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Abstract 24 

The hydrogeological processes driving the hydrochemical composition of groundwater in 25 

the alpine pristine aquifer system of the Port del Comte Massif (PCM) are characterized  26 

through the multivariate statistical techniques Principal Component Analysis (PCA) and 27 

Gaussian Mixture Models (GMM) in the framework of Compositional Data (CoDa) 28 

analysis. Also, the groundwater Natural Background Levels (NBLs) for NO3 and SO4 and 29 

Cl are evaluated, which are specially important for indicating the occurrence of 30 

groundwater contamination derived from the anthropic activities conducted in the PCM. 31 

 32 
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The different hydrogeochemical facies found in the aquifer system of the PCM comprises 33 

low mineralized Ca-HCO3 water for the main Eocene karst aquifer, and Ca-SO4 and 34 

highly mineralized Na–Cl water types in the minor aquifers discharging from the PCM. 35 

The NBL values of SO4, Cl and NO3 obtained for the main karst aquifer are 14.33, 4.06 36 

and 6.55 mg/L, respectively. These values are 35, 3 and 1.2 times lower than the 37 

respective official NBLs values that were determined by the water administration to be 38 

compared with in the case of conducting a pollution assessment characterization in the 39 

main karst aquifer. Official overestimation of NBLs can put important groundwater 40 

resources in the PCM at risk.  41 
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1. Introduction 47 

High mountain zones produce globally essential water resources that feed fresh water to 48 

the lowland depending ecosystems and a large portion of the world’s population (Viviroli 49 

et al., 2020). Mountain aquifers, specially those developed in karstifiable carbonate rocks, 50 

store the infiltrated precipitation, thus maintaining important groundwater resources. 51 

These resources are typically released through large springs that regulates the hydro-52 

ecological regime of the downstream rivers (Kresic and Stevanović, 2010), and provide 53 

water resources during the dry season in semi-arid regions, where they are often the 54 

primary source of drinking water (Stevanović, 2019).  55 

 56 

Karst aquifers are much more vulnerable to pollution than other aquifers. Contaminants 57 

may easily enter the subsurface into the karst system and rapidly spread in the conduit 58 

system without any substantial attenuation (Marín and Andreo, 2015), threatening the 59 

water resources of a region, at large scale. These aquifers need special protection (Drew 60 

and Hötzl 1999, Zwahlen, 2004). In this line, the European Union enacted the Water 61 

Framework Directive (2000/60/EC) (WFD, 2000) as an integrated approach focusing on 62 

the monitoring of water bodies. The WFD (2000) also defines the rules for the 63 

identification of the different groundwater bodies (GWB), but also the criteria for 64 

chemical status assessment through defining pollutants threshold values (TVs) and 65 
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groundwater natural background values (NBLs). The TVs are quality standards for 66 

pollutants in groundwater representative of those groundwater bodies considered to be at 67 

risk. The NBLs provide the information regarding the concentration of a given element, 68 

species or chemical substance present in solution which is derived by natural processes 69 

from geological, chemical, biological and atmospheric sources (Müller et al., 2006). In 70 

other words, NBLs are the corner stone to quantitatively evaluate whether groundwater 71 

is significantly affected or modified by anthropogenic influences (Nieto et al., 2005; 72 

Custodio et al., 2007).  73 

 74 

It is not easy to define NBLs in high mountain karst aquifer systems (HMKS). For a given 75 

aquifer and a certain component, the corresponding NBL value is obtained by averaging 76 

the dissolved content of that component in groundwater discharge for the different springs 77 

draining the aquifer. HMKS are usually embedded in geological structures that are the 78 

result of complex tectonic processes (e.g. faults, fold-and-thrust belts, wedge pinch out 79 

layers). This often causes a strong compartmentalization (Ballesteros et al, 2014) that may 80 

involve different lithologies (i.e. from carbonates to evaporites), thus generating a 81 

complex aquifer system. The geological variability of such aquifer system influences the 82 

hydrogeochemical signature of groundwater along the different flowlines, which typically 83 

converge while mixing around springs. As a result, a different hydrochemical 84 

composition than the expected may be obtained in the discharge of a spring given its 85 

geological setting (Lambán et al., 2015), thus complicating a consistent NBLs 86 

characterization for the different aquifers conforming the hydrogeological system. 87 

 88 

To correctly define NBLs in HMKS it is fundamental to have both a good hydrogeological 89 

characterization and sound conceptual model of the aquifers at local scale, and a good 90 

characterization of the relevant hydrogeochemical fingerprints describing the whole 91 

picture of the aquifer system. In this framework, multivariate statistical analysis (MSA) 92 

techniques/tools have shown a proven track record in characterizing complex 93 

hydrogeological systems through the analysis of spatial variations in hydrochemical data.  94 

 95 

Geochemical data (and hence also hydrogeochemical data) are compositional by nature. 96 

This means that the concentration of a given element is actually expressing a part of a 97 

whole, regardless of the dimensions in which the component concentration is expressed, 98 

either as weight per cent ratio (e.g., %, mg/kg), or given as component mass per unit of 99 
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dissolution volume (e.g., mg/L). Consequently, according to Aitchison (1986), they carry 100 

only relative information. In geochemistry and statistics they are known as ‘closed data’ 101 

which implies that they not vary independently. As a consequence, they are not well 102 

represented by the usual Euclidean mathematical real structure. This may lead to 103 

important drawbacks in the analysis, widely discussed by different authors (Reimann et 104 

al., 2012; Buccianti and Grunsky, 2014; Filzmoser et al., 2018; Pawlowsky-Glahn, et al. 105 

2015), which can affect its direct use in MSA if the appropriate transformations  are not 106 

previously done. To overcome the problem, Aitchison (1986) described mathematically 107 

the structure of the Simplex (the sample space for compositional data) and  proposed the 108 

first log ratio approaches, such as the additive log ratio (alt) and centered log ratio (clr), 109 

in order to express the   compositional data sets  in the usual real space. Later on, Egozcue, 110 

et al. (2003) proposed the isometric log-ratio (ilr) coordinates, also known as ‘balances’. 111 

The latter transformation has better mathematical properties, and most importantly, 112 

allows to better interpret intermediate results of the analysis. These sets of methods are 113 

usually refered as compositional data (CoDa) analysis and allow to ‘open’ geochemical 114 

data, transforming the raw data before the application of classical MSA tools. The CoDa 115 

approach has been widely used in soil geochemistry studies (Buccianti et al., 2018; 116 

Carranza, 2011; Reimann et al., 2012, among others) and less often for hydrogeological 117 

studies, (Blake et al., 2016; Bondu et al., 2020; Otero et al., 2005; Owen et al., 2016, 118 

among others). In some cases this has already been used specifically for NBL studies. 119 

 120 

The combination of MSA tools (e.g. principal component analysis and clustering 121 

analysis) allow to investigate the factors controlling the processes taking place in aquifers 122 

driving the hydrogeochemical composition of groundwater (Puig et al., 2011; Blake et 123 

al., Piña et al., 2018; Shelton et al., 2018). Clustering analysis (CA) methods have been 124 

largely used to separate groundwater samples, especially for large and/or complicated 125 

datasets, into homogeneous groups to show up different source contributions to 126 

groundwater in the sampled springs (see Suk and Lee, 1999; Cloutier et al., 2008; Yidana, 127 

2010; Kim et al., 2014; Yolcubal et al., 2019, among others). This faculty makes CA 128 

methods a promising tool to correctly define NBLs in HMKS. 129 

 130 

There are two mainstreams in CA, (1) the “hard clustering” methods like hierarchical 131 

clustering and partitioning methods (k-means, k-medoids: Partitioning Around Medoids 132 

– PAM -, and Clustering Large Applications – CLARA), where each data point (i.e. the 133 
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sample) is assigned to one and only one cluster (hard assignment), and (2) the “soft 134 

clustering” methods, like model-based clustering (e.g. the Gaussian Mixture Models – 135 

GMM) and fuzzy clustering where instead of assigning each data point into a unique 136 

specific cluster, it is assigned to all the clusters with different probabilities or weights 137 

(soft assignment) (Güler and Thyne, 2004). 138 

 139 

Soft clustering methods are getting more popular since they provide degrees of 140 

membership at different hydrogeochemical clusters, rather than clear-cut distinctions. As 141 

a result, they can better reflect the spatial continuity of a hydrological system while 142 

providing a more rigorous framework to validate the clustering results (Kim et al., 2014; 143 

2015; Wu et al., 2017; Bondu et al., 2020). Moreover, in the framework of HMKA where 144 

the limited number of observations often is a challenge, GMM clustering algorithms are 145 

shown to be able to provide valuable insights into hydrochemical processes, delineating 146 

the different groundwater sources imprinting the hydrochemical signature of the aquifer 147 

system, despite a sparse hydrochemical dataset (Wu et al., 2017). GMM are specially well 148 

suited to provide a solid basement for NBLs determination in HMKS. Altough GMM 149 

have been used for some authors to evaluate NBLs (Kim, et al. 2015), surprisingly, there 150 

are no references in the scientific literature using GMM in the framework of CoDa 151 

analysis to evaluate NBLs in HMKS. 152 

 153 

This work aims at filling this gap. To that end, we characterize the hydrochemical 154 

composition of the different aquifers associated to the alpine karst aquifer system of the 155 

Port del Comte Massif (PCM) to evaluate in a consistent way the NBLs for the different 156 

aquifers integrated in this HMKS. This is conducted through a MSA approach that 157 

combines in a CoDa analysis framework both PCA and GMM clustering analysis. 158 

 159 

 160 

2. The study area 161 

The PCM is located in the South-Central Catalan Pyrenees (north-east of Spain), which 162 

constitute an orogenic system that runs along the boundary between the Iberian and 163 

European plates. It is of Late Cretaceous to Miocene age (Muñoz, et al 2018). The 164 

elevation of the mountainous massif ranges from 900 m a.s.l. to 2390 m a.s.l. The massif 165 

constitutes an independent structural and hydrogeological system with a surface area of 166 
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110 km2. The highest peaks of the massif conform a water divide between the upper Segre 167 

River basin to the NW and SW (a large tributary in the Ebro basin) and the upper Cardener 168 

River basin (a tributary of the LLobregat River) to the SE (Fig. 1). 169 

 170 

According to the Köppen-Geiger classification (Peel et al., 2007), the study area is 171 

characterized by a cold climate without a dry season and with a temperate summer. For 172 

the period 2005-2019, the average annual precipitation (P), temperature (T) and potential 173 

evapotranspiration (Hargreaves' method) at the SMC meteorological station located at 174 

2315m a.s.l. (Fig. 1) are 1055 mm, 3.2° C and 525 mm, respectively. At elevations > 1800 175 

m a.s.l. the snow covers the massif from December to March. 176 

 177 
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 178 
 179 

Fig.1. (A) Location map of the study area. (A). Delimitation of the groundwater bodies 180 

affecting the PCM; GWB-44 belongs to the Segre river basin, and GWB-5 belongs to the 181 

