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I. INTRODUCTION

The possible existence of a new class of processes, later
named diffraction dissociation, for the first time was in-
dicated in 1953, in a short paper by Pomeranchuk and
Feinberg [1]. The possibility of observing diffractive in-
elastic processes producing states X of large mass was
studied subsequently, in 1960 by Good and Walker [2]
(for a review, see Ref. [3]).

Experimentally, diffraction dissociation in proton-
proton scattering was intensively studied in the ’70-ies at
the Fermilab and the CERN ISR [4–6]. In particular,
in Ref. [6] double-differential cross section d�

dtdM2
X

was

measured in the region 0:024<�t < 0:234 ðGeV=cÞ2,
0<M2 < 0:12s, and ð105< s < 752Þ GeV2, and a single
peak in M2

X was identified.
Low-mass diffraction dissociation (DD) of protons,

single

pp ! pX; (1)

and double, are among the priorities at the LHC.
For the compact muon solenoid (CMS) Collaboration,

the SDD mass coverage is presently limited to some
10 GeV. With the Zero Degree Calorimeter (ZDS), this
could be reduced to smaller masses, in case the SDD
system produces very forward neutrals, e.g. a N� decaying
into a fast leading neutron. Together with the T2 detectors
of TOTEM, SDD masses down to 4 GeV could be covered.
This is not the case until TOTEM trigger (data acquisition)
systems are combined together with the CMS ones. This is
not likely before the year 2012 shutdown. In principle,
ATLAS can do similar improvements, since the LHC lay-
out at the distance of our proposed forward shower coun-
ters’ (FSC) locations is similar. ALICE and LHCb have
different beam arrangements, but their acceptances for
central diffraction (double pomeron exchange) was also
investigated, see, e.g., [7]).

While high-mass diffraction dissociation (DD) receives
much attention, mainly due to its relatively easy theoretical
treatment within the triple Reggeon formalism [8–11] and
successful reproduction of the data [8,12], this is not the
case for low-masses, which are beyond the range of per-
turbative quantum chromodynamics (QCD). The forth-
coming measurements at the LHC urge a relevant
theoretical understanding and treatment of low-mass DD,
which essentially has both spectroscopic and dynamic
aspects. The low-mass MX spectrum is rich of nucleon
resonances. Their discrimination is a difficult experimental
task, and theoretical predictions of the appearance of the
resonances depending on s, t, and M is also very difficult
since, as mentioned, perturbative QCD, or asymptotic
Regge pole formulas, are of no use here. With this paper,
we try to partially fill this gap, attacking the problem by
means of a dual-Regge approach to the inelastic form
factor (production amplitude) in which nonlinear Regge
trajectories play an essential role.
We start with single diffraction dissociation (SDD).

Generalization to double diffraction dissociation (DDD)
is straightforward.
Diffraction, elastic and inelastic, in the LHC energy

range is dominated by a single Pomeron exchange in the
t channel (see e.g., [13,14]), enabling the use of Regge
factorization, Fig. 1. Accordingly, the knowledge of two
vertices and the Regge propagator is essential for the
construction of the scattering amplitude. Relying on the
known properties of the elastic proton-Pomeron-proton
vertex, and by adopting a simple supercritical Pomeron
pole exchange (propagator) in the t channel, we concen-
trate on the construction of a proper inelastic proton-
Pomeron-MX vertex, the central object of our study. The
solution of this problem, to a large extent, became possible
due to the similarity between the inelastic ��p ! Mx and
Pomeronþ proton ! Mx vertices. We will extensively use
the earlier results on the ��p ! Mx transition, successfully
applied to the JLab data [15,16] in constructing the lower,
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Pomeronþ proton ! Mx vertices of Fig. 1, right panel.
In doing so, we draw a parallel between the virtual photon
and the Pomeron. They are similar, W2ðq2; sÞ��p!
N�

i ;�ðat JLabÞ ! W2ðt;M2ÞPp!N� (at the LHC), apart

from their opposite C parities, and, of course, one should
remember about the changes in kinematics: the photon
virtuality (e.g., at the JLab)Q2, etc. of Fig. 2 here becomes
the squared momentum transfer t of Fig. 1.

The unknown inelastic form factor of the type shown in
Fig. 2, by the optical theorem, is related to the imaginary
part of the forward ��ðPÞ � p scattering amplitude.
Following Refs. [15–17], we use a dual amplitude for
this reaction, in its low-energy (here: missing mass) reso-
nance region, dominated by the contribution of relevant
direct-channel trajectories. The correct choice of these
trajectories is a crucial point in our approach. In the case
of ��p scattering (e.g., JLab), these were the N� and �
trajectories, see Refs. [15–17]. Here, instead, by quantum
numbers, the relevant direct-channel trajectory is that of
the proton, to be parametrized in Sec. V.

