same direction as the host gene, and in this situation they can
share regulatory elements. Integrating all these conditioning factors, we selected small SNP

and indel variants that tag miRNA genomic regions.
3.4 Technical decisions in the association workflows

3.4.1 Phenotype heterogeneity

In psychiatric genetics, one of the most crucial issues while performing a case-control study is
how to define the cases and controls. Studying complex phenotypes necessitates an adequate
selection of the sample. To facilitate the identification of genetic risk factors, the patient group

needs to be as homogeneous as possible. However, while selecting patients with addiction
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disorders, it becomes challenging to control the variability because of the practice of multi-
drug abuse by the substance users?’®. For our study, subjects who received a diagnosis for
cocaine dependence per DSM-IV guidelines, involving the standardized Structured Clinical

Interview (SCID), form the case samples.

Although a large proportion of these patients had also received diagnosis for other drug abuses
or dependencies: 41.1% alcohol, 35.6% cannabis, 22.7% opiate and 6.8% benzodiazepines,
they all have in common the addition to cocaine. In any case, comorbidity is the rule rather
than the exception in all psychiatric illnesses. Approximately three-quarters (73.4%) of patients
with cocaine abuse or dependence also present comorbidities, such as MDD, schizophrenia,
ADHD, anxiety or personality disorders®?®. Such comorbidities may interfere with the true
associations, and a potential solution to uncover these true associations is to compare the results
from multiple individual disorder-based case studies and inspect the replicated hits. However,
as of now, there is a scarcity of studies that focus on a single drug use due to limited availability
of samples and therefore, selecting the multi-drug abusers as cases seem to be the sole choice

in studying illicit SUDs like cocaine-use disorder.

3.4.2 Selection of the controls

Another debated issue for association studies in substance use disorders is the selection of
controls as in terms of exposed and non-exposed controls. Some experts in the field argue that
an appropriate set of controls for drug dependence studies are the individuals who have been
exposed to the drug of interest at least once in their lives and have not developed a dependency
to that drug?!®?!!, In such a scenario, the association study would capture the predisposing
genetic component involved in the transition from use to addiction, but it would exclude all
possibilities for examination of key risk factors for drug dependence i.e. impulsivity and risk-
taking behavior. These risk factors are the primary compelling drivers for individuals’ first

contact with drugs and show a high genetic component?!?

. Other experts favor the practice of
using control individuals who do not show dependency to any drug of abuse, irrespective of
their exposure status to the drug?!32!4. Most published genetic studies in addiction tend to
utilize unexposed controls which is suitable for assessing dependencies to drugs but may lead
to a reduced power when analyzing intermediate or later stages of addiction?!>. GWASs of

alcohol and nicotine dependence typically use exposed controls. However, for studying illicit

drug dependency, this can severely reduce the sample size of the control group.
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In order not to miss those risk factors that explain the initial steps that lead to drug addiction
(e.g. risk-taking behaviors), we used unscreened controls from the general population accessed
from blood donors from the Blood and Tissue Bank of Barcelona. The blood donation protocol
excludes individuals who have ever injected non-prescribed drugs. We also estimated that any
probable contamination of cocaine-dependent individuals in our control sample from the
general population is less than 1% (given that 3.4% of adults in Spain consume cocaine at least
once in their lives?!®, and some 15-16% of these individuals will develop dependence within
10 years of first cocaine use?!”). This approach, due to the presence of some cases in the control
sample, may possibly cause us to miss a few true association (false negatives), but should not
generate false positives. Therefore, the likelihood of obtaining altered results due to this

selection bias if any would be negligible.

3.4.3 Confounding factors

The samples selected for association studies may be a mix of individuals belonging to different
groups because of ethnicity differences, or due to technical disparities in genotyping. The
presence of subgroups in the study sample may reflect a population stratification bias. In an
association design, both cases and controls should be represented in an equivalent manner in
terms of existing subgroups, else the population stratification may cause false positive
associations: 1.e. the differences observed in the allelic or genotypic frequencies between cases
and controls would be due to the factor that differentiates the subgroups rather than the

phenotype investigated for?!®

. It is therefore imperative to construct genetically homogeneous
samples of cases and controls with individuals from the same region and/or same ethnic group.

We therefore limited our cases and controls to individuals of European ancestry.

More confounding variables can exist besides population stratification, again leading to false
positive associations if not corrected for. For instance, sex of an individual is known to be a
confounding variable in association studies on cocaine dependence as this disorder shows a
higher prevalence in males. To control for this confounder, we maintained the same gender
proportion in both cases and controls. Yet another possible confounder is age, with a
differential distribution in cases and controls, and this was included as a covariate in our

analysis.

In GWAS studies confounding factors can be readily detected due to the availability of large

numbers of genotypes. Statistical method like multidimensional scaling (MDS) and principal
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component analysis (PCA) allow for the identification of any underlying population
stratification and confounding variables (like age, sex and related individuals)?!®. We used PCA
to identify the principal components (PCs) to be used as covariates in our case-control
association design®'®. As a general rule, the first 10 or 20 PCs are considered covariates, to
eliminate the need of figuring out the possible confounders, and this approach reduces the bias
in the downstream analyses. The four GWASs used for our meta-analysis on cocaine
dependence had also addressed the issue of population stratification and other confounding

variables through these approaches.

3.4.4 Genotyping errors

Genome-wide association studies start with automated genotyping of a massive number of
evenly distributed polymorphisms, typically SNPs, in a large number of samples, and erroneous
allocation of genotypes may arise when the observed genotype for an individual does not
correspond to the true genotype. It is therefore usual to include some sample duplicates in the
genotyping plates, samples with known genotypes and negative controls to test the technical
consistency of the results. Poor quality or low DNA concentration are the main contributors to
errors in genotyping??’. To restrict spurious results arising from genotyping errors, the
genotyping rate is determined per variant and per individual and the markers not meeting a
certain threshold (80-90%) were eliminated from our analysis. Genotyping errors harbored in
the assay can be spotted in the form of SNPs that show deviations from Hardy-Weinberg
equilibrium (HWE)*?!. We applied the HWE checks and a high genotyping rate to resolve any

low-quality genotyped markers prior to imputation.

3.4.5 Genotype imputation and controls from other studies

Genotype imputation is a technique that allows for an accurate evaluation of the evidence for
association of a phenotype with genetic markers that are not directly genotyped, based on the
patterns of LD among these markers in a reference sample (Figure 10). Imputation is an
essential tool in GWAS design and increases the power of GWAS. It is particularly useful for
standardizing and combining the association results across studies that rely on different
genotyping platforms??, also an issue encountered in our work. The genotype data across
different studies is required to be grouped prior to the imputation??? and in an ideal scenario,
these data should be generated using the same genotyping platforms. We observed that

grouping cases and controls from the same study but genotyped on different chips would still
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show evidences of population stratification. To resolve this known erroneous source, we
selected the controls from other studies but genotyped on the same platform and restated the

analysis using this matched set of controls.

A- S Sanpe Figure 10. Genotype
imputation within a sample
of apparently unrelated
individuals in three
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As a good quality imputation relies on the reference panel employed, the panel must
comprehend as many individuals as possible and must be genetically/ethnically similar to the
target sample??®. A key issue in imputation hereafter is deciding which markers are taken
forward for analysis. Not all markers can be well imputed, and different measures have been
suggested to help identify satisfactorily imputed markers. For example — including genotypes
that are imputed with >90% certainty (the average probability that an imputed genotype call is
correct) or utilize the r? coefficient that captures the correlation between imputed genotype

222, We incorporated a set of only high-quality markers

calls and the true underlying genotypes
where autosomal SNPs were found in all datasets, MAF > 0.05, HWE P value > 1e-03, SNP

call rate > 0.98, and which were finally pruned for LD (with?< 0.2 in a 200Kb SNPs window).
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3.4.6 Sample size and statistical power

The statistical power in any association study refers to the probability of detecting a real
association and is directly dependent on the sample size used. Multiple factors can influence
the estimation of statistical power, such as disease prevalence, sample size, the allelic
frequencies of markers associated with the disease, odds-ratio of these markers (i.e. the risk
they confer) and the inheritance model?**. In our association study on cocaine dependence we
have aggregated cases and controls from four previous works, together with additional control
individuals. As a result, the overall sample size has increased and so has the statistical power
to detect true associations than in either of the input studies when taken individually. However,
although our GWAS meta-analysis comprises the largest sample of cocaine-dependent cases
of European descent, the statistical power is still insufficient to detect significant associations

at genome-wide scale.

3.4.7 Multiple testing correction

As a massive number of polymorphic variants are tested for in GWASs, the number of
statistical comparisons performed to detect associations increases, and concurrently increases
the likelihood of detecting random associations or false positives. Different rigorous thresholds
for correcting multiple comparisons are therefore applied to control the false positives,
although there is no single universal method. The most rigorous of the methods curtails the
false positives but may increase the false negative associations; and vice versa. We

implemented the following two methods to control for multiple tests:

(1) Bonferroni correction: Bonferroni determined threshold restricts the probability of finding
false positives to less than 5%. A new threshold of significance (a') is established based on the
number of independent tests performed (n) and is calculated as o' = a / n, where a = 0.05 and
the null hypothesis is rejected only if the p-value is less than the o’. The method is highly
conservative and assumes tests independence (which is often not the case), in a way that the
probability of false negatives increases considerably, when a high number of tests are

performed.

(i1) FDR: It estimates the proportion of false positive associations from all the associations
obtained. It can be expressed as f,/f, + t, where f, is the number of false-positive associations

and ¢, is the number of true-positive associations. The FDR correction is much less likely to
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eliminate true associations (false negatives) at the expense of having an acceptable proportion

of false-positive associations.

While the Bonferroni false positive rate of 0.05 means that 5% of all results will be truly
negative, the FDR value of 0.05 means that 5% of declared positive results are truly negative.
Some authors argue that the most preferable approach is FDR?23. For our association studies of
ADHD with miRNA variation and ASM-variants, we applied FDR corrections; although in
both these works, we also obtain results that attain Bonferroni significance. On the other hand,
GWAS use a universal genome-wide significance Bonferroni corrected threshold of 5x1078
(0.05/10°), considering one million independent tests assuming that each SNP is independent
of each other. However, this is not the case given the dependent nature of genetic data, where
SNPs in LD are correlated to some degree??®. Therefore, a second threshold has been
established at 1x107 to discover variants showing a suggestive association, as meaningful
associations can lie 'hidden' below current thresholds and these 'sub-threshold' signals may

represent novel loci??’.

Lookup

In an attempt to identify reliable disease-associated signals through our studies, we applied
methodologies adapted to the psychiatric association studies. Both hypothesis-free and
hypothesis-driven approaches were incorporated to test multiple hypotheses underlying the
disease etiology of ADHD and cocaine dependence and shared risk factors. We investigated
potentially functional SNP sets with impact on epigenetic variation (methylation or miRNAs),
and also SNPs on a genome-wide scale. We applied stringent statistical measures to control for
false positive signals and possible confounders (like population stratification, gender or
genotyping errors). While we used the largest pre-existing summary statistics for ADHD to
detect associations in two epigenetic systems, the sample size of the GWAS performed on

cocaine dependence is still limited and needs further amplification.
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CHAPTER 4. INTERPRETING THE UTILITY OF DETECTED
GENETIC ASSOCIATIONS — AND THE CHALLENGES

4.1 Utility of associations identified in three systems

The three systems in question - miRNA genes and DNA methylation in ADHD and protein-
coding genes in cocaine dependence - essentially vary in nature and so do the methods that
substantiate the highlighted genetic loci in these systems. We used a number of bioinformatic
tools together with annotation resources to connect the contributions of associated variants to

gene expression or phenotype. Below we elaborate on the prioritization of association signals.

