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We study weakly-repulsive Bose-Bose mixtures in two and three dimensions at zero temperature
using the functional renormalization group (FRG). We examine the RG flows and the role of density
and spin fluctuations. We study the condition for phase separation and find that this occurs at the
mean-field point within the range of parameters explored. Finally, we examine the energy per
particle and condensation depletion. We obtain that our FRG calculations compare favorably with
known results from perturbative approaches for macroscopic properties.

I. INTRODUCTION

Weakly-interacting Bose gases have been subject of
study for many decades [1, 2]. However, the interest on
such gases greatly increased since the experimental re-
alization of Bose-Einstein condensation with cold alkali
atoms [3–5].

Experimentalists have been able to produce bosonic
cold-atom gases in a variety of configurations and ex-
plore a range of interaction parameters and tempera-
tures [6]. Theoretically, even though mean-field (MF)
theory is able to give a qualitative description of Bose
gases at low temperatures [7], for an accurate description,
the effect of fluctuations needs to be included. For one-
component Bose gases, the leading quantum correction in
three dimensions was first calculated by Lee, Huang, and
Yang (LHY) [8, 9]. Since then, further improvements
have been provided with a variety of approaches [10].
In one and two dimensions, the effect of fluctuations is
enhanced [11]. Thus, corrections beyond the zero-point
level in perturbation theory are more important, often
requiring more careful treatments [12–14]. In general,
nowadays, one-component Bose gases are considered well
described, and therefore the interest has shifted towards
more sophisticated related systems.

Bose-Bose mixtures, gases with two species of
bosons [2], have attracted attention in recent years. The
interplay between the two components of the gas leads to
rich physics such as the superfluid drag [15–17], Joseph-
son effect [18, 19] and, depending if the inter-species in-
teraction is repulsive or attractive, phase separation [20–
22] and self-bound droplets [23, 24]. Mixtures of bosons
in cold atom gases were rapidly achieved experimentally
by using bosonic atoms with two hyperfine states [25–
29], and there is currently a great effort on producing
droplet phases in different configurations [30–33]. The-
oretically, Bose-Bose mixtures have been studied with
different techniques, most noticeable perturbative ap-
proaches [34–39], Beliaev theory [40] and Monte Carlo
(MC) simulations [24, 41, 42].

One alternative theoretical approach used to study
quantum gases is the functional renormalization group
(FRG) based on the effective average action [43, 44].
This is a non-perturbative technique where the full ef-

fective action of the system is calculated by integrating
out fluctuations, both quantum and thermal, by means
of an RG equation. The FRG has been used with great
success to study weakly-interacting one-component Bose
gases in different dimensions [45–53]. One advantage of
this approach is that the intricate long-distance physics is
gradually incorporated during the RG flow [54]. There-
fore the FRG does not suffer from the infrared (IR) di-
vergences that plague perturbation theory [55, 56]. Fur-
thermore, as a non-perturbative technique, the FRG has
proved to deal with strongly-interacting systems with
ease. For Bose gases, this has been relevant to study
strongly-correlated superfluids in optical lattices [57].

Building upon the works on one-component gases, we
study balanced and weakly-repulsive Bose-Bose mixtures
at zero temperature within the FRG . We focus on both
the RG flows and thermodynamics in two and three di-
mensions. We also examine the condition for phase sep-
aration. These configurations have been recently studied
in detail using perturbative approaches in Refs. [36–39].
RG approaches have also been used to study Bose-Bose
mixtures. However, such studies have focused exclusively
on the phase separation around the zero-density critical
point [58, 59] and the superfluid phase transition [60, 61].

This work is organized in the following way. First,
in Sec. II, we present the microscopic model within the
path-integral formalism. In Sec. III, we present the FRG
formalism and the ansatz for the effective action, includ-
ing a short discussion on the physical inputs and the mo-
mentum regimes. The results are presented in Sec. IV,
where we examine some features of the RG flows, the
phase separation point, and finally, some thermodynamic
properties.

II. MICROSCOPIC MODEL

We consider a non-relativistic gas of two species of
bosons, A and B, interacting through weak repulsive
inter- and intra-species interactions. We work at length
scales where the microscopic details of the interactions
are not important, which are therefore represented by
effective contact potentials with strength gab. We study
the balanced mixture, that is, both species of bosons have
equal masses m = mA = mB , equal chemical poten-
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tials µ = µA = µB and equal intra-species interactions
g = gAA = gBB .

In a path-integral formulation [62] such gas is described
by the Euclidean microscopic action

S[ϕ] =

∫
x

∑
a=A,B

[
ψ†a

(
∂τ −

∇2

2m
− µ

)
ψa

+
∑
b=A,B

gab
2
|ψa|2|ψb|2

]
, (1)

where
∫
x

=
∫ β

0
dτ
∫

ddx, with τ = it the imaginary time
and β = T−1 the inverse temperature. In this work we
study the zero-temperature gas, hence β → ∞. The
action is a functional of the fields ϕ = (ψA, ψ

†
A, ψB , ψ

†
B),

which represent the two bosonic species. Note that we
set ~ = kB = 1.