In principle, one could proceed by counting the reso-
nances one-by-one; however, apart from the technical
complexity of counting single resonances, there is also a
conceptual one: Regge trajectories and, more generally,
dual models comprise the dynamics in a complete and
continuous way, thus opening the way to study and relate
different reactions in any kinematical region. Examples are
finite mass sum rules, contained in the present formalism
automatically. One more important point: the advantage of

using the dual-Regge model with nonlinear Regge trajec-
tory presented in this paper over a one-to-one account for
the particular resonances is that it automatically takes care
of the relative weight of each resonance, and extrapolates
to higher masses, with a limited number of resonances on
any trajectory.

II. ELASTIC SCATTERING

The pp scattering amplitude corresponding to Fig. 1
(left) is [10]

Aðs; tÞ ¼ ��2½fuðtÞ þ fdðtÞ�2ðs=s0Þ�PðtÞ�1 1þ e�i��PðtÞ

sin��PðtÞ ;

(2)

where fuðtÞ and fdðtÞ are the amplitudes for the emission of
u and d valence quarks by the nucleon, � is the quark-
Pomeron coupling, to be determined below; �PðtÞ is a
vacuum Regge trajectory. It is assumed [10] that the
Pomeron couples to the proton via quarks like a scalar
photon. Thus, the unpolarized elastic pp differential cross
section is

d�

dt
¼ ½3�FpðtÞ�4

4�sin2½��PðtÞ=2�
ðs=s0Þ2�PðtÞ�2: (3)

The norm � appearing in Eq. (2) was found in Ref. [10]
from the forward elastic scattering, d�=dt � 80 mb=GeV2

at
ffiffiffi
s

p ¼ 23:6 and 30.8 GeV, resulting, at unite Pomeron
intercept, �Pð0Þ ¼ 1, in �4=ð4�Þ � 1 mb=GeV2 [10].
To account for the rise of the cross sections, following

the model and fits of Donnachie and Landshoff (see [13]
and earlier references therein), we use a Pomeron trajec-
tory whose intercept is slightly beyond one, namely,
�Pð0Þ ¼ 1:08 providing for excellent fits to the total cross
sections [13]. However, the extrapolation with such an
intercept and input value of � strongly overshoots the
elastic forward cross section measured at higher energies,
e.g.

ffiffiffi
s

p ¼ 1800 GeV [18]. There are several reasons for
this inconsistency. One is that, at the normalization point,
23.6 or 30.6 GeV, the contribution from secondary
Reggeons, and/or a constant background should be in-
cluded. In what follows, we use the Pomeron trajectory
of the form (see [13]) �PðtÞ ¼ 1:08þ 0:25t, and conse-
quently relax the above norm of �. Instead, it will be
included in the overall normalization factor of the ampli-
tude/cross section A0, that absorbs also the parameter a of
Eq. (17), from Section VI.
Another important issue is the neglect of absorption

(unitary) corrections. We intend to come back in a forth-
coming investigation to the study of the role of the sub-
leading Reggeons and of the absorption corrections.
A dipole form can be used for the form factor

FpðtÞ ¼ 4m2 � 2:9t

4m2 � t

1

ð1� t=0:71Þ2 ; (4)

where m is the proton mass.
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FIG. 2. Virtual photonþ proton ! MX transition.

FIG. 1. Elastic scattering (left panel) and diffraction dissocia-
tion (right panel) in a model with a Pomeron exchange coupled
to the proton by quarks.

L. L. JENKOVSZKY et al. PHYSICAL REVIEW D 83, 056014 (2011)

056014-2



III. SINGLE DIFFRACTION DISSOCIATION (SDD)

In single diffraction dissociation, Eq. (1), a systemX with
a missing mass MX is produced at small jtj. At sufficiently
large s=M2

X, which is the case at the LHC, the process is
dominated by a Pomeron exchange. This case was treated in
Ref. [10] for missing masses beyond the resonance region,
and in Ref. [19] in the resonance region. For large missing
masses, the triple Regge limit applies [9,12,20,21].
Although large-MX diffraction dissociation is outside the
scope of the present paper, we mention it below, in particu-
lar, in connection with duality relations called finite mass
sum rules, that relate low- and high-missing mass dynamics.