4.1.1 System 1: miRNA genes in ADHD

Our analysis involved a total of 1,761 autosomal miRNA genes out of 1,881 published miRNAs
(miRBase v21) that were flagged by approximately 22,000 tagSNPs. Inspection of tagSNPs in
the summary statistics of ADHD meta analyses (that contained 76.3% of the tag variants)
revealed 19 significant associations with ADHD and highlighted 12 miRNAs. All these
miRNAs are located within introns of host protein-coding genes. The associated variants lie in
the putative regulatory regions of the miRNA genes or in the promoter regions of the host
protein-coding genes; however this is not that rare since the actual miRNA gene is only 19-21
nucleotides long, and the likelihood of a tagSNP actually falling within few base pairs can be
ultra-low. Also, about 51% of the miRNAs in the genome are located within the sequence of a
protein-coding gene. In any case, our results raise the question whether the disorder associates
with the host protein-coding gene or with the miRNA contained in it. Notably, two of the
highlighted loci in this analysis, on chromosomes 1 and 7, have been reported as among the

top ADHD risk loci in the source ADHD GWAS meta-analysis.

We annotated the highlighted miRNAs using (i) brain-expression data (ii) target gene analysis,
and (ii1) pathway analysis.

(i) Brain-expression data

Around 75% of annotated miRNAs are detectable in human brain??® and 70% in the mouse
brain??°, There are many miRNAs that are specifically or highly expressed in the mammalian
brain compared to other organs, and they are differentially distributed between distinct brain

areas?2822% For instance - miR-128 and miR-124 are brain-enriched miRNAs and miR-9-1 is

brain-specific’?’. Even among the closely related cells of the developing brain, miRNA
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abundance exhibits cell type-specific patterns and highly dynamic changes in the expression

(Figure 11)>°,
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Figure 11. A: Examples of miRNAs that shape gene networks during the evolution of human and non-human
primate brain development. B: miRNA function in neuronal and glial cell fate determination.

Adapted from Prodromidou and Matsas, 2019; and Rajman and Schratt, 2017.

Therefore, looking into the miRNAs’ expression profiles across brain tissues is essential to
prioritize the relevant miRNAs. All but one of the 12 highlighted miRNAs are brain-expressed
according to the information from different expression databases. In a tissue-wise expression
dataset across the brain, cerebellum, heart, testis and kidney (https://bmi.ana.med.uni-
muenchen.de/miriad/), miR-6734 and miR-7-1 were more expressed in the brain and
cerebellum than in other reported tissues. Of interest is miR-4655, which is seen to be expressed
solely in the brain. The expression profiles from the cortical and subcortical structures of
human brain revealed the presence of miRNAs in cerebellar cortex (miR-7-1, miR-3135a),
primary somatosensory cortex (miR-3666, miR-4271, miR-4655-3p), primary visual cortex
(miR-4655-5p) and ventral parietal cortex (miR-5193). MiR-7-1 was also found to be
differentially expressed between PFC and cerebellum during late childhood development. PFC
is critical for ‘high-level’ executive functions, including working memory, sustained attention,
decision-making, and emotional control?*' (Figure 12). ADHD is believed to result from
weaker structure and function of PFC circuits, especially in the right hemisphere. In adolescent
SHR, a model for ADHD, the diminished function of glutamate receptor (AMPARS) is

observed in the PFC, which can be restored by the administration of a clinically relevant dose
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of methylphenidate?3!

. Likewise, all effective pharmacologic treatments for ADHD enhance
catecholamine signaling in the PFC and strengthen its regulation of attention and behavior

(Figure 13)*%2,

A. B.
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Figure 12. A: Out-of-tune PFC in ADHD. B: Additional dysfunctions within the PFC—limbic network that result
in comorbidities associated with ADHD.

Adapted from basicmedicalkey.com.

Chronic Treatment With Atomoxetine in ADHD
With Excessive Prefrontal NE and DA Signals
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Figure 13. Chronic treatment with
atomoxetine in ADHD. NE: norepinephrine;
DA: dopamine; VMAT2: Vesicular transporter.

Adapted from basicmedicalkey.com.
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(i) Target gene analysis

Analysis of miRNA targets has gained momentum in psychiatric phenotypes and is useful in
connecting the underlying regulatory mechanisms. Investigations on schizophrenia have
identified the role of putative miR-137 target genes through over-expression experiments of
miR-137 in vitro. Among the several loci significantly associated with schizophrenia is the
SNP within an intron of a host gene that encodes a long non-coding RNA (IncRNA) and
contains the miR-137 gene. Interestingly, four of the other identified GWS hits in schizophrenia
were predicted to be targets of miR-137, which tied the functionality of the pri-miR-137 SNP
in schizophrenia. MiR-137-mediated regulation of the four genes was further confirmed in vitro
by luciferase assays?*3. A gene, RORa, associated with both autism and schizophrenia, was
found to be directly repressed by miR-1372%*, Likewise, in MDD, downregulation of primate
specific miR-1202 is observed in the PFC. Bioinformatic and in vitro studies supported a
glutamate receptor gene, GRM4, as a target of miR-1202, which was subsequently implicated

in anxiety-related behaviors and forms an attractive drug target>*>.

Along these lines, we investigated connections of ADHD-associated miRNAs with genes
known to be associated with traits that underlie ADHD. Three of the highlighted miRNAs -
miR-3666, miR-7-1 and miR-1273h have validated target sites - 9, 18 and 1 mRNA,
respectively. Some of these target genes have previously been reported as associated with
psychiatric traits in the NHGRI-EBI Catalog of human genome-wide association studies
(https://www.ebi.ac.uk/gwas/). The EGFR gene, targeted by miR-7-1, is located in one of the
top regions for lithium-responsive bipolar disorder. Another gene targeted by miR-7-1 is
EIF4E, which is associated with cognitive empathy and depressive episodes in bipolar disorder.
Additionally, SNPs in the miR-3666-targeted TAC! gene have been found associated with
general risk-taking and feeling nervous traits in previous large-scale GWASs. MEOX2, targeted
by miR-3666, is associated with brain region and intracranial volumes. We observe using the
Genotype-Tissue Expression (GTEx) data that the targets of miR-7-1 (e.g. SLC1747, SNCA)
are highly expressed in brain relative to other tissues, while the targets of miR-3666 show low
to moderate expression in brain. It is likely that, as additional genes will be identified in even
larger ADHD GWASs, expression of some brain-expressed genes found associated with
ADHD may be directly shaped by the variation contained in miRNAs, as observed in the case

of schizophrenia.
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(iii) Pathway analysis

Pathway analysis helps to characterize the biological functions controlled by the miRNAs and
interpret those which would be dysregulated due to altered miRNA-mRNA binding or to
altered levels of the miRNA (Figure 14). The rationale is the following: 1) Every single miRNA
has multiple targets, ii) several microRNAs may contribute to ADHD susceptibility, iii) not all
the genes targeted by these miRNAs do contribute to ADHD susceptibility, and iv) finding that
several of the targeted genes belong to a functional pathway that is relevant to brain function
would help to identify the relevant ones. We conducted pathway analyses using Ingenuity
Pathway Analysis (IPA) (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), and included

only experimentally validated gene targets to avoid potentially erroneous miRNA targeting.
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We found two biological pathways that arise from the direct regulation of ten and nine focal
miRNAs respectively. One of the pathways is involved in neurological diseases and arises from
the miRNA-mediated regulation of two serotonin receptor genes - HTRID and HTR4. In this
pathway, miR-4271 and miR-5193 inhibit HTR1D and HTR4, respectively, including several
other genes. Another gene targeted by miR-4271 in the network is YWHAG, previously found
associated with schizophrenia and encoding a protein that mediates signal transduction by

binding to phosphoserine-containing proteins.

Aggregating these functional annotations, we propose at least miR-7-1 and miR-3666 as
promising candidates since both are brain-expressed miRNAs, have validated brain-expressed

targets, and homologs in model species.
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4.1.2 System 2: Genetic variation that influences brain methylation in ADHD

We examined the possibility of a connection between ADHD and genetic variants that have
been reported to alter methylation in the brain. In the process, we identified a total of 60 variants
from eight LD blocks that are associated with ADHD and which were then found to correlate
with differential levels of methylation at six different CpG sites.

We carried out a four-fold functional annotation of the significant ASM-SNPs:

(i) HaploReg and ENCODE data

One of the popular methods to annotate non-coding variants is the HaploReg tool, which
annotates variants with respect to ENCODE data. HaploReg has effectively characterized SNPs
associated with cardiovascular disease, autoimmune disorders, cancer, diabetes, and
neurological disorders?*. It can be used to find if the SNP of interest or nearby loci are
positioned in defined promoters, enhancers, or protein binding sites. Active promoters are
enriched for H3K4me3 and histone H3 or H4 acetylation. Primed enhancers are marked by
H3K4mel together with the depletion of H3K4me3, whereas active enhancers are enriched for
H3K4mel and H3K27ac?’ (Figure 15). An increasing number of methylation-related
functions of specific sites (like H3K4, H3K9, H3K27 etc.) are implicated in major psychiatric
diseases. For instance, increased levels of H3K4 methylation mark are found in the
hippocampus during memory formation, and modifiers of H3K4 methylation are mutated in
cognitive impairments?*®. Similarly, genetic risk variants for seven major psychiatric traits

(including ADHD) are found to be enriched in cortical H3K27ac domains?*’
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We therefore annotated the regions containing those ASM-SNPs found associated with ADHD
for the presence of histone modifications related to enhancer regions (H3K4mel and H3K27ac)
and promoters (H3K4me3 and H3K9ac) in 10 different brain regions. We observed that 85%
of the 60 ASM-SNPs are located within a region with an enhancer or promoter histone mark
in at least one brain area. Correspondingly, all the SNPs in the LD blocks of ASM-SNPs lie
within regions with histone marks, ranging from 3 to 17 in enhancer regions and from 4 to 16

in promoter regions.
(ii) eQTL analysis

One of the first methods developed to map the functional effects of non-coding variants is the
inspection of the eQTLs, that is, SNPs at which the genotype correlates with expression of one
or more genes. Mapping of eQTLs within haplotype blocks drawn in from the ASM association
results can point genes whose genetically regulated expression is implicated in the phenotype.
To date, inquiries into cis-acting eQTLs are more common than those that operate in trans

since resolving trans-acting eQTLs can present computational challenges®.

We analyzed eQTLs through the GTEx portal for all available brain tissues: amygdala, anterior
cingulate cortex (BA24), caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex,
frontal cortex (BA9), hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen
basal ganglia, spinal cord cervical c-1, and substantia nigra. Seven out of the eight putative
causal SNPs are eQTLs for a minimum of one gene in the brain. Fifty-two additional SNPs
marked by the tagSNPs are also eQTLs for different genes in brain regions. We focused on
methylation occurring in promoter regions, which is well established to alter gene expression.
The eQTLs for ARTN, C20rf82, and PIDD] correlated with methylation of CpG sites lying in
their possible promoter regions and presented opposite directions for methylation and gene

expression levels.

