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Non-Abelian excitations are an interesting feature of many fractional quantum Hall phases, includ-
ing those phases described by the Moore-Read (or Pfaffian) wave function. However, the detection
of the non-Abelian quasiparticles is challenging. Here, we consider a system described by the Moore-
Read wave function, and assume that impurity particles bind to its quasiholes. Then, the angular
momentum of the impurities, reflected also by the impurity density, provides a useful witness of
the physics of the non-Abelian excitations. By demanding that the impurities are constrained to
the lowest Landau level, we are able to write down the corresponding many-body wave function
describing both the Moore-Read liquid and the impurities. Through Monte Carlo sampling we
determine the impurity angular momentum, and we show that it suggests a quantum-statistical
parameter α = aν − b+P/2 for the quasiholes, where α ranges from 0 for bosons to 1 for fermions.
A reasonable agreement with the Monte Carlo results is obtained for a = 1/4, b = 1/8 and P = 0, 1
depending on the parity of the particle number in the Moore-Read liquid. This parity-dependence
of the angular momentum serves as an unambiguous demonstration of the non-Abelian nature of
the excitations. In addition to the studies of excitations in the Moore-Read liquid, we also apply
our scheme to Laughlin liquids, for which we focus on interacting bosonic impurities. With this,
the impurities themselves form Laughlin states, which allows for a study of hierarchical fractional
quantum Hall states.

I. INTRODUCTION

The most emblematic feature of fractional quantum
Hall (FQH) systems are their quasiparticle excitations.
Unlike any particle in three dimensions, these quasi-
particles are neither bosons nor fermions, but so-called
anyons, characterized by intermediate quantum statis-
tics. Importantly, the quasiparticles and their properties
also serve for classifying topological phases. In this re-
spect, an important distinction is made between topolog-
ical phases with Abelian anyons, and the more complex
phases, which support non-Abelian anyons.

In the context of FQH effect, the most prominent
Abelian phase occurs at filling factors ν = 1/m (with
m > 1 an odd (for fermions) integer). This phase
is well described by the Laughlin wave functions [1].
Other Abelian FQH phases, occuring at different odd-
denominator fillings, can be derived from the Laugh-
lin phase via the so-called hierarchy construction [2, 3].
However, there are also FQH phases at even-denominator
filling [4, 5]. A prominent wave function to describe a
FQH phase in a half-filled Landau level is the Moore-
Read wave function, also known as Pfaffian wave func-
tion [6]. A crucial property of the Moore-Read phase
is that it supports non-Abelian excitations, that is, a
Moore-Read liquid with n quasiparticles exhibits 2n−1

degenerate states, and braiding of the quasiparticles is
equivalent to a rotation within this degenerate manifold
[7]. Due to the non-commuting nature of different rota-

tions, these excitations are termed “non-Abelian”. This
property, together with the manifold’s robustness against
local noise, has motivated the use of non-Abelian phases
for quantum-information processing purposes [8].

While it is possible to write down models (often called
parent Hamiltonians) for which the different FQH wave
functions are the exact ground states, it may be hard
to determine whether such a phase is indeed realized in
a given FQH system. However, at least for the most
prominent Abelian phases (such as the 1/3 Laughlin
state), there is no doubt that they are realized in conven-
tional quantum Hall settings (like GaAs quantum wells
in strong magnetic fields). In the case of the Laughlin
phase, the nature of the FQH phase is well established
through theoretical considerations (especially exact nu-
merical studies for small system sizes), but also exper-
imentally, e.g. via transport measurements. Neverthe-
less, even in this case, a direct experimental evidence for
maybe their most important feature, the anyonic exci-
tations, is extremely difficult to obtain. One anyon sig-
nature, its fractional charge, has experimentally been de-
termined relatively early via shot noise measurements [9],
but attempts to detect also fractional statistics were less
successful [10, 11], until recent breakthroughs [12, 13].

For the non-Abelian phases, the situation is more con-
troversial. Even from the point of view of exact numer-
ical results, the situation in a half-filled Landau level is
much more subtle than at filling 1/3. There is a competi-
tion of various different Abelian and non-Abelian phases,
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and this competition is decided in favor of one or another
state by small details in the Hamiltonian [14], such as, for
instance, the amount of Landau level mixing. Notwith-
standing, a very promising candidate for the half-filled
(second) Landau level, i.e. at filling ν = 5/2, is the
non-Abelian Moore-Read phase [6, 15, 16]. Indeed, also
several experimental findings point towards a Pfaffian or
anti-Pfaffian phase, including spin polarization [17], e/4
quasiparticle charge [18, 19], or half-integer thermal con-
ductance [20]. Nevertheles, one must admit also that
some experiments suggest an Abelian phase [21]. Inter-
ferometric measurements to determine the non-Abelian
nature of the quasiparticles have not been conclusive [22].