Llobregat river basin. (B) Location of the 43 monitored springs in the PCM 182 

 183 
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Geologically, the PCM constitutes an independent thrust sheet which presents complex 184 

structural shapes in its boundaries (Fig. 2), with different thrust sheets individualizing the 185 

whole domain in one independent structural system. The internal structure of the PCM is 186 

formed by a set of folds and thrusts. These folds have a constant direction NE-SW parallel 187 

to the NW limit (Vergés, 1999). The stratigraphic series contains limestones and 188 

evaporites mainly from the Triassic, Cretaceous limestones, Paleogene calcarenites, and 189 

shales, and Eocene-Oligocene limestones, sandstones and marls. The Jurassic marls, 190 

limestones and dolomites only outcrops in the NW part of the geological sheet. The 191 

limestones have a total thickness greater than 1300 m. From the geomorphological 192 

perspective, the PCM presents a rounded-soft landscape in the highest domains with no 193 

vegetation cover and almost no soil horizon development. The rest of the massif is 194 

covered by mountain meadows and forest, with a shallow soil depth up to medium 195 

development ground cover. Many different karst forms appear progressively from 1950 196 

m.a.s.l. upwards, being well developed at 2050m a.s.l. (see Fig 2, indicated as 'Area with 197 

well-developed karst landforms'), with sinkholes, dolines and karren fields. They 198 

underline the heterogeneity of the karst system. 199 

 200 

From the hydrogeological point of view, the PCM can be considered an independent unit 201 

multi-aquifer system. The main aquifer is formed by Lower Eocene – fissured and 202 

karstified limestones and dolomites. It constitutes one of the most important karst aquifers 203 

of the Catalan Pyrenees. The other existing aquifers and aquitards in the system are related 204 

to the Cretaceous limestones, Triassic limestone and evaporites, other Paleogene 205 

conglomerates and sandstones, and also to small Quaternary aquifers draining small 206 

areas, which can be recharged locally at low or medium elevations. The lower Upper 207 

Cretaceous/Paleocene (Garumnian facies) substrate materials, composed by siltstone and 208 

shales constitute an impervious layer for the overlaying Lower Eocene karst aquifer. The 209 

geometric characteristics of the geologic structure of the system strongly influences the 210 

location of the existing karst springs, their groundwater geochemistry and their long-term 211 

hydrologic behaviour. 212 

 213 
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 214 

Fig. 2. Geological map and geological cross-sections of the PCM (modified from ICGC, 215 

2007) 216 

The hydrogeological conceptual model of the PCM aquifer system, as presented by 217 

Herms, et al. (2019), considers that recharge is produced by infiltration of precipitation 218 

as rainfall and snowmelt, and occurs both concentrated through the local karst conductive 219 

features, mostly situated at the top of the massif, and diffuse through the whole domain. 220 
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The infiltrated water percolates through the thick unsaturated zone (more than 1000 m at 221 

the top of the massif) towards the saturated zone, and discharges through a large number 222 

of springs. 223 

 224 

More that 100 springs were inventoried in the study zone. Nevertheless, only 43 of them 225 

discharge throughout the year (Fig. 1). These springs were monitored during the period 226 

September 2013 – October 2015. Most of them discharge small-scale local sub-surface 227 

water flows, with flow rates ranging between 0.1 L/s to 1 L/s. Nevertheless, there are four 228 

‘regional’ springs (M-22, M-25, M-31 and M-43) with flow rates between 1 L/s and 900 229 

L/s during the monitored period. These regional springs are recharged at medium to high 230 

elevations, and drain the system discharging through the limestones outcrops (M-31), 231 

Quaternary deposits overlying the limestones (M-25, M-22), and also through well-232 

developed karst conduits in the conglomeratic materials of the Ebro Basin (M-43). These 233 

conglomerates conform the southern foreland basin of the Pyrenees, which is located just 234 

at the southern border of the PCM. There is also a diffuse groundwater discharge through 235 

the ‘Riu Fred’ sub-basin, to the North. With the exception of two singular groundwater 236 

wells on the SW and E edges of the PCM, there are no other water wells within the 237 

perimeter of the PCM that exploit the main karst aquifer. It is estimated that the regional 238 

water table of the karst system is between 1000 and 1100 m a.s.l. (Herms et al., 2019). 239 

 240 

Although the whole PCM massif belongs to the same geomorphological structure, the SE 241 

sector has been assigned to GWB-5 (‘Conca Alta del Cardener i Llobregat’), whereas the 242 

rest of the PCM was assigned to GWB-44 (‘Cadí Port del Comte’). Table 1 summarizes 243 

the natural background levels at the 90th percentile values (NBL90), determined through 244 

the Pre-selection (PS) method described by the EU research project “BRIDGE” (2007) 245 

(Müller et al., 2006) using different control points for each GWB. It is worth noting the 246 

high values for SO4 contents in both GWBs. The NBLs values are assigned to the entire 247 

GWBs, and therefore are understood as representative of all units / aquifers included in 248 

these bodies. However when the focus is on particular aquifers such as the pristine waters 249 

related to the Eocene karst aquifer included in the PCM, the assigned input value appears 250 

high. 251 

 252 

 253 

Table 1. NBL90 values for Cl, NO3 and SO4 in the GWB-5 and GWB-44. 254 
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 NBL90 

 
Cl [mg/L] SO4 [mg/L] NO3 [mg/L] 

GWB-5 12 a 485 a -  

GWB-44 36b 609b 8b 
(a) Data source: Agència Catalana de l’Aigua 

(b) Data source: Confederación Hidrográfica del Ebro 

 255 

In the current Spanish regulation for drinking water (MHCASWS, 2003) the limit of 256 

potability for sulfate is 250 mg/L of SO4. According to this value, the whole GWB5 and 257 

44 would be exceeding the regulatory limit, when groundwater from the Eocene aquifer 258 

is actually being used safely for drinking downstream. Therefore, assigning a global NBL 259 

value when the GWB integrates a number of aquifers with a different hydrochemical 260 

signature is not a minor issue. 261 

 262 

3. Materials and methods 263 

3.1. Sampling and analysis 264 

In this work, 43 springs were sampled twice per year (i.e. before snowfall and after 265 

snowmelt seasons) between September 2013 and October 2015. Nevertheless, in six of 266 

them (M-04, M-20, M-22, M-25, M-31 and M-43) (Fig. 1) the groundwater sampling 267 

frequency was higher, every three to four weeks, to study the hydrogeochemical evolution 268 

of groundwater discharge. The springs M-22, M-25, M-31 and M-43 correspond to 269 

regional discharge points of the karst system, whereas springs M-04 and M-20 are 270 

considered representative of the local small aquifers of the area (Herms et al., 2019).  271 

 272 

A total of 288 groundwater samples were collected. Additionally, 10 snow samples (7 273 

from natural snow and 3 from artificial snow produced in the existing ski resort in the NE 274 

zone of the PCM) and two water samples from water ponds used to artificial snow 275 

production were collected. In all cases, the in situ physico-chemical parameters 276 

Temperature (T), electrical conductivity (EC), pH, Eh and the total dissolved solid (TDS) 277 

were measured. The geochemical analysis considered major cations and anions.  278 

 279 

All samples were filtered using a 0.45μm membrane filter and stored in new 200-500 mL 280 

polyethylene bottles washed with diluted nitric acid and rinsed with the water to be 281 

sampled prior to sampling. Samples for cation analysis were acidified with ultrapure 282 
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HNO3, to pH<2 to prevent precipitation. Samples for anion analysis were not acidified. 283 

All water samples were preserved at 4 ºC before laboratory measurement. T, CE, pH, Eh 284 

and TDS were measured by a portable Hanna meter (Multiparameter Water Quality Meter 285 

HI9829). The total alkalinity was determined in situ using the titration method - and later 286 

for the rest of campaigns using a photometer colorimetric method with the HI755 287 

alkalinity test checker (Hanna Instruments). The major cations (Ca, Mg, Na, K, NH4) and 288 

anions (Cl, NO3, HCO3,CO3, SO4, and F) were determined in the Laboratori Ambiental 289 

d’Aigües de Terrassa: the cations were analysed by inductively coupled plasma atomic 290 

emission spectrometry (ICP-OES Agilent 5100 DV), except the ammonium, which was 291 

measured using a ultraviolet-visible (UV-VIS) spectrophotometer, and the anions by ion 292 

chromatography (Dionex, DX-120). Ionic balance errors were calculated using the USGS 293 

software PHREEQC (Parkhurst and Appelo, 2013) within the version PhreeqC 294 

Interactive (version 3.3.3 10424), and with the phreeqc.dat database, except for the most 295 

salinized natural waters (M-30 and M-41) related to deep flow through Keuper 296 

evaporates. The majority of analyses had ionic balance errors below the recommended 297 

standard of ±5% (Appelo and Postma, 2005). 298 

 299 

3.2 Data transformation using the CoDa approach 300 

Geochemical datasets contain mostly compositional variables. , that is, multivariate 301 

variables where the individual parts are parts of a whole (Buccianti and Grunsky, 2014). 302 

Classical examples refer to constant sum variables, but recent definitions of 303 

compositional data include all types of data representing parts of some whole.  Ignoring 304 

the compositional character of these geochemical variables may lead to misleading results 305 

(Pawlowsky-Glahn et al., 2015). In this context, the CoDa analysis methodology is used 306 

in this work. In order to avoid the problems derived from the compositional data 307 

character, three transformations, all based on log-ratios have been historically proposed, 308 

named as: additive log-ratio (alr) transformation, centered log-ratio (clr) transformation 309 

(Aitchison, 1986) and isometric log-ratio (ilr) transformation (Egozcue et al., 2003). 310 

 311 

In this study, the hydrochemical dataset was transformed using, firstly clr and secondly 312 

ilr. If x is the compositional vector, 𝐱 = (𝑥!, … , 𝑥"), the former transformation is 313 

described by 314 

 315 
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clr(𝐱) = 𝑙𝑛 * !!
"(!!)

+ ; 	𝑖 = 1 ÷ 𝐷,  (1) 

 316 

where 𝑔(𝐱) = )∏ 𝑥#𝐷
𝑖=1

)  is the geometric mean of all the considered components (ions), 317 

and D is the column matrix dimension. 318 

 319 

The ilr transformation allows to express hydrochemical compositions with respect to an 320 

orthonormal basis. Their coordinates, called balances, may be easily obtained using a 321 

Sequential binary partition (SBP) (Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 322 

2005, 2006; Pawlowsky-Glahn et al. 2015). The SBP has been widely used for many 323 

authors on water chemistry studies (Engle and Rowan, 2013; Owen et al., 2016; Hee Kim 324 

et al., 2019; Bondu et al., 2020). For a D column matrix, i.e. a D-part composition, D-1 325 

balances are calculated from the SBP as 326 

ilr(𝐱) = 4
*!"·*!#
*!",	*!#

ln
"./!"0

"./!#0
; 		𝑖 = 1 ÷ 𝐷 − 1 , (2) 

 327 

where 𝑐1" and 𝑐1# are the groups of parts separated in the 𝑖th step of the SBP; 𝑟1" and 𝑟1#	are 328 

the numbers of parts included in 𝑐1" and 𝑐1#, respectively. 329 

 330 

According to Egozcue and Pawlowsky-Glahn (2005; 2006), two methods for performing 331 

SBP can be applied: (1) directly from the PCA, and (2) by experienced judgment, where 332 

non-overlapping groups of parts, known as balances, are defined. 333 

There are different software tools that allow to perform these transformations. The called 334 

CoDaPack v.2.0. program (Comas-Cufi and Thió-Henestrosa, 2011) is a software 335 

developed by the Research Group in Statistics and Compositional Data Analysis at 336 

University of Girona (UdG). This software can be freely downloaded from 337 

http://ima.udg.edu/codapack. It allows performing the log-ratio transformations and to 338 

prepare different kind of plots to show the results. In this research, all statistical analyses 339 

were done using the statistics program R version 3.6.1 (2019-07-05) (R Development 340 

Core Team 2004), which is available for free under the GNU-public License and for all 341 

platforms from http://www.cran.r-project.org, through the software RStudio, a graphical 342 

user interface for R . For multivariate statistical analysis (MSA) using the CoDa analysis 343 

approach, the following packages for R software were used: {stats} version 3.6.1. (R-core 344 
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R-core@R-project.org); {compositions} version 1.40-5 (Van den Boogaart and 345 

Tolosana-Delgado, 2008) {zCompositions} version 1.3.4 (Palarea-Albaladejo and 346 