It is well known that DNA methylation in promoter regions inversely correlates with the levels
of gene expression'8, and the observed effects of all the ASM variants associated with ADHD
in our study are in concordance with this statement. The ADHD risk alleles are associated with
increased expressions of ARTN (in cerebellum and subcortical region), PIDD] (in cerebellum
and cortex), and with a decreased expression of C20rf82 (in cortical, subcortical, and cerebellar
regions). The eQTL analysis helps to get insight on the functions that are altered in the disorder,

as they connect the ‘aseptic’ genetic variants to actual genes.
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(iii) Transcriptome imputation

A recently developed approach called transcriptome imputation integrates genotype data and
publicly accessible expression data to predict altered gene expression in traits. Most of the
predicted expression-trait associations by transcriptome imputation overlay the GWAS risk
loci, so this method can capably identify potential causal genes within established risk loci*?
(Figure 16). We used a generalized framework called MetaXcan that can incorporate the results
of multiple transcriptome-wide association studies (TWAS) and colocalization methods (eQTL
and GWAS signals) to investigate the gene to phenotype relationship across more than 100

phenotypes with greater power and fewer false positives?*!. FUSION is another such software

for transcriptome imputation.
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For the MetaXcan run, the input was the summary statisticc of ADHD GWAS meta-
analysis, and prediction models were trained with RNA-Seq data of 10 GTEx brain tissues and

CommonMind dorsolateral prefrontal cortex. The SNP covariance matrices were generated
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using the 1000 Genomes Project Phase 3 EUR genotypes of the prediction model SNPs. We
imputed all the SNPs, together with the ASMs (to account for LD) located within 1 Mb from
the transcription start site (TSS) of each gene. The imputation results can help infer if the
overall genetically determined expression of the genes (using the input SNPs) correlated with
ADHD. We found significant associations between predicted expression levels of genes and
ADHD. ARTN and PIDD1 again showed statistically significant increased expression in three
and four brain tissues respectively, while a decreased expression of C20rf82 was observed in

eleven brain tissues.
(iv) Influence of SNPs on subcortical brain structures

Structural MRI data has established that patients with ADHD have altered brains and the
reported brain differences are independent of the symptom severity, comorbid disorders, or
medication effects, and robustly related to the ADHD diagnosis itself. Accumbens, amygdala,
caudate, hippocampus, and putamen are reported to have smaller volumes in ADHD patients.
The largest effect was found in the amygdala and is of particular importance since this region

links ADHD to problems in emotional regulation®*?

. We therefore obtained the summary
statistics of the GWAS meta-analysis of eight MRI volumetric measures of nucleus accumbens,
amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus produced by the
Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium?#. We
investigated in this summary statistics if the associated ASM-SNPs can as well influence the
subcortical brain structures (Figure 17). We found that three of the putative causal SNPs that
correlate with methylation of three different CpGs also correlate with volumes of nucleus
accumbens, caudate nucleus and thalamus. Moreover, all the ASM-SNPs in the LD block

for C20rf82 nominally correlate with increased volumes of nucleus accumbens and caudate

nucleus subcortical regions.
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The stated four-fold functional evidences (Figure 18) emphasize the candidacy of ARTN and
C20rf82 in ADHD development and lends more confidence for performing downstream

functional analyses, e.g. by generating genetically modified animal models.
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Figure 18. A model of integration of mQTL, eQTL and GWAS data.
Adapted from Zhao et al., 2019.

4.1.3 System 3: Protein-coding genes in cocaine-dependence

We conducted a GWAS meta-analysis of cocaine dependence using datasets from the dbGaP
repository and identified 22 independent regions that contain at least one variant with a
suggestive association (P < 1e-05). No genome-wide significant finding was identified in our

study.

Results from GWAS do not directly translate into causal variants in general, as the majority of
hits are within non-coding regions, and the LD present among the variants causes the effects
to statistically spread out across multiple variants>**. GWAS SNPs are enriched for functional
annotations, with 81% of GWAS LD regions containing at least one functional SNP2*%, Earlier
developed resources and tools did annotate SNPs only across coding regions, but newer
methods feature also the non-coding regions. However, the interpretation of the extracted
biological information from various available repositories is not always straightforward or
error-free. Two methods that have been specifically developed for the analysis of GWAS data
are FUMA GWAS (Functional Mapping and Annotation of Genome-Wide Association
Studies) and INFERNO (INFERring the molecular mechanisms of Noncoding genetic
variants), and they successfully integrate many forms of functional genomics annotations?*.
FUMA GWAS represents a statistical framework that functionally annotates GWAS findings
and prioritizes the most likely causal SNPs and genes by accumulating positional, eQTL and
chromatin interaction mappings from 18 of the publicly available datasets?*® (Figure 19).
FUMA has successfully annotated GWAS variants associated with schizophrenia, depression

and volumetric variations of human brain. INFERNO is another method to annotate GWAS
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summary statistics by identifying nearby SNPs that are likely causal using similar datasets as

FUMA (Figure 19).

Characterization of significant hits
Independent
significant SNPs

Step 1. Characterize genomic loci

1. Identification of independent significant SNPs
and candidate SNPs (SNPs in LD)
2. Defining lead SNPs

Lead SNPs
Figure 19. FUMA

. 7 J \ 7

Mapped genes

| Positional mapping | I eQTL mapping I
table

3. Defining genomic risk loci PERT
= Genomic risk pipeline to
loci annotate and
\I/ prioritize SNPs
/ Step 2. Annotation of candidate SNPs in \ \ and genes from
genomic loci SNPs with GWAS summary
Functional consequences on genes (ANNOVAR), SRR O ) statistics.
CADD score, RegulomeDB score, 15 chromatine d df
state (127 tissue/cell types),eQTL, 3D chromation eQTLs Adapted from
interactions (Hi-C),GWAScatalog Watanabe et al.,
. ) w 2017.
T Chromatin
¥ 3 ~ interactions
Step 3. Functional Gene mapping s

I Chromatin interaction mapping |

L8 J

To identify potentially interesting regions with FUMA, we considered SNPs that showed a
suggestive level of association (P < le-05), in absence of any GWS hit (P < 5e-08) in our SNP-
based analysis. We identified 23 lead SNPs which correspond to 22 genomic risk loci
containing 112 genes. Interestingly, the risk locus located on chromosome 6 (6p22.1) contains
the maximum number of suggestive associations and overlaps with a region associated with
schizophrenia. This region is defined by two lead SNPs (rs806973, P=3.1e-06 and rs56401801
with P=3.4e-06) and includes 77 genes and 458 nominally associated SNPs. The genomic
region is highly enriched for genes that encode histones and proteins of the immune system,
two functional groups known to be associated with psychiatric illnesses?*’. Moreover, most of
the SNPs in this region (447) are brain eQTLs for at least one member of a small group of 12
genes, including BTN3A42, HISTIH2AK, ZSCAN31, PRSS16 and ZNF184.

These functional results coupled with the genetic correlations between phenotypes point
towards a shared genetic basis to the clinical co-occurrence of schizophrenia and cocaine

dependence.
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4.2 Challenges in functional mapping of associations

Our analysis on these candidate systems highlighted some gaps that persist in the omics
knowledge and can mask the relevance of newly discovered associations. Below we review

some of these obstacles.
4.2.1 Current deficiencies in functional annotations

GWASSs have found that a majority of the associated SNPs do not lie within genes, which can
imply that the non-coding regions are clinically pertinent too. International consortiums like
ENCODE developed methods to annotate transcription factor binding sites, chromatin states,
DNA methylation, RNA-protein interactions, and three-dimensional chromatin interactions
(Figure 20). Additional programs like the NIH Roadmap characterized chromatin marks
throughout the genome, and modENCODE performed ENCODE framework in model systems
such as yeast, worms, and flies. This information now benefits tools like HaploReg and
RegulomeDB that annotate variants for regulatory roles. Despite these continued efforts,
genome-wide exploration of non-coding regions for their contribution to disease phenotypes
still lacks insight into functional aspects. And merely a handful of studies have addressed how

the genetic variation can influence the non-coding genome mediated regulation.
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Figure 20. Data production by ENCODE project for the identification of functional elements.

Adapted from encodeproject.org.
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4.2.1.1 SNP-miRNA-mRNA connections or miRNA-eQTLs

The follow-up of any SNP-based association results includes the inspection of the influence of
a SNP on the expression of nearby protein-coding genes (eQTL analysis). However,

connections between SNPs and the expression of miRNAs is still in its infancy (Figure 21).
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Adapted from Branco et al., 2018.

Most studies have reported miRNA-eQTLs using whole blood, a straightforwardly available
tissue. A whole blood miRNA-eQTL mapping discovered that cis-miRNA-eQTLs are enriched
for cis-mRNA-eQTLs and regulatory SNPs and >50% of cis-miRNA-eQTLs are located
upstream of mature/primary miRNAs. Notably, 11 mature miRNAs from intragenic miRNAs
shared cis eQTLs with their host protein-coding genes, and numerous cis-miRNA-eQTLs were
found associated with complex diseases/traits in GWAS?*®, A key question here is whether the
genetic control of gene expression is similar in brain and blood tissues, and if whole blood is a
useful ‘proxy’ for investigating brain eQTLs. An overlap has been demonstrated between blood
and brain eQTLs from various studies®*’, but it sometimes happens that the observed co-
expression is due to the contamination of brain tissue with blood during extraction. Whole
blood investigations may extend well to a set of genes that show tissue-independent expression
unlike miRNAs that can be brain-specific?*°. The best approach remains to infer eQTLs in a

tissue-specific manner wherever feasible?**2%.

Only recently, studies are emerging to fill this deficiency in the miRNA-eQTL literature by
providing resources specific to brain tissue. For instance, in mouse brain, expression levels of
881 miRNAs and 1,416 genomic locations were studied to identify miRNA-eQTLs. Of the 38
significant miRNA-eQTLs identified, 10 miRNAs had target genes enriched for brain-related

251

pathways and mapped to four miRNA-eQTL hotspots=". On the other hand, brain tissue from

humans has not been the focus of any genome-wide miRNA-eQTL analyses despite the known
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importance of miRNAs in brain-related diseases (Figure 22). This limits us in studying the
impact of the identified variants on the cis-miRNA gene expression in brain.
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Figure 22. MiRNA-eQTL analyses across GWAS regions associated with a disorder.
Adapted from Branco et al., 2018.

4.2.1.2 Brain expression of miRNAs

There are now over 2700 miRNAs discovered in humans of which 75% are expressed in the
brain??%. Curiously, until now, merely a handful of miRNAs are expressed in a brain-specific
or brain-enriched manner?>2. Fewer human brain samples have been mined for the expression
levels of miRNAs relative to other more available tissue types, and most studies do not focus
on all brain structures. Even with a paucity of data of brain expression of miRNAs, a number
of brain-specific miRNAs have been linked with the shaping of human cognition and

neuropsychiatric disorders so far®!.