Throughout this article, we work in Fourier space q =
(ω,q). The kinetic terms in the action take the form

Skin[ϕ] =

∫
q

∑
a=A,B

[
ψ†a

(
iω +

q2

2m

)
ψa

]
, (2)

where the integral over q at zero temperature is∫
q

=

∫ ∞
−∞

dω

2π

∫
ddq

(2π)d
. (3)

The microscopic action defines the grand-canonical par-
tition function

Z[ϕ] =

∫
Dϕe−S[ϕ] , (4)

which is a path integral over all configurations of the
fields. The associated thermodynamic potential is ob-
tained through

Ω = −β−1 logZ , (5)

from which we can extract all the thermodynamic prop-
erties of the system. In the balanced mixture, its differ-
ential at zero temperature is

dΩ = −PdVd − 〈N〉dµ , (6)

where Vd is the d-dimensional volume, P the pressure
and N the total number of particles. The energy density
of the ground state is

E

Vd
= −P+nµ , (7)

where n = nA+nB is the total atom density. The energy
per particle is obtained from E/N = (E/Vd)/n.

III. FUNCTIONAL RENORMALIZATION
GROUP

The strategy of the FRG is to generate the effective
action Γ of a system by smoothly taking fluctuations
into account with an RG group equation [43, 44]. To
achieve this, one considers a regulator function R(q; k),
which suppresses all fluctuations for momenta q . k.
This regulator is added to the theory as a mass term

∆Sk[ϕ] =

∫
q

ϕ†(q)Rk(q)ϕ(q) , (8)

so the grand-canonical partition function becomes k-
dependent

Zk[J] =

∫
Dϕe−S[ϕ]−∆Sk[ϕ]+

∫
x
J·ϕ , (9)

where we also added source fields J. The k-dependent
effective action is defined by means of a Legendre trans-
formation

Γk[φ] = − logZk[J] +

∫
x

J · φ−∆Sk[φ], (10)

where φ(x) = 〈ϕ(x)〉 are classical fields. At a UV scale
k = Λ, all fluctuations are suppressed and the effective
action is simply the microscopic action; ΓΛ[φ] = S[φ]. In
contrast, for k → 0, all fluctuations have been taken into
account and Γ0[φ] is the physical effective action. Γ0 is
the generator of the one-particle irreducible Green’s func-
tions, from which we can extract the physical properties
of interest. At equilibrium

δΓ

δφ

∣∣∣∣
φ0

= 0, (11)

the effective action is related to the thermodynamic po-
tential Ω through

Ω = Γ[φ0]/β , (12)

which enables us to extract the thermodynamic proper-
ties of the gas.

The flow of Γk as a function of k is dictated by the
Wetterich equation [43]

∂kΓk =
1

2
tr
[
∂kRk(Γ

(2)
k + Rk)−1

]
, (13)

where Γ
(2)
k is the matrix with the second-functional

derivatives of Γk. The trace denotes both a trace and
an integral over internal momentum q.

In most applications, the Wetterich equation cannot
be solved directly, and thus approximations need to be
employed. In this work, we propose an ansatz for the
effective action Γk based on a derivative expansion (DE)
truncated to a small number of k-dependent terms [44].
Within this approximation, the Wetterich equation be-
comes a set of coupled differential equations that can be
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solved numerically using standard methods. The DE is
generally appropriate to study the long-distance physics
and thermodynamic properties as in this work.

In the following we present the ansatz for the effective
action and details of the flow equations. For detailed
reviews on the FRG framework we refer to Refs. [44, 63–
66].

A. Effective action

We use an ansatz and strategy analogous to those used
for one-component Bose gases [45–47]. Our ansatz reads

Γk[φ] =

∫
x

[ ∑
a=A,B

ψ†a

(
S∂τ −

Z

2m
∇2 − V ∂2

τ

)
ψa

+ U(ρA, ρB ;µ)

]
, (14)

where ρa = φ†aφa and S, Z and V are k-dependent
renormalization factors, which we consider as field-
independent. The effective potential U is expanded
around the k-dependent order parameters ρa,0 = 〈φ†aφa〉,
which are equal for the balanced mixture ρ0 = ρA,0 =
ρB,0 . We are interested in the phase where the U(1)-
symmetry of each species is broken, thus ρ0 > 0 for all
k [47]. In this phase, the effective potential truncated up
to quartic order in the fields reads

U(ρA, ρB ;µ) =−
∑

a=A,B

(n0 + n1(ρa − ρ0))(µ̃− µ)

+
∑

a,b=A,B

λab
2

(ρa − ρ0)(ρb − ρ0), (15)

where λAA = λBB = λ. We have added shifts µ̃ from
the from the physical chemical potential µ, so we can fol-
low the flow of the densities n0 = n/2 of each species of
bosons (see Ref. [47] for details). The condensate densi-
ties are given by ρ0, whereas the superfluid densities are
given by the phase stiffness ρs = Zρ0 [50, 67]. Thus, the
physical condensate and superfluid fractions are obtained
from the values at k = 0 of Ωs = ρs/n0 and Ωc = ρ0/n0,
respectively.