Similar to the case of elastic scattering (Sec. II), the
double differential cross section for the reaction (1), by
Regge factorization, can be written as

d2�

dtdM2
X

� 9�4½FpðtÞ�2
4�sin2½��PðtÞ=2�

ðs=M2
XÞ2�PðtÞ�2

�
�
W2

2m
ð1�M2

X=sÞ �mW1ðtþ 2m2Þ=s2
�
; (5)

where Wi, i ¼ 1, 2 are related to the structure functions of
the nucleon and W2 � W1. For high M2

X, the W1;2 are

Regge-behaved, while for small M2
X their behavior is

dominated by nucleon resonances. Thus, the behavior of
(5) in the lowmissing mass region to a large extent depends
on the transition form factors or resonance structure func-
tions. The knowledge of the inelastic form factors (or
transition amplitudes) is crucial for the calculation of
low-mass diffraction dissociation from Eq. (5). We intro-
duce these transition amplitudes in the next section.

At large s (the LHC energies), one can safely neglect
terms M2

X=s and ðtþ 2m2Þ=s in Eq. (5). Furthermore, we
have replaced the familiar form of the signature factor in

the amplitude, 1þe�i��PðtÞ
sin��PðtÞ , used in [10], by a simple expo-

nential one e�i��PðtÞ=2. For the proton elastic form factor
FpðtÞ, Eq. (4), we use a dipole form

FpðtÞ ¼ ð1� t=0:71Þ�2 (6)

(note that here we neglect the first factor of Eq. (4),
producing a break in the small jtj behavior of the elastic
differential cross section).

Hence Eq. (5), in the LHC energy region simplifies to:

d2�

dtdM2
X

� 9�4½FpðtÞ�2
4�

ðs=M2
XÞ2�PðtÞ�2 W2

2m
: (7)

Equations (5) and (7) do not contain the elastic scatter-
ing limit because the inelastic form factorW2ðMX; tÞ has no
elastic form factor limit FðtÞ as MX ! m. This problem is
similar to the x ! 1 limit of the deep inelastic structure
function F2ðx; Q2Þ. The elastic contribution to SDD should
be added separately, as discussed below in Sec. VI. To be
sure, we eliminate in the present work this region by
imposing M2

X > 2 GeV2.

IV. TRANSITION FORM FACTORS

The one-by-one account for single resonances is a
possible, although not efficient for the calculation of the
SDD cross section, to which, at low missing masses, a
sequence of many resonances contribute. The definition
and identification of these resonances is not unique; more-
over with increasing masses (still within ‘‘low-mass dif-
fraction’’), they gradually disappear. Similar to the case of
electroproduction, the (dis)appearance of resonances in the
cross section depends on two variables, their mass and the
virtuality or the ‘‘probe’’ (photon with Q2 in electropro-
duction and Pomeron with t in SDD). The finite widths of
the resonances can be introduced by a replacement [22]:

�ðW2 �m2
NÞ �

1

2mR�

�R=2

ðW �mRÞ2 þ �2
R=4

;

where �R is the widths of the resonance. At a resonance,
W ¼ mR, the peak goes as high as 1=ð�mR�RÞ.
Away to account for many resonances was suggested in

paper [15], based on the ideas of duality with a limited
number of resonances lying on nonlinear Regge trajecto-
ries. This approach was used [16] in a kinematically com-
plete analysis of the CLAS data from the JLab on the
proton structure function. The similarity between electro-
production of resonances (e.g., at JLab) and low-mass SDD
is the key point of our model. The inelastic form factor
(transition amplitude), the main ingredient of the model, is
constructed by analogy with the nucleon resonances elec-
troproduction amplitude. In both cases, many resonances
overlap and their appearance depends both on the reaction
energy, which is replaced here by missing mass (s ) M2

X),
and virtuality of the incident probe, which is replaced here
by the Pomoron’s momentum transfer (Q2 ) �t). This
interplay makes the problem complicated and interesting.

A. Dual amplitude with Mandelstam analyticity

The main idea behind the present work is the Regge-dual
connection between the inelastic form factor, Fig. 2, ap-
pearing in the lower vertex of Fig. 1, and the direct-
channel, low energy (here: missing mass) dual amplitude,
as illustrated in Fig. 3.
Figure 3 shows the connection between the inelastic

form factor (structure function) appearing in the lower
vertex of the left panel of Fig. 1, via duality, unitarity
(generalized optical theorem) and Veneziano-duality, and
its direct-channel, resonance decomposition (rightmost
term of Fig. 3).
The invariant on-shell scattering dual amplitude with

Mandelstam analyticity (DAMA), applicable both to
the diffractive and nondiffractive components, reads
[15–17,23]

Dðs; tÞ ¼
Z 1

0
dz

�
z

g

���sðs0Þ�1
�
1� z

g

���tðt0Þ�1
; (8)
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where s0 ¼ sð1� zÞ, t0 ¼ tz, g is a parameter, g > 1, and s,
t are the Mandelstam variables.