Resources like human miRNA Tissue Atlas (https://ccb-web.cs.uni-saarland.de/tissueatlas/)
have quantified the abundance of miRNAs in 61 tissue biopsies of different organs from two
individuals. The project focused on ~2000 miRNAs, but it lacks expression data for the newly
referenced miRNAs and for individuals showing disordered phenotypes. A more widespread
resource like BrainSpan, Atlas of the Developing Human Brain (https://www.brainspan.org)
provides annotations for over 16 structures across 13 developmental stages. Other resources
like miRIAD or miRmine have also annotated a proportion of the miRNAs. However, there
exist different annotations for the same miRNA across multiple platforms, and it is unclear
which annotation is more reliable. For instance, miR-4655 and miR-5193 are brain-expressed
according to BrainSpan, but not so by miRmine. The inconsistencies pose questions on the

study methods used for data generation, and the need to have systematized protocols.

200


https://ccb-web.cs.uni-saarland.de/tissueatlas/

Discussion

Many studies use microarray technology, which limits the number of miRNAs quantified and
the discovery of novel miRNAs. To address this limitation, novel methods like small RNA-seq
have been developed that uncovered 99 putative novel miRNAs from 93 post-mortem human
prefrontal cortex samples®3. This yields the possibility that there are brain-specific miRNAs
yet to be discovered. Also, for cross-species miRNA comparability, similar pipelines are in
progress that estimate miRNA expression in mouse across cell types within nervous system

tissues?>4,

4.2.1.3 MiRNA targets

MiRNA targets are identified by three general approaches: bioinformatic target prediction,
biochemical isolation of miRNA/mRNA complexes, and transcriptomic/proteomic analysis.
The essential basis of target binding used by bioinformatic methods is the 6-nucleotides long
seed sequence of the miRNA to which mRNAs can bind. But complementary base-pairing rule
applied to this small seed sequence usually yields a large number of target genes, many of
which are likely to be false negatives. To improve the accuracy of target prediction, additional
factors including sequence conservation, flanking sequence determinants, and compensatory
pairing outside the seed region are incorporated by some tools (Figure 23A). miRNA targeting
can occur anywhere along the entire mRNA (Figure 23B); however, many algorithms limit the
predicted targets to mRNA 3’ UTRs as this area is assumed to be the most frequently targetable
by miRNAs?,
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Figure 23. A: Additional base-pairing beyond the seed sequences with the 3’ end of miRNA in miRNA
targeting. B: miRNA-mRNA binding outside of 3’'UTR of target mRNA.

Adapted from Broughton et al., 2016, and McGeary et al., 2019.
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As it stands, a confident prediction of miRNA targets remains disguised given a lack of
validation of the predictions. It will be particularly useful to integrate more datasets from the
biochemical and transcriptomic approaches that isolate co-expressed miRNA-mRNAs and

quantify the protein outputs, so as to refine the existing bioinformatic target prediction models.
4.2.1.4 MiRNA annotation in model species

Analysis of miRBase shows a large difference between the number of miRNAs referenced in
human (2656 mature miRNAs, 1917 precursors), mouse (1978 mature miRNAs, 1234
precursors), and in rat (764 mature miRNAs, 496 precursors)’>. Thus, it seems reasonable to
state that a large percentage of the miRNAs expressed in the two model species have not been
uncovered yet. Elucidation of miRNAs in the model species is a key factor in devising
functional experiments for brain-related disorders, as a high percentage of miRNAs can be
expressed in rat or mouse brain. For instance, 365 of 495 known rat miRNAs were found to be
expressed in five CNS structures (Figure 24). In addition, 90 novel miRNAs that regulate the

functions of neurons were discovered in rats with some of them having orthologs in mouse or

human?3°.
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4.2.1.5 Gender-specific annotations

Gender differences in the prevalence of psychiatric disorders, including ADHD and addiction,
1s among the established findings in psychiatry. Sex hormone regulated miRNAs have been
implicated in diseases, including psychiatric, autoimmune or metabolic phenotypes. Initial
attempts have been made to identify the sex-specific eQTLs (ss-eQTLs) and understand how
the gender of an individual interacts with genotypes to produce different phenotypes. Co-
localization of ss-eQTLs and variants that correlate with complex traits may imply a
participation of the ss-eQTL loci in the appearance of sexually dimorphic traits. Further well-
powered tissue-specific studies are needed to uncover sex-specific eQTLs and genes

differentially expressed between the genders®Y’.

202



Discussion

4.2.2 Lack of data integration in bioinformatics

The need to fill-in the missing epigenetics has accelerated the creation of novel resources.
Unfortunately, the enigma expands when it comes to the versatility of these methods in
annotating one’s own data. Current methods like Ensembl Variant Effect Predictor (VEP),
RegulomeDB and FunciSNP can annotate the effect of variants on miRNA and regulatory
regions using only functional genomics information. There also exist more dedicated tools that
determine the probability of a variant to interfere with miRNA-mediated gene regulation in
view of base pairing, thermodynamics, sequence conservation, number of targets sites per

transcript, and miRNA expression level.

Very often, a new tool is created to address a missing but complementary functionality rather
than integrating it to the existing tool (Figure 25A). Hence, we see so many methods but not a
gold standard tool for assured functional results (Figure 25B). For example, it has been reported
that 52% of SNPs in the dbSNP could generate novel miRNA binding sites?>®. Even though
bioinformatic tools allow for this estimation of the effect of a variant on the miRNA binding

site, the overlap between prediction results can be very low and ranges from 5% to 70%2>.
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Figure 25. A: miRNA prediction methods and software. B: Broad classification of miRNA databases and
applications for target prediction or regulatory networks construction.

Adapted from Yu et al., 2020.

Thus, for miRNA target prediction, there is no consensual target prediction tool, and most of
the predicted targets are admittedly false positives (Figure 26). These inconsistencies confound

the selection of SNPs and miRNAs for functional testing. To resolve the redundancy and yield
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more confidence in predictions, perhaps a practical solution would be to integrate the
independent predictions and provide an overall confidence score to a SNP or miRNA target.
While inferring any predictions, it should be kept in mind that all prediction-based methods
employ training sets that incorporate functional annotations from databases. These methods are
prone to biases present in the underlying annotations such as enrichments of variants near
genes, gaps in functional annotations, or insufficient training data. Thus, all methods will miss
functional elements that do not coincide with known annotation co-occurrence patterns*®’. The
power of these predictions will increase with an increase in the experimental validation of
putative causal SNPs and genes. Efforts are underway to generate reliable, curated functional
information for mammalian miRNAs. For example, two new bioinformatic data sets deliver
Gene Ontology annotations associated with over 500 miRNAs and over 2400 experimentally

validated miRNA-target interactions?¢!.

Figure 26. Overlap of results from
different miRNA target prediction
programs.

Adapted from info.abmgood.com.

We also observe that many variant annotation tools report the annotation anticipated from a
single queried variant only, overlooking the variants in LD with the lead SNP (e.g.,
RegulomeDB, CADD/DANN, deltaSVM). To be able to accurately use these methods, one
must use additional tools that return all SNPs in LD with the lead one (e.g. LDlink).
Nonetheless, other methods like FunciSNP, HaploReg, GWAS3D integrate LD SNPs on their

own?%0,

Given these heterogeneous data sources, it is tempting to try out all available methods on our
own data. The need to try more resources is even exacerbated when we must compare or
reproduce the results from our study to the existing ones. It happens that a part of the available
information originates from the specific needs of a certain group; hence it may not be suitable
for obtaining a generic solution for varied questions. Not all tools are regularly enhanced, and
it is not uncommon that many tools are quickly abandoned after publications. This causes more

time being spent in trying new methods than analyzing data. Annotation resources require
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continual updating with the exploding data growth. A few long-term well-maintained tools that
allow users to run several annotation models in parallel, will be more effective than searching

through an array of computational platforms (Figure 27).
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4.2.3 Methods to replicate the identified associations

The replication of association results is an important facet as (i) it provides reliable validation
of the scientific discoveries, by confirming their true-positive status; and (ii) it allows for an
assessment of any sources of bias in case of a lack of replication. One way to assess replication
of association results is to use the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/),
which includes associations with a suggestive statistical evidence (P<107) from
3567 publications that describe a total of 71,693 associations for different traits?®2. In Figure
28, we observe that that most of the top hits included in the GWAS Catalog had already been
reported in previous publications, and hence correspond to replications of known SNP-trait
associations?®3. A positive association at variants in strong LD with the lead variants also

evidences replication for the original marker-disease association.
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Our association results from global analyses of miRNA loci is the first for ADHD. We observe
that the NHGRI-EBI GWAS catalog till date documents only ~180 miRNA genes for
association with miscellaneous traits. This reveals the lack of case-control genome-wide
association analyses on miRNA genes which deters any attempts for replication for this system.
Additional genome-wide ADHD studies will remain crucial to establish the patterns of

emergence of associations.

For cocaine-dependence, while many case-control association studies have been performed on
candidate genes, only a few risk variants have been identified and replicated; such as
rs16969968 in the CHRNAS gene, encoding the cholinergic receptor nicotinic alpha 5 subunit,
and rs806368 in CNR1, coding for the cannabinoid receptor 1264, The only existing GWAS of
cocaine-dependence has been performed on the African-American (AA) and European-
American subjects (EA)?%. The strongest (and GWS) finding in the combined AA and EA
sample using the Sympcount model is an intronic SNP rs2629540 at the FAMS53B locus on
chromosome 10. Although the association signal was stronger in AAs, it was supported in both
populations. This hit could not be replicated in a subsequent study with a Spanish Caucasian

sample of substance dependence where 59% of the subjects were cocaine-dependent?®,

Similarly, three GWAS of illicit drug use collectively reported four significant associations:
two in EA population and one each in EA and AA populations?'3-267-268 One of these significant
associations (rs2952621) was replicated under the dominant model, the risk allele (T) being the

same as identified in its originating study?®¢. The SNP is located near an uncharacterized gene
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and a long intergenic non-protein coding RNA gene, which makes it difficult to determine its

role in the predisposition to dependence.

The lack of replication of results between studies can be attributed to multiple factors, such as
the sample features (ethnicity, sample size, delineation of cases and controls) and association
workflow (control for covariates, multiple testing, genetic model, insufficient number of
genetic markers). A factor quite likely to interfere with the replicability of associations from
our cocaine dependence GWAS with the GWAS by Gelernter ef al. would be the experimental
design. (i) In the previous GWAS, the AA and EA samples were combined, and the former
showed a greater weight in the association signal. Our GWAS design outlined individuals of
European ancestry only. (ii) Additionally, the proportion of cases and controls in the previous
study was skewed, with cases being four times the controls. We therefore increased the number
of controls in our analysis to achieve a balance of cases and controls. (iii) The controls used by
Gelernter et al., were individuals that had been exposed to cocaine, at least once in their lives,
but had not developed addictions. In contrast, we considered controls from the general

population, irrespective of their drug exposure status.

While replication can effectively benchmark the disease associations for follow-up
experiments, the replication constraint may cloud the true genetic effects especially when
samples originate from distinct geographic or ethnic base?®®. The patterns of replicability of
variants or lack of, thereof, can be a function of disease heterogeneity and can provide clues
into it?3. For instance, racial differences can cause large heterogeneity in odds ratios in a way
that an allele exerting protective effect in some samples can turn out to be a risk factor in
others?®®. Thus, current practice of replication of a GWAS result can be thought of as the

replication of a specific statistical design?’’.