When the U(1)-symmetry is broken, it is useful to de-
compose the complex boson fields ψa into orthogonal real
fields

ψa(x) =
1√
2

(ψa,1(x) + iψa,2(x)) . (16)

In this work we fix both order parameters ρA,0 and ρB,0
at the same direction. Thus, we evaluate the fields at
〈ψa,1〉 = (2ρ0)1/2 and 〈ψa,2〉 = 0. The inverse propagator
evaluated at this point reads

G−1
k (q) =

(
G−1
k,ψ(q) Σk,AB

Σk,BA G−1
k,ψ(q)

)
. (17)

where

G−1
k,ψ(q) =

(
E1,k(q) + V ω Sω
−Sω E2,k(q) + V ω

)
, (18)

Σk,AB = Σk,BA =

(
2λABρ0 0

0 0

)
, (19)

and

E1,k(q) =Z
q2

2m
+ 2λρ0 + n1(µ̃− µ) +Rk(q), (20)

E2,k(q) =Z
q2

2m
+ n1(µ̃− µ) +Rk(q). (21)

As with one-component gases, ψa,1 represent fluctuations
of the longitudinal modes, whereas ψa,2 represent fluctu-
ations of the massless Goldstone modes [46].

In this work we use the optimized Litim regulator [68],

Rk(q) =
Z

2m
(k2 − q2)Θ(q2 − k2) , (22)

where Θ is the Heaviside step function. This regulator
allows us to perform the momentum integrals analytically
before solving the differential equations. Although this
regulator is frequency-independent, it has proven to give
reasonable results for quantum gases [49, 65].

The flow equations for the k-dependent are obtained
from the appropriate projections of the Wetterich equa-
tion (13) into the ansatz (14), which are analogous to
those for one-component gases [47, 53]. These can be
found in App. A.

We stress that in our ansatz, we do not include the
effect of the relative phase between the two condensates,
and therefore we do not describe the non-dissipative drag
between superfluids [15, 16]. Within our truncation, the
interaction between both species of bosons is driven ex-
clusively by the coupling λAB , which only couples the
phase-independent terms ρa. However, because phase
fluctuations are not too strong in two and three dimen-
sions at zero temperature [69], the superfluid drag does
not considerably affect their macroscopic properties. For
details on the effect of the superfluid drag in one dimen-
sion see Ref. [70].

B. Initial conditions and physical inputs

The flow is started at a UV scale Λ much larger than
the physical scale set by the chemical potential. We ob-
tain the initial conditions of the RG flow by imposing
that ΓΛ = S. For the homogeneous (miscible) phase,
these are

S(Λ) = Z(Λ) = 1, V (Λ) = 0,

ρ0(Λ) = n0(Λ) =
µ

λ(Λ) + λAB(Λ)
, n1(Λ) = 1,

(23)

where µ > 0. The interaction terms λ and λAB need to
be renormalized so they can be connected to the s−wave
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scattering lengths a and aAB associated to the intra- and
inter-species interactions, respectively. With this, the
initial conditions are completely defined in terms of the
physical inputs µ, a and aAB . We impose that the inter-
action terms at k = 0 in vacuum are equal to the known
two-body T -matrices: λ(0) = T 2B , λAB(0) = T 2B

AB [47].
In two and three dimensions these are [62]

T 2B
α =


4π/m

log(−2/m|µ|a2
α)− 2γE

: d = 2

4πaα
m

: d = 3
, (24)

where T 2B
α = T 2B, T 2B

AB , aα = a, aAB and γE ≈ 0.577
is the Euler-Mascheroni constant. For the optimized
regulator (22) we obtain the following initial condi-
tions [47, 53]

λα(Λ) =


4π/m

1− 2γE − log(a2
αΛ2/4)

: d = 2

4π/m

a−1
α − 4Λ/3π

: d = 3
, (25)

where λα = λ, λAB . Note that although we have to
choose a high starting scale Λ, for repulsive interactions
we must choose Λ . a−1

α , otherwise λα(Λ) < 0 (for de-
tails see Ref. [53]).

Furthermore, we must also choose aAB < a so that the
spin mass term 2ρ0(λ− λAB) > 0 at the starting scale Λ
(see next subsection). A stronger inter-species repulsion
corresponds to a flow that starts in the separable (non-
miscible) phase [2], which is not described by our ansatz.
In subsection IVB we show that the FRG flow signals
the physical separable phase by the vanishing of the spin
healing scale [18].

C. Scale regimes

As the momentum scale k is lowered, the RG flow
gradually incorporates into Γk the fluctuations associated
with different scales. Therefore, we can identify different
scale regimes depending on the relevant physics.