From this perspective, ways to modify or manipu-
late FQH systems seem desirable, and this goal can be
achieved by switching to novel materials or even syn-
thetic quantum systems. For instance, bilayer graphene
at half-filled Landau level has shown behavior compat-
ible with the Pfaffian phase [23, 24]. For single-layer
graphene, it has been shown that optical driving can in-
duce non-Abelian topological phases [25, 26]. An entirely
different approach are quantum simulators, which pre-
pare FQH states in highly controlled experimental atomic
and/or photonic settings. Advances towards the simula-
tion of FQH physics include the generation of artificial
magnetic fields and detection of topological properties,
such as chiral edge states [27, 28], topological quantum
numbers [29–33], topological transport [34, 35]. Through
light-matter coupling, even a Laughlin-like state of two
photons has been achieved recently [36], whereas the ex-
perimental demonstration of atomic Laughlin states has
not yet been conclusive [37]. In the context of non-
Abelian phase engineering, one feature of quantum sim-
ulators seems particularly promising: They can operate
also with bosonic species, for which often a simple two-
body contact potential appears to be sufficient to produce
non-Abelian ground states [38–40].

In addition to phase engineering, synthetic quantum
Hall systems also provide new detection opportunities:
light-matter interactions can be used to create, trap, and
braid quasiparticles [41–45]. The total angular momen-
tum of a FQH system, which for atoms can be measured
by time-of-flight imaging, carries signatures of fractional
statistics [46]. Spectroscopic signatures have been de-
scribed for atomic systems [47], graphene [48], or mag-
netic materials [49]. Several papers have suggested to
bind impurities to fractional quasiparticles [50–55], which
can then be used to trace or manipulate the anyons.

In the present manuscript, we elaborate on the idea
of Ref. [55] where the angular momentum of impuri-
ties is used to reflect the fractional quantum statistics of
Abelian anyons. In the present work, we study whether a
similar connection holds for non-Abelian anyons. In this
context, Ref. [55] has already shown that the angular mo-
mentum of a single impurity in a Moore-Read liquid pro-
vides a signature of the anyon charge (or the equivalent of
charge in atomic systems), and thereby distinguishes be-
tween Laughlin-type quasiholes (ν/2 charge) and the true

Pfaffian-type elementary excitations (ν/4 charge). In the
present paper, we show that also the quantum-statistical
behavior of the quasi-holes is reflected by the impurity
angular momentum, and their non-Abelian nature is evi-
denced by a dependence on the parity of the system size.
Specifically, through Monte Carlo sampling of trial wave
functions for a Moore-Read liquid with impurities, we
obtain for the general form of the quasi-holes’ quantum-
statistical parameter a functional form α = aν− b+P/2.
For the parameters a and b, reasonable numerical agree-
ment is obtained with the values expected for the Moore-
Read state (a = 1/4 and b = 1/8), and P = 0, 1 depends
on the parity of the number of particles of the liquid.

In addition to the study of non-Abelian anyons and
their detection via impurity particles, the present paper
also generalizes the approach of Ref. [55] in another re-
spect: We demonstrate that non-interacting bosons are
not suited as tracer particles, because they form a con-
densate. However, for repulsively interacting impurities
an interesting situation can arise, when the impurities
themselves form FQH states. In this case, the impurities
can also be bosons, and the scenario allows for exploring
the hierarchical construction of FQH states.

Our paper is organized in the following way: In Sec.
II, we provide a description of the system and a discus-
sion of the Moore-Read state. In Sec. III, we first give a
brief description of the impurity scheme from Ref. [55],
and then present our results for impurities in the Moore-
Read liquid. In Sec. IV, we discuss the differences be-
tween bosonic and fermionic impurities, and the case
of Laughlin-like anticorrelations between the impurities
themselves. Finally, in Sec. V, we summarize our main
findings and discuss possible continuations of the present
work.

II. MODEL SYSTEM AND MOORE-READ
STATE

A. System

We consider two different species of particles confined
in the x−y plane by harmonic potentials: majority part-
cles (a) and minority particles (b). Under a sufficiently
strong transverse magnetic field both species are brought
in the lowest Landau level, whose basis can be expressed
in the symmetric gauge A = (B/2)(−y, x, 0) by Fock-
Darwin wave functions

φm(z) = (2πm!2m)−1/2zme−|z|
2/4, (1)

where m represents the angular momentum of the state.
Here the complex coordinate z = (x+ iy)/lB is expressed
in terms of the magnetic length lB that can be set equal
for both species.

In presence of repulsive interactions the a particles can
form a FQH liquid: we discussed in [55] the possibility
of a Laughlin liquid, that describes bosonic (fermionic)
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states at filling ν = 1/m for m even (odd). In the fol-
lowing we will instead consider quantum liquids of spin-
polarized electrons well described by the paradigmatic
Moore-Read state [6]. Differently than in the Laughlin
case, the Moore-Read state describes bosons (fermions)
for m odd (even). In particular, for m = 2 this wave
function has been proposed to describe the ν = 5/2 FQH
state for fully spin-polarized electrons [15, 16], when the
first Landau level is filled.