Martín-Fernández, 2015). 347 

Water samples with solute dissolved concentrations lower than the detection limit (the 348 

so-called ‘left-censored values’) put an extra challenge when addressing MSA 349 

techniques. The censored data can be either removed, or replaced or imputed (e.g. values 350 

below detection limit are rounded as zeros) (Carranza, 2011). Following the criteria used 351 

for several authors (Reimann and Filzmoser, 2000; Farnham et al., 2002), in this work, 352 

left-censored values were excluded from the MSA when they represented > 25% of the 353 

total number of samples (i.e. when the variable had a ‘medium–high’ level of nondetects 354 

according to Palarea-Albaladejo and Martín-Fernández, 2014). Different algorithms can 355 

be applied within the {zCompositions} package for R for imputing these values (like 356 

multRepl, multLN, lrEM and lrDA methods).  357 

 358 

3.3. Univariate exploratory data analysis 359 

In order to explore the internal structure of the datasets, different Exploratory Data 360 

Analysis (EDA) plots combining an histogram, density trace, one-dimensional scatterplot 361 

and a boxplot (Kürzl, H. 1988) were used. Having this in mind, the ilr coordinates are 362 

adapted to the univariate case with the package {StatDa} (Filzmoser et al, 2009, 2009b). 363 

The variable of interest x (i.e. Cl, NO3 and SO4) is single ilr-transformed (Eq. 3):  364 

 365 

𝑧 = 	
1
√2

· 𝑙𝑛 *
𝑥

1 − 𝑥+ (3) 

 366 
 367 
 368 
3.4 Principal Component Analysis (PCA) and Model-based clustering  369 

The first step to apply any MSA, is to check the presence of left-censored data and the 370 

imputation of values. The function ‘zPatterns’ {zCompostions} is used to find and display 371 

patterns of zeros/missing values in the whole dataset (see pattern diagrams at Fig.SM.2.1 372 

of Supp. Mat.). In this work, the left-censored detected values were imputed using the 373 

‘lrDA’ (log ratio Data Argumentation) function. It is based on the log ratio Markov Chain 374 

Monte Carlo Data Argumentation algorithm (Palarea-Albaladejo and Martín-Fernández, 375 
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2015), and it has been already used by different authors to delineate water types (e.g. 376 

Owen et al 2016; Hee Kim et al., 2019). Following the commented procedure two data 377 

matrices were prepared:  378 

 379 

• Dataset Matrix (300x8), corresponding to 300 water samples (288 groundwater 380 

samples and 12 snow and water ponds samples) and 8 variables (HCO3, Cl, SO4, 381 

NO3, Ca, Mg, Na, K). 382 

 383 

• Dataset Matrix (43x8), corresponding to the median hydrochemical composition 384 

of groundwater evaluated for each of the 43 springs and 8 variables (HCO3, Cl, 385 

SO4, NO3, Ca, Mg, Na, K) (Table SM.1. Supp. Mat.) The consideration of 386 

“median composition” of time series follows the requirements to estimate NBL’s 387 

using the PS method (see section 3.4). 388 

 389 

Table SM.3.1 (Supp. Mat.) shows the list of parameters ‘included’ and 'excluded' for the 390 

MSA and their justification. 391 

 392 

PCA is a very common method that is based on dimensionality reduction of datasets. It 393 

helps deciphering hydrogeochemical patterns and to infer the controlling variables of the 394 

water chemistry (Merchán et al., 2015; Moya et al., 2015). In order to perform the PCA 395 

it is necessary to calculate the ‘variation matrix’ of the dataset (Aitchison, 1986) as a first 396 

step to obtain a measure of the dependence of the different variables, that is, the parts of 397 

the composition. Each component of the variation matrix, 𝜏#$, describes the log-398 

relationship between two of the composition 𝑥1 and 𝑥2 (in this case chemical species). It 399 

is defined as  400 

 401 

𝜏12 = var ?ln !!
!$
@ = 3

453
∑ ln6 ?!%!

!%$
@ − ln2 ?"!

"$
@4

783   , (4) 

 402 

where N is the number of observations and gi, gj are the geometric mean values for the 403 

two variables considered. A small value of 𝜏𝑖𝑗 (which is equivalent to 𝜏𝑗𝑖) implies a good 404 

proportionality between the two variables. The variation matrix, 𝜏#$, is obtained using the 405 

R function ‘summary.acomp’ of the package {compositions}.  406 

 407 
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Once the variation matrix is obtained, then the correlation between the variables 𝑥1 and 𝑥2 408 

is estimated through the ‘index of proportionality’function, 𝜌#$ (Eq. 5) (Aitchison, 1986). 409 

The stronger the correlation between 𝑥1 and 𝑥2 the closer to 1 is the value of 𝜌#$. 410 

 411 

𝜌12 = exp ?
59!$

&

6
@   (5) 

 412 

Data transformation following the CoDa analysis approach is applied before using any 413 

MSA tool. In this case, the PCA is applied using clr-transformed data (Eq. 1) obtained 414 

with the function ‘clr’ of the {compositions} R package. The method provides a new 415 

matrix of standardized coordinates for each sample called ‘the scores’, and also a new 416 

matrix of variable ‘loadings’ with columns representing the principal components of the 417 

(clr-transformed) data.  418 

 419 

The graphical representations of the PCA results of clr-transformed data were done using 420 

the well-known biplot graphic (Gabriel, 1971) (Fig. 3), where the individuals are 421 

expressed as dots and the variables as rays. However, the interpretation of the clr-biplot 422 

differs from the interpretation of the classical biplot. Te clr-biplot interpretation is 423 

conducted by following the criteria proposed by Aitchison and Greenacre (2002), which 424 

is well suited for analyzing compositional data (Otero et al., 2005; Engle and Rowan, 425 

2013; Blake et al., 2016; Piña et al., 2018). The criteria can be summarized as: 426 

 427 

• The length of a link (i.e . black shaded line) between the rays (red arrows) defining 428 

clr(xi) and clr(xj) is proportional to the variance of ln(xi/xj). 429 

• If two rays lay near each other, their quotient might be almost constant, and they 430 

might be proportional. 431 

• If two links between four different clr-variables are orthogonal, then the 432 

corresponding pairwise quotients may be independent. 433 

• If three or more vectors lie on the same link, the corresponding sub-composition 434 

might have one single degree of freedom. 435 

• If two links between four separate clr-variables are orthogonal then the 436 

corresponding pairs of variables may vary independently of each other. 437 

 438 
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 439 
 440 

Fig. 3. clr-Biplot of the Principal Components PC1 and PC2 for the dataset Matrix 441 

(300x8). The label of the axes indicates the percentage of the variance explained by PC1 442 

and PC2, respectively. The PCWR dashed line indicates the link between pristine waters 443 

and groundwater with water-rock interaction. The CARSUL dashed line indicates the link 444 

between CARbonate and SULphate waters. The smaller circles correspond to the 445 

different water samples and their color indicates their corresponding water type, whereas 446 

the larger circles represent the average composition of the different water types. To 447 

illustrate this, the groundwater samples from springs M-30 and a M-41 are indicated, as 448 

well as the corresponding mean composition. 449 

 450 

The principal aim of cluster analysis is to split a number of observations into groups that 451 

are similar in their characteristics or behaviour (Reimann et al. 2008). The cluster analysis 452 

is applied to group observations into several homogeneous clusters. It is based upon 453 

similarities between the observations and provides insights regarding the multivariate 454 

geochemistry characteristics (Bondu et al., 2020; Templ et al., 2008).  455 

 456 

In this work it is used the ‘soft’ model-based clustering method. One of the main 457 

advantages is that it uses a probability-based approach. Therefore, the obtained partition 458 

can be interpreted from a statistical point of view, unlike the classical ‘hard’ - or heuristic-459 
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based - algorithms (k-means, hierarchical clustering, etc.) (Bouveyron and Brunet-460 

Saumard, 2014). The model-based clustering approach used considering the ilr-461 

transformed data was the finite mixtures of multivariate-normal or Gaussian distributions 462 

known as Gaussian Mixture Model (GMM), which is included in the {Mclust} R package 463 

(Fraley and Raftery, 2002; Fraley et al. 2012; Scrucca et al., 2016), and using the R 464 

version: 5.4.6 (Raferty et al., 2020). It assumes that observed data come from a mixture 465 

of underlying probability distributions representative of two or more clusters. 466 

 467 

The GMM assumes the following probability distribution function (PDF)  468 

 469 
𝑓(𝑥) = ∑ 𝜔:𝑓:(𝑥|𝜇: , 𝐷:);

:83   , (6) 

 470 

where 𝜔% represents the weight or mixing proportion (0 ≤ 𝜔% ≤ 1; ∑ 𝜔% = 1&
%'! ) or 471 

probability that an observation comes from the kth mixture component, K is total number 472 

of components (i.e., groups or clusters), and 𝑓% is the PDF of the observations for the kth 473 

variable. Each component is usually modeled by a normal distribution (Eq. 7) with mean 474 

𝜇% and covariance matrix 𝐷%. 475 

 476 

𝑓:(𝑥|𝜇: , 𝐷:) = 	
3

(6<)
'
&·|>(|

)
&
exp J− (!5?()&

6·>(
K   (7) 

 477 

Taking into account Eq. 6 the conditional probability of assigning one observation to a 478 

given cluster is given by 479 

 480 

𝑃(𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘|𝑥) = @(A(.𝑥B𝜇: , 𝐷:0
A(!)

   (8) 

 481 

The greater the value of P the closer the association of sample x with the PDF 482 

corresponding to the cluster k is. By definition, those samples for which P > 0.5 for PDF 483 

k constitute a ‘‘cluster’’. 484 

 485 

For the different components 𝐾, the model parameters 𝜔%, 𝜇%, and 𝐷% are estimated using 486 

the expectation–maximization (EM) algorithm (Dempster et al., 1977). The covariance 487 

matrix 𝐷% describes the geometry of the clusters with its volume, shape and orientation 488 

The different combinantions of these parameters allows to define 14 multivariate mixture 489 
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models grouped in three main families: spherical, diagonal and ellipsoidal, which are 490 

included in the version used of {Mclust} package. In the other hand, this package uses 491 

the Bayesian Information Criterion (BIC) to find the optimum number of clusters. It 492 

identifies from those 14 multivariate mixing models, the one that best characterizes the 493 

data while maximizing BIC. More details of the GMM, BIC and EM mathematical 494 

approach, can be found on Biernacki and Govaert (1999), Fraley and Raftery (2002, 2012) 495 

and Raferty et al. (2020). In this study, model-based clustering has been applied to the 496 

dataset Matrix (43x8) of major ion data (HCO3, Cl, SO4, NO3, Ca, Mg, Na, K), 497 

represented in this case using ilr-coordinates (Eq. 2). 498 

 499 

The use of "hard" clustering methods were also analysed using the {clValid} (Brock et 500 

al. 2008), the {factoextra}R package (Kassambara and Mundt, 2016) and the {NbClust} 501 

R package (Charrad et al. 2014). Considering the results obtained, it was decided to rule 502 

out their use in front of the GMM in order to avoid the degree of subjectivity in the choice 503 

of the most suitable options for determining the relevant number of clusters and the best 504 

‘hard’ method with the 43x8 matrix dataset. The results obtained can be consulted in the 505 

Supplementary Material. 506 

 507 

3.5. Determination of Natural Background Levels (NBLs) and Threshold 508 

Values (TV) 509 

After identifying the number of underlying clusters in the data set in hand, based on MSA 510 

tools, the NBL and TV values for Cl, SO4 and NO3 are determined, which are the most 511 

common solutes causing specific groundwater pollution issues in HMKS. In this work, 512 

the PS-method developed in the framework of the EU “BRIDGE” (2007) project (Müller 513 

et al., 2006) is applied since it has been successfully proven in many studies (Coetsiers et 514 

al., 2009; Ducci and Sellerino, 2012; Hinsby et al., 2008; Marandi and Karro, 2008; 515 