In a one-component Bose gas with broken U(1)-
symmetry, the flow can be separated into a Gaussian
regime (for Zk2/2m � 2λρ0) where both longitudinal
and Goldstone fluctuations play a similar role, and a
Goldstone regime (for Zk2/2m � 2λρ0) where the flow
is dominated by Goldstone fluctuations (for details see
Ref. [46]). In order to identify the analogous regimes in
a Bose-Bose mixture, we examine the behavior of the de-
terminant of G−1

k (17). Within our truncation, it reads

det(G−1
k ) =

(
S2ω2 + (V ω2 + E

(+)
1,k )(V ω2 + E2,k)

)
×
(
S2ω2 + (V ω2 + E

(−)
1,k )(V ω2 + E2,k)

)
, (26)

where

E
(±)
1,k (q) =E1,k(q)±1 2λABρ0,

=Z
q2

2m
+ 2(λ± λAB)ρ0 +Rk(q) (27)

and E1,k and E2,k are defined in Eqs. (20) and (21). Note
that we take µ̃ = µ.

The poles of the propagator and the dispersion rela-
tions are extracted from det(G−1

k ) = 0 (see App. B).
From Eq. (26) we see that there are two solution
branches. The positive branch (E(+)

1,k ) corresponds to the
density (in-phase) mode, whereas the negative branch
(E(−)

1,k ) corresponds to the spin (out-of-phase) mode [36].
It is easy to see that the dependency on momen-

tum in Eq. (26) depends on how the mass-like terms
2(λ ± λAB)ρ0 compare to the kinetic terms. Thus, we
can identify different scale regimes from the dimension-
less quantities

ωh,± =
Z2k2/2m

2(λ± λAB)ρ0
, (28)

which for λAB = 0 recovers the analogous expression
in one-component gases [46]. We define the momentum
healing scales kh,± from the points in the flow where
ωh,± = 1. Note that even though we define kh,± in anal-
ogy to the physical healing lengths [2], kh,± correspond
to scales in the RG flow and are not extracted from the
physical inputs.

Similarly to one-component gases, the Gaussian regime
is defined for high scales k � kh,± (ωh,± � 1) where the
mass-like terms 2(λ±λAB)ρ0 are small and E(±)

1,k ≈ E2,k.
At these high scales many-body effects are not important,
and thus the flows are similar to those in vacuum [47]. On
the opposite side, the Goldstone regime is defined for low
scales k � kh,± (ωh,± � 1) where E(±)

1,k ≈ 2(λ± λAB)ρ0

and Goldstone fluctuations become dominant.
Between these two regimes, at scales kh,− . k . kh,+,

the mixture develops an additional regime where the ef-
fect of the interaction between both species of bosons
becomes most important. In particular, around kh,+ and
kh,− fluctuations of the density and spin modes domi-
nate, respectively. This is easy to see in the cases where
kh,− � kh,+. Here, around kh,+ the spin mode is in a
Gaussian-like regime as E(−)

1,k ≈ E2,k, whereas the den-
sity mass term 2(λ + λAB)ρ0 is of the order of the ki-
netic terms and density fluctuations become important.
On the hand, around kh,− the density mode is in a
Goldstone-like regime E

(+)
1,k ≈ 2(λ + λAB)ρ0 and spin

fluctuations dominate.
We provide additional discussion in App. B where we

examine the dispersion relations extracted from Eq. (26).



5

IV. RESULTS

In this section, we present flows of the interaction
terms λ and λAB . We analyze the scale regimes and
the phase separation point. We also present results
for macroscopic thermodynamic properties and compare
with analytical results from perturbative approaches.

A. Flow of the interactions

The RG flows of the mixture have similar properties
to those of one-component gases [45, 47], Therefore, here
we focus on the new features. Details of the RG flows
are given in App. C.

The intra-species interaction coupling λ maintains its
one-component behavior for small k in the Goldstone
regime: λ vanishes for k → 0 linearly with k in two
dimensions and logarithmically in three dimensions [45].
This is required to satisfy the vanishing of the anoma-
lous self-energy [54, 56]. Similarly, we observe that λAB
vanishes for k → 0 as well. However, it is relevant to
examine how its flow compares to that of λ.

Fig. 1 shows examples of flows of the ratio λAB/λ in
two and three dimensions for different values of aAB/a
(for the individual flows see Fig. 7). Note that we use a
different range of aAB/a in two and three dimensions be-
cause of the different dependence on the scattering length
(see Eq. (24)). We observe that this ratio shows distinct
features during the different regimes of the flow. At high
scales the ratio increases as we lower k until it reaches
its MF value ≈ T 2B/T 2B

AB around kh,+, showing the de-
pendence on aAB . On the other hand, for small scales
k . kh,− the ratio decreases until it vanishes for k → 0.
We obtain that λAB/λ vanishes for small scales linearly
with k in two dimensions and logarithmically in three
dimensions.

Because λAB/λ vanishes for small k, the density and
spin branches in Eq. (26) are not separated for k → 0
and both components of the mixture decouple at long
distances. This may seem counterintuitive from a Bogoli-
ubov perspective, where both modes are always present
in a perturbative expansion. However, in our RG formal-
ism, the fluctuations of density and spin modes are incor-
porated around their associated scales kh,+ and kh,−, and
the effective action at long distances do not necessarily
maintain the form of the microscopic theory.

