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1. Introduction1

When modeling aggregate claims with the classical collective model, the usual2

assumption is that claim frequency and severity are independent, an assumption3

which facilitates the corresponding computations. In practice, however, claim4

frequency and severity tend to be dependent, albeit minimally. For example, in5

auto insurance data, some negative or positive dependence could be found; on one6

hand, a high frequency can be associated with an urban driving area where the7

costs are low or, on the other hand, the same high frequency can be associated8

with daily journeys on secondary roads where accident costs are usually higher.9

Another example is found in health insurance data, where the dependence between10

frequency and severity is usually positive. Furthermore, the sample estimation11

of the dependence between these two variables is not easy to measure; classical12

correlation coefficient can provide distorted results that can be affected by a few13

events. For all these reasons, recently, there is an increasing interest in exploring14

models that account the dependence between frequency and severity. In this sense,15

two different approaches can be distinguished: on one hand, a model is defined for16

the average claim size distribution using the number of claims as covariate (see17

Frees and Wang, 2006; Gschlößl and Czado, 2007; Frees et al., 2011; Garrido18

et al., 2016; Valdez et al., 2018); as a second approach, the frequency and severity19

(or average severity) components are related through a copula (see Erhardt and20

Czado, 2012; Czado et al., 2012; Krämer et al., 2013; Hua, 2015; Lee and Shi,21

2019; Oh et al., 2020; Shi et al., 2015). Alternatively, in this paper, we propose22

the bivariate Sarmanov distribution to model the bivariate distribution relating23

the frequency and the average severity of claims; our main motivation is that,24

similarly to copulas, this distribution allows us to separate the dependent structure25

2



from the marginal distributions and, in the same way as the copula-based models,26

we can easily fit the joint behavior of different marginal distributions, continuous27

or discrete. Furthermore, unlike copula-based models, the Sarmanov distribution28

does not add difficulty to the estimation of discrete marginals.29

Thus, as in Czado et al. (2012), we introduce dependence between the num-30

ber of claims and the corresponding average claim size, but, in contrast to these31

authors, who modeled this dependence by a Gaussian copula, we assume a Sar-32

manov dependence between the frequency and the average severity. As Czado33

et al. (2012) did, to estimate the parameters we propose a maximization by parts34

of the log-likelihood function, but given our bounded parametric space, to opti-35

mize each part we use the optim() function of R and validate our algorithm with36

a simulation study.37

Due to its ability to join different marginals in flexible dependence structures38

and to its tractability, Sarmanov’s multivariate distribution (see Sarmanov, 1966)39

recently gained a lot of attention in the actuarial literature in several aspects, like:40

modeling continuous claim sizes (see Bahraoui et al., 2015); modeling discrete41

claim frequencies (see Abdallah et al., 2016; Bolancé and Vernic, 2019); in the42

evaluation of ruin probabilities (see, for example, Yang and Yuen, 2016; Guo et al.,43

2017), etc. In some of the just mentioned papers, the Sarmanov distribution has44

been fitted in its bivariate and trivariate forms to real insurance data and it proved45

to provide a better fit than other distributions, including copula ones. In Bolancé46

and Vernic (2019) and Abdallah et al. (2016), the flexibility of the Sarmanov dis-47

tribution allows to consider generalized linear model for the marginals and to use48

a Bayesian approach for credibility models based on the number of claims. More-49

over, regarding the alternative copula approach (e.g., elliptical), a discussion in50
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Bolancé and Vernic (2019) emphasizes some disadvantages of this approach (e.g.,51

elliptical copulas) compared with Sarmanov, especially when working with dis-52

crete variables. We focus on obtaining pure and risk premiums for a homogeneous53

portfolio, using the collective risk model and assuming dependence between the54

number and the average cost of claims; to this purpose, the proposed bivariate55

Sarmanov model provides closed type expressions for both the mean and variance56

of the aggregate claims.57

In this paper, we make particular use of the special capacity of the Sarmanov58

distribution to join marginals of different types, more precisely, one marginal will59

be of discrete type, corresponding to the claim frequency, and a second marginal60

will be continuous, representing the average severity. This flexibility, associated61

with combining various marginal distributions, allows us to propose alternative62

models that mix a count data distribution for the frequency with a continuous63

distribution for the average severity.64

The assumption of independence between frequency and severity allows a di-65

rect fit of the distribution of the total cost of claims S; therefore, very extreme66

total costs could be observed and a heavy tail distribution could be necessary for67

fitting this part of the distribution (see McNeil, 1997). In this paper, we assume68

that S = NX , where N is the number of claims and X is the average cost per69

policyholder, with X > 0 if N > 0 and X = 0 if N = 0. In our bivariate Sar-70

manov model, we propose the Gamma distribution for X > 0, distribution that is71

widely used in this field (see Garrido et al., 2016; Jeong and Valdez, 2020), and72

we analyze alternative count distribution for N (i.e., Poisson, Negative Binomial73

and their zero inflated forms). Although extreme values in the mean cost vari-74

able might be smoothed, they can occur, and in this case, the Gamma distribution75
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might not work and alternative mean cost distributions should be analyzed. Our76

model allows for the consideration of other such distributions, but we restricted to77

the Gamma distribution because it has flexibility, it is adequate to model a right78

skewed distribution and we were able to deduce closed type expressions for the79

main results on the distribution of the total cost S.80

The proposed model takes into account that a cost only exists if the claim81

frequency is 1 or more. Therefore, it is specified in two parts: the first part cor-82

responds to the probability of 0 frequency and severity, and the second part to the83

bivariate probability of frequency and severity larger than 0.84

A possible limitation of our compound Sarmanov-based distributions is that85

the dependency is related to a bounded parameter, which in some cases does not86

allow fitting strong correlations. However, our experience has shown that the87

correlation between the number and the amount of claims is not very high - a cor-88

relation lower than 0.5 is common. For example, Czado et al. (2012), using Mixed89

Copula models, estimated a correlation parameter equal to 0.1366; although sta-90

tistically significant, even lower correlations can be found. Specifically, we illus-91

trate this using a real data set consisting of a random sample of auto insurance92

policyholders.93

The rest of the paper is organized as follows: in Section 2, we describe the94

proposed Sarmanov distribution, its properties, particular cases and estimation95

procedure. In Section 3, we present the results of a simulation study to evaluate96

the estimated parameters using a two parts log-likelihood maximization. An ap-97

plication to a real data set containing auto insurance number and average cost of98

claims is discussed in Section 4. Finally, we conclude in Section 5. The paper99

ends with an appendix containing some proofs.100
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2. Collective model with dependent number and average size of claims101

We shall introduce dependence between the number of claims N and the cor-

responding average claim size X of a portfolio or of a certain policy. Letting S

denote the aggregate claims, clearly

S = NX . (1)

We let p denote the probability mass function (pmf) of N. In respect of the random102

variable (r.v.) X , its distribution will have both an absolutely continuous compo-103

nent with probability density function (pdf) denoted by fX and a probability mass104

at 0. Therefore, the distribution of S also has a probability mass at 0 and a pdf that105

we denote by fS. We denote the cumulative distribution function (cdf) of a r.v. by106

F indexed with the name of that r.v..107

2.1. Sarmanov dependence108

We assume a Sarmanov dependence between N and X as follows

fX ,N (x,n) =

 p(0) , n = x = 0

p(n) f (x)(1+ωψ (n)φ (x)) , n≥ 1, x > 0
, (2)

where f is a pdf, ψ and φ are bounded non-constant kernel functions and ω ∈109

R. Clearly, we assume that if no claims are reported, the cost to the insurance110

company is zero, so that if N = 0, directly X = 0 and hence the total cost S = 0.111

We call the pdf (2) mixed because it joins the continuous pdf f and the discrete112

pmf p. Also, in order for (2) to define a proper pdf, we impose the conditions113

∑
n≥1

ψ (n) p(n) =
∫
R

φ (x) f (x)dx = 0 and (3)

1+ωψ (n)φ (x) ≥ 0, for all n≥ 1, x > 0. (4)
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For details on Sarmanov distribution see Kotz et al. (2000), Ting Lee (1996).114

To simplify the writing, we denote by Y a r.v. having pdf f and representing

X > 0. Letting m1 = inf
n≥1

ψ (n) ,m2 = inf
x>0

φ (x) ,M1 = sup
n≥1

ψ (n) ,M2 = sup
x>0

φ (x) ,

condition (4) restricts ω to the following interval

max
{
− 1

m1m2
,− 1

M1M2

}
≤ ω ≤min

{
− 1

m1M2
,− 1

M1m2

}
. (5)

The following proposition presents the distributions of X , of S and conditional115

distributions.116

Proposition 1 Under the Sarmanov dependence condition (2), it holds that117

i) Pr(X = 0) = p(0) ,

fX (x) = (1− p(0)) f (x) , x > 0.

ii) Pr(X = 0 |N = n) =

 1, n = 0

0, n≥ 1
,

fX |N=n (x) = f (x)(1+ωψ (n)φ (x)) , x > 0, n≥ 1.

iii) Pr(N = n |X = x) =

 1, n = x = 0
p(n)

1−p(0) (1+ωψ (n)φ (x)) , n≥ 1, x > 0
.

iv) Pr(S = 0) = p(0) ,

fS (s) = ∑
n≥1

p(n)
n

f
( s

n

)(
1+ωψ (n)φ

( s
n

))
, s > 0.