B. Moore-Read states

The wave function describing the Moore-Read (MR)
state for filling 1/m is

ψMR(z) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)me−
∑
i |z|

2/4, (2)

where Pf denotes the Pfaffian. The total angular momen-
tum of the state can be read from the polynomial part of
the wave function, being equal to the degree of the poly-
nomial in zi. It is given by L = m

2 Na(Na − 1) − Na
2 for

Na particles. The contribution Na/2 is due to the Pfaf-
fian which removes Na/2 zeros from the wave function.
For m = 1, the wave function vanishes when three par-
ticles are brought in the same point. It is then possible
to construct the MR state as the exact ground state of
a three-body contact interaction Hamiltonian [56]. Gen-
eralizations of this picture are valid for different fillings
[57].

The simplest zero-energy excitation that this state can
host is a quasi-hole that can be described as in the Laugh-
lin state by multiplying ψMR by a polynomial term. Ex-
plicitly, the wave function reads

ψLQH(z, w) =
∏
k

(zk−w)Pf

(
1

zi − zj

)∏
i<j

(zi−zj)m, (3)

where w is the position of the quasi-hole, and we have
omitted the exponential factor. The addition of the
prefactor implies that the total angular momentum is
L = m

2 Na(Na−1)+Na
2 . This quasi-hole, as in the Laugh-

lin case, has fractional charge e/m and Abelian statistical
parameter α = 1/m [58].

More interesting is the fact that in this system each
quasi-hole can “split in two”, resulting in a state with the
same angular momentum L, but with two “half” quasi-
holes (HQH), described by a wave function

ψHQH(z, w1, w2) = Pf(W )
∏
i<j

(zi − zj)m. (4)

Here W is a matrix that depends on the parity P of the
number of particles Na. If Na is even, we have

W =
(zi − w1)(zi − w2) + (i↔ j)

zi − zj
. (5)

If Na is odd, this definition would lead to an odd-
dimensional matrix, for which the Pfaffian is not defined.
Therefore, to obtain W for Na odd, we have to construct
a Na + 1 × Na + 1 matrix by adding to the previously
defined matrix W a row (column) of 1 (-1), and 0 in the
lower right corner [59].

Similar to the Laughlin case, half quasi-holes are char-
acterized by fractional charge e/2m and fractional statis-
tics. Crucially, the statistical parameter of the two quasi-
holes depends on the parity of Na. In particular, we have
that [59, 60]

α =
1

4m
− 1

8
+
P

2
, (6)

where P = 0, 1 for an even (odd) number of particles.
This expression should be contrasted to the case of a

quasihole in the Laughlin liquid. Notably, the statisti-
cal parameter α for Pfaffian quasiholes exhibits filling-
independent terms, and the P -dependence serves as a
proof of the non-Abelian statistics of the QHs [61].
Specifically, the P -dependence reflects the existence of
two different fusion channels for the anyons, which, by
invoking a conformal field theory description, can be re-
lated to the parity of the particle number [60]. Alter-
natively, the P -dependence can also be explained by the
theory of p-wave superconductors [62]. From this view-
point, the two parity sectors correspond to two degener-
ate ground states of a p-wave superconductor with two
half vortices. The analogy between Pfaffian FQH states
and p-wave superconductors becomes evident in the com-
posite fermions framework for the state at ν = 1/2: in
this picture the composite fermions are subjected to a
zero effective magnetic field, the state then represents a
Fermi liquid that undergoes a BCS instability to a p-wave
superconducting state.

An even richer picture appears in the presence of 2n
HQHs, with n > 1. The state can still be described by
Eq. (4), if we replace W by

(zi − w1) . . . (zi − wn)(zj − wn+1) . . . (zj − w2n) + (i↔ j)

zi − zj
.

(7)
It can be seen from Eq. (7) that there is an arbitrary
choice involved when the 2n quasi-holes are split in two
groups, each of n elements. This means that it is possi-
ble to write more than one such states with 2n HQHs.

There are 1
2

(2n)!
n!n! possible ways to group 2n elements in

two groups, but these states are not orthogonal. Instead,
it can be shown that the dimension of the Hilbert space
spanned by these degenerate ground states is 2n−1. Strik-
ingly, an exchange of two quasi-holes can mix one state
with one of the others, which is probably the most direct
manifestation of the non-Abelian statistics of the HQHs
[7].

We also mention the possibility to construct a state
that contains a single half quasi-hole by setting

W =
(zi − w1) + (zj − w1)

zi − zj
. (8)
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The angular momentum of this wave function is L =
m
2 Na(Na − 1). In presence of an impurity this state can
be retrieved by exact diagonalization of the three-body
contact Hamiltonian and a repulsive majority-impurity
contact potential [58].

III. IMPURITIES IN THE MOORE-READ
LIQUID

A. Mean field results

Before starting the numerical study of the properties
of impurities bound to HQHs in the framework of the
MR wave function, we can ask what is the effect of the
FQH liquid on the single impurity wave function. As
we will show here, the binding to the FQH liquid leads
to impurity levels characterized through specific average
angular momentum values. This observation will later
allow us to relate also the anyonic properties of multiple
impurities to their total angular momentum.