It is also worth noting the behavior of kh,±. The den-
sity healing scale kh,+ is roughly independent of aAB
for a fixed chemical potential. On the other hand, the
spin healing scale kh,− depends strongly on the inter-
species interaction, decreasing as aAB increases. Further-
more, we observe that λAB/λ ≈ T 2B/T 2B

AB for a larger
range of scales as kh,− decreases, approaching the solu-
tion λAB/λ→ 1 for k → 0 at the phase separation point
aAB = a. We examine this in the following.

B. Healing scales and phase separation

The condition for phase-separation during the RG flow
corresponds to λ = λAB [58]. Under this condition, from
Eq. (28) we have that ω− →∞, and thus the spin healing
scale vanishes kh,− → 0. In contrast, the density healing
scale remains finite. The same condition applies within
perturbative approaches, where the similarly defined mo-
mentum healing scales are defined by [35, 37]

p2
h,± = 4mµ

g ± gAB
g + gAB

. (29)

At the MF phase separation point gAB = g, we have
ph,− = 0 and ph,+ > 0. Therefore, to study the phase-
separation point, we can examine the behavior of kh,−
for different physical inputs.

Fig. 2 shows healing scales for a range of inter-species
scattering lengths aAB . We compare our FRG calcula-
tions with the Bogoliubov healing scales (29), where we
use the T -matrices defined in Eq. (24) as the interactions
g and gAB .

As discussed in the last subsection, the density heal-
ing scale kh,+ is roughly independent of aAB/a, as ex-
pected for the balanced mixture. On the other hand, the
spin healing scale kh,− decreases as aAB increases. We
obtain that kh,− vanishes for aAB → a. Therefore, we
obtain that the phase separation occurs for equal inter-
and intra-species interactions aAB = a, coinciding with
the MF prediction. We can understand this from the
behavior of λAB/λ discussed in the last subsection. Be-
cause this ratio decreases for k < kh,−, then the condition
λAB = λ is satisfied only for aAB = a.

Our result contrasts with the phase-separation point
obtained with RG methods in Ref. [58], where it is stated
that in two dimensions, the phase separation occurs for
aAB < a at logarithmically low densities. However, that
work study the mixture around the zero-density critical
point, and thus we might not be exploring that regime.
An FRG study of the quantum phase transition of the
mixture around the zero-density point can be done by ex-
tending the same analysis for one-component gases from
Ref. [46]. However, this is beyond the scope of the cur-
rent work.

C. Thermodynamics

In the following we present results for the energy per
particle E/N and the condensation depletion ∆Ωc = 1−
Ωc. E/N is computed from the physical values of the
pressure, density and chemical potential as follows from
Eq. (7). For details on how to extract the pressure see
Ref. [53].
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aAB=0.6a
aAB=0.05a
aAB=10

-4a

aAB=0.9a

(a) Two dimensions

aAB=0.9a
aAB=0.6a
aAB=0.3a

aAB=0.99a

(b) Three dimensions

FIG. 1. Flows of the ratio λAB/λ for different values of aAB/a as a function of k in two and three dimensions for ma2µ = 10−4.
The four thick vertical lines on the left denote kh,−, whereas the thin vertical lines on the right (on top of each other) denote
kh,+. The horizontal lines correspond to the ratios T 2B

AB/T
2B , where these are defined in Eq. (24). The inset in (b) enlarges

one of the curves to show its logarithmic flow. The other curves show similar logarithmic behavior.

mμa2=10-20
mμa2=10-12
mμa2=10-4

(a) Two dimensions

mμa2=10-4

(b) Three dimensions

FIG. 2. Healing scales kh,± in two and three dimensions as a function of aAB/a. Circles correspond to FRG results for kh,+
(open) and kh,− (filled), whereas lines correspond to the Bogoliubov healing scales ph,± (29). In three dimensions the healing
scale is independent of the chemical potential, and thus we plot one choice of mµa2.

1. Three dimensions

Fig. 3 shows results for E/N and ∆Ω in three dimen-
sions for a range of intra-species scattering lengths a for
different ratios of aAB/a. Note that aAB = 0 corresponds
to the one-component limit. We compare the energy per
particle with the perturbative result [34]

E

N
=
πn

m
(a+ aAB) +

32
√

2π

15

n3/2a5/2

m
f(aAB/a), (30)

where f(x) = (1 + x)5/2 + (1− x)5/2 and n = 2n0 is the
total density. The first term corresponds to the MF so-

lution and the second term to the LHY correction. Simi-
larly, we compare the condensate depletion with the LHY
result [71]

∆Ωc =
4

3
√

2π
(na2)3/2h(aAB/a), (31)

where h(x) = (1 + x)3/2 + (1− x)3/2.
We obtain an excellent agreement with the LHY re-

sults, showing that our calculations correctly incorporate
the effect of quantum fluctuations and of the inter-species
interaction. We stress that the LHY corrections give an
accurate description of Bose gases in three dimensions
for this range of na3 [10]. In particular, the accuracy
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10
x10-5

aAB=0.9a
aAB=0.6a
aAB=0.3a
aAB=0.0

0 2 4 8 10
x10-5

aAB=0.9a
aAB=0.6a
aAB=0.3a
aAB=0.0

4

0 2 4 8

FIG. 3. Energy per particle E/N and condensate depletion
∆Ωc in three dimensions as a function of the concentration
parameter na3, where n = 2n0 is the total density of atoms.
E/N is scaled in terms of the critical temperature of an ideal
Bose gas Tc,0 = 2π

m
(n0/ζ(3/2))2/3. Markers correspond to

FRG results, thin lines to the MF solutions and thick lines
to MF+LHY solutions (30) and (31). The insets show the
results in a linear scale.

of the LHY result for the condensate depletion in one-
component gases has been proved experimentally [72].