The first two moments of S are given in the following result; note that they are118

expressed in terms of the r.v. Y .119

Proposition 2 Under the Sarmanov dependence condition (2), the expected value120
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and variance of S are given respectively, by121

ES = ENEY +ωE [Nψ (N)]E [Y φ (Y )] ,

VarS = E
[
Y 2]VarN +E2 [N]VarY −ω

2E2 [Nψ (N)]E2 [Y φ (Y )]

+ω
(
E
[
N2

ψ (N)
]
E
[
Y 2

φ (Y )
]
−2EN E [Nψ (N)] EY E [Y φ (Y )]

)
.

Proposition 3 The correlation coefficient of the pdf (2) is given by

corr (X ,N) =
ωE [Nψ (N)]E [Y φ (Y )]+ p(0)ENEY√
(1− p(0))(VarY + p(0)E2 [Y ]) VarN

. (6)

The proofs of the previous propositions are omitted because they are rather straight122

forward to derive and part of them can be found in Ting Lee (1996).123

The correlation defined in (6) takes into account the two parts of the distri-124

bution, i.e. N = X = 0 and N,X > 0. We note that if ω = 0 then corr(X ,N)125

depends on the probability of zero claims p(0); only if p(0) = 0 then ω = 0 im-126

plies corr(X ,N) = 0.127

There are some common types of Sarmanov kernels, from which we note128

(see Ting Lee, 1996): the kernels based on cdfs leading to the Farlie-Gumbel-129

Morgenstern distribution, which, however, has a correlation coefficient limited by130

1/3; the kernels based on the moments of the distributions, which, in order to be131

bounded, necessitate the truncation of the distributions; the exponential kernel,132

which is bounded by its nature and easy to handle for our particular distribu-133

tions. Therefore, we propose to use exponential kernels. Regarding Sarmanov’s134

pdf in (2), we consider in particular the exponential kernels satisfying condition135

(3), and we emphasize in their notation the kernel parameter. More precisely,136

φ (y,γ) = e−γy−LY (γ), where LY denotes the Laplace transform of the r.v. Y ,137

and γ , the kernel parameter, is inserted into the notation φ(y). Furthermore, we138
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let ψ (n,δ ) = e−δn− k, and to find k, we write139

∑
n≥1

ψ (n,δ ) p(n) = ∑
n≥1

(
e−δn− k

)
p(n)

= ∑
n≥0

e−δn p(n)− p(0)− k

(
∑
n≥0

p(n)− p(0)

)
= LN (δ )− p(0)− k (1− p(0)) .

Imposing the condition expressed in (3), i.e. ∑n≥1 ψ (n,δ ) p(n) = 0, we obtain140

k = LN(δ )−p(0)
1−p(0) . Therefore, ψ (n,δ ) = e−δn− LN(δ )−p(0)

1−p(0) because in the second141

formula of the pdf (2) we have n≥ 1 (similar to a left truncation of N in 0).142

The parameters δ and γ are part of the Laplace operators whose values af-143

fect the interval defined in (5): the larger the values, the wider the interval, i.e.144

these parameters have a scale effect on the dependence parameter. Therefore, too145

large values can lead to inefficient estimates of the dependency parameter, while146

too small values can lead to downwardly biased dependency parameters. In the147

simulation study we illustrate this effect.148

We also note that in model (1), when N is larger, the variance of the average149

severity X should become smaller; from the conditional density fX |N=n(x) pre-150

sented in Proposition 1, it can be seen that the proposed Sarmanov model is able151

to capture this behavior due to the kernel function ψ(n,δ ), which decreases when152

n increases, and which interferes in e.g., the variance of X given N.153

2.2. Simulation from the collective model154

To simulate values from the two parts bivariate Sarmanov distribution whose155

pdf is defined in (2), we use the inversion method from the conditional cdf of X156
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given N = n, which easily results from (ii) in Proposition 1 as157

FX |N=0 (0) = 1,

FX |N=n (x) =
∫ x

0
f (y)(1+ωψ (n,δ )φ (y,γ))dy

= FY (x)+ωψ (n,δ )
∫ x

0
f (y)φ (y,γ)dy, n≥ 1, x > 0. (7)

Hence, we simulate the value n from the distribution of N. If n = 0 then clearly158

x = 0; otherwise, we generate an uniform U (0,1) value u and solve the equation159

FX |N=n (x) = u for x. This yields the generated pair (n,x) .160

Moreover, the Gibbs sampler can be used by drawing iteratively from both161

conditional cdfs (see Casella and George, 1992). Therefore, we also need the162

conditional cdf of N given X = x, i.e.,163

FN|X=0 (0) = 1,

FN|X=x (n) =
n

∑
k=1

Pr(N = k |X = x) =
n

∑
k=1

p(k)
1− p(0)

(1+ωψ (k,δ )φ (x,γ))

=
1

1− p(0)

[
FN (n)− p(0)+ωφ (x,γ)

n

∑
k=1

ψ (k,δ ) p(k)

]
,n≥ 1, x > 0.

2.3. Parameters estimation164

Let (ni,xi)
K
i=1 be a random bivariate sample of the number and average amount165

of claims. Let θ and ν be, respectively, the parameters vectors of the marginal dis-166

tribution of N and of the continuous marginal distribution of Y, while ω is the de-167

pendence parameter of Sarmanov’s distribution. Based on (2), the log-likelihood168
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function is169

lnL
(
(ni,xi)

K
i=1 ;θ ;ν ;ω;δ ;γ

)
= ∑

{i:ni=xi=0}
ln p(0;θ)+ ∑

{i:ni≥1,xi>0}
[ln p(ni;θ)

+ ln f (xi;ν)+ ln(1+ωψ (ni,δ )φ (xi,γ))]

= lnL
(
(ni)

K
i=1 ;θ

)
+ lnL({xi |xi > 0, i = 1, ...,K } ;ν)

+ ∑
{i:ni≥1,xi>0}

ln(1+ωψ (ni,δ )φ (xi,γ)) , (8)

where L
(
(ni)

K
i=1 ;θ

)
is the likelihood function corresponding to the marginal r.v.170

N, while L({xi |xi > 0, i = 1, ...,K } ;ν) is the one corresponding to Y .171

Maximizing the log-likelihood expressed in (8) is very difficult, mainly for two172

reasons. The first reason is because, given the limits of the dependency parameter173

ω that were defined in (5), the parametric space is bounded. The second reason is174

due to the strong relationship that exists between the dependence parameter and175

the marginal ones.176

We also define the log-likelihood function in (8) assuming that some param-177

eters are known. Let lnL
(
(ni,xi)

K
i=1 ;θ ;ν

∣∣∣ω;δ ;γ

)
be the log-likelihood func-178

tion defined in (8) given that the parameters ω , δ and γ associated to the de-179

pendence structure are known; similarly, let lnL
(
(ni,xi)

K
i=1 ;ω;δ ;γ

∣∣∣θ ;ν

)
be the180

log-likelihood function defined in (8) given that the marginal parameters θ and ν181

are known. As in Bolancé and Vernic (2019), we propose to determine the Max-182

imum Likelihood Estimation (MLE) of the parameters in two phases. The first183

phase consists of maximizing by parts the log-likelihood function in order to ob-184

tain initial parameters that will be used in the second phase to obtain a full MLE185

(an example in a similar context using copulas is given in Czado et al., 2012). The186

first phase is analogous to the Inference Function for Margins (IFM) method that187

is commonly used to estimate copula-based models (see Joe, 2005). The aim of188
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second phase is to check if the parameters estimated in the first phase maximize189

the full log-likelihood and if the asymptotic inference can be done. We note that190

the simulation study and application results presented in Sections 3 and 4, respec-191

tively, show that the differences between the values of the parameters obtained in192

both phases are very small; changes are found in third or fourth decimal and we193

can conclude that the differences are due to the algorithm’s precision. Bolancé194

and Vernic (2019) successfully used the same algorithm for estimating a trivariate195

Sarmanov distribution with Negative Binomial marginal distributions specified as196

generalized linear models. Moreover, using Sarmanov distribution has advantages197

over copula models, given the difficulty that is added to the estimation of copula198

parameters when the variables are discrete. With Sarmanov distribution, we can199

use the optim() function for maximizing partial and full log-likelihood function.200

The same procedure can be used for estimating distributions where the marginal201

distributions and dependence structure are separable in the log-likelihood function202

in the same way as in (8). We describe the procedure below.203

Phase 1204

Step 0 Using MLE, find initial values for the parameters of the univariate205

marginal distributions, θ̂ 0 and ν̂0. For the initial parameters in the206

dependence structure we assume ω0 = 0 and δ 0 = γ0 = 1 .207

Step 1 (iteration j) Given the parameters for the marginal distributions in

j− 1, find δ̂ j, γ̂ j and ω̂ j within the interval defined in (5) for this

dependence parameter, by maximizing the log-likelihood

lnL
(
(ni,xi)

K
i=1 ;ω;δ ;γ

∣∣∣ θ̂ j−1; ν̂
j−1
)
.