For s ! 1 and fixed t it has the following Regge
asymptotic behavior:

Dðs; tÞ �
ffiffiffiffiffiffiffiffiffiffiffi
2�

�tð0Þ

s
g1þaþib

�
s�0

sð0Þg lng
�tð0Þ

�
�tð0Þ�1

; (9)

where a ¼ Re�ð �tð0Þ
�0
sð0Þ lngÞ and b ¼ Im�ð �tð0Þ

�0
sð0Þ lngÞ.

Contrary to the Veneziano model, DAMA [23] not only
allows for, but rather requires the use of, nonlinear com-
plex trajectories providing the resonance widths via the
imaginary part of the trajectory, and, in a special case of
restricted real part of the trajectory, resulting in a finite
number of resonances. More specifically, the asymptotic
rise of the trajectories in DAMA is limited by the important
upper bound���������sðsÞffiffiffi

s
p

lns

��������� const; s ! 1:

The pole structure of DAMA is similar to that of the
Veneziano model, except that multiple poles appear on
daughter levels [15–17,23],

Dðs; tÞ ¼ X1
n¼0

gnþ1
Xn
l¼0

½�s�0
sðsÞ�lCn�lðtÞ

½n� �sðsÞ�lþ1
; (10)

where CnðtÞ is the residue, whose form is fixed by the
t-channel Regge trajectory (see [23])

ClðtÞ ¼ 1

l!

dl

dzl

��
1� z

g

���tðtzÞ�
z¼0

: (11)

The presence of the multipoles, Eq. (10), does not contra-
dict the theoretical postulates. On the other hand, they can
be removed without any harm to the dual model by means
the so-called Van der Corput neutralizer [23], resulting in a
‘‘Veneziano-like’’ pole structure:

Dðs; tÞ ¼ X1
n¼0

Cn

n� �sðsÞ : (12)

We disregard the symmetry (spin and isospin) properties
of the problem, concentrating on its dynamics.

The main problem is how to introduce Q2-dependence
in the dual model, matching its Regge asymptotic
behavior and pole structure to standard forms known
from the literature. (This is the famous problem of the

off-mass-shell continuation of the S matrix.) Note that
any correct identification of thisQ2-dependence in a single
asymptotic limit of the dual amplitude, by duality, will
extend it to other kinematical regions. In Refs. [15–17], a
solution combining Regge behavior and Bjorken scaling
limits of the structure functions (or Q2-dependent ��p
cross sections) was suggested (for an alternative solution,
see Ref. [24]).
Let us remind that below Q2 (photon virtuality in

electroproduction) will be replaced by �t (Pomeron
‘‘virtuality’’), and s will be replaced by M2

X (the direct,
Pp channel ‘‘energy’’).

B. Dual-Regge model of the inelastic form factors
(transition amplitudes)

For our purposes, i.e. for low-mass SDD, the direct-
channel pole decomposition of the dual amplitude (12) is
relevant. Anticipating its application in SDD, we write it
as [25]

AðM2
X; tÞ ¼ a

X
n¼0;1;...

fðtÞ2ðnþ1Þ

2nþ 0:5� �ðM2
XÞ

; (13)

where �ðM2
XÞ is a nonlinear Regge trajectory in the

Pomeron-proton system, t is the squared transfer momen-
tum in the Pp ! Pp reaction, and a is the normalization
factor, which will be absorbed together with � in the
overall normalization coefficient A0 to be fitted to the
data, see Sec. VI.
The form factor fðtÞ appearing in the Pp ! Pp system

should not be confused with FpðtÞ in Eq. (1) (the ppP
vertex). It is fixed by the dual model [15–17,24], in par-
ticular, by the compatibility of its Regge asymptotics with
Bjorken scaling [15–17] and reads

fðtÞ ¼ ð1� t=t0Þ�2; (14)

where t0 is a parameter to be fitted to the data, for example,
by comparing the hight of the resonance peaks for different
t. However, since for the moment we have no data
on differential SDD cross section, for simplicity we set
t0 ¼ 0:71 GeV2, as in the proton elastic form factor, Eq. (4).
Notice that in Eq. (13), this form factor enters with a

power 2ðnþ 1Þ strongly damping higher spin resonances
contributions [26].

q

p
X

2

=
X X

= =
t=0Unitarity

R

R = Res

Veneziano duality

Res

FIG. 3. Connection, through unitarity (generalized optical theorem) and Veneziano-duality, between the inelastic form factor and the
sum of direct-channel resonances.
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The inelastic form factor in diffraction dissociation is
similar to that in ��p, treated in Ref. [16], up to the
replacement of the photon by a Pomeron, whose parity is
different from that of the photon. As a consequence, we
have a single direct-channel resonance trajectory, that of
the proton, plus the exotic, nonresonance trajectory provid-
ing the background, dual to the Pomeron exchange in the
cross channel. The proton trajectory was studied in detail
in Ref. [27] and will be introduced in the next section.