The essential unit of replication for a GWAS should be the genomic region within which the
variants in strong LD with the lead signal must undergo assessment?’°. Subsequently, evidences
surfacing from gene-specific and pathway-specific information should be included for the
genetic associations in question (Figure 29)%%°. This is valuable since effects from multiple
variants can aggregate to reach a certain threshold at which the symptoms for a disorder will
appear. All in all, digging into the functional hierarchy will indeed be more insightful into the
mechanisms of disorder progression than achieving a statistical model dependent variant

replication.

207


https://www.sciencedirect.com/science/article/pii/S0278584619301101#bb0105

Discussion

Associalion
Detected

Figure 29. Methods to
divide candidate SNPs
into tiers for evaluation
based on statistical
results and biological
information.

Evidence

For Gene? Tier 1

Adapted from Greene et
al., 2009.

Tier 3 Tier 2

Unlikely for
Follow-up

Lookup

The detailed association analyses substantiate the involvement of the three systems in two
psychiatric phenotypes investigated for. An important aim of this work is to understand if and
how the epigenetic modules can be successfully bridged to genetics by means of the available
resources. As shown in the case of ADHD-associated ASM SNPs, epigenetics research can be
key to understanding the means of gene dysregulation in disorders. The work also underlines
the importance of structural and functional evidences from human brain tissues in connecting
the sequence variation to the brain alterations established in psychiatric traits. We also inform
the methods and obstacles for genetic and epigenetic association analyses. By and large, the
foremost direction for any association study is a reliable selection of the most promising
signals. Bioinformatics backed by the functional genomics data integration remains the leading
approach for the prioritization process. Both coding and non-coding variation can now be
effectively mapped for alterations in the protein-coding genome. That said, in the pipeline is
the regulatory genome. Challenges in evaluating the effects of genomic variation on regulatory
gene expression are manifold. Present day research is at the point of attempting to untangle the
complexities, however it necessitates more bioinformatics development. The inflation in
computational tools and data has not been synonymous with the presence of meaning as yet.
We reckon that more high-throughput omics will expand our knowledge of the noncoding
genomic landscape which can help overcome the obstacles in bioinformatic analyses and will

empower further decryption of the (epi)genetic control in psychiatric phenotypes.
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CHAPTER 5. NEW WAYS FORWARD

The fundamentals of psychiatric disorders are now known more than ever before. However,
there is still a long way to go. The exciting discoveries so far have put more research questions
on the agenda, with the final aim of designing interventions that can minimize the damaging
effects of these disorders. I hereby list some of the prospects in psychiatry research for the

upcoming years.

Objective 1. Accelerating epigenetic research and its integration with genetics

Objective 2. Finding more common variants and also rare

Objective 3. Prioritizing likely causal genes for functional follow up

Objective 4. Establishing the genetic architecture of the disorders

Objective 5. Linking genetics to intermediate phenotypes

Objective 6. Understanding genetic pleiotropy and unraveling causal relationships among traits
Objective 7. Deep phenotyping and big data projects

Objective 8. Modelling psychiatric disorders

Objective 9. Psychiatric therapy and precision medicine
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Objective 1. Accelerating epigenetic research and its integration with genetics

The last couple of decades have established that non-coding genome is not equivalent to a non-
functional genome. DNA methylation, histone modifications, non-coding RNAs, and others
regulate the expression of genes. Psychiatric epigenetic research needs to be pursued driven by
the evidences that epigenetic mechanisms fine-tune physiological processes in real-time for
cell’s response to intrinsic and/or extrinsic conditions (Figure 30)?’!. Studies on model
organisms emphasize that some genes, more than others are susceptible to environmental

modulations and that this may confer evolutionary advantages?’2.
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In order for the epigenetic data to be useful, accounting for several factors like tissue-
specificity, age, gender, comorbidities, medication, environmental events and multiple time-
points is needed because of the dynamic nature of epigenetic processes. Genome-wide
epigenetics need efforts from large collaborative consortium projects. In the absence of
organized efforts, most epigenetic study designs are likely to be case-control, cross-sectional
and can be small with insufficient statistical power, and epigenotyping costs can as well be a
limiting factor. To control for possible data inconsistencies and enable comparability in data
integration, consensus designs with stringent controls should be adopted by individual
studies?”. It is arguable that the epigenetic variation may appear post the development of a trait
and may not be the causal to the disorder. However, the value of biomarkers lies not only in
predicting the source of disease, but also in the ability to track disease progression and the
treatment®’4. Moreover, the peripheral epigenetic biomarkers can be afterwards linked to the

changes in brain using postmortem brain samples. The PsychENCODE  initiative

210



Discussion

(www.psychencode.org) provides both depth and breadth of brain-omics data from a large
number of individuals with SCZ, ASD, and bipolar disorder while collecting multifarious types
of data from the same individuals and can be beneficial to prioritize epigenetic factors that

induce brain-specific outcomes?®’3.

A handful of studies have endeavored integration of epigenetic and genetic methods to trace
altered genetic regulation. As an example, integrating epigenetic, genetic and gene-set
enrichment analyses allowed to connect NOTCH to PTSD’s etiology, which would not have
been possible through a mere candidate gene association study?”°. mQTLs form another useful
tool to refine functional/regulatory GWAS loci as both adult and fetal brains mQTLs are found
to be enriched amongst schizophrenia-associated risk loci?’¢27%, The method can as well be
extended to other disorders including ADHD and cocaine-dependence whose risk loci should

be evaluated for the presence of mQTLs.

Objective 2. Finding more common variants and also rare

GWASs in ADHD, SUDs and other less studied disorders will expand in terms of sample size,
and additional GWS loci will be identified as seen with major psychiatric disorders. However,
cracking any psychiatric disorder will require aggregation of sub-threshold common variants
in addition to the GWS loci, that can explain a much larger portion of the genetic variation. For
example - in the case of schizophrenia, hundreds or thousands of sub-threshold variants with
low effect sizes are now believed to confer risk. Take the case of the first 12 discovered
independent GWS loci for ADHD, where only one gene - FOXP?2 - emerged that had previously
been implicated in ADHD and in a phenotype, severe speech and language problems, observed
in ADHD individuals>2. Surprisingly, none of the GWS loci contained any candidates clearly
belonging to gene systems like dopaminergic neurotransmission, classically implicated in
ADHD. It is possible that larger GWAS are needed to implicate some of the classical candidate
genes, as the variants located within these genes can exert small effect sizes for which the
current sample sizes remain underpowered; or the other possibility is that the variants from
dopaminergic genes aggregate in the group of sub-threshold variants, if not finally emerging
as GWS loci (Figure 31). But even with the current absence of previous candidate genes in
genome-wide findings, these remain valuable as targets of the most common pharmacological
treatments for ADHD. Thus, classical candidate genes might still be relevant to the
neurobiology of a disorder?”. The etiology of ADHD and SUDs is likely to unfold with

uncovering of more common variation.

211



Discussion

TRANK?,
2q32.3

. . SHANK2
scnza| | Fs T,:gcye FPSEKAZ... pc 1 GRIN2A
PLEKOH1 LMANZL > s5BP2 [HSD7A X HDAC5 — STK4
i cpa7 SRPK2 PACST STARDY
POUSF2 e CACNATC ZECHO2
MRPS33
FADS1 Iurso oo
AMS1 ADD3
12 ANK3
°
.
prerr| YIIE SYNET | mmpL2

oDzZ4
HLF| TRPC4AP

—log,(P)
o]
|

Chromosome
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for published loci (black) and the nearest genes for newly identified loci (blue)

Adapted from Stahl et al., 2019.

Very importantly, it has now been realized that individuals with ADHD and individuals with
ASD share a similar burden of rare protein-truncating variants in evolutionarily constrained
genes®’!. However, investigation of rare mutations in ADHD trail behind ASD, even though
they are highly comorbid conditions. The role of ultra-rare deleterious variants too was limited
to autism and schizophrenia, and only recently, highly evolutionary conserved gene sets have
been found to carry ultra-rare deleterious variants in ADHD?, Similarly, the extensive genetic
pleiotropy seen across psychiatric disorders includes CNV's. Thus genomic regions spanned by
CNVs associated with an increased risk of ADHD are also associated with autism and
schizophrenia®”. Prioritization of CNV genes for ADHD by an integration of CNV studies
spotted POLR3C and RBFOX1 of a several hundred high-priority ADHD candidates, and the
two genes also map within ADHD-GWS regions?8!. Hence, this study establishes a possible

convergence of rare and common variants in ADHD.

Objective 3. Prioritizing likely causal genes for functional follow up

Traditionally, GWASs have provided variants that merely flag genomic regions without

necessarily explaining the connection of the variant/loci to underlying biological mechanisms.
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The organization, difficulties and costs associated with conducting functional studies, makes it
important to prioritize the likely causal genes. As the sample size of GWASs has increased,
more genes have been identified with high confidence. Which genes of all should be pursued
for follow-up experiments rely on numerous factors, some of which being the replication status
of the gene, involvement in other brain disorders, possible effect of the genetic change on the
protein or on the regulation of gene expression, overlap with pathogenic CNVs or other
variants, the effect size of the genetic variant, expression of the gene in brain tissues, being
part of a disease-implicated protein network, or conservation across species, among others. The
success of GWAS has conventionally been weighted by the number of genes discovered for a
phenotype, however this is simply one aspect of what the method has to offer. Even a single

GWAS finding that can lead to an effectual treatment is rationally an indubitable success?®2.

One way to test the possible causality of genes within highlighted loci is to apply the Mendelian
Randomization (MR) framework to integrate evidences from GWAS with eQTL data. The
method allows to unravel the causal relations isolated from the effects of confounders and
modifiable risk factors (Figure 32), such as the environmental influences or stress that impact
the manifestation or severity of nearly all psychiatric disorders. MR is less likely to be affected
by confounding bias or reverse causation present in the traditional observational studies.
However, an effective MR requires well assessed assumptions and an adequate number of
genetic markers linked with the exposure to increase the strength of the detection of causal
relationship!>’. A recent bioinformatic tool called Integrated MEntal-disorder GEnome Score
(IMEGES) can employ personal genomes (whole-genome sequencing data of individual
patients) for the prioritization of variants and genes that influence each patient’s susceptibility

to mental disorders (Figure 33) in a patient-specific manner?%3.
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Objective 4. Establishing the genetic architecture of the disorders

The common disease—common variant (CDCV) model (<100 of common variants with small-

to- moderate effects) has been the foundation of most GWAS. But of late, alternate models of

genetic architecture for psychiatric traits have been projected that accommodate an increasing

number of discovered common variation and that also reserve a place for contributions from

rare variation and environmental effects (Figure 34).
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Adapted from Belsky et al., 2015.
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These newer models to explain heritability are (i) the infinitesimal model — a large number
(»100) of small-effect common variants operate, (ii) the rare allele model - large number of
rare variants, including CNVs with relatively large effects act, (iii) the broad-sense
heritability model - besides the additive effects of common variants, heritability is due to rare
variants, non-additive GxG (dominance, epistasis) and GxE interactions as well as epigenetic
effects, and (iv) the omnigenic model (Figure 35) - the genetic architecture of complex traits is
exemplified by a huge number of peripheral, more general genes and a lesser number of “core”

or disease-specific genes'”’.
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Increasing effect size?