Parrone et al., 2019; Preziosi et al., 2010; Wendland et al., 2008; Zabala et al., 2016). The 516 

PS-method considers the following criteria for data preparation before estimating the 517 

NBL’s:  518 

 519 

• Time series should be replaced by medians (i.e. all sampling sites contribute 520 

equally to the NBL estimation). 521 
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• Samples with incorrect ion balance (exceeding 10%) and samples with median 522 

NO3 contents >10 mg/L must be rejected. 523 

• Brackish waters (i.e. NaCl) exceeding 1 g/L must not be considered.  524 

• If samples are anaerobic (O2 < 1 mg/L) or denitrification occurs, the dataset needs 525 

to be evaluated for the aerobic and anaerobic samples separately. 526 

 527 

To obtain the NBL, the 90th percentile of the data sets is advisable for small datasets (N 528 

≤ 60 sampling points) or when human impact cannot be excluded from the data, which 529 

is the case of the case study in this research. For n > 60 the 97.7th percentile is preferred. 530 

Once the NBLs are defined then the TVs are obtained following the final methodology 531 

suggested by the EU “BRIDGE” project: 532 

 533 

𝑇𝑉 = T
	3
6
· (NBL + Ref); 		𝑁𝐵𝐿 ≤ 𝑅𝑒𝑓

	𝑁𝐵𝐿; 																						𝑁𝐵𝐿 > 𝑅𝑒𝑓
    , (9) 

 534 

where Ref is the reference value. In case of the Spanish Royal Decree 140/2003 of 7 535 

February, laying down the health criteria for the quality of water intended for human 536 

consumption, the values of Ref for SO4, NO3 and Cl are 250 mg/L, 50 mg/L and 200 537 

mg/L, respectively.  538 

 539 

 540 

4. Results and discussion 541 

4.1. Exploratory analysis of data and general water chemistry 542 

The resulting EDA plots histograms for Cl, NO3 and SO4 of the dataset Matrix (43x8) 543 

(Fig.4.) show multi-model shapes in all the cases (i.e. major ions) suggesting that different 544 

populations are superimposed. In order to explain the dataset, and considering the 545 

geological setting of the area, a hypothetical mixture model with multiple components of 546 

different natural geogenic origin (possibly affected with local anthropogenic sources) 547 

must be considered, further to that coming from atmospheric deposition and evapo-548 

concentrated in the soil and top rock. Thus, a simply bi-modal distribution composed of 549 

natural vs anthropogenic contamination cannot be considered to establish the NBLs 550 
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without taking into account the multivariate character of the data. Thus, the first step is 551 

to separate the chemical groups or clusters. 552 

 553 

 554 

Fig. 4 EDA plots of ilr transformed data for Cl (A), NO3 (B), and SO4 (C) of the Matrix 555 

(43x8). 556 

Classical graphical methods for the classification of water chemistry data, such as Piper 557 

and modified Stiff diagrams were used as a first step to analyse the whole dataset (except 558 

water samples from pluviometers (i.e. in total 288 samples). Fig. 5 shows a map with the 559 

modified Stiff diagrams distribution over the PCM and also the corresponding modified 560 

Piper diagram. Based on that information, it is possible to initially aggregate the 561 

groundwater discharge from the 43 springs into 6 types of hydrogeochemical facies 562 

(Table 2): 563 

 564 
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 565 

Fig. 5. Hydrochemical diagrams. (A) Modified Stiff diagram map and (B) Piper diagram 566 

associated to the selected springs in the PCM. In both cases, for every spring the ion 567 

content values correspond to the median value associated to all samples taken from that 568 

spring. The springs are classified by their hydrochemical facies. 569 

 570 
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Table 2. Identified water types  571 

Water type Num. Springs Geological unitsa 

Ca-HCO3   32 Cretaceous (KMca, Kgp, Kat)  
Paleogene-Eocene (PEab, PEci, PEcp1, PEm1) 
Paleogene-Oligocene (POcgs, POmlg, PPEc) 
Quaternary (Qpe, Qt0, Qvl) 
Triassic-Jurassic (TJb, TJcd) 
Triassic Muschelkalk (Tm) 

Ca-HCO3-Cl 1 Paleogene-Eocene (PEcp2) 
Ca-SO4_   4 Quaternary (Qcoo) 

Triassic-Keuper (Tk) 

Ca-HCO3-SO4 2 Triassic-Keuper (Tk) 
Na-Cl   2 Triassic-Keuper (Tk) 
Ca-SO4-HCO3 2 Paleogene-Eocene (Pemb) 

(a) For a given Water type, the geological units based on ICGC, (2007) ordered by number of springs 

 572 

At the first glance, the results show that diverse springs outcropping from different 573 

geological units (ICGC, 2007) show similar groundwater facies, or also the same facies 574 

can be obtained from different points located at different geological units. In this context, 575 

these graphical techniques should not be considered determinant alone to discriminate 576 

between hydrochemical groups and therefore, their results should be considered 577 

preliminary. Table SM.1.1 (Supp. Mat.) shows the summary of the major ions content of 578 

the 43 monitored springs (expressed as median values of time series for the period 579 

September 2013 – October 2015) and also the water facies associated to them. 580 

 581 

4.2. PCA and dataset matrix size 582 

The variation matrix for the dataset Matrix (300x8) (Table 3) shows strong correlations 583 

between different pairs of variables such as Ca and HCO3, Na and Cl, and Mg and HCO3. 584 

Besides, NO3 shows a high correlation with Ca and HCO3, whereas almost no correlation 585 

with SO4. This result indicates that the most groundwater samples affected by nitrate 586 

pollution are those from the Eocene karst aquifer with a Ca–HCO3 hydrochemical 587 

composition.  588 

 589 
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Table 3. The upper triangle over the main diagonal shows the ‘index of proportionality’ 590 

(Eq. 5) of the dataset Matrix (300x8). The lower triangle over the main diagonal shows 591 

in italic the ‘index of proportionality’ of the dataset Matrix (43x8). In both cases, the 592 

correlation values larger than 0.5 are shaded in blue. 593 

 Ca Mg Na K HCO3 Cl NO3 SO4 
Ca -- 0.88 0.06 0.51 0.98 0.04 0.57 0.44 
Mg 0.76 -- 0.34 0.69 0.67 0.26 0.27 0.52 
Na 0.01 0.10 -- 0.54 0 0.96 0 0.15 
K 0.49 0.75 0.58 -- 0.15 0.36 0.13 0.43 
HCO3 0.94 0.41 0 0.07 -- 0 0.56 0.06 
Cl 0.01 0.07 0.99 0.40 0 -- 0 0.05 
NO3 0.55 0.07 0 0.02 0.59 0 -- 0.01 
SO4 0.17 0.24 0.07 0.25 0 0.02 0 -- 

 594 

 595 

The PCA is conducted initially with the whole dataset (N=300), including the 596 

hydrochemical composition of natural and artificial snow, water from ponds and 597 

groundwater samples. The PCA with clr transformed data shows that only with three 598 

principal components, the 87.4 % of total variance can be explained (Fig. 6). The PCA is 599 

affected by the presence of natural outliers, in our case from the Na-Cl hydro-facies, that 600 

completely distorts the shape of the biplots (Fig. 6B, 6C and 6D). The scores are classified 601 

according to the singled out nine water types when considering the complete dataset. 602 

 603 
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  604 
Fig. 6 (A) Scree-plot of dataset Matrix (300x8) showing the explained (solid circles) 605 

variance associated to every PC of the PCA, and the accumulated explained variance 606 

(empty circles) as the different PCs are accounted in the PCA. (B) Compositional biplot 607 

PC1 vs PC2 (C) Compositional biplot PC2 vs PC3 and (D) Compositional biplot PC1 vs 608 

PC3 showing scores (circles) and loadings (arrows) for clr transformed data. In the 609 

biplots, the bigger points represent the mean clr-value for each water type. 610 

From the distribution of the water samples in the clr-biplots several subgroups of waters 611 

with clear similarities can be read. The biplot between PC2 and PC3 clearly separates 612 

sulfate waters. Moreover, looking closely at the biplot between PC1 and PC2 (Fig. 3), 613 

different hydrochemical spatial trends can be observed, likely associated with changes in 614 

terms of bedrock lithology. In fact, it can be inferred that: (1) The highest clr-variances 615 

are shown for SO4, Cl and NO3, followed by Na and HCO3. The lowest clr-variances are 616 

shown for Ca, K, and Mg; (2) The PCA has emplaced separately the saltiest waters (M-617 

30 and M-41) in the western quadrant of the biplot. Using clr-transformed data allows to 618 

correctly separate characteristic points of the domain, which correspond to the deepest 619 

drainage from the Keuper materials; (3) The groundwater samples from the remaining 620 

springs are located in the north-eastern and southern quadrants: the freshest waters that 621 

are more related to the upper Eocene karst aquifer are situated at the north-eastern 622 
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quadrant and present some correlation with NO3. The samples related to Cretaceous and 623 

Triassic materials appear to be more disperse, being most of them at the south-eastern 624 

part of the biplot with extreme values in springs M-21, M-9, M-33, M-36, among others.  625 

Taking into account the specific rules for interpreting clr-biplots, the following aspects 626 

can be highlighted:  627 

§ It is possible to draw a link between the vertices of Na, K and Mg, indicating that 628 

these variables may form a sub-composition with a single degree of freedom. 629 

§ The vertices of SO4, Ca and HCO3 lie almost on a common link. This link is also 630 

almost orthogonal to the link drawn between Na, K and Mg, suggesting that these 631 

two sub-compositions may vary independently of each other.  632 

§ The two indicated links can be interpreted as two independent set of 633 

hydrochemical processes in the springs: (1) The “Pristine Character/Water-Rock 634 

interaction” link PCWR [Na, K, Mg] which represents as one end-member, the 635 

groundwaters influenced by NaCl contributions derived from Keuper materials 636 

but also to recharged waters (Ca–Cl–HCO3; Ca–Cl, Ca–NaCl) at the upper part of 637 

the PCM, which represent the other end members of waters that have interacted 638 

longer with the Tertiary karst system materials and more evapo-concentrated . (2) 639 

The “CARbonate/SULfate dissolution” link ‘CARSUL’ [SO4, Ca, HCO3] 640 

representing the dissolution of different types of carbonate and sulfate rocks 641 

(HCO3 as one end member of the link and SO4 as the other one). 642 

§ Samples in the south-eastern quadrant of the biplot are more disperse and have a 643 

stronger association with the SO4 vertices.  644 

In the case of the dataset Matrix (43x8) the variation matrix (Table 4) is consistent with 645 

that of the dataset Matrix (300x8), showing strong correlations between the same pairs of 646 

variables, and even with similar correlation values. The PCA with clr transformed data 647 

shows that when considering two or three PCs, 87.4% and 91.7% of total variance can be 648 

explained, respectively (Fig. 7). Besides, the resulting clr-biplots are similar in shape to 649 

those of Matrix (300x8). As it can be shown, the reduction of the dataset matrices from 650 

(300x8) to (43x8) in the PCA does not introduce any relevant change in the final inference 651 

regarding the geochemical characteristics of groundwater. This is convenient from the 652 

perspective of dimensionality issues. 653 
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 654 
 655 

Fig. 7 (A) Scree-plot of dataset Matrix (43x8) showing the explained variance (solid 656 

circles) associated to every PC of the PCA, and the accumulated explained variance 657 