2. Two dimensions

Fig. 4 shows results for E/N and ∆Ωc in two dimen-
sion. We compare the energy per particle with the per-
turbative result [38]

E

N
=
πn

m
ζ+(n, a, aAB) +

πn

2m

∑
±
ζ2
±(n, a, aAB)

× (2γE + 1/2 + log (πζ±(n, a, aAB)) (32)

where

ζ±(n, a, aAB) =
1

| log(na2/2)|
± Θ(aAB)

| log(na2
AB/2)|

(33)

As in three dimensions, the first term in Eq. (32) corre-
sponds to the MF result and the second to the LHY-type
correction. Additionally, we compare with MC results of
E/N for the one-component gas [73]. For the conden-
sate depletion, we compare with the recently obtained
expression for the one-component gas [74]

∆Ωc =
1

| log(na2/2)|+ log(| log(na2/2)|) + C
, (34)

where C ≈ − log(π)− 2γE − 2.63.
For E/N , we obtain a reasonable agreement between

our FRG results and the analytical expression. We stress
that because of the enhanced effect of fluctuations in two
dimensions, the LHY-type correction is not as accurate,
and thus we expect that our results give a better descrip-
tion of this system. In particular, for the one-component
limit (aAB = 0), we obtain a slighter better agreement
with the MC results, which we can consider exact. Also,
note the larger effect of the LHY correction to the MF re-
sult compared to three dimensions, showing the enhanced
effect of quantum fluctuations.

For Ωc we obtain that in the one-component limit, our
results are comparable to those of Eq. (34). However,
we stress that FRG calculations with better truncations
are needed in order to prove the robustness of our re-
sults. Most interesting is the effect of the inter-species
interaction. At first glance it seems that the condensate
depletion in two dimensions is not as sensitive to the
inter-species interaction as in three dimensions. How-
ever, in our figures, Ωc is one order of magnitude greater
in two dimensions. The larger condensate depletion is
caused by the enhanced fluctuations in two dimensions,
which are at the critical dimension of destroying the con-
densate [75]. Therefore, in two dimensions, the depletion
is mostly driven by the quantum fluctuations associated
with the lower dimensionality, and the effects of the mix-
ture become less noticeably.

V. CONCLUSIONS

In this work, we study two- and three-dimensional bal-
anced Bose-Bose mixtures at zero temperature within
the FRG. We generalize previous work on one-component
gases to now consider two species of bosons interacting
through weak and repulsive intra- and inter-species in-
teractions.

We find that the scale-dependent inter-species inter-
action coupling vanishes at long distances. However, the
RG flow correctly takes the inter-species interaction effect
into account as fluctuations of density and spin modes are
incorporated at their associated momentum scales. We
also study the phase separation condition, which in our
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FIG. 4. Energy per particle E/N and condensate deple-
tion ∆Ωc in two dimensions as a function of the concentra-
tion parameter na2, where n = 2n0 is the total density of
atoms. E/N is scaled in terms of the characteristic temper-
ature Tx = 2πn0/m. Markers correspond to FRG results.
(Top): Thin lines correspond to the MF solution and thick
lines to MF+LHY solution (32), whereas the filled black cir-
cles correspond to MC simulations for the one-component gas
from Ref. [73]. (Bottom): Thin line corresponds to the ana-
lytical expression at leading order ∆Ωc = 1/| log(na2/2)| and
the thick line to Eq. (34). The insets show the results in a
linear scale.

formalism can be identified by the vanishing of the mo-
mentum spin healing scale. We find that in both two and
three dimensions, the phase separation occurs at the MF
point of equal scattering lengths aAB = a. Finally, in or-
der to examine macroscopic thermodynamic properties,
we calculate the energy per particle and condensation de-
pletion for a range of interaction parameters. We obtain
good agreement with analytical results from perturbative
approaches. We find some deviations from these results
in two dimensions, as expected from the enhanced effect

of fluctuations.
Having demonstrated that the FRG is capable of

studying Bose-Bose mixture, we intend to explore in fu-
ture work how to implement the interaction between the
relative phases of the condensates within our framework.
This is necessary to study the mixture at finite temper-
atures and the superfluid phase transition where the su-
perfluid drag becomes important [17, 61]. We also in-
tend to study the mixture around the quantum transi-
tion at zero density to check if the MF phase separa-
tion point changes as suggested in other works. Other
relevant related extensions are studies of quantum mix-
tures in different configurations. Particularly interesting
are Bose-Bose mixture with attractive inter-species inter-
action. These would enable us to explore the strongly-
interacting regime, which presents rich physics, including
droplet phases and dimerization [76, 77]. Because pertur-
bative approaches are not suitable to study this regime,
an FRG study could provide a more robust picture of
these systems.
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Appendix A: Flow equations