Then we proceed, (see for example [24]):

�W2ðM2
X;tÞ¼F2ðx;tÞ

¼ 4ð�tÞð1�xÞ2
�ðM2

x�m2Þð1þ4m2x2=ð�tÞÞ3=2 ImAðM2
X;tÞ;

(15)

where � is a fine structure constant, � is defined via
2m� ¼ M2

x �m2 � t, and x ¼ �t
2m� is the Bjorken variable.

Thus, finally we have

W2ðM2
X; tÞ

2m

¼ 4xð1� xÞ2
�ðM2

x �m2Þð1þ 4m2x2=ð�tÞÞ3=2 ImAðM2
X; tÞ: (16)

The imaginary part of the transition amplitude reads

ImAðM2
X; tÞ

¼ a
X

n¼0;1;...

½fðtÞ�2ðnþ1Þ Im�ðM2
xÞ

ð2nþ 0:5� Re�ðM2
XÞÞ2 þ ðIm�ðM2

XÞÞ2
:

(17)

Next, we insert the proton trajectory �ðM2
XÞ into

Eq. (17), and subsequently into Eq. (7). The explicit ex-
pression for the proton trajectory and the values of the
parameters are presented in the next section. For more
details, see also Ref. [27].

V. THE PROTON TRAJECTORY IN THE
M2

X-CHANNEL

The Pomeron-proton channel, Pp ! M2
X (see the

lower part of Fig. 1, right panel) couples to the proton
trajectory, with the IðJPÞ resonances: 1=2ð5=2þÞ, F15,
m ¼ 1680 MeV, � ¼ 130 MeV; 1=2ð9=2þÞ, H19, m ¼
2200 MeV, � ¼ 400 MeV; and 1=2ð13=2þÞ, K1;13,

m ¼ 2700 MeV, � ¼ 350 MeV. The status of the first
two is firmly established [28], while the third one,
N�ð2700Þ, is less certain, with its width varying between
350	 50 and 900	 150 MeV [28]. Still, with the stable
proton included, we have a fairly rich trajectory, �ðM2Þ,
whose real part is shown in Fig. 4.

Despite the seemingly linear form of the trajectory, it is
not that: the trajectory must contain an imaginary part
corresponding to the finite widths of the resonances on it.

The nontrivial problem of combining the nearly linear and
real function with its imaginary part was solved in
Ref. [27] by means of dispersion relations.
We use the explicit form of the trajectory derived in

Ref. [27], ensuring correct behavior of both its real and
imaginary parts. The imaginary part of the trajectory can
be written in the following way:

I m�ðsÞ ¼ s�
X
n

cn

�
s� sn

s

�
�n 
 	ðs� snÞ; (18)

where �n ¼ Re�ðsnÞ. Equation (18) has the correct
threshold behavior, while analyticity requires that � < 1.
The boundedness of �ðsÞ for s ! 1 follows from the
condition that the amplitude, in the Regge form, should
have no essential singularity at infinity in the cut plane.
The real part of the proton trajectory is given by

R e�ðsÞ ¼ �ð0Þ þ s

�

X
n

cnAnðsÞ; (19)

where

AnðsÞ

¼�ð1��Þ�ð�nþ1Þ
�ð�n��þ2Þs1��

n
2F1

�
1;1��;�n��þ2;

s

sn

�
	ðsn�sÞ

þ
�
�s��1

�
s�sn
s

�
�n

cot½�ð1��Þ�

��ð��Þ�ð�nþ1Þs�n
s�ð�n��þ1Þ 2F1

�
���n;1;�þ1;

sn
s

��
	ðs�snÞ:

0

2

4

6

8

10

0 2 4 6 8 10

s (GeV2)

R
e

α(
s)

N(939)

N(1680)

N(2220)

N(2700)

α(0) = -0.41

δ = -0.46 ± 0.08

FIG. 4 (color online). The real part of the proton Regge
trajectory. The dashed line corresponds to the result of a linear
fit, the solid line is the fit from [27].
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As already mentioned, the proton trajectory, also called
Nþ trajectory [27], contains the baryons Nð939Þ 1

2
þ,

Nð1680Þ 5
2
þ, Nð2220Þ 9

2
þ and Nð2700Þ 13

2
þ [28]. In the fit,

the input data are the masses and widths of the resonances.
The quantities to be determined are the parameters cn, �
and the thresholds sn. Following [27], we set n ¼ 1, 2, x
and s1 ¼ ðm� þmNÞ2 ¼ 1:16 GeV2, s2 ¼ 2:44 GeV2 and
sx ¼ 11:7 GeV2.