(empty circles) as the different PCs are accounted for in the PCA. (B) Compositional 658 

biplot PC1 vs PC2 (C) Compositional biplot PC2 vs PC3 and (D) Compositional biplot 659 

PC1 vs PC3 showing scores (circles) and loadings (arrows) for clr transformed data. In 660 

the biplots, the bigger points represent the mean value for each water type. 661 

 662 

4.3 Clustering analysis 663 

The GMM clustering analysis was applied to the Matrix (43,8) dataset. Before conducting 664 

the ilr transformation, an intuitive sequential binary partition (SBP) was used to 665 

characterize the hydrochemical variability within the domain. In this case the partition is 666 

based on knowledge of the groundwater chemistry in the study area and on the resulting 667 

compositional biplot (Fig 7). As a result, seven groundwater partitions are considered 668 

(Table 4): the ilr_1 balance separates the Ca-HCO3 waters (mostly affected by NO3) from 669 

the rest; the ilr_2 separates those waters affected/non-affected by NO3 pollution; the ilr_3 670 

separates the contribution of calcite and dolomite to groundwater; the ilr_4 separates Ca 671 
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from HCO3; the ilr_5 separates SO4 waters from most salty waters; the ilr_6 separates K 672 

from Na/Cl; and finally the ilr_7 separates Na and Cl. 673 

Table 4. SBP of a 7-part composition (ilr_1, ilr_2, …, ilr_7) for describing isometric log 674 

ratio (ilr) coordinates based on the separation of anions and cations related to the 675 

hydrochemical composition of natural groundwaters for the clustering analysis. 676 

 677 

 678 

The results obtained from the GMM, suggest that the best multivariate clustering option 679 

is obtained applying the ‘EEI’ model (see Scrucca et al., 2016 for the geometric 680 

characteristics of the model) while considering a total of 4 clusters (see Fig. SM.4.1 in 681 

Suppl. Mat.). 682 

The scatterplot matrix obtained with the model-based clustering process using the seven 683 

ilr coordinates, being D the previous dimension of the original dataset matrix (43x8),  D-684 

1 coordinates can be shown in Fig. SM.4.2 (Suppl. Mat.). In order to visualize the clusters 685 

in a most suitable way, the dimension reduction function ‘MclustDR’ (Scrucca, L. 2010) 686 

for visualizing the classification structure obtained from the finite mixture of Gaussian 687 

densities of the {Mclust} package is used to reduce the dimensionality of the ilr matrix 688 

and estimate the principal components. Table. SM.4.1 and Fig. SM.4.3 (Suppl. Mat.) 689 

provide the scores of the reduced ilr-matrix and their representation in a scatterplot, 690 

respectively. The two main principal components explain 86,42% of the total variance. 691 

As a result, with only a glance at the scatterplot of PC1 and PC2 (Fig. 8A) the cluster 692 

division for the different springs shows up clearly, and each cluster can be described by 693 

the corresponding PDFs (Fig. 8B). It is worth to point out the similarity between the 694 

distributions of samples in the 2D space (albeit in a symmetric plane). The Fig. 8C 695 

presents the mean hydrochemical composition of each cluster (Table SM.4.2 in Suppl. 696 

Mat.) after the  modified Stiff diagrams, and Fig. 8D shows in a Piper diagram how the 697 

ilr Ca2+ Mg2+ Na+ K+ HCO3- Cl- NO3- SO42- 

ilr_1 +1 +1 -1 -1 +1 -1 +1 -1 
ilr_2 +1 +1 0 0 +1 0 -1 0 
ilr_3 +1 -1 0 0 +1 0 0 0 
ilr_4 +1 0 0 0 -1 0 0 0 
ilr_5 0 0 +1 +1 0 +1 0 -1 
ilr_6 0 0 +1 -1 0 +1 0 0 
ilr_7 0 0 +1 0 0 -1 0 0 
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mean hydrochemical composition of the clusters is representative of the composition of 698 

the corresponding springs. 699 

The probabilistic GMM framework estimates the optimal number of clusters and provides 700 

for every spring the probability of belonging to these clusters (soft assignment). This 701 

approach is more interesting that the classical clustering approaches, in which the number 702 

of clusters is assumed fixed, and every spring is assigned to one and only one of the 703 

previously assumed clusters (hard assignment) (Kim et al., 2014). From an hydrochemical 704 

point of view, the soft assignment often provides the more interesting interpretation 705 

because the method reveals if one observation is influenced by several factors (Templ et 706 

al., 2008). Moreover, Wu et al., (2017) show how the probabilistic GMM clustering 707 

provides insights into hydrochemical processes affecting groundwater, even with a 708 

limited number of observations, which is a common situation in high mountain kart 709 

aquifers such as the PCM. 710 

 711 

The conditional probabilities (P) of assigning one observation to a given cluster (Eq. 7) 712 

are given in Table SM.4.3 (Suppl. Mat.). In all cases, springs are assigned to one cluster 713 

with a probability > 0.95, and more than 83% of the springs reach the probability of ‘1’. 714 

The smaller probabilities occur in M-01 (P = 0.911 cluster A) and M-13 (P = 0.969 cluster 715 

B). Spring M-01 discharges from the Eocene karstic limestones. Nevertheless, this 716 

discharge might be affected by weak contributions of Tertiary sulfates (which are related 717 

to the formation locally known as ‘Beuda gypsum Formation’). The discharge in M-13 718 

shows a Ca-HCO3 hydrogeochemical composition despite discharging from the Triassic 719 

(Muschelkalk) limestone aquifer. In this case, the groundwater discharge is weakly 720 

affected by the underlying Keuper materials.  721 
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 722 
Fig. 8. (A) Density biplot for PC1 vs PC2 components obtained from GMM for the Matrix 723 

(43x8) of ilr-transformed data after dimension reduction. The dashed lines correspond to 724 

the probability zones of belonging a certain cluster in the subspace PC1-PC2. Solid 725 

symbols correspond to the mean hydrochemical composition of the clusters. (B) PDF’s 726 

of the resulting 4 clusters in PC1 (47.42%). (C) Modified Stiff diagram associated to the 727 

mean hydrochemical composition of the clusters. (D) Piper diagram associated to the 728 

selected springs in the PCM classified by their corresponding cluster to which they 729 

belong. Solid symbols correspond to the mean hydrochemical composition of the clusters. 730 

The hydrogeochemical description of each groundwater cluster can be summarized as: 731 

• Cluster A is characterized by low mineralization and dominated by slightly 732 

alkaline Ca–HCO3 water type. In total 27 springs are grouped in this cluster which 733 

correspond to 203 groundwater samples collected in the study from the total of 734 

288. All the springs drain directly or indirectly (i.e. covered by local Quaternary 735 

deposits) the Tertiary Eocene upper karst aquifer of the PCM (Fig. 9) and from 736 

the higher parts of the mountain (944 - 2144 m a.s.l.). They are mainly found 737 

inside the structural limits of the PCM sheet and at its boundaries except some of 738 

them localized in Quaternary deposits or discharging karstic conduits trough the 739 
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Oligocene carbonate karstic conglomerates situated just in the front of the thrust 740 

sheet (e.g. M-03, M-04, M-07, M-39, M-32 and M-43, which is one of the most 741 

important karst springs of the system). Another special case is the spring M-06 742 

which lies over Garumnian shales, marls and limestones (Kgp) outcropping 743 

materials. In this zone, a fault affecting the stratigraphy might allow the 744 

hydrological connection between the lower Eocene limestones (PPEc) and Kgp 745 

formations. This connection would explain the Ca–HCO3 water type associated to 746 

spring M-06, and also its classification in the cluster A, thus pointing the 747 

groundwater discharge origin as the Eocene Tertiary aquifer. Finally, spring M-748 

29 actually drains a Eocene limestone level situated at the west of the PCM 749 

boundary.  750 

Cluster A presents the lower EC values, which ranges between 186 and 486 µS/cm 751 

and has the minimum values of groundwater temperatures. The concentrations of 752 

Cl and SO4 are very low, ranging between 2.5 and 15 mg/L and between 2.6 and  753 

25.3 mg/L respectively. In 13 samples, the concentration of NO3 is above 10 754 

mg/L, and in one specific spring (M-32) it exceeds in all samples the legal limit 755 

for potable water (50 mg/L). The average Saturation Indices (SI) estimated with 756 

the Phreeqc program (Parkhurst and Appelo, 2013) for calcite, gypsum and halite 757 

are 0.23, -2.67 and -9.68, respectively. The groundwaters are representative of the 758 

recharge of the karst system in the highest altitudes of the massif, where the 759 

dissolution of carbonates is the dominant geochemical process controlling 760 

groundwater chemistry. 761 

• Cluster B encompasses water types from Ca–HCO3 to Ca–HCO3–SO4, Ca–SO4-762 

HCO3 and Ca–SO4, which are characterized by slightly alkaline moderate 763 

mineralization. This group includes 10 springs. A total of 40 groundwater samples 764 

collected in the study would correspond to this cluster. The springs related to 765 

Cluster B are situated either inside or outside the internal structural limits of the 766 

PCM thrust sheet. The springs situated inside (M-9, M-10 and M-13) occur mostly 767 

in (1) Cretaceous and Triassic (Keuper) materials outcropping in the area. These 768 

materials underly the principal aquifer of the massif (the Eocene carbonate karstic 769 

system), and (2) local shallow granular aquifers. The springs M-01, M-02, M-21 770 

and M-36 are related to sediments with high content of Tertiary gypsum from the 771 
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Beuda Formation, which outcrops in small pinched out belts located in front of 772 

the southeastern part of the PCM thrust sheet. Springs are located at the lowest 773 

parts of massif (altitudes ranging between 867 and 1456 m a.s.l.). The EC varies 774 

between 493 and 2102 µS/cm. The SO4 concentration is quite high and ranges 775 

between 88 and 989 mg/L, exceeding in most cases the legal limit for potable 776 

water (250 mg/L). The concentration of Cl ranges between 3.8 and 94.5 mg/L. 777 

The average SI for calcite, gypsum and halite are 0.32, -0.99 and - 8.61 778 

respectively. 779 

• Cluster C includes water types from Ca–HCO3 and Ca–HCO3-Cl water types. 780 

This group includes 4 springs and a total of 37 groundwater samples from which 781 

26 of them correspond to the spring M-20 (located at 1858m a.s.l.). Except the 782 

spring M-20, the rest (M-23, M-27, M-42) are located at the boundaries of the 783 

PCM geological sheet. The EC varies between 332 and 747 µS/cm. Although they 784 

have SO4 concentration similar to cluster A, with 9.7- 15.3 mg/L, the content of 785 

Cl is much higher, ranging between 24 and 82 mg/L. These higher values 786 

compared to cluster A are interpreted as related with groundwater flow through 787 

areas with the presence of relict halite or salty water in closed pores in the Keuper 788 

materials, or that may receive the solutes through diffusion. In the case of M-20 789 

(which is located inside the PCM sheet) the salt is related to a klippe of Jurassic 790 

delineated into the geological map. Besides, in the catchment area of this spring, 791 

there are small outcrops of Keuper materials detected during the fieldwork. The 792 

average SI for calcite, gypsum and halite are 0.24, -2.32 and -7.42 respectively. 793 

• Cluster D contains the most evident and special waters correspondings to Na–Cl 794 

type facies (Fig. 8). This group is composed of 2 salty springs (M-41 and M-30) 795 

located at the 993 and 1023 m a.s.l. at the East and West boundaries of the PCM 796 

sheet respectively. They are characterized by very high mineralization and 797 

saturated in gypsum, discharging from Keuper confined bedrocks and interpreted 798 

as the contribution of deep groundwater flow with elevated transit times that 799 

allows a significant solute diffusion. The waters are slightly acidic to near-neutral. 800 