Step 2 Given δ̂ j, γ̂ j and ω̂ j, obtain new values for the parameters of the
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marginal distributions by maximizing the log-likelihood function

lnL
(
(ni,xi)

K
i=1 ;θ ;ν

∣∣∣ ω̂ j; δ̂
j; γ̂

j
)
.

Given that the kernel functions also depend on the parameters of the208

marginal distributions, the maximization is carried out within an in-209

terval that guarantees (1+ωψ (n,δ )φ (y,γ)) > 0. In practice, we de-210

fine the interval for the parameters of the marginal distributions as211 (
θ̂ j−1ν̂ j−1)± ε , where ε is defined as

(
θ̂ j−1ν̂ j−1)/a, with a > 0.212

Steps 1 and 2 are repeated until convergence. Furthermore, the interval for213

the dependence parameter ω in Step 1 has to be calculated at each iteration214

j using the parameters of the marginal distributions and of the kernel func-215

tions estimated on the previous iteration j− 1. In Step 0, the initial values216

of the parameters δ and γ are fixed at 1; this affects the initial interval of the217

dependence parameter, which could be too narrow. Therefore, if the depen-218

dence parameter is located at an extreme of the interval, the initial values of219

the parameters δ and γ must be increased.220

Phase 2 Starting with the initial parameters estimated in Phase 1, perform full MLE.221

Given our bounded parametric space, optimizations in the two phases were222

carried out using the optim() function of R with the method L-BFGS-B (Byrd223

et al., 1995).224

2.4. Particular cases225

2.4.1. Counting distributions226

For the r.v. number of claims, we consider four different distributions: Pois-227

son, Negative Binomial, and their zero inflated forms, Zero Inflated Poisson (ZIP)228
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and Zero Inflated Negative Binomial (ZINB).229

If N is Poisson distributed, N ∼ Po(λ ) , λ > 0, we recall that

EN =VarN = λ , E
[
N2]= λ +λ

2, LN (δ ) = eλ(e−δ−1).

Assuming that N is Negative Binomial distributed, N ∼ NB(r, p) , r > 0, p ∈230

(0,1), then, with q = 1− p,231

Pr(N = n) =
Γ(r+n)
n!Γ(r)

prqn, n ∈ N,

EN =
rq
p
, E
[
N2]= rq(1+qr)

p2 , VarN =
rq
p2 , LN (δ ) =

(
p

1−qe−δ

)r

.

If N follows a certain discrete distribution with support N and Ñ follows the same232

distribution in the zero inflated form with parameter π ∈ (0,1) (the probability of233

extra zeros), then the following relations hold234

Pr
(
Ñ = n

)
=

 π +(1−π)Pr(N = 0) , n = 0

(1−π)Pr(N = n) , n≥ 1
,

EÑ = (1−π)EN, E
[
Ñ2]= (1−π)E

[
N2] , VarÑ = (1−π)

(
VarN +πE2N

)
,

LÑ (δ ) = π +(1−π)LN (δ ) .

Note that by taking π = 0 in the above formulas, we obtain the corresponding235

formulas for the original (not inflated) distribution. Therefore, in the following,236

we consider that π ∈ [0,1) and present the results for the general inflated forms;237

in this sense, for simplicity, we drop the tilde from Ñ.238

Proposition 4 Let ψ (n,δ ) = e−δn− LN(δ )−p(0)
1−p(0) be the exponential kernel and239

π ∈ [0,1).240
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i) If N ∼ ZIP(λ ,π), then241

E [Nψ (N,δ )] = (1−π)λe−λ

(
eλe−δ−δ − eλe−δ −1

1− e−λ

)
,

E
[
N2

ψ (N,δ )
]

= (1−π)λe−λ

[
eλe−δ−δ

(
λe−δ +1

)
− (λ +1)

eλe−δ −1
1− e−λ

]
.

ii) If N ∼ ZINB(r, p,π), then242

E [Nψ (N,δ )] = (1−π)
rqpr(

1−qe−δ
)r

 1
eδ −q

−
1−
(

1−qe−δ

)r

p(1− pr)

 ,

E
[
N2

ψ (N,δ )
]

= (1−π)
rqpr(

1−qe−δ
)r

 rq+ eδ(
eδ −q

)2 − (1+qr)
1−
(

1−qe−δ

)r

p2 (1− pr)

 .
2.4.2. Gamma severity distribution243

Let Y be Gamma distributed, Y ∼ Ga(α,β ) , α, β > 0, where β is the rate

parameter. We recall that

EY =
α

β
, E
[
Y 2]= α (α +1)

β 2 , VarY =
α

β 2 , LY (γ) =

(
β

β + γ

)α

.

The following result is needed to evaluate the expected value and variance of S.244

Proposition 5 Let Y ∼ Ga(α,β ) , α, β > 0, and let φ (x,γ) = e−γx−LY (γ) be245

the exponential kernel. Then246

E [Y φ (Y,γ)] = − αγβ α−1

(β + γ)α+1 ,

E
[
Y 2

φ (Y,γ)
]

= −α (α +1)γβ α−2 (2β + γ)

(β + γ)α+2 .

We note that the Gamma distribution is a particular case for the mean cost247

Y and alternative distributions with bounded Laplace transformation can also be248

used; this could be the subject of future research.249
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2.4.3. Particular compound distributions250

By combining the above discussed counting distributions with the Gamma251

severity distribution, we obtain four particular compound distributions: compound252

Poisson-Gamma, compound Zero Inflated Poisson-Gamma, compound Negative253

Binomial-Gamma and compound Zero Inflated Negative Binomial-Gamma. The254

next proposition presents pdfs for the general inflated forms; the proof is immedi-255

ate, hence we omit it.256

Proposition 6 Let Y ∼Ga(α,β ) and let ψ (n,δ ) = e−δn− LN(δ )−p(0)
1−p(0) , φ (x,γ) =

e−γx−
(

β

β+γ

)α

be the exponential kernels. Then, with π ∈ [0,1):

i) If N ∼ ZIP(λ ,π), then the compound zero inflated Poisson-Gamma pdf is

fX ,N (x,n)=


π +(1−π)e−λ , n = x = 0

(1−π) β α e−λ

Γ(α)
λ n

n! xα−1e−βx
[
1+ω

(
e−δn−π− (1−π)eλ(e−δ−1)

)
φ (x,γ)

]
,

n≥ 1, x > 0.

ii) If N ∼ ZINB(r, p,π), then the compound zero inflated Negative Binomial-

Gamma pdf is

fX ,N (x,n)=


π +(1−π) pr,n = x = 0

(1−π) β α prΓ(r+n)
Γ(α)Γ(r)n! qnxα−1e−βx

[
1+ω

(
e−δn−π− (1−π)pr

(1−qe−δ)
r

)
φ (x,γ)

]
,

n≥ 1, x > 0.

To simulate values from such compound distributions by inversion, we use257

formula (7) of the conditional cdf under the assumptions that Y ∼ Ga(α,β ) and258

φ (x,γ) = e−γx−
(

β

β+γ

)α

. We have259

∫ x

0
f (y)φ (y,γ)dy =

β α

Γ(α)

∫ x

0
yα−1e−βy

(
e−γy−

(
β

β + γ

)α)
dy

=
β α

Γ(α)

[∫ x

0

(
yα−1e−(β+γ)y

)
dy−

(
β

β + γ

)α ∫ x

0
yα−1e−βydy

]
,
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hence, letting FGa(α,β ) (x) =
β α

Γ(α)

∫ x
0 yα−1e−βydy denote the Ga(α,β ) cdf, this

yields for n≥ 1, x > 0,

FX |N=n (x)=
[

1−ωψ (n,δ )
(

β

β + γ

)α]
FGa(α,β ) (x)+ωψ (n,δ )

(
β

β + γ

)α

FGa(α,β+γ) (x) .

Therefore, as discussed before, to simulate a pair (n,x) , we first simulate the260

value n from the distribution of N, and if n ≥ 1, we generate an uniform U (0,1)261

value u and solve the equation FX |N=n (x) = u for x.262

In order to apply Gibbs sampler, we also need FN|X=x, which, for the expo-263

nential kernel and n≥ 1, x > 0, is given by264

FN|X=x (n) =
1

1− p(0)

[
FN (n)− p(0)+ωφ (x,γ)

n

∑
k=1

(
e−δk−LN (δ )− p(0)

1− p(0)

)
p(k)

]

=
1

1− p(0)

[
(FN (n)− p(0))

(
1−ωφ (x,γ)

LN (δ )− p(0)
1− p(0)

)
+ ωφ (x,γ)

n

∑
k=1

e−δk p(k)

]
.