Other parameters of the trajectory, obtained in the
fit, are summarized below: �ð0Þ ¼ �0:41, � ¼ �0:46	
0:07, c1 ¼ 0:51	 0:08, c2 ¼ 4:0	 0:8 and cx ¼
ð4:6	 1:7Þ � 103. Taking the central values of these
parameters, we obtain the following values for the �’s:
�1 ¼ 0:846, �2 ¼ 2:082, �x ¼ 11:177.

The fit is fairly good: 
2=d:o:f ¼ 1:15, see Figs. 4 and 5.
In the mass range, the parameters of the trajectory were
fitted to the data, i.e. M2

X � 8 GeV2; this is the most
realistic proton trajectory we know from the literature.
Nevertheless, care should be taken if used outside this
range. As long as we are within our applicability range,
the sum over resonances in Eq. (13) is restricted to 4
resonances (n ¼ 0, 3), but in the imaginary part of the
transition amplitude, Eq. (17) we consider the contribu-
tions only from three of these resonances, since for the
lowest resonance, i.e. for the proton, n ¼ 0, the imaginary
part vanishes, Im� ¼ 0, producing an infinitely narrow and
high peak.

The elastic contribution, pP ! pP will be discussed in
the next section, see also [29,30]. However, it can be assu-
med that outside the elastic peak, 2GeV2�M2

X�8GeV2,

this distribution can be neglected, because the dominant
part comes from the nearest resonance.
Thus, we obtain:

ImAðM2
X; tÞ ¼ a

X
n¼1;3

½fðtÞ�2ðnþ1Þ

� Im�ðM2
XÞ

ð2nþ 0:5� Re�ðM2
XÞÞ2 þ ðIm�ðM2

XÞÞ2
:

(20)

Note that the contribution from each subsequent resonance
of the proton trajectory is suppressed by a factor fðtÞ2
compared with the previous one.
Apart from the well-established proton trajectory, with a

sequence of four particles on it, there is a prominent
resonance I ¼ 1=2, J ¼ 1=2þ with mass 1440 MeV,
known as the Roper resonance. It is wide, the width
being nearly one quarter of its mass. The Roper resonance
may appear on the daughter trajectory of N� treated
above, although its status is still disputable. In the
Appendix, we consider the possible contribution from
the single Roper resonance by means of a separate
Breit-Wigner term.

VI. RESULTS

Figure 6 shows the behavior of the imaginary part of the
transition amplitude, Eq. (20), proportional to the transi-
tion form factor as in Fig. 2, or lower vertex in Fig. 1 (right
panel). It shows the resonance structure corresponding to
the proton trajectory, to be translated into the cross sections
via Eq. (7) and (16), with the results shown below, Eq. (21).
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One can see that the imaginary part of transition amplitude
decreases with growing jtj, due to the dipole form factor

fðtÞ2ðnþ1Þ. Furthermore for each fixed t the relative contri-
bution of higher resonances decreases, because of the

suppression factor fðtÞ2 for every subsequent resonance.
Such a behavior results from dual models.
Our final expression for the double differential cross

section reads

d2�

dtdM2
X

¼ A0

�
s

M2
X

�
2�PðtÞ�2 xð1� xÞ2½FpðtÞ�2

ðM2
x �m2Þð1þ 4m2x2

�t Þ3=2
X

n¼1;3

½fðtÞ�2ðnþ1Þ Im�ðM2
XÞ

ð2nþ 0:5� Re�ðM2
XÞÞ2 þ ðIm�ðM2

XÞÞ2
: (21)

Its over-all normalization depends on two factors, namely
�, Eq. (7), and a, Eq. (13), but since they do not appear
separately, we have combined them in a single factor,
A0 ¼ 9a�4

�� , to be fitted to the data.
Data on the integrated SDD cross sections for different s

are available from [4–6] (see also [31]). Unfortunately,
these data points are not sufficient to fix this norm unam-
biguously and to discriminate uniquely the resonance con-
tribution from the background. Furthermore, in the present
model, applicable at the LHC, only the Pomeron trajectory
is considered in the t channel. At much lower energies,
where data are available: Fermilab, ISR,. . .—secondary,
nonleading trajectories give some contribution as well.
They should be included in a future, more refined, analysis
(fit) of these data.