The M-41 and M-30 samples presents EC values of 57.2 and 247.1 mS/cm, Cl 801 

concentrations of 21 and 178.2 g/L, and SO4 concentrations of 1.2 and 8.1 g/L 802 

respectively. The M-30 spring can currently be considered the saltiest spring of 803 

natural origin in Catalonia as those in the Cardona salt diapire of Oligocene age, 804 
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not far away, disappeared due to potash mining activities. Due to the presence of 805 

Middle Eocene evaporates at the East boundary of PCM, the M-41 spring can also 806 

be affected by an interaction with Tertiary gypsium.  807 

 808 
 809 

Fig. 9. Spatial distributions of the 43 clustered springs over the geological map of the 810 

PCM based on the GMM. The description of the different geological materials is the same 811 

presented in Fig. 2. 812 

 813 

In the framework of multivariate statistics data analysis (e.g. PCA and data clustering), 814 

specially dealing with compositional data (i.e. data that carry only information about the 815 

relative abundance of each component on the whole, such as the hydrogeochemical data 816 

sets), it is important to suitably transform the dataset using the CoDa analysis approach 817 

(e.g., Eq.1 or Eq.2) before conducting any analysis. Otherwise it is very likely to obtain 818 

wrong results (Otero et al., 2005). Moreover, uninterpretable results are also obtained 819 

when applying the classical standardization methodology known as “z-score” on 820 

compositional data, which considers logarithms and then subtracts the mean and divides 821 
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it by the standard deviation to scale them (Blake et al., 2016). To illustrate the importance 822 

of using correct CoDa transformations, the dataset Matrix (43x8) is used to apply the 823 

same MSA analysis techniques (PCA and the model-based clustering GMM) but using 824 

the classical standardization approach (or z-score normalization). If the effect of the 825 

closed nature of the geochemical data is not accounted for, and therefore the CoDa 826 

approach is not applyed, then the distribution of loadings (variables) and scores (samples) 827 

in the biplots, as well as their interpretation, may be critically affected. In this line, the 828 

biplot shown in Fig. SM.5.1. (Suppl. Material) strongly suggests the existence of a 829 

negative relationship between all Ca - HCO3 water samples respect all variables, which 830 

does not make any hydrogeological sense given the carbonatic nature of the aquifer and 831 

the hydrogeological knowledge supporting the existing conceptual model (Herms et al., 832 

2019). Additionally, the clustering results obtained through GMM may have no 833 

hydrogeological sense. To illustrate this, Fig. 10 presents the PDF’s of the best GMM 834 

obtained for PC1 with the dataset Matrix (43x8) from the z-score approach after 835 

dimension reduction. Unlike in the case of considering the CoDa approach (Fig. 8B), now 836 

the PDFs corresponding to the six clustes identified can not be clearly separated, thus 837 

making clustering results uninterpretable. 838 

 839 
 840 

Fig. 10. Separated PDF’s after dimension reduction with the best GMM with the 841 

transformed data using the classical standardization z-score approach. 842 

 843 

4.4 NBLs and TVs values. 844 
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Once the groundwater clusters are defined for the PCM, the NBL and TV’s for NO3, SO4 845 

and Cl have been obtained applying the PS-method (Müller et al., 2006). Taking into 846 

account the criteria required for data to be accounted when estimating the NBLs with this 847 

method (section 3.5), the following observations apply: 848 

 849 

§ The groundwater samples from M-30 and M-41 (the whole cluster D) present Cl 850 

concentrations of geogenic origin above the drinking water limit (>200 mg/L). 851 

Therefore, these samples are not considered in the NBL determination. 852 

§ NO3 concentrations above the drinking water limit (>50 mg/L) are mostly 853 

observed in M-32 spring (cluster A). Besides, the springs M-32, M-10, M-11 and 854 

M-28 present NO3 concentrations > 10 mg/L. Following the PS-method criteria, 855 

these springs have been excluded of the NBL determination. 856 

 857 

The NBLs for the remaining groundwater samples belonging to the clusters A, B and C 858 

are obtained taking into account the 90th percentiles (P90) of the corresponding cluster 859 

ECDF plots (Fig. 11B). The obtained NBL90 and TVs are presented in Table 5. The 860 

results indicate that Tertiary Eocene karst aquifer (cluster A), which is the principal 861 

aquifer inside the PCM, presents the lowest NBL90 values for Cl, SO4 and NO3. Cluster 862 

B, which is related to the aquifers on the Cretaceous and specially the Triassic Keuper 863 

materials, presents the highest NBL90 value for SO4, and Cluster C, which is generally 864 

related to local small aquifers located at the boundaries of the PCM, presents the highest 865 

values of NBL90 for both Cl and NO3. 866 

 867 
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 868 
Fig. 11. (A) boxplots of the clusters A, B and C for SO4, Cl and NO3. The dashed red 869 

lines indicate the reference limits established in the Spanish Royal Decree 140/2003 (B) 870 

ECDF plots. 871 

 872 

Comparing the obtained NBL90 values with those officially assigned to GWB-5 and 873 

GWB-44 (Table 1), it looks that the NBL official values of SO4 assigned to both GWBs 874 

(485 and 609 mg/L, respectively) are likely conditioned by the interaction between fresh 875 

groundwater and most probably evaporites of the Upper Triassic (Keuper facies), directly 876 

or through diffusion. These evaporites appear very often at the boundaries of many thrust 877 

sheets throughout the Southern Pyrenean zone. Additionally, the official NBL90 value of 878 

Cl assigned to GWB-44 is similar to that obtained for cluster B, which is related to the 879 

Keuper deposits. Likewise, the obtained NBL90 value of NO3 for the Cluster C is similar 880 

to the official one for GWB-44. As can be shown, none of the official NBL90 values 881 

defined for GWB-5 and GWB-44 correspond to those values obtained for the Lower 882 

Eocene limestones and dolomites, which constitute by large the main aquifer of the PCM.  883 

 884 

Table 5. Summary results of the NBL and TV’s values derived from the PS-method 885 

(BRIDGE, 2007) for clusters A, B and C for the solutes Cl, SO4 and NO3. 886 
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Cl [mg/L]  SO4 [mg/L]  NO3 [mg/L] 

Clusters NBL90% TVs  NBL90% TVs  NBL90% TVs 

A 4.06 + 2 8.12 + 2  14.33 + 2 29.66 + 2  6.55 + 2 13.1 + 2 

B 35.98 + 2 71.96 + 2  471.71 + 2 471.71 + 2  4.51 + 2 9.02 + 2 

C 81.92 + 2 140.96 + 2  13.96 + 2 27.92 + 2  7.73 + 2 15.46 + 2 

 887 

 888 

It is well known that high mountain karst aquifers generate highly valuable water 889 

resources for the downstream water depending ecosystems. Their protection and rational 890 

management is of utmost importance to sustain such ecosystems and satisfying their water 891 

demands (Kazakis et al., 2018). In this framework, NBLs provide an objective scale to 892 

compare with when the quality status of the aquifer is assessed. Nevertheless, these 893 

aquifers are often immersed in deformed and faulted geological structures, as happens in 894 

other axial zones of the Central Pyrenees (Lambán et al., 2015), in the Picos de Europa 895 

massif (Ballesteros et al., 2015), in the Jura Mountains (Luetscher and Perrin, 2005) and 896 

the Hochifen–Gottesacker Alps (Goldscheider, 2005), among others. The NBLs are 897 

obtained as a function of the hydrochemical content measured in the different springs 898 

discharging the system. Nevertheless, in geological complex zones it is difficult to assert 899 

if one certain spring is discharging groundwater from the aquifer of interest or not, 900 

because the geographical location of the spring may suggest an origin for the sampled 901 

groundwater while hiding mixing relations between groundwater flow lines from other 902 

local aquifers with different hydrogeochemical fingerprint (Lambán et al., 2015; Barbieri 903 

et al., 2017; Sánchez et al., 2017). 904 

 905 

The European Union Water Framework Directive (WFD, 2000) defines a general 906 

framework for integrated river basin management in Europe to ensure their “good water 907 

status”. Nevertheless, the river basin is often an entity hard to manage because the larger 908 

the size of the basin the larger is (1) the number of water bodies enclosed and (2) the 909 

likelihood of political-administrative boundaries issues to appear. To avoid such 910 

problems, instead of looking at river basins, the WFD refocussed on the smaller scale 911 

“river basin districts”, for which administrative structures were defined to correctly 912 

manage the corresponding bodies, thus ensuring -hopefully- the right management of 913 

whole river basin (Boeuf and Fritsch, 2016). In this line, the WFD includes the guidelines 914 

that apply to define the groundwater bodies (GWB). Even in this case, some scale issues 915 
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may arise when considering the definition of the GWB in mountain zones. By definition, 916 

the GWB are assumed to belong to a certain river basin. Despite of that, it is well known 917 

that groundwater basins, specially in mountain zones, may extend throughout several 918 

river basins (Struckmeier et al., 2006; Serianz et al., 2020). As a result, GWBs may 919 

include from several aquifers to only parts of them, as it happens in the PCM, whose 920 

discharge contributes to both the Ebro and the Llobregat rivers through GWB-44 and 921 

GWB-5, respectively. This is the reason why there are two different sets of NBL applying 922 

for the same aquifer (Table 1).  923 

 924 

The WFD recognises the importance of having well defined NBLs. Given that these 925 

values are used to quantitatively assess whether or not anthropogenic pollution is taking 926 

place in the corresponding aquifer (Nieto et al., 2005), their characterization must be 927 

based on (1) a consistent and rigorous hydrochemical criteria, and (2) a sound 928 

hydrogeological conceptual model. The hydrogeological fingerprint of each aquifer 929 

belonging to the same GWB may be different. Therefore, the criterion of defining a single 930 

set of NBLs for the whole GWB may have no sense. Moreover, such criterium may be 931 

counterproductive from a safety perspective, given that one may assume for the GWB 932 

some concentrations of species or chemical substances present in solution as normal, 933 

when actually those concentrations may be already indicating the existence of a polluting 934 

issue in some aquifers of the GWB. This is even worst when only one of these aquifers 935 

play a relevant role from a water resources perspective, as happens in the PCM. Here, the 936 

Lower Eocene karst aquifer generates an overall mean groundwater discharge that 937 

represents 15% of the mean annual water consumption in the city of Barcelona (Herms et 938 

al., 2019). Therefore, from a water resources management perspective, it might worth 939 

defining NBLs at the local scale for each aquifer. In this line, the methodology presented 940 

in this work to “complement” the sample pre-selection method is a useful tool to 941 

objectively reel off the NBL of the different high mountain aquifers belonging to a given 942 

GWB. Besides, the proposed methodology provides the GWBs managing authorities a 943 

full-sense hydrochemical criteria to better protect the high mountain pristine and strategic 944 

aquifers, while ensuring the good status of the associated high mountain river basins.  945 

 946 

 947 

5. Conclusions 948 
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 949 

The PCM is a complex hydrogeological system composed by a main Eocene karst aquifer 950 

that drives the hydrodynamical discharge response of the massif. The PCM also includes 951 

small aquifers whose discharge present a different hydrochemical composition. The 952 

discrepancies between the official NBLs of the GWBs associated to the PCM reveal the 953 

disparities in the hydrochemical composition of groundwater from the different sampled 954 

springs belonging the GWBs. To estimate correctly the NBLs associated to one aquifer it 955 

is necessary to consider only samples from springs discharging groundwater from the 956 

aquifer of interest. In high complex hydrogeological settings, this selection is not easy 957 

and must be guided by a consistent and objective clustering method. 958 

 959 

In the case of the PCM, four compositional groups have been identified by means of 960 

GMM clustering analysis. Most of the analysed springs are dominated by Ca–HCO3 water 961 

type coming from the main aquifer of the area. There are some springs dominated by Ca–962 