To describe the effective single-impurity levels, we rely
on the assumptions that the impurity is affected by the
FQH bath just by a renormalization of the external mag-
netic field B. In particular, from the form of the quasi-
hole wave functions, Eqs. (3) and (4) it follows that the
liquid particle appear as fluxes Φ0 in the case of Laugh-
lin quasi-holes, or half-fluxes Φ0/2 in the case of Pfaf-
fian HQHs. Therefore, the net magnetic field becomes
B → B(1−ϕ) [50], where ϕ = NΦ0

AB = ν for Laughlin-like

quasi-holes, or ϕ = NΦ0

2AB = ν/2 for HQHs, with A be-
ing the size of the liquid. As an immediate consequence
of the field renormalization, we also get a renormalized
length scale lb → lb/

√
1− ϕ.

Therefore, an effective wave function for the impurity
is given by

φ̃m(w) =

√
(1− ϕ)m+1

2πm!2m
wme−(1−ϕ)|w|2/4. (9)

By expanding the (squared) amplitude of this wave func-
tion in terms of the original wave function amplitudes
|φm(z)|2, with m being the angular momentum eigen-
value, we can determine the angular momentum of an
impurity in the state φ̃m. It is given by

Lm =
m+ ϕ

1− ϕ
. (10)

For multiple impurities one might expect to obtain
the total angular momentum by filling the available

states, so that we obtain Lf =
∑Nb−1
m=0

m+ϕ
1−ϕ =

1
1−ϕ [Nb(Nb − 1)/2 +Nbϕ] for fermionic impurities, or

Lb = Nbϕ/(1−ϕ) for bosonic impurities. However, as we
have shown in Ref. [55], impurities bound to quasi-holes
in Laughlin liquids become anyonic, and the angular mo-
mentum interpolates between Lf and Lb:

Limp = (1− α)Lf + αLb. (11)

Strikingly, the interpolation parameter α is given by
the anyonic statistical parameter associated with the ex-
change of the two quasi-holes. Therefore, by computing
Lf and Lb from the effective single-impurity levels, and
computing Limp from the many-body wave function, we
can determine the statistical parameter of the quasiholes:

α =
Lf − Limp

Lf − Lb
. (12)

We note that, since Limp reflects the angular momentum
of fermionic impurities bound to quasi-holes, a fermionic
behavior of these bound states, i.e. Limp = Lf , yields a
bosonic statistical parameter α = 0 for the bare quasi-
holes, whereas bosonic behavior, Limp = Lb, corresponds
to fermionic quasi-holes, α = 1.

In the following, we will discuss the validity of this
relation for Moore-Read states, where the statistical pa-
rameter α of the quasiholes is given by (6). With this,
our work will provide a possible extension of the detection
scheme from Ref. [55] to non-Abelian exchange statistics.

B. Numerical results

If impurities in the lowest Landau level bind to the
HQHs of the FQH liquid, the many-body system can still
be described by the HQH wave function, Eq. 4, but the
quasi-hole parameters wi now become dynamical quanti-
ties. In addition, the wave function also has to be mul-

tiplied by a factor e−
∑
i
|wi|

2

4 for the confinement of the
impurities to the lowest Landau level. In the case of mul-
tiple fermionic impurities the state also has to be multi-
plied by a Vandermonde factor

∏
i<j(wi − wj) that en-

forces the Pauli principle. Here, we will restrict ourselves
on fermionic impurities. The case of bosonic impurities
will be discussed in Sec. IV.

The resulting wave function is then

ψ(z, w) = Pf(W )
∏

k<l,i<j

(wk−wl)(zi−zj)e−
1
4

∑
i,j |wi|

2+|zj |2 ,

(13)
with W chosen appropriately depending on the number
of impurities.

We have used this wave function as a probability dis-
tribution for Monte Carlo calculations to compute the
expected value of both the impurity angular momen-
tum and, as a crosscheck, the total system angular mo-
menta. Note that while (13) is not normalized, choosing
a Metropolis update rule for the algorithm makes the
normalization superfluous.

First, we have studied the single impurity angular mo-
mentum by setting W as in (8) for Na = 30 with a total
angular momentum L = 435/ν. The results match well
with Eq. (10) for m = 0 for a wide range of fillings, as
shown in Fig. 1.

Second, we considered the case of two impurity parti-
cles, to show that the impurities angular momentum can
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FIG. 1. Angular momentum of a single impurity bound to a
HQH for states at different fillings (dots), compared to equa-
tion (10) for ϕ = ν/2 (solid line). Values obtained by Monte
Carlo simulations for 30 majority particles.

FIG. 2. Impurities angular momenta for even/odd number
of majority particles at filling ν = 1. The jump can be ex-
plained considering the different statistical parameter α for
the two parity sectors, as described in Eq. (6). The solid lines
represent the value of Lb predicted in Eq. (11) for P = 0, 1.

be used to track the two different parity sectors. Specif-
ically, we computed Limp for Na from 30 to 49. The
expected values of Limp are 3.75 for Na even and 2.75
for Na odd. We show in Fig. 2 that for filling ν = 1
the jump in angular momentum for even and odd parity
is compatible with Eq. (11), except for a correction that
can be explained by finite size effects, as we will show
below.