To calculate the integrated SDD, we first take into
account the contribution from the resonance region. This
is done by integrating Eq. (21) in squared momentum
transfer t from �1 to 0, and in the missing mass Mx

over the resonance region, 2 GeV2 <M2
x < 8 GeV2,

where the contributions from the resonances, Eq. (7) domi-
nate. We thus eliminate contributions from the region of
the elastic peak, M2

X < 2 GeV2, that requires separate
treatment (see [32]), and the high missing mass Regge-
behaved region. By duality, to avoid ‘‘double counting,’’

the latter should be accounted for automatically, provided
the resonance contribution is included properly.
The results for the integrated SDD cross section are

shown in Fig. 7. Without any background contribution,
fits to the data give A0 ¼ 977	 5 mb=GeV2 with

2=d:o:f: ¼ 25:7. Better agreement with the data can be
obtain by including a constant background, i.e. by adding a
fitting parameter b to the integrated SDD cross section. In
this case, the fit gives 
2=d:o:f: ¼ 11:5, with A0 ¼ 506	
23 mb=GeV2 and b ¼ 2:72	 0:13 mb. Lacking any reli-
able model for the background, we avoid complicated
background parameterization. Our constant background
gives about 20% contribution at LHC energy; that seems
to be a reasonable number.
Having fixed the parameters of the model, we can now

scrutinize the SDD cross section in more details. First, we
calculate double differential cross section, Eq. (21), as a
function of the missing mass for several fixed values of the
momentum transfer t and two representative LHC ener-
gies, 7 and 14 TeV. The results of such calculations are
shown in Fig. 8.
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FIG. 7 (color online). Predicted integrated SDD cross sec-
tion as a function of s compared with the experimental data
[4–6,35–40]; see also [31].

)2 (GeVX
2M

2 3 4 5 6 7 8

4
G

eVm
b

X2
dt

dM
σ2 d

0

50

100

150

200

250

300

350

2 = 7 TeV, t = -0.035 GeVs

2 = 7 TeV, t = -0.1 GeVs

2 = 14 TeV, t = -0.035 GeVs

2 = 14 TeV, t = -0.1 GeVs

FIG. 8 (color online). Double differential cross section of SDD
as a function of M2

X for several fixed values of t and two
representative LHC energies.

DUAL-REGGE APPROACH TO HIGH-ENERGY, LOW-MASS . . . PHYSICAL REVIEW D 83, 056014 (2011)

056014-7



In Fig. 9, we show the energy dependence of the double
differential cross section for several fixed values of t and
MX. The rise of �SDDðsÞ is mainly determined by the
supercritical Pomeron intercept �Pð0Þ, and only weakly

affected also by the details of the t- dependence of the
Pomeron trajectory.
The double differential cross sections as a function of t

for two representative LHC energies and several fixed
values of MX are presented in Fig. 10. Figure 11 shows
the t- dependence of the differential cross section inte-
grated in M2

X for representative LHC energies.

VII. CONCLUSIONS

Let us briefly summarize the status of the present model
and its credibility, including the way its parameters were
fixed. As already mentioned, the normalization constant,
�, discussed in Secs. II and III is absorbed by the overall
norm A0, together with the other normalization parameter
a. The parameters of the Pomeron trajectory were deter-
mined [13] from pp elastic and total cross section data.
The form and the values of the parameters of the proton
trajectory, that plays a crucial role in predicting the MX

dependence, are fixed by spectroscopic data, see Sec. V.
Finally, the overall norm A0 is fixed from the comparison
of calculated SDD cross section with the experimental
data, with the following caveat: in the present model,
applicable at the LHC, only the Pomeron trajectory con-
tributes in the t channel. At much lower energies
(Fermilab, ISR,. . .), where data are available, apart from
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the Pomeron, secondary, nonleading trajectories contribute
as well. We plan to include these in a future, more refined,
study.

There is some freedom in the form and weight of the
background. Its relative contribution can only be normal-
ized to earlier measurements at the ISR or the Fermilab.
For a better control, we compare our predictions with the
experimental data [4–6] and theoretical estimates
[12,20,31]. In any case, it follows from our model and
the fits to the data that the background is fairly large:
about 20% at the LHC. A dedicated study of various
options for the background in SDD can be found in
Ref. [32].

The elastic contribution, pp ! pp is usually calculated
and measured separately. There is no consistent theoretical
prescription of any smooth transition from inelastic to
elastic scattering, corresponding to the x ! 1 limit for
the structure functions (see Ref. [32]).