This will be particularized for a certain distribution of N (with special attention265

to the zero inflated forms).266

3. Simulation Study267

To evaluate our proposed estimation procedure, we summarize the results of268

a simulation study. We compare the Root Mean Square Relative Error (RMSRE)269

and the Mean Absolute Percentage Error (MAPE) of the estimated parameters270

associated to the different bivariate Sarmanov distributions that we have analyzed271

in the previous sections for modeling the dependence between claims frequency272

and claims average severity. Given that the absolute values of these errors do273
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not carry much meaning, we estimated empirical bootstrap confidence intervals274

(EBCIs) at 95% confidence level, using 1,000 resamples with replacement.275

Using the Gibbs method (Casella and George, 1992) we generated 1,000 bi-276

variate samples of sizes K = 500 and K = 5,000 from the following compound277

Sarmanov models: Poisson-Gamma (CPG), Negative Binomial-Gamma (CNBG),278

Zero Inflated Poisson-Gamma (CZIPG) and Zero Inflated Negative Binomial-279

Gamma (CZINBG). We have selected different parameters for the analyzed dis-280

tributions such that the expected number of claims is around 0.1 or 0.2. In all281

the simulated models, we assumed the same parameters for the Gamma marginal282

distribution: shape α = 0.3 and rate β = 0.0006. Concerning the claim frequency283

distribution, the kernel parameters δ and γ and the dependence parameter ω , we284

used those shown in Table 1; we considered four distinct cases for each compound285

model that we denoted as Mi.1, i = 1, ...,4, for δ = γ = 1 and Mi.2, i = 1, ...,4,286

for δ = γ = 2. Comparing both groups of models, Mi.1 and Mi.2, we observe the287

effect of the kernel parameters on the bounds defined in expression (5): the larger288

the parameters values, the wider is the interval of the dependence parameter ω . In289

practice, this implies that if the kernel parameters δ and γ are undervalued, the es-290

timated dependence parameter could be biased; on the contrary, the overvaluation291

of δ and γ will imply a larger dispersion of the estimated dependence parameter.292

We have obtained the EBCIs at 95% confidence level of the RMSRE and293

MAPE for the estimated parameters of the CPG, CNBG, CZIPG and CZINBG294

distributions, respectively; given the tables we obtained are very large, they are295

displayed in the Appendix (Tables 7, 8, 9 and 10). The estimated parameters for296

each sample are obtained using the procedure described in Subsection 2.3; we297

have noticed that the estimated parameters obtained with this procedure depend298
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very closely on the parameters used for the margins and for the kernel functions299

in Step 0 of Phase 1. To obtain simulation results for the CPG and CNBG dis-300

tributions, for all replicates in Step 0, we have used the MLE of the parameters301

associated with the univariate marginal distribution and the true values for the pa-302

rameters of the kernel functions. For the the CZIPG and CZINBG distributions,303

the univariate estimation failed in a small number of replicates (5 for CZIPG and304

18 for CZINBG); in these cases, we decided to use in Step 0 the true values of305

parameters of the marginal distributions.306

In general, the obtained EBCIs are narrow. From the results displayed for the307

CPG and CNBG distributions in Tables 7 and 8 of the Appendix, it can be seen308

that for the parameters associated to the marginal distributions and kernel func-309

tions, in almost all cases, the RMSRE and MAPE have upper confidence interval310

limits below or near 0.5 for K = 500 and below or near 0.15 for K = 5,000. The311

relative errors of the dependence parameter are larger than the ones obtained for312

the parameters associated to the marginal distributions and kernel functions. This313

parameter has to be within the limits defined in expression (5). These limits are314

very sensitive to the parameters associated to the marginal distributions and kernel315

functions, so that these larger errors are expected. Furthermore, larger values for316

the kernel parameters δ and γ tend to increase the errors given the larger disper-317

sion.318

In what concerns the compound zero inflated distributions, CZIPG and CZ-319

INBG, from the results shown in Tables 9 and 10 of the Appendix, we note that320

in some cases, the relative errors of the parameters of the marginal distributions321

and kernel functions decrease very slightly when the sample size increases; this is322

due to the larger error associated with the parameters estimated at Step 0. On the323
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contrary, the results for the dependence parameter lead to similar comments as for324

the CPG and CNBG distributions.325

We also mention that the runtime is fast: to obtain 1,000 replicates with K =326

5,000, we need around 10 minutes (i7-7700 CPU, 3.60GHz).327

Table 1: Parameters of the bivariate compound Sarmanov models. The Gamma parameters are the

same in all the cases: α = 0.3 and β = 0.0006. Dependence bounds between parentheses.

Mi.1: δ = γ = 1 Mi.2: δ = γ = 2

CPG λ ω (-26.85,3.25) ω (-91.99,8.85)

M1.j 0.2 -7

M2.j 0.2 3

λ ω (-25.99,3.15) ω (-87.99,8.46)

M3.j 0.1 -7

M4.j 0.1 3

CNBG r p ω (-15.45,3.80) ω (-32.55,10.78)

M1.j 0.3 0.6 -12

M2.j 0.3 0.6 3

r p ω (-17.39,3.69) ω (-36.46,10.41)

M3.j 0.15 0.6 -12

M4.j 0.15 0.6 3

CZIPG λ π ω (-24.61,3.48) ω (-49.30,9.69)

M1.j 0.4 0.5 -12

M2.j 0.4 0.5 3

λ π ω (-26.85,3.25) ω (-91.99,8.85)

M3.j 0.2 0.5 -12

M4.j 0.2 0.5 3

CZINBG r p π ω (-9.79,4.43) ω (-21.51,12.99)

M1.j 0.3 0.43 0.5 -8

M2.j 0.3 0.43 0.5 3

r p π ω (-17.39,3.69) ω (-36.46,10.41)

M3.j 0.15 0.6 0.5 -8

M4.j 0.15 0.6 0.5 3

i=1,2,3,4 and j=1,2
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4. Numerical example328

We now analyze a data set of auto insurance policyholders of an international329

company. This data set contains a sample of K = 99,972 Spanish insureds. This330

data are specifically designed for this numerical example and represent around331

25% of the total policies considered as study object. We have selected annual332

policies in force in 2013 that have been renewed for at least one time, i.e. the333

policyholders have been with the company for more than one year. All the selected334

insureds drive a car for private use. For each individual we have information335

on the number and on the average cost of claims; these variables are calculated336

taking into account only the civil liability coverage and at fault material damage337

claims. We assume that they have a homogeneous risk profile. Our aim is to fit338

the bivariate Sarmanov distribution and to check the effect of dependence between339

frequency and severity on the risk premium.340

In Table 2, we display the results of the initial analysis that consisted in obtain-341

ing the basic descriptives and estimated initial parameters for the marginal distri-342

butions assuming independence. At the top of this table, we present the analysis343

of the number of claims. From the values of the Chi-square statistic, we can see344

that the best fits are obtained with the NB and ZINB distributions, being somewhat345

better for the NB. Below the double line in Table 2, we show the basic descriptive346

statistics for the average cost of claims, together with the estimated parameters347

of the Gamma distribution for this variable. We also compared the log-likelihood348

value of the Gamma distribution with some alternative distributions with different349

tail shapes (and same number of parameters): Weibull, Log-Normal and Log-350

Logistic; the results are shown in Table 3. We can see that for these data, the best351

fit is provided by the Gamma distribution.352
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Table 2: Results of basic descriptive analysis and initial parameters for marginal distributions.

Po NB ZIPo ZINB

Initial Parameters λ = 0.0887 r = 0.3171 λ = 0.3647 r = 11.1344

p = 0.7814 π = 0.7567 p = 0.9705

π = 0.7374

Frequency TRUE

0 92538.00 91482.28 92524.63 92538.00 92537.99

1 6166.00 8118.58 6285.65 6160.47 6172.32

2 1122.00 360.24 950.48 1123.51 1103.16

3 125.00 10.66 170.11 136.60 142.28

4 18.00 0.24 32.81 12.46 14.81

5 3.00 0.00 1.73 0.06 0.11

Chi-Square 99972.00 6761.20 52.81 152.02 77.09

Gamma

Initial Parameters α = 0.1881

β = 0.0003

Mean Median STDEV Skewness

Severity 685.63 441.00 1580.81 15.73

The Pearson correlation coefficient between the frequency and severity is 0.4152.

Table 3: Comparing distributions for average severity per policyholder.