In order to quantify the statistical parameter α of the
anyons, we also studied a larger (even) number of impu-
rities for different filling factors. From each of the nu-
merically computed impurity angular momentum values
Limp we extracted the corresponding α, via Eq. 12. The
results for Na = 30 for fillings from 1 to 1/6 are shown
in Fig. 3, plotting α as a function of filling ν. From the
slope of this curve, we see that the filling-dependent part
of α perfectly agrees with the expectation, i.e. α ∝ ν/4.

FIG. 3. Statistical parameter α of HQHs as a function of
filling ν, obtained for different numbers of impurities. For
lower fillings (below 1/5) the HQHs becomes bosonic, and
the prediction (11) does not hold, i.e. see the two points at
filling 1/20. Solid line is a fit α = ν/4 − 1/8 + 0.09.

However, the constant contribution is not exactly −1/8,
as one would expect, but it has a correction of order 10−2.
We account this deviation to the overlapping size of the
impurity wave functions. For lower fillings, the predic-
tion (11) breaks down, and the impurities bound to quasi-
holes behave effectively as free fermions, and the statis-
tical parameter α of the quasiholes goes to the bosonic
limit (zero).

We also note that the computation of Limp does not
lead to any different behaviour for the different 2n−1 de-
generate ground states. Thus, the behavior of the HQHs
under braiding cannot be extracted from this impurity
angular momentum.

Our data of Limp for multiple impurities at different ν
is also illustrated in Fig. 4, plotting Limp vs. the number
of impurities in the system at a given ν. We compare
this curve with Lf and Lb, i.e. with the expectation
for fermionic or bosonic particles. At all ν ≤ 1/2, the
impurity behave very similar to fermions.

C. Analysis of fluctuations of the Berry phase

Eq. (6) holds in a regime where the quasi-holes are
sufficently far apart to be considered effectively non-
interacting. This in turn influences the validity of
Eq. (11). For finite distances, the quasi-holes will hy-
bridize and lead to a fluctuation of the exchange statis-
tical phase. These dependence of the statistical parame-
ter on the quasihole distance has been evaluated for MR
states in a spherical geometry in [63, 64].

In order to estimate this effect in our system, we first
need to determine the impurity distance. In our case,
this becomes a dynamical variable which we can estimate
from the combined wave function. For two fermionic im-
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FIG. 4. Impurities angular momentum as a function of number of impurities, compared to Eq. (11) (solid line), value for
pure bosonic (dotted line) or fermionic (dashed line) impurities. For low fillings, the impurities behave as free fermions and
prediction (11) breaks down.

purities with coordinates w1, w2 the combined wave func-
tion in terms of renormalized Fock-Darwin wave func-
tions is

φ(w1, w2) =
φ̃0(w1)φ̃1(w2)− φ̃0(w2)φ̃1(w2)√

2
, (14)

that can be re-expressed in terms of center of mass and
relative coordinates R = (w1 + w2)/2, r = w1 − w2 as

φ̃(r,R) = −
√

1− ν
2 (ν − 2)

8π
re

(ν−2)
16 (|r|2+4R2). (15)

This function is peaked at r ∼ 3. Monte Carlo computa-
tions for the average distance between two impurities in
the state (13) recover roughly the same values for differ-
ent fillings.

It is then interesting to evaluate directly the statisti-
cal phase for two fixed quasi-holes and its dependence on
the relative distance. To do so, we considered a config-
uration with two HQH, one at the center of the system
and the other at a fixed radius R from the center. We
then compute the Berry phase associated with the state
Eq. (13) under a rotation of the second hole around the
first. To retrieve the statistical phase we have to subtract
the Aharonov-Bohm phase that the state accumulates
because of the background magnetic field. We compute
this phase by performing the same calculations remov-
ing the hole placed at the center, describing the system
for a single HQH via the state Eq. (8). Details of the
computation can be found in appendix A.

FIG. 5. Statistical parameter α computed by explicitly evalu-
ating the Berry phase of a braiding of two quasiholes in a MR
state with ν = 1/2. For distances of order r ∼ 3 the finite
size deviation from the expected value α = 0 is of order 0.05,
compatible with what obtained in Fig.3

As an example, we show the results for the most rel-
evant filling fraction ν = 1/2 in Fig. 5. At this filling,
one would expect fermionic quasiholes, i.e. impurities
with α = 0. However, at (small) distances, the statistical
phase oscillates around zero, with an amplitude on the
order of 0.05. This order of magnitude for fluctuations is
compatible with the results of section III B.
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IV. ANTICORRELATIONS OF IMPURITIES

All cases we have discussed so far, impurities in Laugh-
lin liquids studied in Ref. [55] or impurities in Pfaffian
liquids studied in the present work, had one common
feature: the impurity particles were always taken as non-
interacting fermions, no matter what type of quantum
statistics or interparticle interaction governed the liquid
of majority particles. In all cases, what accounts for the
fermionic nature of the impurities is a Vandermonde fac-
tor

∏
i<j(wi − wj) which multiplies the quasihole wave

function, cf. Eq. (13). The Vandermonde factor produces
the minimum anticorrelations required for fermionic im-
purities by the Pauli principle, but one may ask what
would happen if these anticorrelations were lacking in
the total wave function - a scenario which would be valid
for non-interacting bosonic impurities? Or, contrarily,
one could also imagine systems, with either fermionic
or bosonic impurities, in which interactions between the
impurity particles give rise to stronger anticorrelations
beyond the one from the Vandermonde determinant. In
the present section, we will study these cases, and we will
show how anticorrelations between the impurities reflect
in the total impurity angular momentum. For the sake
of simplicity, we will restrict our considerations in this
section to the case of impurities in an Abelian Laughlin
liquid.