There is an important point omitted in this short paper,
namely, unitarity. As is well known (see e.g., [21]) any
simple Regge pole model violates unitarity in the sense
that the DD cross section asymptotically grows faster that
the total cross section (it is obvious that no partial cross
section can overshoot the total cross section). This long-
standing problem was cured in various ways, the final
answer being still open. In Refs. [8,12,20] unitarity is
restored by a renormalization procedure. Without entering
into details, here we only mention that a possible solution
of this problem can be found by using a more realistic (and
complicated) Pomeron singularity, for example, in the
form of a double pole [33].

The model presented in this paper and the calculated
cross sections, corrected for the efficiencies of relevant
detectors will be used [34] in future measurements at the
LHC.

As already mentioned in the Introduction, the pros-
pects of measuring SDD at the LHC are promising,
although some details still remain to be settled. For the
CMS Collaboration, the SDD mass coverage is presently
limited to some 10 GeV. Together with the T2 detectors
of TOTEM, SDD masses down to 4 GeV could be
covered, provided the TOTEM trigger (data acquisition)
system will be combined with the CMS ones. ALICE and
LHCb have different beam arrangements, but their accep-
tances for central diffraction (double Pomeron exchange)
was also investigated (see e.g., [7]). Measurements of the
SDD events at the LHC are based on: (1) identifying a
gap in forward rapidities in conjunction with a veto for
any activity on the opposite side of the interaction point,
or (2) detecting a diffractively scattered proton in a
leading proton detector, such as the Roman Pots, and a
coincident diffractively excited bunch of particles on the
opposite side. The problem with both measurement strat-
egies stems from the incomplete rapidity coverage of the
base line detector systems at the LHC: the low mass,

M< 4 GeV, diffractively excited states are not seen.
Without extra rapidity coverage below M ¼ 4 GeV,
both approaches to SDD identification fail. In case of
purely rapidity gap-based method, the recorded cross
section misses the SDD events with diffractive masses
below 4 GeV. In case a leading proton is detected on one
side of the intersection point (IP), one could, in principle,
be sensitive to diffractive masses that correspond to the
uncertainty in LHC beam energy. In practice, it is im-
possible to trigger for these events, and the low mass
SDD events will be missed by this method as well.
Detecting SDD events with high acceptance is essential
for determining the total pp cross section in the so-called
luminosity independent method based on using the
Optical Theorem. The method bases on measuring the
slope of the elastic cross section, extrapolating the slope
to the optical point. Together with the overall inelastic
rate (plus the ratio between the inelastic and elastic
forward scattering amplitudes), the total pp cross section
is obtained. The main uncertainty in this evaluation is due
to the error in estimating the inelastic pp event rate. As
shown by the authors of Ref. [7], the acceptance of
basically all the LHC experiments can be substantially
improved by adding forward detector systems (forward
shower counters, FSCs) that register secondary interac-
tions within the beam pipe due to particles—both electri-
cally neutral and charged—emitted at very small
scattering angles with respect to the beam direction.
With the addition of FSCs, rapidity coverage of an
LHC experiment can be extended down to SDD masses
of the order of 1.2 GeV, i.e. down to the dominant N�
states. FSCs are being currently installed in ALICE and
CMS detectors, and they will provide the necessary
added coverage of small mass forward systems at the
LHC.
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APPENDIX: ROPER

Apart from the well established protonic trajectory with
a sequence of four particles, on it Sec. V, there is a
prominent single resonance I ¼ 1=2, J ¼ 1=2þ with
mass 1440 MeV, known as the Roper resonance [28].
It is wide, the width being nearly one fourth of its mass,
its spectroscopic status being disputable. There is no room
for the Roper resonance on the proton trajectory of Sec. V,
although it could still be a member of proton’s daughter
trajectory. Waiting for a future better understanding of
Roper’s status, here we present the contribution to SDD
cross section of a single Roper resonance, calculated from
a simple Breit-Wigner formula:

ImAincl:RoperðM2
X; tÞ

¼ a

� X
n¼1;3

½fðtÞ�2ðnþ1Þ Im�ðM2
XÞ

ð2nþ 0:5� Re�ðM2
XÞÞ2 þ ðIm�ðM2

XÞÞ2

þ c
f2ðtÞMRoper�Roper=2

ðM2
X �M2

RoperÞ2 þ ð�Roper=2Þ2
�
; (A1)

where MRoper ¼ 1440 MeV, �Roper ¼ 325 MeV, and c is

another normalization parameter. For illustration, we will
take two different values of c; the resulting shapes of the
double differential cross section are presented at Fig. 12.
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