Gamma Weibull Log-Normal Log-Logistic

log-likelihood 51234.75 51213.25 33323.50 49430.50
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Table 4 contains the results of the estimated parameters for the bivariate Sar-353

manov for CNBG and CZINBG; as expected, given the results in Table 2, the354

results for CNPG and CZIPG were worse, so we did not display them. The start-355

ing values of the kernel parameters used to obtain the results in Table 4 were356

δ = γ = 1. Furthermore, the parameters were also estimated using different initial357

values for the kernel parameters, i.e. δ = γ = 2, and the results were practically358

the same.359

We also compared the results obtained using the Sarmanov distribution with360

the results obtained for the bivariate Gaussian copula (see Czado et al., 2012, who361

proposed a copula based model with Gamma and Poisson marginal distributions)362

and with the proposal of Garrido et al. (2016) based on the conditional distribution363

of the mean severity given the frequency of claims. In both cases, the authors364

assume X > 0 for N > 0. We have assumed the same marginal distributions as365

in Table 4: Gamma for the mean severity and NB and ZINB for the frequency.366

However, the proposals of Czado et al. (2012) and Garrido et al. (2016) are based367

on the particular case where the number of claims follows a Poisson distribution368

and the mean cost per policyholder is Gamma distributed; both papers propose369

MLE algorithms. Since in our case the distributions that better fit the number of370

claims are the NB and the ZINB, to estimate the parameters we used an algorithm371

similar to the one proposed in Subsection 2.3. The models were defined in two372

parts: for X = N = 0 and for X ,N > 0. In the Appendix, we describe in more373

details the alternative models and the estimation algorithms. The AIC and BIC374

values for each estimated model included in Table 5 show that the Sarmanov based375

models provide the best fit for our data set.376

Focusing on the estimated bivariate Sarmanov distributions that are shown in377
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Table 4, based on the AIC and BIC values, we note that the best fit is obtained with378

the CZINBG, although the difference from the CNBG model is minimal. In both379

cases, we obtain a positive and statistically significant positive dependence be-380

tween the frequency and average severity of claims. Furthermore, the dependence381

parameter is within the interval defined in (5), which indicates that the estimated382

Sarmanov models work. The effect of this dependence on risk premium is ana-383

lyzed below.384

Table 4: Estimation results of bivariate Sarmanov distributions for CNBG and CZINBG models

CNBG CZINBG

r 0.2994 11.1291

p 0.7703 0.9695

π 0.0000 0.7453

α 0.2783 0.2756

β 0.0004 0.0004

δ 1.0519 1.1180

γ 0.6806 0.6970

ω 2.0863* 2.4814*

Min(ω) -24.9979 -27.1313

Max(ω) 3.67676 4.0042114

corr (X ,N) 0.4159 0.4208

AIC 157,508.0 157,442.6

BIC 157,574.6 157,518.7

*Statistically significant positive dependence at 99% confidence level.
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Table 5: Comparing bivariate models.

CNBG CZINBG

AIC BIC AIC BIC

Sarmanov 157,508.0 157,574.6 157,442.6 157,518.7

Gaussian Copula 157,654.2 157,688.7 157,571.1 157,612.6

Garrido et al. 157,844.7 157,892.2 157,791.0 157,838.5

4.1. Effect on pure and risk premiums385

In insurance, the pure premium is calculated as the expected cost of the re-386

ported claims, i.e. ES = E [NX ] in our case, while the risk premium commonly387

consists of adding the effect of the dispersion of this variable, i.e. VarS=Var [NX ].388

For example, if we use the standard deviation criterion, we obtain the risk pre-389

mium formula ρR = ES+η
√

VarS, where η > 0 is a loading constant. Therefore,390

for calculating this premium, we need to know the distribution of S and especially391

its first two moments. For our numerical example, we present in Table 6 the total392

pure and risk premiums evaluated for the K = 99,972 policyholders in two cases:393

if N > 0 and X > 0 were independent (i.e., ω = 0), and by assuming that N > 0 and394

X > 0 are Sarmanov distributed with ω > 0 and with ES and VarS calculated as395

in Proposition 2. We used the models whose parameters are shown in Table 4 and396

assumed η = 0 (pure premium) and η = 1. If we compare the evaluated premiums397

without and with dependence, we can observe the effect of the dependence: the398

dependence between frequency and severity leads to an increase in premiums that399

could improve the company solvency, reducing hence the ruin probability.400
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Table 6: Premiums obtained with CNBG and CZINBG models using ω = 0 and ω > 0, for K =

99,972 policyholders.

η = 0 η = 1

CNBG CZINBG CNBG CZINBG

ρR with ω = 0 6,209,898 6,142,407 58,304,175 57,789,996

ρR with ω > 0 6,266,396 6,200,767 58,978,497 58,038,198

Difference 56,498 58,360 674,322 248,202

5. Conclusions401

In this paper, we have shown how Sarmanov distribution allows us to mix402

continuous and discrete marginal distributions and to model their dependence.403

Specifically, we have obtained four bivariate particular cases where we assumed404

the Gamma distribution for the continuous marginal, and Poisson, Zero Inflated405

Poisson, Negative Binomial and, respectively, Zero Inflated Negative Binomial406

distribution for the discrete marginal. Furthermore, a two part maximum likeli-407

hood estimation method was proposed and evaluated using a simulation study. We408

concluded that our proposed method is consistent in terms of the considered error409

metrics of the estimated parameters for the four proposed particular cases.410

As a direct application, we used our model to introduce dependence between411

the frequency and severity of claims in the collective model. We numerically illus-412

trated this on an auto insurance data set, for which we obtained low, but significant413

positive dependence between frequency and severity. We concluded that with our414

model, this dependence between frequency and severity can lead to changes in415

premiums that could improve the company’s performance.416

In a further work, we intend to also consider other distributions for the claim417
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frequency and severity, such as mixture distributions, which are challenging in418

what concerns parameters estimation. Also, introducing regression components is419

another aspect that we take into account, as well as a Bayesian approach.420

Appendix421

Proofs422

The following lemmas will be needed to prove Proposition 4; although the first423

lemma is given for the continuous r.v. Y , it holds for any r.v., including a discrete424

r.v. N, assuming that the involved expected values exist. The proof of this lemma425

is immediate, hence we omit it.426

Lemma 1 Let Y be some r.v. and let ψ (x,δ ) = e−δx−LY (δ ) be the correspond-427

ing exponential kernel. Then428

E [Y ψ (Y,δ )] = E
[
Ye−δY

]
−LY (δ )E [Y ] , (9)

E
[
Y 2

ψ (Y,δ )
]

= E
[
Y 2e−δY

]
−LY (δ )E

[
Y 2] . (10)

Lemma 2 If the r.v. N follows a certain discrete distribution with support N and429

Ñ follows the same distribution in the zero inflated form with parameter π ∈ (0,1),430

then431

E
[
Ñψ

(
Ñ,δ

)]
= (1−π)E [Nψ (N,δ )] ,

E
[
Ñ2

ψ
(
Ñ,δ

)]
= (1−π)E

[
N2

ψ (N,δ )
]
,

where ψ (N,δ ) = e−δN − LN(δ )−p(0)
1−p(0) and ψ

(
Ñ,δ

)
= e−δ Ñ − LÑ(δ )−p̃(0)

1−p̃(0) , p̃(0) =432

Pr
(
Ñ = 0

)
.433
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Proof of Lemma 2. The first formula easily results by applying formula (9),434

E
[
Ñψ

(
Ñ,δ

)]
= E

[
Ñe−δ Ñ

]
−LÑ (δ )− p̃(0)

1− p̃(0)
EÑ = (1−π) ∑

n≥1
ne−δn p(n)

−π +(1−π)LN (δ )−π− (1−π) p(0)
1−π− (1−π) p(0)

(1−π)EN

= (1−π)

(
E
[
Ne−δN

]
−LN (δ )− p(0)

1− p(0)
EN
)

= (1−π)E [Nψ (N,δ )] .

The proof of the second formula is similar, based on formula (10). �
435

Proof of Proposition 4. i) We start by proving the case π = 0. When N ∼

Po(λ ), from the proof of Lemma 4.1 in Tamraz and Vernic (2018) we know that

E
[
Ne−δN

]
= λeλ(e−δ−1)−δ , hence, applying also formula (9),

E [Nψ (N,δ )]= λeλ(e−δ−1)−δ−λ
eλ(e−δ−1)− e−λ

1− e−λ
= λe−λ

(
eλe−δ−δ − eλe−δ −1

1− e−λ

)
.

For the second formula, we use436

E
[
N2e−δN

]
= e−λ

∞

∑
n=0

n2λ n

n!
e−δn = e−λ

∞

∑
n=1

(n−1+1)
(

λe−δ

)n

(n−1)!

= e−λ

(λe−δ

)2 ∞

∑
n=2

(
λe−δ

)n−2

(n−2)!
+λe−δ

∞

∑
n=1

(
λe−δ

)n−1

(n−1)!


= e−λ

((
λe−δ

)2
eλe−δ

+λe−δ eλe−δ

)
= λeλe−δ−λ−δ

(
λe−δ +1

)
,

that we insert into (10) and obtain437

E
[
N2

ψ (N,δ )
]

= λeλe−δ−λ−δ

(
λe−δ +1

)
−λ (λ +1)

eλ(e−δ−1)− e−λ

1− e−λ

= λe−λ

[
eλe−δ−δ

(
λe−δ +1

)
− (λ +1)

eλe−δ −1
1− e−λ

]
.
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The formulas for N ∼ ZIP(λ ,π) easily result by applying Lemma 2.438

ii) We first prove the case π = 0. For N ∼ NB(r, p), from the proof of Lemma439

4.1 from Tamraz and Vernic (2018) we have that E
[
Ne−δN

]
= rqpre−δ

(1−qe−δ)
r+1 . Then,440

based on formula (9),441

E [Nψ (N,δ )] =
rqpre−δ(

1−qe−δ
)r+1 −

rq
p

(
p

1−qe−δ

)r
− pr

1− pr

=
rqpr(

1−qe−δ
)r

 e−δ

1−qe−δ
−

1−
(

1−qe−δ

)r

p(1− pr)

 ,

yielding the first formula. To obtain the second stated formula, we first evaluate442

E
[
N2e−δN

]
=

∞

∑
n=0

Γ(r+n)
n!Γ(r)

n2 pr
(

qe−δ

)n
=

∞

∑
n=1

Γ(r+n)(n−1+1)
(n−1)!Γ(r)

pr
(

qe−δ

)n

=
pr(

1−qe−δ
)r

[
∞

∑
n=2

Γ(r+n)
(n−2)!Γ(r)

(
1−qe−δ

)r(
qe−δ

)n

+
∞

∑
n=1

Γ(r+n)
(n−1)!Γ(r)

(
1−qe−δ

)r(
qe−δ

)n
]

=
pr(

1−qe−δ
)r

r (r+1)
(

qe−δ

)2

(
1−qe−δ

)2 +
rqe−δ

1−qe−δ


=

rqpre−δ

(
rqe−δ +1

)
(
1−qe−δ

)r+2 .