A. Non-interacting bosonic impurities

Let us consider a Laughlin liquid at filling ν = 1/q,
described by a wave function Ψq. Quasiholes in this liq-
uid, at positions wi, are described by the wave function
Ψ({wi}) =

∏
i,j(wi − zj)Ψq, where i runs over all quasi-

holes and j over all liquid particles. Multiplying this
wave function by the Vandermonde term

∏
i<j(wi−wj),

accounts for the binding of quasiholes to non-interacting
fermions, and these fermions carry an average angular
momentum, Limp, which interpolates between the values
for free fermions and free bosons, cf. Eq. (11). This
implies that Limp scales extensively with the number of
impurities.

In contrast, the appropriate wave function for non-
interacting bosonic impurities bound to quasiholes is
simply given by Ψ({wi}) =

∏
i,j(wi − zj)Ψq, without

the Vandermonde determinant. The values for Limp,
found by Monte Carlo sampling of this wave function,
are given in Table (I) for some values of q, N (number
of particles in the liquid), and Nimp (number of impuri-
ties), and contrasted to the analog values obtained in the
case of fermionic impurities. Interestingly, for a given q,
the value obtained for the bosonic impurities is approx-
imately constant, i.e. it depends neither on the number
of particles in the liquid (which is true also in the case
of fermionic impurities), nor on the number of impurities
(in stark contrast to the case of fermionic impurities).
The value of total angular momentum for the bosonic

q Nimp N Limp (bosonic) Limp (fermionic)

3 2 10 0.70 2.03
3 3 10 0.73 4.55
3 4 10 0.72 8.11
5 2 7 0.33 1.47
5 3 7 0.32 3.65
2 2 7 1.39 3.11
2 3 7 1.43 6.31

TABLE I. For different filling ν = 1/q of a Laughlin liquid
with N particles, we numerically obtain the average angular
momentum Limp of Nimp non-interacting impurities, which
can be either bosonic or fermionic.

impurities appears to be proportional to the average an-
gular momentum of a single impurity in its ground state,
L0 = 1

q−1 , as given by Eq. 10. In fact, for all cases shown

in Table I, we approximately have Limp ≈ 1.4L0.
An explanation for this curious behavior could be the

following: The bosonic impurities form a condensate (in
which the individual impurities fluctuate around the con-
densate center of mass), and all quasiholes bind to this
condensate, just as if there was only a single quasihole
and a single impurity. In this picture, the (small) dif-
ference between Limp and L0 would then be due to the
fluctuations of impurities within the impurity conden-
sate, although the picture does not necessarily imply that
Limp is independent from Nimp.

What appears to be clear, though, is the fact that non-
interacting bosons as impurity particles are not suited
for probing the anyonic properties of quasiholes. In the
following subsection, we are going to investigate whether
and how the situation changes if the bosonic impurities
are interacting.

B. Interacting impurities

We restrict our study of interacting impurities to the
simplest and most relevant case of bosonic impurities
with repulsive contact interaction. With the impurities
being subject to Landau quantization, this implies that
the zero-energy ground state of the impurities itself is
a bosonic Laughlin state, ∼

∏
i<j(wi − wj)

2. There-
fore, in this case, the Vandermonde determinant in the
wave function of fermionic impurities, has to be replaced
by these bosonic Laughlin-like anticorrelations. Evaluat-
ing again the average impurity angular momentum value
numerically, we find that it matches very well with the
following pattern:

Limp(Nimp, q) =
Nimp + 2q−1

2 Nimp(Nimp − 1)

q − 1
. (16)

This observation immediately leads to the question how
this expression connects to the effective single-impurity
levels Lm, given by Eq. (10). A simple guess would be
that each impurity pairs enters a state in which their rel-
ative angular momentum is given by L2, as the impurities
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are forming a q = 2 Laughlin state. This guess, though,
does not match with the observed pattern. However, two
more things should be considered: (i) Apart from the
relative angular momentum of pairs, the Laughlin liq-
uid also has a center-of-mass angular momentum which
comes from Nimp particles condensing into L0. Thus,
Lcom = Nimp/(q − 1). (ii) For the relative angular mo-
mentum, one has to consider screening effects, because in
the vicinity of one impurity/quasihole the majority den-
sity is lowered. Following the arguments of Ref. [50],
we first note that a wave function of a pair at relative
angular momentum M has an amplitude peak at ra-
dial distance RM = (2M)1/2lB in the absence of any
screening. The screening due to the majority liquid ef-
fectively leads to a redefinition of the magnetic length,
lB → l∗B = lB/