The flow of each coupling is driven by the appropri-
ate projection of the Wetterich equation (13) into the
ansatz (14). The flow of the order parameter is driven
by the equilibrium condition δΓ/δψa,1 = 0, thus

−
√

2ρ0 (λ+ λAB) ρ̇0 =
δΓ̇

δψA,1

∣∣∣∣
ρ0,µ

, (A1)

where ḟ = ∂kf . The right-hand-side (RHS) is ob-
tained from taking the functional derivative to the RHS
of the Wetterich equation (13) and then evaluating at
ψa,1(q) = (2π)d+1(2ρ0)1/2δ(q), ψa,2(q) = 0 and µ̃ = µ.
The interaction terms are obtained from the flow of the
longitudinal masses (see Eq. (17))

2ρ0λ̇− (λ+ λAB)ρ̇0 =
δ2Γ̇

δψ2
A,1

∣∣∣∣
p=0,ρ0,µ

(A2)

2ρ0λ̇AB =
δ2Γ̇

δψA,1δψB,1

∣∣∣∣
p=0,ρ0,µ

, (A3)
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where the external momentum p = (ν,p) of the two-point
function Γ(2) is evaluated at zero. The renormalization
factors are obtained from momentum derivatives of the
two-point function [47]

Ż

2m
=

∂

∂p2

(
δ2Γ̇

δψ2
A,2

)∣∣∣∣
p=0,ρ0,µ

, (A4)

Ṡ =
∂

∂ν

(
δ2Γ̇

δψA,2δψA,1

)∣∣∣∣
p=0,ρ0,µ

, (A5)

V̇ =
∂

∂ν2

(
δ2Γ̇

δψ2
A,2

)∣∣∣∣
p=0,ρ0,µ

. (A6)

Finally, the flow equations for n0 and n1 are obtained
from taking derivatives with respect to µ [47]

ṅ0 − n1ρ̇0 =− ∂

∂µ
Γ̇, (A7)

√
2ρ0ṅ1 =− ∂

∂µ

(
δΓ̇

δψA,1

)
. (A8)

For details on the expressions for the RHS’s of the flow
equations we refer to Ref. [63].

Appendix B: Dispersion relations and microscopic
sound velocity

From the inverse propagator (17) and by performing a
continuation to real time ω → −iq0, we can identify the
poles of the propagator from det(G−1

k ) = 0. Within our
truncation, the propagator has eight poles, which can be
summarized as

(q∗0,1)2 =
1

2V 2

[
S2 + V

(
E

(+)
1,k (q) + E2,k(q)

)
−
√(

S2 + V
(
E

(+)
1,k (q) + E2,k(q)

))2

− 4V 2E
(+)
1,k (q)E2,k(q)

]
, (B1)

(q∗0,2)2 =
1

2V 2

[
S2 + V

(
E

(−)
1,k (q) + E2,k(q)

)
−
√(

S2 + V
(
E

(−)
1,k (q) + E2,k(q)

))2

− 4V 2E
(−)
1,k (q)E2,k(q)

]
, (B2)

(q∗0,3)2 =
1

2V 2

[
S2 + V

(
E

(+)
1,k (q) + E2,k(q)

)
+

√(
S2 + V

(
E

(+)
1,k (q) + E2,k(q)

))2

− 4V 2E
(+)
1,k (q)E2,k(q)

]
, (B3)

(q∗0,4)2 =
1

2V 2

[
S2 + V

(
E

(−)
1,k (q) + E2,k(q)

)
+

√(
S2 + V

(
E

(−)
1,k (q) + E2,k(q)

))2

− 4V 2E
(−)
1,k (q)E2,k(q)

]
, (B4)

where E(+)
1,k is defined in Eq. (27) and E2,k in Eq. (21).

In the following, we examine the behavior of the poles
in the different regimes, complementing the discussion
in subsection III C. Later, we examine the microscopic
sound velocity extracted from the dispersion relation.

1. Scale regimes

For high scales k � kh,±, because E(±)
1,k ≈ E2,k the

density and spin modes are indistinguishable. Further-
more, because at these high scales the renormalization
factors remain at their microscopic values Z, S ≈ 1 and
V ≈ 0 (see App. C), the propagator has a single pole

(q∗0)2 = E2
2,k(q), (B5)

which recovers the quadratic spectrum at high momen-
tum as in Bogoliubov theory [2].