Therefore, based on (10), we have443

E
[
N2

ψ (N,δ )
]

=
rqpre−δ

(
rqe−δ +1

)
(
1−qe−δ

)r+2 − rq(1+qr)
p2

(
p

1−qe−δ

)r
− pr

1− pr

=
rqpr(

1−qe−δ
)r

e−δ

(
rqe−δ +1

)
(
1−qe−δ

)2 − 1+qr
p2

1−
(

1−qe−δ

)r

1− pr

 ,
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which easily yields the stated formula.444

The general case N ∼ ZINB(r, p,π) follows from Lemma 2, which completes the445

proof. �
446

Proof of Proposition 5. We start with

E
[
Ye−γY ]= β α

Γ(α)

∫
∞

0
yα+1−1e−(β+γ)ydy =

αβ α

(β + γ)α+1 ,

that we insert into (9) and obtain

E [Y φ (Y,γ)] =
αβ α

(β + γ)α+1 −
α

β

(
β

β + γ

)α

,

hence the first stated formula.

Also,

E
[
Y 2e−γY ]= β α

Γ(α)

∫
∞

0
yα+2−1e−(β+γ)ydy =

α (α +1)β α

(β + γ)α+2 ,

hence, according to (10),

E
[
Y 2

φ (Y,γ)
]
=

α (α +1)β α

(β + γ)α+2 −
α (α +1)

β 2

(
β

β + γ

)α

,

from where we easily obtain the second stated formula. �
447

Alternative Models448

Based on the idea of Garrido et al. (2016), in the same context of this work

and using our notation, the dependence between frequency and severity can be

modeled by adding to the severity model the number of claims as an explanatory

variable; i.e., the r.v. N follows a counting distribution between those defined in

Section 2.4.1, while the r.v. Y , defined only for N > 0, is specified as a General-

ized Linear Model (GLM), where the following parameterization of the Gamma

distribution is considered

E(Y |N) = µ =
α

β
⇒ β =

α

µ
.
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Therefore, the Gamma pdf is

fY |N(y|n) =
1

Γ(α)

(
α

µ

)(
α

µ
y
)α−1

e−
α

µ
y,

where µ = eλN and λ is the parameter that induces a degree of dependence be-449

tween the number of claims and the average severity. The parameters are esti-450

mated by maximizing the joint log-likelihood function451

lnL
(
(ni,yi)

K
i=1 ;θ ;ν ;α;λ

)
= ∑

{i:ni=yi=0}
ln p(0;θ)+ ∑

{i:ni≥1,yi>0}
[ln p(ni;θ)

+ ln fYi|Ni(yi|ni)
]
, (11)

where θ and ν are, respectively, the parameters vectors of the marginal distri-452

bution of N and of the average cost per policyholder Y . Garrido et al. (2016)453

proposed an estimation procedure for the Poisson-Gamma particular case. For454

alternative counting distributions such as the Negative Binomial and the Zero In-455

flated models, we have maximized the joint log-likelihood function by using the456

optim() function of R with the method L-BFGS-B. The initial parameters were457

obtained from the independent case. The optimization procedure is iterated un-458

til an optimum is reached. To check the optimal result, we considered different459

bounds for the method L-BFGS-B.460

Based on Czado et al. (2012), in the same context of this work and using our

notation, we considered the following Copula model

FX ,N(x,n|ν ;θ ;ρ) =C(u1,u2|ρ) = Φ2
[
Φ
−1(u1),Φ

−1(u2)
∣∣ρ], (12)

where ρ is the dependency parameter, u1 =FX(x|ν) is the cdf of the average sever-461

ity r.v. and u2 = Pr(N ≤ n|θ) is the cdf of the counting variable. The conditional462

likelihood based on the conditional random variable N|N > 0 is maximized in two463
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parts (see Czado et al., 2012, for expressions): the first part is associated with the464

marginal distribution and the second part with the dependence structure. These465

authors proposed an estimation procedure for the Poisson-Gamma particular case.466

For our alternative counting distributions (Negative Binomial and the Zero In-467

flated models), we used a procedure similar to the one described in Section 2.3,468

given that the likelihood has a similar decomposition.469
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Table 7: Results of lower (LCI) and upper (UCI) EBCIs (1000 bootstrap resamples) of RMSRE

and MAPE for compound Poisson-Gamma distributions (CPG).

Poisson Gamma Dependece

λ α β δ γ ω

LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI

CPG K γ = δ = 1

M1.1 500 RMSRE 0.094 0.104 0.125 0.139 0.237 0.268 0.124 0.138 0.195 0.214 1.019 1.121

MAPE 0.074 0.082 0.096 0.107 0.182 0.203 0.083 0.094 0.150 0.166 0.841 0.922

5000 RMSRE 0.029 0.032 0.041 0.044 0.076 0.084 0.059 0.066 0.074 0.082 0.765 0.803

MAPE 0.024 0.026 0.032 0.035 0.059 0.065 0.039 0.044 0.054 0.060 0.684 0.727

M2.1 500 RMSRE 0.094 0.103 0.124 0.138 0.236 0.266 0.147 0.159 0.170 0.186 1.344 1.635

MAPE 0.073 0.081 0.095 0.106 0.182 0.204 0.107 0.119 0.129 0.143 0.700 0.856

5000 RMSRE 0.030 0.032 0.040 0.044 0.077 0.084 0.059 0.066 0.069 0.077 0.874 0.948

MAPE 0.024 0.026 0.032 0.035 0.059 0.066 0.040 0.045 0.050 0.056 0.682 0.749

M3.1 500 RMSRE 0.137 0.150 0.182 0.206 0.371 0.426 0.144 0.157 0.203 0.221 1.627 1.915

MAPE 0.108 0.119 0.136 0.152 0.277 0.309 0.102 0.115 0.153 0.170 1.401 1.523

5000 RMSRE 0.044 0.048 0.054 0.059 0.105 0.116 0.057 0.068 0.096 0.108 0.789 0.843

MAPE 0.035 0.039 0.043 0.047 0.081 0.089 0.032 0.039 0.069 0.079 0.665 0.720

M4.1 500 RMSRE 0.137 0.150 0.182 0.205 0.370 0.430 0.152 0.164 0.192 0.211 2.654 3.393

MAPE 0.108 0.119 0.135 0.152 0.279 0.311 0.115 0.128 0.143 0.160 1.037 1.382

5000 RMSRE 0.044 0.047 0.054 0.059 0.105 0.115 0.065 0.076 0.091 0.103 1.055 1.188

MAPE 0.035 0.039 0.043 0.047 0.080 0.089 0.038 0.045 0.064 0.072 0.679 0.785

γ = δ = 2

M1.2 500 RMSRE 0.299 0.357 0.353 0.402 0.409 0.455 0.288 0.349 0.290 0.350 1.885 2.108

MAPE 0.152 0.188 0.233 0.268 0.296 0.333 0.113 0.150 0.128 0.163 1.552 1.686

5000 RMSRE 0.033 0.036 0.056 0.061 0.082 0.090 0.010 0.014 0.031 0.036 0.919 0.983

MAPE 0.026 0.029 0.044 0.048 0.064 0.070 0.005 0.006 0.018 0.022 0.769 0.831

M2.2 500 RMSRE 0.094 0.103 0.132 0.146 0.239 0.271 0.139 0.151 0.151 0.164 3.050 3.667

MAPE 0.073 0.081 0.100 0.112 0.185 0.206 0.100 0.113 0.114 0.126 2.129 2.429

5000 RMSRE 0.030 0.032 0.040 0.043 0.076 0.083 0.020 0.027 0.052 0.060 1.395 1.548

MAPE 0.024 0.026 0.032 0.035 0.059 0.065 0.011 0.014 0.033 0.038 1.099 1.213

M3.2 500 RMSRE 0.138 0.151 0.311 0.350 0.481 0.552 0.070 0.074 0.056 0.060 3.834 4.594

MAPE 0.109 0.119 0.234 0.261 0.355 0.398 0.055 0.060 0.038 0.043 2.854 3.203

5000 RMSRE 0.045 0.050 0.078 0.086 0.116 0.128 0.020 0.026 0.037 0.042 1.241 1.344

MAPE 0.037 0.040 0.059 0.065 0.090 0.099 0.008 0.011 0.023 0.027 1.014 1.105

M4.2 500 RMSRE 0.138 0.151 0.182 0.205 0.370 0.427 0.194 0.210 0.135 0.154 6.365 8.093

MAPE 0.109 0.120 0.135 0.152 0.278 0.310 0.149 0.165 0.086 0.099 3.137 3.934

5000 RMSRE 0.044 0.047 0.054 0.059 0.105 0.115 0.051 0.062 0.061 0.073 2.056 2.319

MAPE 0.035 0.038 0.042 0.047 0.080 0.089 0.022 0.029 0.037 0.044 1.535 1.715
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Table 8: Results of lower (LCI) and upper (UCI) EBCIs (1000 bootstrap resamples) of RMSRE

and MAPE for compound Negative Binomial-Gamma distributions (CNBG).