√
1− ν. The screening which one impu-

rity experiences due to the presence of the other impurity
is captured by M → M∗ = M − ν. Thus, for a pair at
M = 2, the effective size of the wave function is given

by R∗ = [2(M − ν)]1/2l∗B =
[

2(M−ν)
1−ν

]1/2
lB . The cor-

responding effective relative angular momentum is L∗ =
1
2 (R∗/lB)2 = M−ν

1−ν = Mq−1
q−1 . Thus, for Nimp(Nimp− 1)/2

pairs at M = 2, the relative angular momentum becomes
in total:

Lrel =
1

2
Nimp(Nimp − 1)

2q − 1

q − 1
(17)

With this, the sum, Lrel +Lcom exactly matches the pat-
tern in Eq. (16) found numerically.

Another way of understanding Eq. (16) is in the light
of hierarchy states [2, 3]. This construction builds upon
the Laughlin states at filling 1/q (or their hole-conjugate
at filling 1 − 1/q). It then argues that fractional quan-
tum Hall states at other (odd-denominator) filling fac-
tors can appear when quasiholes or quasiparticles in the
parent liquid themselves form a Laughlin-like state. Not-
ing the relation between filling factor ν, angular momen-

tum L, and particle number N , ν = limN→∞
N2

2L [65],
we find that the angular momentum of Eq. (16) corre-
sponds to a fractional quantum Hall state at ν = q−1

2q−1 ,

which matches the filling factor of the first state in the
hierarchical construction. This observation suggests a
feasible way of exploring hierarchical fractional quantum
Hall states using bosonic impurities with repulsive con-
tact interactions.

V. SUMMARY AND OUTLOOK

In this work, we study the angular momentum of non-
interacting fermionic impurities, bound to quasiholes in
FQH states constrained to lowest Landau levels, and rep-
resented by Moore-Read wave functions, to determine the
non-Abelian statistics of fractional quasiparticle excita-
tions. Such FQH states can host Laughlin like quasi-holes
as zero energy excitations, with fractional charge and
Abelian statistics. However, interestingly the Laughlin

like quasi-holes can also split into states that can host
HQHs with non-Abelian statistics, described by Pfaffian
wave functions.

When dynamical impurities bind to such HQHs, we
show that the quantum-statistical behavior of these ob-
jects can be directly read from the impurity angular mo-
mentum. The impurity particles see a renormalized mag-
netic field in the presence of majority particles, which in
turn depends on the charge of the HQH. It should be
possible to determine the angular momentum of many
impurities by taking into account the renormalization of
the magnetic field for a single impurity, and by filling
the single impurity angular momentum levels, assuming
them to be either fermions or bosons. Remarkably, we
see here (and in our Ref. [55]), via Monte Carlo sam-
pling of the many-body wave function, that the angular
momentum of many impurities does not quench either of
the limits, bosonic or fermionic, but actually interpolates
between the two, capturing the anyonic statistics. The
interpolation parameter for impurities bound to HQHs is
filling dependent. Its slope and a parity-dependent inter-
cept are the same as the statistical parameters we expect
from the Moore-Read state. It is in fact the parity of
the particle number that truly reflects the non-Abelian
nature here, in contrast to the Abelian behavior seen in
case of Laughlin liquids. The statistical parameter ex-
tracted from the angular momentum of impurities rea-
sonably captures the change in intercept due to parity,
confirming the non-Abelian nature of the anyons. There
are, however, some fluctuations of the intercept, due to
finite size effects, that can be well understood by study-
ing the Berry phase in a finite system, upon exchange of
impurities.

Moreover, instead of non-interacting fermionic impu-
rities detailed above, we also look at non-interacting
bosonic impurities as tracer particles, but in the much
simpler Abelian situation. Through Monte Carlo sim-
ulations, we demonstrate that total angular momenta
for such bosonic impurities appear to be proportional
to the average angular momentum of a single impurity
in its ground state. This happens because, confined to
the lowest Landau level, such bosons form a condensate.
Therefore, we clearly see that such bosonic impurities are
not suitable as tracer particles to extract the statistical
behaviour. However, if the bosons can repulsively inter-
act with each other, the situation becomes much more
intriguing. We then numerically calculate the total an-
gular momentum of such impurities and find that they
are appropriately explained by considering the total cen-
ter of mass angular momentum and the screened (due to
other impurities) relative angular momentum. Intrigu-
ingly, the total angular momentum corresponds to a FQH
state which matches the filling factor of the first state in
the hierarchical construction of odd denominator FQH
states. Such odd denominator states arise from quasi-
particles in the parent Laughlin liquid, forming their own
FQH states.