Any psychiatric disorder, irrespective of the underlying genetic architecture will rarely
manifest in isolation and defining the complete genetic architecture therefore rests on how
complete the comorbid spectrum is in the study designs. ADHD is strongly comorbid with ID
and with lower 1Q, and shared heritability explains much of the correlation of comorbid
conditions with ADHD symptomatology. Unfortunately, studies on ADHD do not share a
unanimous criterion for the cut-off of 1Qs in cases. While some studies include IQs of 70 and
above, others cut-off is an 1Q of 80, and no 1Q is considered in others. Despite the known fact
that individuals with ADHD are more likely to have lower 1Qs, studies on ADHD often exclude
participants based on lower than average 1Q (i.e., between 70 and 85). Exclusion of ADHD
participants with lower I1Q limits the cognitive spectrum being studied and thus the applicability
of the results. At the same time it masks the true genetic relationship of comorbidities and can
lead to ineffective treatment or have negative repercussions?®*. It should be also be noted that
presence of ID has not been a condition for exclusion in the case studies on autism and
schizophrenia even though ID can co-occur with both disorders?’. Only recently, DSM-V

established that ASD is no longer an exclusion criterion in ADHD studies, in contrast to DSM-

215



Discussion

IV Research specifically focused on comorbid conditions like ADHD, ASD, ID and lower
1Q and ADHD and SUDs should be attempted to resolve the underlying architecture with a

greater power arising from phenotypic and genetic similarities among psychiatric disorders?®>.

The eventual goal of delineating the genetic architecture of complex disorders is to understand
how the discoveries from large populations will contribute to illness in an individual. Correct
genetic inferences need target datasets that are from different ancestries. A critical limitation
of psychiatric genetics is the lack of inclusion of population diversity. The majority of GWASs
have been conducted on individuals of European ancestry or African-American ancestry. Only
a small proportion of studies have employed Asian populations like Han Chinese, Japanese,
Korean, Indian, Pakistani, or populations originating from Africa or South America. From a
genetics point of view, including lesser studied ancestral groups in GWAS (transethnic GWAS)

can help narrow blocks of LD and fine-map the genetic architecture of disorders!7-273,

Objective 5: Linking genetics to intermediate phenotypes

The trajectory of manifestation of a psychiatric phenotype involves a number of intermediate
disruptions of neural circuits starting from the genetic variation?*®, Thus, the intermediate traits
or phenotypes are scattered between genetic variation and the end phenotype (Figure 36).
Personality traits, brain activity and brain structural variation are some known intermediate
phenotypes in psychiatric genetics?®’. For instance - motion tracking-based hyperactivity factor
and a reduced eye movement control can be candidate intermediate phenotypes in ADHD, as
the inability to sustain attention or ocular fixation will lead to a reduction in optimal
performance in everyday cognitive and behavioral activities?®32%, Altered brain structure with
decreased gray matter volumes in the right inferior frontal gyrus and an increased white matter
volume in the posterior right inferior fronto-occipital fasciculus are observed in ADHD
individuals®*°. Exploratory locomotion, a behavioral phenotype is a predictor of vulnerability
to addiction, and inversely correlates with spontaneous anxiety and depression-like

behaviors?!.

Each intermediate phenotype is structured by relatively fewer risk alleles than the global
phenotype?®¢. Thus, they form a more precise connection to the underlying genetics than to the
disorder and are attractive for gene discovery?’>?%’. Although not clearly evidenced, the genetic
variants can exert greater effect sizes on intermediate phenotypes than on the disorder traits, so
GWAS:s of intermediate phenotypes could perhaps be more powerful in portraying the genetics

of the disorder. Somehow, the idea is to divide the phenotype in pieces that are more heritable,
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and investigate each of them separately, to end up by joining the pieces again. This would be
important as the pattern of risk alleles that shape the overall disease phenotype is turning out

to be far more complex than initially anticipated.
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Neuroimaging can reveal neuronal mechanisms that underlie emotion, reward, and craving that
drive both ADHD and cocaine addiction. For example - positive reward in reward circuits is
accompanied by an activation of ventral striatum and other brain areas that can be seen through
neuroimaging techniques. Emotional and stressful stimuli images activate amygdala mediated
by the serotonin transporter SLC6A4 and monoamine oxidase (MAOA). Similarly, PFC is
activated during cognitive tasks and the impairment of PFC is linked to catechol-O-methyl
transferase (COMT) and MAOA variation. It is already known that the biology of addiction,
anxiety, impulsivity and reward is influenced by SLC6A4, MAOA and COMT (that
metabolizes dopamine, norepinephrine, and catecholamines). The role of genetic variation
identified in these genes might fit in better for one of these intermediate phenotype than the

end symptomalogy?°2.

As with shared genetic factors, intermediate phenotypes can as well be shared across comorbid
conditions. For instance, stress resiliency and externalizing behaviors of disinhibition,
aggression, and impulsivity, are thought to underlie the comorbidity between addictions and

other psychiatric diseases®”?

. An interesting connection can be made in the co-occurrence of
cocaine-dependence and ADHD as different routes of cocaine administration can lead to
equally different neurocognitive impairment profiles. The smoked cocaine dependence group
(in contrast to insufflated cocaine dependence) was specifically associated with deficits in
attention and executive functions. The differential profiles may not (only) be due direct effects

of cocaine but also because of cognitive and biological differences in key executive functioning
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and attention areas®*.

Externalizing problems can also dictate both intermediate and
independent phenotypes in ADHD and ASD?%. Attentional control is also a likely intermediate
phenotype shared by both autism and ADHD, where atypical development of attentional
control restricts adaptive functioning in later stages like education, life and social skills in an

autism and ADHD-like manner°°.

In psychiatric illnesses, the nature of human brain can confound the discovery for genetic
origins as individual neurons can display distinct transcriptomes and phenotypes. The genetic
variants that appear weak at the full-disease level may be highly robust for the intermediate
level. Thus, the variants that impact the brain function and structure should be followed up to
reveal the underlying neurobiological mechanisms even if those are not the causative genetic

factors?®8°.

Objective 6. Understanding genetic pleiotropy and unraveling causal
relationships among traits

Pleiotropy and redundancy are key aspects of the biological pathways that underlie psychiatric
disorders (Figure 37). A genetic variant can influence two or more phenotypes through the
phenomenon of pleiotropy, and the same function can be controlled by multiple systems
through redundancy. The genetic overlap in psychiatric disorders is not a novel notion

anymore and is a rule rather than the exception®’%?7,
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Genetic risk variants discovered for specific conditions may also have broader pleiotropic
effects; for example, genetic risk variants for ADHD reflect a genetic liability toward broad

childhood psychopathology in the general population®®

. Finding genes that can trigger more
than one disorder might enlighten the shared pathogenesis among different psychiatric

disorders.

Will alterations in some genes then make us more susceptible to multiple disorders? In a study
across eight disorders, 109 pleiotropic loci where found to contribute to at least two psychiatric
disorders, and 23 loci were pleiotropic for four disorders or more. One of most highly
pleiotropic loci related to all eight disorders corresponded to the DCC gene, a master regulator
of white matter projections that mediates axonal guidance during neuronal development and
the adolescent expansion of mesocorticolimbic dopaminergic connections to prefrontal cortex
(Figure 38)>%. Interestingly, this work also showed that certain loci can exert antagonistic
effects on multiple disorders, which can partially explain that psychiatric drugs designed to
treat one condition might worsen another inadvertently. Indeed, in psychiatric genetics, it is

difficult to find genetic variants that would confer risk to solely one phenotype. To be able to
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during early neurodevelopment and mediation of media.
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tell apart the horizontal (a genetic variation can affect two or more phenotypes independently)
and vertical pleiotropy (when genetic variation affects one phenotype, the expression of which
mediates a second phenotype) would have implications on causal theories of
psychopathologies*?. Future analysis should embrace subjects with ADHD only (if any), with
ADHD and other highly comorbid conditions like ID or SUDs, and with the comorbid traits
only. It is important that the number of subjects recruited for each phenotype is proportional,

as a lower number of subjects from lesser studied disorders might mask true pleiotropic effects.

In addition to the shared genetic effects among psychiatric disorders, pervasive pleiotropy
exists between psychiatric and immune-mediated disorders. Pleiotropic loci are known to
cluster into histone methylation, synaptic biology, immune and neurotrophic pathways,
neurodevelopment, glutamate receptor signalling and voltage-gated calcium channel
signalling®!. In fact, the chromosome 6 locus identified in our work that exhibits pleiotropic
effects for cocaine dependence and schizophrenia is enriched in immune function and histone-
related genes. Previously, the MHC region on chromosome 6 emerged important, along with
regions like cytoband 1p13.2 in mediating pleiotropic effects on two systems3%2. How
psychiatric disorders and immune system disorders are related genetically is yet another

intriguing dimension for exploration.

Pleiotropy can further transform our view of individual psychiatric disorders into interrelated
components of a syndrome. The present diagnostic categories can be subtypes under one
umbrella term. Autism was once considered as childhood schizophrenia, until the 1970s. If
pleiotropic mechanisms underlie the manifestation of comorbid conditions, can the same
genomic patterns of pleiotropy recognize disorders, perhaps as categories that can be more
meaningful than the existing symptomatic approach? The meta-analysis across eight disorders
identified that ADHD shares 37% and 27% of its common genetic variation of risk with ASD
and Tourette syndrome respectively, and the three disorders were so clustered as ‘early-onset
neurodevelopmental disorders’. Similarly, the underlying genetics of schizophrenia, MDD and
bipolar disorder clustered these into one group - Mood and psychotic disorders -, and a third
group ‘Disorders with compulsive behaviours’ clustered together OCD, anorexia nervosa and
Tourette syndrome again. Thus, genetic correlations revealed three subgroups of highly
genetically related disorders among eight psychiatric disorders, and this grouping based on
shared genomics (pleiotropic effects) is starkly different from that of DSM. However, the

discovery of shared biology does not simply imply that clinical categories are entirely
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collapsible, mainly because the genetics can be continuous rather than categorical and clear

genetic signatures or boundaries that can define neuropsychiatric syndromes will be a rarity*°!.

Objective 7. Deep phenotyping and big data projects

Identification of the factors that predict disease course and outcome requires suitably powered
clinical data routinely collected over extended time periods. Attaining sufficient sample sizes
lie beyond the reach of a single group, and several consortia were born that coalesce data from
research groups across countries and continents to make it accessible for researchers all over.
‘Big data’ is required on a longitudinal perspective and not only a cross-sectional one, and is
more meaningful when achieved through deep phenotyping. Some consortia (like the PGC)
accumulate population cohorts for GWAS, while others provide neuroimaging for genetics
(like ENIGMA). There are more consortium projects that gather phenotype data for traits like
personality, sleep, smoking, brain volume, cognitive functions (e.g. PsychENCODE), and

others for deep phenotyping (e.g., Philadelphia Neurodevelopmental Cohort)?"3.