NB Gamma Dependece

r p α β δ γ ω

LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI

CNBG K γ = δ = 1

M1.1 500 RMSRE 0.438 0.550 0.136 0.148 0.314 0.350 0.451 0.523 0.022 0.023 0.023 0.023 0.776 0.839

MAPE 0.304 0.347 0.108 0.119 0.242 0.268 0.331 0.373 0.021 0.022 0.022 0.023 0.631 0.689

5000 RMSRE 0.096 0.105 0.040 0.044 0.092 0.101 0.115 0.126 0.016 0.017 0.017 0.018 0.692 0.725

MAPE 0.075 0.083 0.032 0.036 0.071 0.079 0.090 0.099 0.013 0.014 0.014 0.015 0.617 0.658

M2.1 500 RMSRE 0.414 0.487 0.133 0.145 0.311 0.347 0.444 0.507 0.021 0.022 0.021 0.022 1.012 1.165

MAPE 0.298 0.338 0.105 0.116 0.240 0.265 0.322 0.362 0.019 0.021 0.019 0.020 0.649 0.750

5000 RMSRE 0.097 0.107 0.042 0.045 0.093 0.102 0.115 0.127 0.017 0.018 0.017 0.018 0.805 0.857

MAPE 0.075 0.083 0.033 0.036 0.072 0.080 0.089 0.099 0.013 0.014 0.014 0.015 0.688 0.739

M3.1 500 RMSRE 0.731 1.110 0.174 0.193 0.420 0.471 0.700 0.808 0.041 0.042 0.041 0.042 0.586 0.651

MAPE 0.444 0.542 0.137 0.152 0.321 0.357 0.482 0.549 0.036 0.038 0.036 0.039 0.445 0.497

5000 RMSRE 0.136 0.153 0.057 0.062 0.118 0.131 0.158 0.175 0.026 0.029 0.029 0.031 0.559 0.599

MAPE 0.105 0.117 0.045 0.050 0.092 0.102 0.123 0.136 0.020 0.022 0.022 0.025 0.446 0.489

M4.1 500 RMSRE 0.744 1.025 0.181 0.197 0.471 0.521 0.711 0.823 0.028 0.029 0.028 0.029 1.686 2.004

MAPE 0.457 0.546 0.143 0.157 0.358 0.396 0.490 0.560 0.025 0.027 0.025 0.027 0.945 1.136

5000 RMSRE 0.122 0.135 0.054 0.060 0.118 0.131 0.153 0.171 0.023 0.024 0.023 0.025 0.730 0.799

MAPE 0.097 0.107 0.043 0.048 0.090 0.100 0.120 0.132 0.018 0.020 0.019 0.021 0.557 0.617

γ = δ = 2

M1.2 500 RMSRE 0.437 0.546 0.136 0.148 0.307 0.343 0.440 0.513 0.021 0.022 0.025 0.026 0.908 0.982

MAPE 0.302 0.346 0.108 0.119 0.238 0.263 0.324 0.366 0.016 0.018 0.021 0.023 0.726 0.795

5000 RMSRE 0.096 0.105 0.041 0.044 0.090 0.099 0.114 0.125 0.011 0.013 0.015 0.017 0.705 0.747

MAPE 0.075 0.083 0.033 0.036 0.071 0.078 0.089 0.098 0.007 0.009 0.011 0.012 0.610 0.655

M2.2 500 RMSRE 0.480 0.628 0.174 0.193 0.427 0.479 0.699 0.804 0.026 0.027 0.027 0.028 3.762 4.392

MAPE 0.426 0.465 0.138 0.152 0.326 0.363 0.489 0.555 0.022 0.023 0.023 0.025 2.810 3.154

5000 RMSRE 0.096 0.106 0.041 0.045 0.090 0.099 0.114 0.125 0.011 0.013 0.014 0.015 1.055 1.155

MAPE 0.076 0.083 0.033 0.036 0.071 0.077 0.090 0.099 0.007 0.008 0.009 0.010 0.832 0.916

M3.2 500 RMSRE 0.733 1.132 0.175 0.193 0.429 0.481 0.707 0.812 0.025 0.026 0.027 0.028 1.314 1.460

MAPE 0.445 0.544 0.138 0.153 0.329 0.367 0.490 0.557 0.021 0.022 0.023 0.025 1.061 1.162

5000 RMSRE 0.136 0.153 0.058 0.063 0.120 0.132 0.159 0.177 0.016 0.018 0.024 0.026 0.644 0.694

MAPE 0.106 0.118 0.046 0.051 0.093 0.103 0.125 0.138 0.010 0.012 0.016 0.018 0.522 0.569

M4.2 500 RMSRE 0.729 1.130 0.174 0.193 0.427 0.479 0.699 0.804 0.026 0.027 0.027 0.028 3.762 4.392

MAPE 0.444 0.543 0.138 0.152 0.326 0.363 0.489 0.555 0.022 0.023 0.023 0.025 2.810 3.154

5000 RMSRE 0.137 0.154 0.058 0.064 0.125 0.138 0.164 0.182 0.014 0.016 0.017 0.019 1.351 1.469

MAPE 0.107 0.118 0.046 0.051 0.097 0.108 0.128 0.142 0.009 0.011 0.012 0.013 1.082 1.188
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Table 9: Results of lower (LCI) and upper (UCI) EBCIs (1000 bootstrap resamples) of RMSRE

and MAPE for compound Zero-Inflated-Poisson-Gamma distributions (CZIPG).