Therefore, our study not only opens up the experimen-
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tally challenging possibility of directly reading the non-
Abelian statistics of the Moore-Read states via measure-
ment of the impurity angular momentum (equivalent to
impurity density measurements), it also shows how other
odd denominator Laughlin states, understood in terms of
the hierarchical construction, can be probed within the
same approach.
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Appendix A: Berry phase computation

We are interested in computing the Berry phase asso-
ciated to a braiding of a HQH around another fixed in

the center of the system. The system is then described
by Eq. (4) with w1 = 0, w2 = Reiθ. The Berry phase for
an adiabatic change of the parameter θ at fixed R is then

γ = i

∮
dθ〈ψ

∗

N
d

dθ

ψ

N
〉, (A1)

where N =
√
〈ψ∗ψ〉 is the normalization of the wave

function. As this normalization is explicitly dependent
on the value of θ we have to explicitly consider it in the
computation of the derivative obtaining

γ = i

∮
dθ Im

(
1

N 2
〈ψ∗ d

dθ
ψ〉
)

= i2πIm

(
1

N 2
〈ψ∗ d

dθ
ψ〉
)
,

(A2)
where the last step is justified by the rotational invariance
of the system.

There is left to evaluate the derivative in the round
brackets. The only dependence on θ in the state (4) is in
the Pfaffian term. We then can use the identities

d

dθ
detW =

d

dθ
[Pf(W )]2, (A3)

d

dθ
det(W ) = det(W )Tr

(
W−1 dW

dθ

)
, (A4)

to show that

dψ

dθ
=

1

2
Tr

(
W−1 dW

dθ

)
ψ. (A5)

We then obtain

γ = iπIm

(
1

N 2

〈
ψ∗Tr

(
W−1 dW

dθ

)
ψ

〉)
. (A6)

The quantity inside the round bracket can then be
computed by Monte Carlo. To extract the statistical
phase we can remove the Aharonov-Bohm contribution
by removing the w1 quasi-hole: this corresponds to sub-
stituting W,ψ in Eq. (A6) with the appropriate ones
for a single HQH. Finally the statistical parameter is
α = γ/(2π).
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[21] S. Baer, C. Rössler, T. Ihn, K. Ensslin, C. Reichl, and
W. Wegscheider, Experimental probe of topological or-
ders and edge excitations in the second landau level,
Phys. Rev. B 90, 075403 (2014).

[22] R. L. Willett, L. N. Pfeiffer, and K. W. West,
Measurement of filling factor 5/2 quasiparticle
interference with observation of charge e/4 and
e/2 period oscillations, Proceedings of the Na-
tional Academy of Sciences 106, 8853–8858 (2009),
https://www.pnas.org/content/106/22/8853.full.pdf.

[23] J. I. A. Li, C. Tan, S. Chen, Y. Zeng, T. Taniguchi,
K. Watanabe, J. Hone, and C. R. Dean, Even-
denominator fractional quantum Hall states in bilayer
graphene, Science 358, 648–652 (2017).

[24] A. A. Zibrov, C. Kometter, H. Zhou, E. M. Spanton,
T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F.
Young, Tunable interacting composite fermion phases in
a half-filled bilayer-graphene Landau level, Nature 549,
360–364 (2017).

[25] A. Ghazaryan, T. Graß, M. J. Gullans, P. Ghaemi, and
M. Hafezi, Light-induced fractional quantum hall phases

in graphene, Phys. Rev. Lett. 119, 247403 (2017).
[26] Z.-P. Cian, T. Grass, A. Vaezi, Z. Liu, and M. Hafezi,

Engineering quantum hall phases in a synthetic bilayer
graphene system, Phys. Rev. B 102, 085430 (2020).

[27] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Tay-
lor, Imaging topological edge states in silicon photonics,
Nature Photonics 7, 1001–1005 (2013).

[28] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Photonic Floquet topological insulators, Nature
496, 196–200 (2013).

[29] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and
N. Goldman, Measuring the Chern number of Hofstadter
bands with ultracold bosonic atoms, Nature Physics 11,
162–166 (2015).

[30] S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi,
Measurement of topological invariants in a 2D photonic
system, Nature Photonics 10, 180–183 (2016).

[31] F. Baboux, E. Levy, A. Lemâıtre, C. Gómez, E. Galopin,
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[43] T. Graß, B. Juliá-Dı́az, and M. Lewenstein, Topological

phases in small quantum Hall samples, Phys. Rev. A 89,
013623 (2014).

[44] S. Dutta and E. J. Mueller, Coherent generation of pho-
tonic fractional quantum Hall states in a cavity and
the search for anyonic quasiparticles, Phys. Rev. A 97,
033825 (2018).

[45] T. Graß, M. Gullans, P. Bienias, G. Zhu, A. Ghazaryan,
P. Ghaemi, and M. Hafezi, Optical control over bulk ex-
citations in fractional quantum Hall systems, Phys. Rev.
B 98, 155124 (2018).

[46] R. O. Umucalılar, E. Macaluso, T. Comparin, and
I. Carusotto, Time-of-Flight Measurements as a Possible
Method to Observe Anyonic Statistics, Phys. Rev. Lett.
120, 230403 (2018).

[47] N. R. Cooper and S. H. Simon, Signatures of Fractional
Exclusion Statistics in the Spectroscopy of Quantum Hall
Droplets, Phys. Rev. Lett. 114, 106802 (2015).
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