HCO3, Ca–HCO3–SO4, Ca–SO4-HCO3, Ca–SO4, Ca–HCO3-Cl, Na–Cl water types 963 

derived from other small/local aquifers. Determination of NBLs values in the area must 964 

take into account the four groups defined in this study. 965 

 966 

In complex aquifer systems, the proposed soft clustering approach, which is based on 967 

probabilistic Gaussian mixture models, provides the optimal number of clusters for the 968 

sampled springs only based upon the observed compositional data, while estimating the 969 

probability of belonging to everyone of these clusters for each spring. The presented 970 

clustering approach relies on multivariate statistics methods. In this framework, it is 971 

essential to transform the dataset using the CoDa analysis rules, specially when dealing 972 

with hydrochemical compositions. Otherwise, uninterpretable results will be likely 973 

obtained. 974 

 975 

In the case of different existing aquifers with discrepant hydrochemical fingerprints in the 976 

same GWBs, it would be reasonable to evaluate the NBLs in all of them rather than having 977 

a single set of NBLs for the whole GWB. Otherwise, errors may appear when estimating 978 

the quality status of some of these aquifers, even if the overall assessed quality status of 979 

the GWB appears to be correct. 980 

 981 

 982 
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Supplementary Material  1 

Subset 1: Hydrochemistry 2 

Table SM.1. Summary of the major ions content (median values of time series of the 43 3 

monitored springs for the period September 2013 – October 2015). 4 
Spring GU water-type Cluster Cluster 

Probability 
(%) 

CE 
(µS/cm) 

pH 
(-) 

T 
(°C) 

Ca 
(meq/L) 

Mg 
(meq/L) 

Na 
(meq/L) 

K 
(meq/L) 

HCO3 
(meq/L) 

Cl 
(meq/L) 

NO3 
(meq/L) 

SO4 
(meq/L) 

M-01 PEm1 Ca-HCO3 B 91.10 640.5 7.3 12.2 120.5 10.5 7.6 1.8 288.7 8.9 5.3 88.9 

M-02 PEmb Ca-SO4-HCO3 B 100.00 493.0 7.8 10.7 78.0 13.5 4.6 1.3 141.7 4.0 3.5 133.7 

M-03 PEalb Ca-HCO3 A 100.00 306.3 7.8 11.4 61.0 2.0 2.9 1.9 184.1 2.7 2.5 4.4 

M-04 POcgs Ca-HCO3 A 100.00 470.0 7.4 10.2 95.0 6.3 2.1 2.6 289.0 3.3 3.6 15.4 

M-05 Qpe Ca-HCO3 A 100.00 307.0 7.7 10.1 66.0 1.1 2.4 0.5 190.7 2.5 2.0 3.1 

M-06 Kgp Ca-HCO3 A 100.00 251.0 8.1 7.3 54.0 5.3 3.0 0.9 166.5 3.3 2.2 9.0 

M-07 POcgs Ca-HCO3 A 100.00 461.5 7.3 9.7 101.5 4.7 3.5 0.9 296.9 3.2 2.0 12.7 

M-08 Kgp Ca-HCO3 A 100.00 384.3 7.6 5.5 87.0 4.1 3.3 1.0 269.6 3.0 1.9 9.6 

M-09 Tk Ca-SO4 B 100.00 1.2·103 7.9 9.0 242.0 14.5 8.5 2.2 212.2 7.8 4.2 488.3 

M-10 Tk Ca-HCO3-SO4 B 100.00 829.5 7.3 9.6 173.0 8.3 4.2 1.3 292.4 7.4 17.8 174.0 

M-11 KMca Ca-HCO3 A 99.93 312.0 8.0 10.7 59.5 5.6 3.7 0.7 157.5 4.2 10.9 25.3 

M-12 Kgp Ca-HCO3 A 99.99 252.0 7.9 8.5 53.5 2.3 1.7 0.6 167.3 4.3 1.9 4.1 

M-13 Tm Ca-HCO3 B 96.88 574.0 7.7 11.2 96.5 19.0 9.0 1.7 253.9 20.9 1.8 97.7 

M-14 PPEc Ca-HCO3 A 100.00 190.8 8.0 5.8 39.5 1.9 1.4 0.5 118.7 2.5 3.7 2.8 

M-15 PEci Ca-HCO3 A 100.00 186.6 8.2 6.0 38.0 1.9 1.6 0.6 112.0 2.5 5.9 2.6 

M-16 PEci Ca-HCO3 A 100.00 306.0 8.0 13.4 60.0 12.0 1.0 0.8 221.0 2.5 0.0 6.3 

M-17 PEci Ca-HCO3 A 100.00 361.5 8.0 7.0 67.0 14.5 1.3 1.0 251.5 2.8 7.0 3.3 

M-18 PEci Ca-HCO3 A 100.00 385.0 7.9 11.9 64.0 18.0 1.7 3.8 253.0 2.5 8.3 6.4 

M-19 TJcd Ca-HCO3 A 100.00 392.0 7.8 7.4 62.5 18.5 1.7 0.7 256.4 3.4 5.7 4.7 

M-20 PEcp2 Ca-HCO3-Cl C 100.00 701.6 7.7 6.2 86.0 18.0 33.0 1.1 266.9 80.9 9.1 10.7 

M-21 Qcoo Ca-SO4 B 100.00 867.3 7.4 11.8 179.5 8.6 3.3 1.2 180.4 3.8 2.0 329.7 

M-22 Qvl Ca-HCO3 A 100.00 241.0 7.9 7.4 45.0 6.2 1.6 0.4 147.4 3.6 2.7 6.5 

M-23 Qt0 Ca-HCO3 C 99.92 332.0 7.8 8.3 54.0 5.8 6.7 0.6 159.0 24.4 4.5 10.9 

M-24 PPEc Ca-HCO3 A 100.00 402.5 7.6 8.2 76.0 10.5 2.8 1.2 266.1 3.7 1.8 5.5 

M-25 Kgp Ca-HCO3 A 100.00 323.8 7.8 8.0 66.0 4.9 1.5 0.5 209.8 2.5 1.8 5.9 

M-26 KMca Ca-HCO3 A 100.00 296.3 8.1 10.5 61.0 2.4 2.6 0.5 183.5 2.7 3.0 4.9 

M-27 KMca Ca-HCO3 C 100.00 492.3 7.5 9.3 90.5 2.9 11.0 0.7 241.2 39.0 3.1 9.7 

M-28 Tk Ca-SO4 B 100.00 2.1·103 7.5 12.9 445.0 40.0 42.5 8.8 298.5 94.5 40.9 989.0 

M-29 Qpe Ca-HCO3 A 99.79 436.0 7.7 10.2 76.0 6.5 8.1 1.7 218.0 15.6 9.0 23.4 

M-30 Tk Na-Cl D 100.00 2.5·105 6.4 15.4 754.5 1.6·103 1.2·105 3·103 249.8 1.8·105 4.4 8·103 

M-31 PPEc Ca-HCO3   A 100.00 353.8 7.9 8.6 75.0 4.1 1.2 0.4 234.0 2.5 2.4 4.6 

M-32 POmlg Ca-HCO3   A 100.00 461.8 7.6 10.9 94.5 1.7 3.0 0.9 201.5 6.8 60.9 20.0 



2 

M-33 Tk Ca-HCO3-SO4 B 100.00 851.0 7.1 7.8 158.5 18.5 3.8 2.2 328.8 4.6 1.7 205.9 

M-34 TJb Ca-HCO3   A 100.00 331.8 7.6 7.6 68.5 8.4 2.8 0.7 237.0 3.5 0.9 7.3 

M-35 PEcp1 Ca-HCO3   A 100.00 232.0 8.1 12.6 39.5 4.6 1.5 0.4 133.7 3.2 2.9 4.1 

M-36 PEmb Ca-SO4-HCO3 B 100.00 601.3 7.9 11.0 96.5 20.0 5.7 1.2 197.5 4.0 1.6 168.6 

M-37 Qvl Ca-HCO3   A 99.99 223.8 8.1 8.2 45.5 2.4 2.6 0.4 133.5 4.1 3.1 4.1 

M-38 Kat Ca-HCO3   A 99.99 486.5 7.6 8.8 86.5 15.0 2.4 0.8 303.0 3.7 0.6 22.7 

M-39 POmlg Ca-HCO3   A 100.00 472.3 7.5 11.2 94.5 4.2 2.4 0.5 284.5 3.0 0.6 12.8 

M-40 Tk Ca-SO4   B 100.00 1.2·103 7.2 12.3 229.5 28.0 39.5 2.4 241.0 71.2 2.1 468.9 

M-41 Tk Na-Cl   D 100.00 5.7·104 7.3 12.3 550.0 76.5 1.3·104 124.5 210.0 2.1·104 4.9 1·103 

M-42 KMca Ca-HCO3   C 100.00 747.0 7.5 10.6 101.5 17.5 38.0 1.0 315.3 82.3 2.2 15.3 

M-43 POcgs Ca-HCO3   A 100.00 283.8 7.74 9.0 54.0 4.7 2.3 0.4 177.0 4.0 2.6 6.2 

 5 

 6 

Table SM.2. Average, standard deviation, and coefficient of variation for the time series 7 

of solute (CL, NO3 and SO4) concentration in groundwater for the high frequency 8 

sampled springs. Besides the same statistics are presented for the spatial distributions 9 

of solute concentrations considering the ensemble of the low frequency sampled 10 

springs. 11 

 12 

Spring Time Series Num. 
Samples 

 Cl-  NO3
-  SO4

= 
 Valued CV  Valued CV  Valued CV 

M-04a 25  4.32±2.43 0.56  3.88±1.53 0.40  16.13±2.53 0.16 
M-22a 25  5.35±4.72 0.88  3.19±2.22 0.69  7.14±1.90 0.27 
M-25a 25  3.36±1.29 0.38  2.54±1.54 0.61  5.87±0.78 0.13 
M-31a 25  4.34±4.00 0.92  3.03±1.33 0.44  4.55±0.60 0.13 

           

Spring Time Series Avgb   4.34±3.11 0.69  3.16±1.66 0.53  8.42±1.45 0.17 
Spatial.Avgc   4.71±2.17 0.42  6.28±1.80 0.41  9.10±1.47 0.14 

(a) High frequency sampled spring 
(b) Average for the high frequency sampled springs 
(c) Spatial average from the low high frequency sampled springs M-03, M-05, M-06, M-07, M-08, M-11, M-12, M-14, 

M-15, M-16, M-17, M-18, M-19, M-24, M-26, M-29, M-32, M-34, M-35, M-37, M-38, M-39 
(d) Average ± Std.Dev 

 13 
 14 

  15 
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Subset 2: Exploratory analysis of the original dada 16 

 17 

 18 
 19 

Fig. SM.2.1. Pattern diagram of data. The ‘zPatterns’ function of {zCompositions} 20 

package was used for visual exploratory issues and inspecting zero patterns for the data 21 

matrix. (A) Data matrix 300 x 8. In this case there are censored values in Cl, NO3, SO4, 22 

Ca and Mg ions, most of them related to the 10 snow samples. In total 89,67% of samples 23 

have complete value sets. Missing values have been imputed with the ‘lrDA’ (log ratio 24 

Data Argumentation) function (B) Data matrix 43 x 8 (median values). 25 

  26 
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• Univariate analysis: Matrix 300 x 8 variables 27 

Edaplot (combination of histogram, density trace, one-dimensional scattergram and 28 

Boxplot in one plot) were calculated for each ion.  29 

 30 

 31 
Fig. SM.2.2. EDA plot for the eight ions (matrix 300x8) 32 

  33 
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Subset 3: Principal Component Analysis 34 