The so-called ‘big data’ can dramatically change our ways to do research, especially when we
are starting to assess the developmental trajectory of mental disorders. However, in order to
have truly informative data, the study methods can be refined further. For instance - Psychiatric
neuroimaging has largely followed the case-control model and include individuals that meet a
clinical construct for a particular diagnosis. A minority of newer studies have examined clinical
cohorts using continuous symptom measures rather than the case-control setup. Studies
perform individual-level repeated neuroimaging to record highly stable signal estimates, or
individual-level neuroimaging, using repeated assessments of a single individual and record
session-to-session variations in signals. However, the two approaches are hardly integrated and
there is still a lack of large-scale attempts for “deep neural phenotyping” in psychopathology.
Also, findings from current MRI-based studies should be treated with caution since MRI
signals are sensitive to frequent confounders like weight, stress, mental state, alcohol,

substance use, and even head movement and breathing3%.

The boom in genomic data due to GWAS and NGS and backing of Electronic Health Records
(EHR) in medicine have opened the prospects to unify phenotype and genotype data into
medical records. Biobanks (like the UK Biobank, Mayo Clinic) paired with EHR are a
straightforward way to build large datasets. EHRs store longitudinal data that can be used to
structure phenotypes of patients and support personalized medicine. The PsycheMERGE
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leverages the resources and existing infrastructure of the Electronic Medical Records and
Genomics (e MERGE) network, the PGC, and local EHR and biobanks for psychiatric disorders
(including Vanderbilt, MGH, Philadelphia Neurodevelopmental Cohort) to build powerful
opportunity for psychiatric genetics**. Otherwise, the present EHR-biobank projects lack a

major emphasis on psychiatric disorders yet?’3.

Still, even comprehensive EHRs can lack high-quality data due to issues like incompleteness,
inaccuracy, complexity and bias. The EHR is not a perfect image of the individual and
physiology but is rather a reflection of the health care recording procedure with noise and
feedback loops. Therefore, variability and imprecision in the clinical documentation challenges
the phenotyping in the EHR?*%. To synchronize phenotype studies, a universal terminology
and ontology should be used while labelling phenotypes. The Human Phenotype Ontology
project is which is also linked to the Online Mendelian Inheritance in Man (OMIM) resource
is one way to achieve consistent labelling. Ontologies can be used to calculate phenotype
similarity metrics between patients and ‘high-throughput phenotyping’ can thus be built that

will reduce the knowledge engineering effort (Figure 39)3%.
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Longitudinal deep phenotyping efforts can as well support a much-desired N-of-1 study design.

In this design, individuals may receive multiple acute interventions, along with control
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interventions, so that the effect of the intervention can be statistically tested for that individual.
N-of-1 studies are considered to be at the top of the hierarchy of evidence-based medicine

methods3?’

. In-depth phenotyping is also being applied to refine the taxonomy of psychiatric
disorders. The symptom-based diagnostic categories often poorly align with the findings on
dysfunctions in brain circuits or neurobiological pathways, where the identified dysfunctions
are shared by different DSM/ICD diagnoses and are transdiagnostic. The Biological
Classification of Mental Disorders (BeCOME) study aims to identify classes of mental
disorders that are based on the biology gleaned from in-depth phenotyping procedures and

several levels of omics, cellular, imaging and psychophysiological assessments3%

. PsyCourse,
another transdiagnostic study on affective-to-psychotic continuum combines longitudinal deep
phenotyping of positive, depressive, and manic symptoms. The study advocates the
introduction of a psychosis spectrum disorder as in day-to-day reality the psychotic symptoms

between schizophrenia and bipolar disorder show a major overlap3%’.

Environmental exposures are known drivers of psychiatric behaviors and disease outcomes.
‘Exposome’ studies that pursue the effects of exposures on behaviors and disease risk across
the life course require high-quality environmental exposure data. In the Netherlands a platform
has been setup by the Geoscience and hEalth Cohort COnsortium (GECCO) and the Global
Geo Health Data Center (GGHDC) that centralizes and shares environmental variables as
personal exposures. This includes a range of environmental data including high spatial and
temporal resolution information on urban infrastructure, physicochemical exposures,
availability of community services; but this data was scattered until it was centralized by
GECCO. The resource now supplements 23 cohort studies and is a blueprint to set up similar
big data projects®!?. Data from different regions will be shaped by different environmental risk
factors. Indeed, if correctly interpreted, it might be a unique opportunity to assess cultural and

regional differences in social and environmental factors pertaining to mental health.

If all is achieved, research using big data will still have some inherent challenges. Data security
and privacy remains a major issue when it comes to ambulatory assessments, which
necessitates geolocation and information relating to behaviors such as substance use. There is
also high variability in ethical requirements across countries for research, making it difficult to
uniformize research practices. Patients reaching institutional care settings may feel undue
pressure to participate in research and may harbor fears that outcomes emerging from study

participation might negatively affect their status’!!.
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Objective 8. Modeling psychiatric disorders

Animal models for psychiatric illnesses have been long established to elucidate their
pathophysiology and to test novel treatment strategies. Unfortunately, but unsurprisingly, the
utility of current animal models is limited in terms of translatability of the findings, probably
because the models do not simulate the complex disorders wholly. The function of individual
genes prioritized by GWAS can be assessed in gene knockout models (without reproducing the
actual genetic variation), but the feasibility of incorporating the true nature of disease-
associated genetic variants is questionable. How can one model the common variants of small
effects leading or not to gene and/or protein changes in mouse orthologues of human genes?

And also, how to deal with polygenicity in an animal model?

Take the case of DISCI, a candidate gene for schizophrenia and affective disorders - Several
animal models have investigated mutations in the DISC1 gene that were identified in families,
but only one, found in a particular family from Scotland, showed a comparable phenotype
expression as the human allele. Thus, achieving a valid construct requires need for attention
for each associated mutation. Another example is the neuroligin 3 (NLGN3) p.R451C missense
mutation identified in ASD patients. NLGN3®431€ mouse displayed social impairment but this
phenotype was not seen in the NLGN3 knockout mouse. This suggests that a gain-of-function

cannot be modelled with traditional approaches?®!'?

. High-penetrance disease-associated rare
variants can be modelled in rodents through CRISPR-based technologies but even so, the
variant-endophenotype-behaviour inferences drawn from rodent models must be treated with
caution before translation because of the extreme pleiotropy and redundancy observed in

human?!3,

Besides individual genetic manipulations, how can we create animal models that do not simply
mimic the phenotypic appearance but epitomize the psychiatric etiology3!'*? Projecting the
progression of these disorders from initiatory states to full-blown stages in animal models is
the key to understand the development of abnormal networks scattered over time points in order
to target apt treatment strategies. Much of the animal modelling has overlooked the
incorporation of spatial and temporal components to generate valid constructs. Models that
incorporate environmental components trail behind genetic constructs, while models that aim

to combine genetics and environment are even rare*!'2.
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Lately, phenotypic assessment in animal models, particularly mice is in progress and can be
particularly useful to choose those mice that will serve as better models. Some strains more
than others due to their genetic background will match the behaviors that are observed in
psychiatric diseases. For instance, in contrast to the commonly used inbred mouse strain
C57/BL6, another strain, BTBR T+tf/J, displays less reciprocal social interaction, more
grooming and different ultrasonic vocalizations. Thus, the phenotypic attributes of BTBR mice

makes it a better model to study genetics of autism and antisocial-like behaviors®'“.

There is a scope to continue refining animal models utilizing the phenotype-matched animals
and optogenetics models (Figure 40) which are very much advanced than the traditional gene
knock-out and knock-in mice’!®. However, given the intrinsic caveats in animal models - 80—
90 million years of evolutionary divergence, different selection pressures due to the
evolutionary niches, significant differences in the neural cells types and neural circuits,
especially, but not limited to prefrontal cortex and its projection, none of the models can

replicate the relapsing—remitting nature of the disease, and it seems increasingly unlikely that
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modelling these diseases in animals will depict the ‘model’ of a psychiatric disorder and not a

‘disorder-like’ behavior!'43-314-316,

Perhaps more sophisticated approaches to overcome these hurdles include cellular models
engendered by stem cell technology, and which can contain the entire genetic background of
the donor. Readily available human cells such as skin fibroblasts can be reprogrammed into
neurons and glial cells in vitro either directly or through an intermediate cell (Figure 41).
Induced pluripotent stem cell (iPSC) models that can generate patient-derived neurons are
under testing for psychiatric disorders including schizophrenia, bipolar disorder, and Rett
syndrome; and in some cases, they have uncovered gene-associated phenotypes in processes
of progenitor cell proliferation, synaptic maturation, neuronal morphology and activity. iPSC-
derived neurons may have downsides like limited epigenetic memory, immaturity of neurons,
but it is possible to recapitulate the epigenetic modifications post neuronal maturation in
vitro®!". The original epigenetic landscape can also be preserved using transdifferentiation i.e.
directly inducing a somatic cell like fibroblast into functional-induced neurons (iNs) without a
transient stage of pluripotent stem cells (Figure 41)3'%. Therefore, iNs are a powerful valid
alternative for the modeling of neuropsychiatric diseases, as it will retain much of epigenetic

changes present in the somatic cells of the patients.
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Even superior models that can mimic brain development and disorders are three-dimensional

iPSC-derived brain organoids*!?

. Brain organoids, with its complex tissue structure have the
potential to recapitulate developing neural circuits and circuit level interactions, and are
responsive to drug treatment too. Brain organoids generated from ASD patients captured

maturation-related signatures including an increased production of GABAergic neurons, and
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have been used to model Timothy syndrome, a severe neurodevelopmental disease
characterized by ASD and epilepsy>'71?. The organoid field is young and currently lacks some

of the brain cell types but is highly promising, with much room for improvement.

Objective 9. Psychiatric therapy and precision medicine

Pharmacogenetics research into psychiatric diseases is in its early stages. Each drug is tested
in fewer than 5000 samples and 75% of psychiatric drugs fail to effectively treat the patient’s
condition. The low efficacy of psychiatric drugs arises from a dearth of insights into the

pathogenesis of psychiatric traits, together with indistinct diagnoses based on symptom counts.

How soon will today’s genetics research help clinicians and patients? Can the risk variants in
absence of the knowledge of causal genes contribute to treatment? Indeed, the identified
variants from the GWASs so far are valuable for genomic risk prediction and to identify

druggable targets'’

. While GWASs aim to detect reproducible disease-associated loci,
genomic risk prediction doesn’t necessarily require a causal interpretation. This means that as
a greater number of identified variants are discovered, more robust risk prediction models can
be developed. The variants should be evaluated for an association with clinical features of
disorders including early-onset, recurrence, severity, and anatomical and functional

differences'>’

. Multiple data types from neuroimaging, genetic and clinical predictors improve
the performance of the models and so can the pervasive pleiotropy among psychiatric
phenotypes*?°. One example is that of 22q11 deletions, which is a strong susceptibility factor
for a range of psychiatric disorders including ASD, ADHD, ID, anxiety, mood disorders, as
well as subsyndromal cognitive and psychiatric impairments'?. Estimation of disease risk is

applicable for individuals that carry 22q11 deletion to assist with genetic counseling.