ZI-Poisson Gamma Dependece

λ π α β δ γ ω

LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI

CZIPG K γ = δ = 1

M1.1 500 RMSRE 0.313 0.342 0.311 0.346 0.201 0.224 0.311 0.352 0.134 0.137 0.142 0.144 0.845 0.910

MAPE 0.247 0.271 0.230 0.258 0.155 0.171 0.230 0.257 0.126 0.132 0.137 0.142 0.698 0.757

5000 RMSRE 0.179 0.190 0.157 0.166 0.047 0.052 0.082 0.090 0.131 0.134 0.140 0.142 0.660 0.690

MAPE 0.156 0.167 0.144 0.152 0.036 0.040 0.065 0.072 0.124 0.129 0.135 0.139 0.593 0.628

M2.1 500 RMSRE 0.534 0.596 0.515 0.557 0.242 0.276 0.439 0.510 0.199 0.205 0.218 0.224 1.804 2.176

MAPE 0.410 0.455 0.396 0.438 0.175 0.198 0.318 0.360 0.186 0.195 0.210 0.217 0.823 1.034

5000 RMSRE 0.287 0.298 0.232 0.239 0.047 0.051 0.086 0.096 0.207 0.215 0.219 0.226 0.782 0.842

MAPE 0.271 0.283 0.227 0.233 0.037 0.041 0.066 0.073 0.192 0.202 0.205 0.215 0.631 0.689

M3.1 500 RMSRE 0.508 0.563 0.516 0.559 0.303 0.344 0.493 0.581 0.120 0.125 0.140 0.142 0.927 1.044

MAPE 0.401 0.441 0.388 0.430 0.221 0.248 0.350 0.401 0.109 0.115 0.135 0.139 0.752 0.828

5000 RMSRE 0.190 0.206 0.186 0.205 0.082 0.092 0.122 0.134 0.086 0.089 0.095 0.096 0.631 0.669

MAPE 0.152 0.167 0.143 0.157 0.062 0.069 0.096 0.106 0.081 0.085 0.092 0.095 0.533 0.573

M4.1 500 RMSRE 0.357 0.386 0.332 0.360 0.154 0.172 0.274 0.313 0.204 0.210 0.219 0.225 1.129 1.350

MAPE 0.287 0.312 0.280 0.302 0.117 0.130 0.205 0.230 0.193 0.201 0.207 0.216 0.626 0.752

5000 RMSRE 0.320 0.342 0.264 0.280 0.058 0.064 0.112 0.122 0.188 0.196 0.216 0.223 0.907 1.030

MAPE 0.273 0.295 0.239 0.253 0.046 0.051 0.088 0.097 0.173 0.182 0.203 0.212 0.628 0.716

γ = δ = 2

M1.2 500 RMSRE 0.275 0.301 0.285 0.316 0.195 0.218 0.308 0.348 0.088 0.093 0.127 0.131 0.956 1.051

MAPE 0.216 0.237 0.217 0.239 0.147 0.164 0.228 0.255 0.073 0.079 0.118 0.124 0.761 0.833

5000 RMSRE 0.175 0.185 0.156 0.163 0.045 0.049 0.081 0.089 0.077 0.082 0.119 0.123 0.741 0.779

MAPE 0.154 0.164 0.144 0.151 0.035 0.039 0.064 0.071 0.062 0.068 0.107 0.113 0.658 0.699

M2.2 500 RMSRE 0.355 0.383 0.331 0.359 0.153 0.171 0.274 0.312 0.166 0.174 0.195 0.202 2.598 3.044

MAPE 0.286 0.312 0.280 0.302 0.116 0.129 0.204 0.228 0.142 0.153 0.176 0.186 1.823 2.067

5000 RMSRE 0.286 0.298 0.232 0.239 0.046 0.050 0.084 0.093 0.110 0.119 0.170 0.179 1.205 1.324

MAPE 0.271 0.282 0.227 0.233 0.036 0.039 0.066 0.073 0.086 0.095 0.146 0.157 0.935 1.033

M3.2 500 RMSRE 0.468 0.519 0.499 0.540 0.298 0.338 0.488 0.577 0.106 0.111 0.123 0.127 1.798 2.096

MAPE 0.370 0.408 0.374 0.415 0.217 0.245 0.349 0.400 0.091 0.097 0.114 0.119 1.422 1.573

5000 RMSRE 0.221 0.240 0.200 0.216 0.066 0.075 0.111 0.123 0.062 0.068 0.121 0.125 0.776 0.829

MAPE 0.179 0.196 0.163 0.178 0.051 0.056 0.088 0.097 0.048 0.053 0.110 0.116 0.634 0.688

M4.2 500 RMSRE 0.534 0.594 0.511 0.552 0.241 0.275 0.436 0.508 0.190 0.197 0.180 0.188 4.572 5.824

MAPE 0.414 0.457 0.392 0.432 0.175 0.198 0.315 0.358 0.173 0.182 0.163 0.173 2.532 3.064

5000 RMSRE 0.319 0.340 0.266 0.281 0.058 0.065 0.110 0.121 0.095 0.105 0.170 0.179 1.641 1.847

MAPE 0.271 0.292 0.240 0.254 0.045 0.050 0.087 0.096 0.069 0.077 0.148 0.158 1.248 1.395
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Table 10: Results of lower (LCI) and upper (UCI) EBCIs (1000 bootstrap resamples) of compound

Zero-Inflated-Negative Binomial-Gamma distributions (CZINBG).

ZI-NB Gamma Dependece

r p π α β δ γ ω

LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI

CZINBG K γ = δ = 1

M1.1 500 RMSRE 0.098 0.104 0.101 0.107 0.106 0.111 0.261 0.294 0.417 0.484 0.121 0.124 0.127 0.130 0.669 0.746

MAPE 0.083 0.090 0.088 0.094 0.094 0.101 0.190 0.215 0.302 0.341 0.113 0.118 0.120 0.125 0.508 0.563

5000 RMSRE 0.038 0.041 0.041 0.043 0.044 0.047 0.079 0.088 0.108 0.119 0.052 0.054 0.055 0.057 0.589 0.622

MAPE 0.031 0.033 0.034 0.037 0.038 0.040 0.060 0.067 0.085 0.093 0.048 0.050 0.051 0.054 0.492 0.528

M2.1 500 RMSRE 0.097 0.102 0.100 0.106 0.105 0.110 0.258 0.294 0.421 0.489 0.122 0.126 0.122 0.126 0.936 1.095

MAPE 0.083 0.089 0.086 0.093 0.094 0.100 0.186 0.210 0.303 0.343 0.115 0.120 0.114 0.119 0.591 0.690

5000 RMSRE 0.045 0.050 0.042 0.046 0.048 0.052 0.068 0.075 0.101 0.111 0.061 0.065 0.062 0.067 0.731 0.783

MAPE 0.032 0.036 0.033 0.036 0.037 0.041 0.052 0.058 0.079 0.087 0.051 0.056 0.053 0.057 0.609 0.659

M3.1 500 RMSRE 0.112 0.117 0.103 0.108 0.120 0.124 0.600 0.706 1.131 1.611 0.125 0.129 0.131 0.134 0.978 1.032

MAPE 0.099 0.105 0.090 0.096 0.109 0.115 0.407 0.467 0.707 0.839 0.118 0.123 0.124 0.129 0.850 0.911

5000 RMSRE 0.070 0.076 0.059 0.064 0.075 0.081 0.135 0.149 0.201 0.223 0.083 0.088 0.088 0.093 0.513 0.560

MAPE 0.055 0.061 0.047 0.052 0.061 0.066 0.104 0.115 0.154 0.170 0.072 0.077 0.077 0.082 0.402 0.443

M4.1 500 RMSRE 0.113 0.118 0.102 0.107 0.120 0.124 0.576 0.673 1.104 1.486 0.124 0.127 0.126 0.129 2.105 2.453

MAPE 0.100 0.106 0.088 0.094 0.110 0.116 0.396 0.453 0.703 0.825 0.117 0.122 0.118 0.124 0.991 1.233

5000 RMSRE 0.073 0.079 0.059 0.064 0.074 0.080 0.136 0.151 0.202 0.226 0.084 0.089 0.084 0.089 0.699 0.790

MAPE 0.057 0.063 0.047 0.052 0.059 0.065 0.103 0.114 0.154 0.171 0.072 0.077 0.073 0.078 0.459 0.528

γ = δ = 2

M1.2 500 RMSRE 0.098 0.103 0.100 0.105 0.106 0.110 0.255 0.290 0.417 0.484 0.092 0.097 0.110 0.115 1.016 1.094

MAPE 0.084 0.090 0.086 0.093 0.093 0.099 0.186 0.210 0.301 0.340 0.078 0.084 0.097 0.104 0.830 0.903

5000 RMSRE 0.046 0.052 0.043 0.047 0.047 0.051 0.069 0.076 0.102 0.113 0.038 0.042 0.052 0.056 0.715 0.765

MAPE 0.033 0.038 0.034 0.037 0.036 0.040 0.053 0.059 0.080 0.089 0.028 0.031 0.040 0.044 0.596 0.648

M2.2 500 RMSRE 0.097 0.102 0.100 0.105 0.105 0.110 0.256 0.291 0.419 0.487 0.098 0.103 0.109 0.114 2.627 2.887

MAPE 0.083 0.089 0.086 0.092 0.093 0.099 0.186 0.210 0.303 0.342 0.085 0.091 0.095 0.102 2.101 2.315

5000 RMSRE 0.046 0.052 0.043 0.046 0.048 0.052 0.068 0.075 0.101 0.111 0.036 0.040 0.047 0.051 1.089 1.197

MAPE 0.033 0.038 0.033 0.037 0.037 0.041 0.052 0.058 0.080 0.088 0.025 0.028 0.034 0.038 0.864 0.952

M3.2 500 RMSRE 0.113 0.119 0.103 0.108 0.120 0.124 0.586 0.686 1.113 1.575 0.115 0.119 0.119 0.123 1.969 2.069

MAPE 0.099 0.106 0.090 0.096 0.110 0.116 0.398 0.458 0.705 0.830 0.105 0.111 0.108 0.114 1.771 1.879

5000 RMSRE 0.072 0.078 0.056 0.061 0.072 0.077 0.135 0.149 0.200 0.222 0.050 0.055 0.071 0.076 0.896 0.972

MAPE 0.057 0.063 0.044 0.049 0.057 0.063 0.103 0.115 0.155 0.171 0.037 0.041 0.056 0.062 0.715 0.782

M4.2 500 RMSRE 0.114 0.119 0.102 0.107 0.120 0.124 0.580 0.681 1.110 1.539 0.120 0.124 0.116 0.120 4.733 5.310

MAPE 0.100 0.107 0.088 0.094 0.110 0.115 0.397 0.454 0.705 0.829 0.111 0.117 0.104 0.110 3.318 3.768

5000 RMSRE 0.072 0.078 0.058 0.062 0.074 0.079 0.135 0.150 0.200 0.223 0.052 0.057 0.065 0.070 1.674 1.856

MAPE 0.057 0.063 0.046 0.050 0.059 0.064 0.102 0.114 0.154 0.171 0.037 0.041 0.048 0.054 1.331 1.464
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Gschlößl, S., Czado, C., 2007. Spatial modelling of claim frequency and claim506

size in non-life insurance. Scandinavian Actuarial Journal 3, 360–373.507

Guo, F., Wang, D., Yang, H., 2017. Asymptotic results for ruin probability in508

a two-dimensional risk model with stochastic investmentreturns. Journal of509

Computational and Applied Mathematics 325, 198–221.510

Hua, L., 2015. Tail negative dependence and its applications for aggregate loss511

modeling. Insurance: Mathematics and Economics 61, 135–145.512

Jeong, H., Valdez, E.A., 2020. Predictive compound risk models with dependence.513

Insurance: Mathematics and Economics 94, 182–195.514

Joe, H., 2005. Asymptotic efficiency of the two-stage estimation method for515

copula-based models. Journal of Multivariate Analysis 94, 401–419.516

Kotz, S., Balakrishnan, N., Johnson, N.L., 2000. Continuous multivariate dis-517

tributions, Volume 1: Models and applications. second ed., Wiley series in518

Probability and Statistics, New York.519
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