For intermediate scales kh,− . k . kh,−, it is easy to
see that the inter-species interaction term λAB becomes

important. If we neglect V at these scales, we get the
poles

(q∗0,+)2 = E
(+)
1,k (q)E2,k(q)/S2, (B6)

(q∗0,−)2 = E
(−)
1,k (q)E2,k(q)/S2, (B7)

analogous to those in perturbative approaches [37].
In particular, if kh,− � kh,+, around kh,+ we have
a quadratic spectrum for the spin mode (q∗0,−)2 ≈
E2

2,k(q)/S2, whereas around kh,− we have a linear
spectrum for the density mode (q∗0,+)2 ≈ 2ρ0(λ +

λAB)E2,k(q)/S2.

For small scales k � kh,±, the mass terms dominate
E

(+)
1,k and the spectrum becomes linear. Particularly in-

sightful is to examine the physical limit k → 0 of the
spectrum in terms of the sound velocity. We do this in
the following.
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2. Microscopic sound velocity

For k → 0 the spectrum becomes linear with two mi-
croscopic sound velocities (q∗0,±)2 = c±q2 [36]. From the
poles of the sound modes [47], Eqs. (B1) and (B2), we
obtain

c2± =

(
Z/2m

V + S2/(2(λ± λAB)ρ0)

)
k→0

, (B8)

which for λAB = 0 takes the known form for a one-
component gas [45]. Because λAB , λ → 0, both sound
velocities are equal c = c±, in contrast to the Bogoli-
ubov spectrum that have distinct density and spin sound
velocities. Furthermore, because both S and λ vanish
with the same scaling behavior [45] (see also App. C), we
obtain that

c2 =

(
Z

2mV

)
k→0

, (B9)

as with one-component gases [54].

First, we stress that the spectrum remains linear even
though the sound velocities differ from that of Bogoliubov
theory. Second, as discussed in the main text, the fact
that we do not obtain separate density and spin sound
velocities results from the form of the effective action at
long distances. Density and spin fluctuations are cor-
rectly incorporated into the macroscopic properties even
though the theory at long distances becomes independent
of λAB .

It is also relevant to examine if the sound velocity de-
pends on the inter-species interaction. In Fig. 5 we show
c2 in two and three dimensions for a range of aAB/a for
a chosen chemical potential. We obtain that the sound
velocity does depend on aAB . Moreover, it vanishes for
aAB → a, signaling the phase separation point. It is in-
teresting that, since the interaction couplings vanish, the
decrease of c2 is driven by the one-component couplings
Z and V .

Here we note that in a Bogoliubov formulation, the
spin sound velocity vanishes at the phase separation
point, whereas the density sound velocity remains fi-
nite [36]. There is no apparent reason beforehand why
the FRG flow gives a vanishing microscopic sound veloc-
ity at the phase separation. A detailed analysis of the
critical point is required, which is left to future work.

Appendix C: FRG flows

As mentioned in subsection IVA, the flows of the mix-
ture gas are similar to those of one-component gases (see
Refs. [45–47] for details). Here we examine the flows
of the different k-dependent functions. We compare the
flows with calculations using aAB = 0. In this limit,
λAB = 0 for all k and the flow equations recover their
forms for one-component gases.

Fig. 6 shows flows of the renormalization factors Z, S
and V . The inter-species interaction produces a devia-
tion of all the couplings from their flows for aAB = 0.
However, the couplings keep their infrared behavior, as
discussed in the main text. Also, note that the flows devi-
ate from each other as k approaches kh,+, showing that
the inter-species interaction is not important at higher
scales.

The mass renormalization Z increases from its micro-
scopic value at high scales to converge to a constant for
k → 0, whereas the wave-function renormalization S van-
ishes in the IR as k in two dimensions and logarithmically
in three dimensions. The coupling V , which is not present
in the microscopic action (1), is generated by the quan-
tum fluctuations as we lower k. As examined in detail
in Ref. [46], the long distance behavior of the propagator
is dominated by the quadratic frequency term V instead
of the linear term S. Thus, the IR is described by a
relativistic-like model. In two dimensions, it is easy to
see that V dominates the IR physics, as V quickly con-
verges to finite values for k < kh,−, whereas S vanishes.
This shows the importance of fluctuations in two dimen-
sions, as the long-distance theory deviates considerably
from the Bogoliubov picture. On the other hand, in three
dimensions, the logarithmic flows mean that the coupling
V is important only in the extreme IR. Its inclusion does
not considerably affect the macroscopic properties. Still,
V should converge to a finite value at k = 0, and its
inclusion is important to obtain a consistent theory.

Fig. 7 shows the flows of the interaction couplings λ
and λAB . The intra-species coupling λ is insensitive to
the inter-species interaction, with indistinguishable flows
for different values of aAB . In contrast, λAB depends
strongly on aAB , as expected. As discussed in the main
text, both λ and λAB vanish for k → 0, with λ vanish-
ing as k in two dimensions and logarithmically in three
dimensions. Consistent with our analysis for the ratio
λAB/λ, λAB vanishes as k2 in two dimensions and loga-
rithmically in three dimensions.

Finally, Fig. 8 shows flows of the condensate density
ρ0. These are rescaled in terms of mean-field values for
the one-component gas. In all cases, ρ0 converges to fi-
nite values for k → 0, consistent with a finite condensate
density.
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