Not all risk variants will be present in all individuals, as population and inter-individual genetic
differences play a part. Risk allele weights derived from the major ancestral populations are
needed to predict genetic risk scores (GRS). The failure to include diverse, multi-ethnic
populations in genetic studies exacerbates health disparities as the therapeutic models would
mostly work on the Europeans but can be potentially dangerous if extended to other ethnic
groups®’®. Thus, a lack of ancestral diversity in current GWAS can impede the clinical use of
GRS globally. A personalized analysis of variants and genes (through iMEGES) can therefore
aid the identification of potential risk factors in patients, so that the risk predictions and

treatment would be more effective?s?.
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For an effective drug therapy, affected individuals with similar neurophysiological
abnormalities should be clustered or grouped, and novel interventions that would work with a
degree of specificity for groups should be developed and tested (Figure 42)3!3. Well powered
GWASs designed to investigate the efficacy and side effects of treatment can predict
appropriate drug target choices than current candidate genes (like CYP2D6 and CYP2C19)>"3.
Phenome-wide association studies (PheWAS) is another promising way to aid drug
development using data from electronic medical records, disease-agnostic cohorts and GWAS,
but is largely untapped for prioritization of drug targets. With PheWAS, associations between
a specific genetic variant and a range of physiological, clinical, and phenotypic outcomes can
be tested, while accounting for the pleiotropic effects. PheWAS can elucidate mechanisms of
drug action, identify alternative indications, and adverse drug events (ADEs)?2!. Targeting loci

that have pleiotropic effects on disorders can provide broad-spectrum therapeutic effects.
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Figure 42. Precision medicine to tailor healthcare to individual patients four key areas (risk prediction,
patient stratification, pharmacogenomic and molecular diagnostics).

Adapted from Rees and Owen, 2020.

In addition to the conventional ‘genetic’ or ‘protein-based’ drug targets, epigenetic
modifications due to their reversible nature might represent novel targets for therapeutic
improvement (Figure 43). A new class of medication, ‘epidrugs’, has emerged to modulate

epigenetic signaling. In the earliest stages, three classes of molecules are potentially efficacious

228



Discussion

including histone demethylase inhibitors (HMT), histone deacetylase inhibitors (HDAC), and
DNA methyltransferase (DNMT) inhibitors acting on DNA methylation. The role of DNMT
inhibitors as anti-cancer drugs in cancer treatment has been widely recognized but their
therapeutic potential in the treatment of psychiatric disorders is still at the preclinical stage.
Targeted epigenetic strategies can be aimed to correct only the putative pathogenic marks and

leave the homeostatic ‘beneficial’ marks unchanged3?2.
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Figure 43. Clinical opportunities brought by epigenetic studies in psychiatry.
Adapted from Kular and Kular., 2018.

The success of medications in psychiatric disorders can be greatly enhanced by personalized
biopsychosocial interventions that sometimes are undervalued. The critical developmental
windows are instrumental to long-term deleterious epigenetic effects, and so the correction of
early epigenetic disruptions is proving to be a key influence in psychiatric therapies. For
instance - prevention of early psycho-trauma in rodents has been shown to alleviate long-term
detrimental impacts and is one such successful environmental/epigenetic intervention.
Implementing a supportive enriched environment (EE) can also convalesce depression more
effectively than antidepressant drugs, alleviate anxiety and cognitive impairments, as seen in
young adult mice. The positive effects in EE intervention result from an epigenetic
reprogramming of genes encoding receptors like BDNF or CRH, the key factors in stress
response, and these positive effects can persist across generations. Thus it is hinted that initial
interventions can go a long way in improving genetic predispositions to impairments induced

by early life stress??2.
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Lookup

The genetics of psychiatric disorders is evolving exponentially, and continues to reveal the
incredible layers of complexity, heterogeneity and pleiotropy. Given the marked progress in
psychiatric illnesses to date because of GWAS, WGS, WES, and new analytical approaches,
these methods will continue to expand, covering more disorders, phenotypes, diverse
populations, drug responses in the gene and drug discovery efforts. The clustering and splitting
of psychiatric disorders are likely to continue, on newly found grounds of biological insights
steering a more bottom-up classification of psychiatric disorders. There remain critical glitches
to be solved before psychiatry can finally support each and every patient - many risk variants
have not yet been uncovered, inclusion of more ethnicities, we are yet to fully appreciate the
ability of studying the comorbidities together, the mechanisms of action of pleiotropic loci,
improving model systems and more. Nonetheless, the current omics, informatics and state-of-
the-art technologies altogether have built an empirical platform upon which psychiatry can now
progress these issues. What is important to remember is that the current genetic findings have
the power to make an immediate impact on psychiatry; by testing rare pathogenic CNVs in
patients, detection of brain abnormalities, screening for comorbidities, genetic risk assessment,
counselling and biopsychosocial interventions. The decades of psychiatric research have
gradually diminished the clinical and genetic boundaries and have established that psychiatric

genetics is no longer peripheral but is a more natural driver for clinical psychiatry.
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CHAPTER 6: FUTURE WORK

6.1. Expanding research on the miRNA system

So far, we have explored the role of common variation in miRNA genes in the predisposition
to ADHD. As a next step, we aim to investigate the impact of genetic variation located in the
miRNA target sites in the 3’UTR of mRNAs, known as poly-miRTSs. Approximately 11% of
known SNPs are located in the 3'UTR regions of 16,810 genes’?3. A variation in a 3’-UTR can
either introduce or remove miRNA target sequences or change the binding efficiency, which

in turn can alter the gene expression.

6.2. Studying epigenetic risk factors in other comorbid disorders

We plan to investigate the role of miRNAs and ASM also in ASD, highly comorbid with
ADHD. The most recent genome-wide association meta-analysis of ASD, including 18,381
cases and 27,969 controls, published in 2019, revealed five GWS loci. It would be interesting
to investigate the epigenetic underpinnings in ASD and find any possible overlap with ADHD
biology. Joint analysis for comorbid disorders will be pursued to find genetic specificity but

also shared risk factors.

6.3. Attempting larger cocaine-dependence GWAS

We aim to increase the sample size for cocaine-dependence GWAS so as to establish higher
levels of significance for confident identification of common susceptibility variants. The
different GWASs performed so far in a number of psychiatric disorders indicate that only after
reaching around 10,000 cases the first GWS findings emerge. Keeping this figure in mind, we
are in touch with different research groups from different centers (e.g. Aarhus University, Vall
d’Hebron Institut de Recerca or Universidade Federal do Rio Grande do Sul, Porto Alegre,
among others) that are currently genotyping several thousands of additional patients. In
parallel, the PGC also intends to genotype a larger number of subjects that are dependent on

different drugs, including cocaine, opiates, cannabis and alcohol, which may be also useful.

6.4. Trans-ancestry studies

Individuals from East Asian and African American descent are now being increasingly studied
as this will help in both achieving a finer resolution in GWAS and eliminating health

disparities. Thus, replicating the epigenetic and genetic signals that we have identified in
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European samples in samples from other ancestries remains a challenge and a commitment that

the scientific community should take.

6.5. Functional follow-up of candidate genes

We are following up the C207rf82 gene, one of our prioritized candidates in ADHD, using a
gene-knockout mouse model. Our studies involve extensive behavioral testing that have
already revealed abnormalities like hypolocomotion and impulsivity. Interestingly, the
depletion of the gene also causes decreased motivation for cocaine, indicating that it may have
pleiotropic effects. In parallel, the group investigates the effect of genes pointed in studies that
focus on cocaine dependence, such as PLCB1, encoding the signaling molecule phospholipase
C beta 1, also through mouse modelling. Zebrafish is also used by us to study genes involved
in several psychiatric conditions or traits, including aggressive behavior or ASD. Although we
are aware that we are modelling conditions that are polygenic and in general explained by the
effect of common variants, investigating single-gene knockouts provides valuable information

on the impact on the brain associated with the malfunction of such genes.
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Conclusions

Exploring genetic variation that influences brain methylation in attention-
deficit/hyperactivity disorder (ADHD)

1.

Common genetic risk variants for ADHD identified in a previous genome-wide
association study (GWAS) that included 20,000 cases and 35,000 controls are enriched
in SNPs that correlate with levels of DNA methylation.

Eight Allele-Specific Methylation tagSNPs are significantly associated with ADHD
and correlate with differential methylation at six CpG sites in cis in different brain areas.
These six CpG sites are located at possible promoter regions of six genes expressed in
brain: ARTN, C20rf82, NEURODG6, PIDD1, RPLP2 and GAL.

For three of these six genes, SNPs associated with ADHD and correlating with
methylation levels are eQTLs in brain. Consistently, methylation and gene expression
show opposite directions: ARTN and PIDDI (reduced methylation, increased
expression), C2orf82 (increased methylation, reduced expression).

ADHD risk alleles are associated with increased brain expression of ARTN and PIDD1
and with decreased brain expression of C2orf82.

SNPs in C20rf82 correlate with changes in brain volumes.

In summary, our study highlights the ARTN, C20rf82 and PIDDI genes as potential
contributors to ADHD susceptibility.

Genome-wide association meta-analysis of cocaine dependence: Shared
genetics with comorbid conditions

1.

We have performed the largest cocaine dependence GWAS meta-analysis in individuals
of European ancestry, including 2,100 cases and 4,300 controls.

Although the SNP-based analysis revealed no genome-wide significant associations
with cocaine dependence, probably due to limited sample size, the gene-based analysis
identified the HIST1H2BD gene, previously associated with schizophrenia.

The estimated SNP-based heritability of cocaine dependence is approximately 30%.

A significant genetic correlation has been observed between cocaine dependence and
ADHD, schizophrenia, major depressive disorder and risk-taking behaviour, suggesting
a shared genetic basis across pathologies and traits.

Polygenic risk score (PRS) analysis shows that all the comorbid features analysed
(ADHD, schizophrenia, major depressive disorder, aggressiveness, antisocial

personality or risk-taking behaviour) can predict cocaine dependence.
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Conclusions

Exploring the impact of common variation in miRNA genes on attention-
deficit/hyperactivity disorder

1.

We have performed a case-control association study to investigate the contribution to
ADHD of common genetic variation in 1,761 autosomal miRNAs using pre-existing
GWAS data from 20,000 cases and 35,000 controls.

We have identified 19 significant associations of SNPs with ADHD that highlight 12
miRNA genes, all located within protein-coding genes.

The associated variants are located in the putative regulatory regions of the miRNA
genes or in the promoter region of the host protein-coding gene.

Two of the 12 highlighted miRNA loci, miR-6079 and miR-3666, overlap with
genome-wide association findings from the pre-existing ADHD meta-analysis that was
used as a starting dataset for the present study.

Six of the 12 highlighted miRNAs are expressed in different brain tissues, specifically
in cerebellum, whereas for the rest this information is not yet available.

Three of the highlighted miRNAs - miR-3666, miR-7-1 and miR-1273h - have
validated target mRNAs.

Pathway analysis of ADHD-associated miRNAs revealed two biological pathways.
One of the pathways involves miRNA-mediated regulation of serotonin receptor genes

and it is likely to be involved in neurological functions and diseases.

In summary, our studies have contributed to identify common genetic and epigenetic risk

factors that underlie the susceptibility to ADHD and to cocaine dependence. The results

reinforce the idea that epigenetic mechanisms dictate the differential expression of genes that

may be causal to ADHD. Cocaine dependence, which has been widely believed to occur under

environmental and epigenetic influences, is also in part genetically determined. Finally, ADHD

and cocaine dependence are comorbid disorders, and the observed genetic correlation between

these conditions can reflect biological pleiotropy.
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