 35 

 36 
Fig. SM.3.1. Biplots clr-transformed, PC1-PC2 with the links interpreted for the data 37 

Matrix 300x8 (A) and the data Matrix 43x8 (B) 38 

  39 

A

B
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 40 

Table SM.3.1 Parameters ‘included’ and 'excluded' for the MSA. 41 

 42 
 43 

  44 

Major ions Ca, Mg, Na, K, HCO3, Cl, NO3, SO4
(8 variables) Existence of left-censored values in the Compositional Data set (no missing values):
Matrix 300x8 and Matrix 43x8 Ca:   2% samples < LOQ (samples of snow) [<2ppm])

Mg:  2% samples < LOQ (samples of snow) [<0,4ppm])
SO4: 2% samples < LOQ (samples of snow) [<0,7ppm])
Cl:     3% (springs samples) + 1,3% (snow samples) < LOQ [<2,5ppm])
NO3: 1 sample with a value below LOQ [<1ppm]) (spring sample)

EC, TDS, pH, Eh Parameters with additive characteristics. 
Non-compositional data

Tº Physical parameter. Non-compositional data
F-; CO3-; >90% samples < LOQ - (*) severe degree of censored data
DOC >28% samples < LOQ 
NH4 >67% samples < LOQ  - (*) high degree of censored data
Isotopes Not considered although there are some references (Tolosana-Delgado, 2005; Puig et al 2011)
Total alkalinity Parameter linked to HCO3 concentration
DUR (water hardness) Parameter linked to Ca and Mg concentration

Parameters ‘included’ 

Parameters ‘excluded’
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Subset 4: Model-based clustering results 45 

 46 

 47 
Fig. SM.4.1. Graphic of the BIC criteria for the considered 14 GMM models. The lowest 48 

BIC value can be observed considering the ‘EEI’ model and 4 clusters. (See Scrucca et 49 

al., 2016; for the corresponding geometric characteristics of the EEI model) 50 

 51 

 52 

 53 
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Fig. SM.4.2. Scatterplot matrix obtained with the model-based clustering process using 54 

the dataset Matrix (43x8) and seven ilr balances (D-1, being D the dimension of the 55 

matrix) 56 

 57 

 58 
Fig. SM.4.3. scatterplot of the reduced ilr-matrix 59 

  60 
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Table. SM.4.1. Calculated principal dimension of the reduced ilr-matrix. 61 
  Dir1 Dir2 Dir3 

ilr_1 -0.456 0.166 -0.075 

ilr_2 0.007 0.094 -0.062 

ilr_3 -0.183 0.197 -0.028 

ilr_4 0.836 -0.252 -0.802 

ilr_5 0.242 0.913 -0.231 

ilr_6 0.013 0.145 0.387 

ilr_7 0.037 -0.083 -0.378 

 62 

 63 

Table SM.4.2. Mean groundwater chemistry of the spring water groups determined from 64 

the model-based clustering with GMM (model ‘EEI’ and k=4 clusters)  65 
 Cluster A  Cluster B  Cluster C  Cluster D 

 Avg. Max. Min.  Avg. Max. Min.  Avg. Max. Min.  Avg. Max. Min. 

CE (µS/cm) 337 486 186  875 2102 493  568 747 332  152135 247100 57170 

pH (-) 7.8 8.2 7.3  7.5 7.9 7.1  7.6 7.8 7.5  6.9 7.3 6.4 

T (°C) 9.1 13.0 5.5  10.9 12.9 7.8  8.6 10.6 6.2  13.9 15.4 12.3 

Ca (mg/L) 66.3 101.5 38.0  181.9 445.0 78.0  83.0 101.5 54.0  652.3 754.5 550.0 

Ca (mg/L) 6.4 18.5 1.1  18.1 40.0 8.3  11.1 18.0 2.9  835.3 1594.0 76.5 

Mg (mg/L) 2.4 8.1 1.0  12.9 42.5 3.3  22.1 38.0 6.7  63938.8 114650.0 13227.5 

Na (mg/L) 0.9 3.8 0.4  2.4 8.8 1.2  0.8 1.1 0.6  1553.5 2982.5 124.5 

K (mg/L) 209.7 303.0 112.0  243.5 328.8 141.7  245.6 315.3 159.0  229.9 249.8 210.0 

HCO3 (mg/L) 3.8 15.6 2.5  22.7 94.5 3.8  56.7 82.3 24.4  99596.0 178185.5 21006.4 

NO3 (mg/L) 5.5 60.9 0.6  8.1 40.9 1.6  4.7 9.1 2.2  4.6 4.9 4.4 

SO4 (mg/L) 8.8 25.3 2.6  314.5 989.0 88.9  11.6 15.3 9.7  4667.8 8093 1242.6 

 66 

  67 
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Table SM.4.3. Conditional probabilities (P) of belonging to a certain cluster obtained in the 68 
model-based clustering analysis using a GMM (‘EEI’ model, k = 4). The springs belonging to an 69 
unique cluster (i.e. P=1) are highlighted in blue 70 
 Probability of belonging to a certain cluster 

Spring Cluster-A Cluster-B Cluster-C Cluster-D  Spring Cluster-A Cluster-B Cluster-C Cluster-D 

M-01 0.089 0.911 0 0  M-23 0.001 0 0.999 0 

M-02 0 1 0 0  M-24 1 0 0 0 

M-03 1 0 0 0  M-25 1 0 0 0 

M-04 1 0 0 0  M-26 1 0 0 0 

M-05 1 0 0 0  M-27 0 0 1 0 

M-06 1 0 0 0  M-28 0 1 0 0 

M-07 1 0 0 0  M-29 0.998 0 0.002 0 

M-08 1 0 0 0  M-30 0 0 0 1 

M-09 0 1 0 0  M-31 1 0 0 0 

M-10 0 1 0 0  M-32 1 0 0 0 

M-11 0.999 0.001 0 0  M-33 0 1 1 0 

M-12 1 0 0 0  M-34 1 0 0 0 

M-13 0.031 0.9687 0.0003 0  M-35 1 0 0 0 

M-14 1 0 0 0  M-36 0 1 0 0 

M-15 1 0 0 0  M-37 0.9999 0 0.0001 0 

M-16 1 0 0 0  M-38 0.9999 0.0001 0 0 

M-17 1 0 0 0  M-39 1 0 0 0 

M-18 1 0 0 0  M-40 0 1 0 0 

M-19 1 0 0 0  M-41 0 0 0 1 

M-20 0 0 1 0  M-42 0 0 1 0 

M-21 0 1 0 0  M-43 1 0 0 0 

M-22 1 0 0 0       
 71 

  72 
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Subset 5: CoDa approach vs classical standardization (z-score 73 

method) 74 

 75 

 76 
Fig. SM.5.1. Biplot considering the classical standardization z-score approach (A) vs. 77 

considering the CoDA approach (B) on the dataset Matrix (43x8). As can be shown, 78 

considering the effect of the closed nature of geochemical data (CoDA approach) has a 79 

critical effect on the variable loading’s distribution into the biplot, and no sense variable 80 

loading results are obtained when the classical standardization z-score approach is 81 

assumed. 82 

 83 

  84 
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 85 
Fig. SM.5.2. Scatterplot matrix obtained with the model-based clustering process using 86 

transformed data form the dataset matrix (43x8) and using the classical standardization 87 

z-score approach. 88 

 89 

 90 

 91 
Fig. A.5.3. Density biplot for PC1 vs PC2 components obtained from GMM for the 92 
Matrix (43x8) of data z-score transformed after dimension reduction. 93 
  94 
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Subset 6: Preliminary clustering analysis considering ‘hard’ 95 

clustering methods 96 

Clustering is an unsupervised classification method widely used in hydrogeological 97 

research studies. There are multiple and variate “hard” clustering (where each data point 98 

can only belong to exactly one cluster; as e.g. the agglomerative hierarchical clustering 99 

HCA; and the partitional methods such as the k-means, k-medoids, among others) and 100 

criteria to take into account. The hierarchical clustering is a set of nested clusters that are 101 

organized as a tree (dendogram). The partitional clustering look for a division of the set 102 

of data objects into non-overlapping subsets (clusters) such that each data object is in 103 

exactly one subset. The selection of the method for clustering, the assumed number of 104 

clusters (to be used as initial centroids in case of the partitional methods), and the 105 

dissimilarity and linkage method selected have a strong impact on the clustering results 106 

obtained. Therefore, their use relies heavily on the analyst’s knowledge to classify the 107 

clusters in a meaningful way. In practice it’s important to test different methods, test the 108 

different indexes that allows found the best one, but finally take a look for the one with 109 

the most hydrogeological sense and the most useful or interpretable solution.  110 

The clValid() function of the {clValid} R package (Brock et al. 2008), calculates 111 

validation measures for a given set of clustering algorithms and number of clusters. 112 

Available options are "hierarchical", "kmeans", "diana", "fanny", "som", "model", "sota", 113 

"pam", "clara", and "agnes", with multiple choices allowed. The internal measures 114 

include the connectivity, the silhouette coefficient and the Dunn index.  115 

The fviz_nbclust() function of the {factoextra}R package (Kassambara and Mundt, 2016) 116 

determines and visualize the optimal number of clusters using computing the three 117 

different methods [elbow, silhouette and gap statistic]. Allowed methods include: 118 

partitional clustering “kmeans”, “k-medoids” (pam, clara), “funny” (fuzzy clustering 119 

methods), etc. 120 

The NbClust() function of the {NbClust} R package (Charrad et al. 2014) provides 30 121 

indices for determining the relevant number of clusters and proposes to users the best 122 

clustering scheme from the different results obtained by varying all combinations of 123 
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number of clusters, distance measures, and clustering methods. The results can be 124 

visualized in a summary graph. 125 

In order to inspect the suitability of considering ‘hard’ clustering methods to determine 126 

the optimal number of clusters (k), a first and preliminary analysis was performed using 127 

the clValid(), fviz_nbclust() and NbClust() functions using ilr coordinates with the Matrix 128 

43x8. The clustering models may account for different linkage methods (i.e., ‘complete’, 129 

‘average’, ‘single’ and ‘ward’) and dissimilarity metrics (‘Euclidean’ and ‘Manhattan’, 130 

among others). Results are presented in Fig. A.6.1., Fig. A.6.2. Fig. A.6.3. 131 

 132 

 133 

Fig. A.6.1. Measures of connectivity, the silhouette coefficient and the Dunn indexes 134 

obtained using the function clValid()  135 

  136 
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Fig. A.6.2. Results of the Elbow and Silhouette methods using the fviz_nbclust() function 137 

  138 

Fig. A.6.3. Results obtained using NbClust() function for different cluster agglomeration 139 

methods: linkage ‘ward.D’ and ‘complete’; distance = "euclidean". 140 

 141 

The results obtained with the function clValid() suggest that the best number of cluster k 142 

is 3 but with no clear clustering method prevailing to the others. The results obtained with 143 

the Elbow method using the fviz_nbclust() function shows suggests that the best k value 144 

would be 4, whereas in the Silhouette method using the same function suggest that the 145 

best k value would be 4. The results obtained using NbClust() function for different 146 

cluster agglomeration methods: linkage ‘ward.D’ and ‘complete’ suggest that the best 147 

number is 3. 148 

In summary, the results obtained indicates that good models would be obtained using 149 

hierarchical and k-medoids methods and for k clusters between 2 and 4. So there is no 150 

definitive and clear answer to the question about what which would be best method and 151 

the best number of k. Therefore it is concluded that the optimal number of clusters is 152 

somehow subjective and depends on the method used for measuring similarities and the 153 

parameters used for partitioning but also the criteria used to selected them, which cause 154 

that it is not evident to determine which could be the best grouping model for the available 155 

data using ‘hard’ clustering methods. 156 


