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Universitat de Barcelona (UB)

Barcelona Graduate School of Mathematics (BGSMath)
Gran Via 585. 08007 Barcelona, Spain

1

Abstract
We consider a map F of class Cr with a fixed point of parabolic type

whose differential is not diagonalizable, and we study the existence and
regularity of the invariant manifolds associated with the fixed point
using the parameterization method. Concretely, we show that under
suitable conditions on the coefficients of F , there exist invariant curves
of class Cr away from the fixed point, and that they are analytic when F
is analytic. The differentiability result is obtained as an application of
the fiber contraction theorem. We also provide an algorithm to compute
an approximation of a parameterization of the invariant curves and a
normal form of the restricted dynamics of F on them.

0.1 Introduction

Invariant manifolds play a central role in the study of dynamical sys-
tems. There is a huge amount of literature devoted to study them
in many different settings. In this paper we deal with the invariant
manifolds of a type of parabolic fixed points in dimension two.

Parabolic points appear generically in two-parameter families of pla-
nar maps or in one-parameter ones in the case of area-preserving maps.
In particular they appear when a family of maps undergoes a Bogdanov-
Takens bifurcation [6, 27].

In some problems in Celestial Mechanics it is useful to consider
parabolic points or parabolic orbits at infinity in order to use their in-
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variant manifolds (provided they exist) to study features of the dynam-
ics in the finite phase space. The local study in a neighborhood of such
points is done by means of a change of variables which sends the infinity
to a finite part of the space [22]. Also, the periodic orbits become fixed
points of appropriate (families of) Poincaré maps. In such cases the
fixed points are parabolic for all values of the parameters of the family
and may have invariant manifolds. These manifolds have been used
to prove the existence of oscillatory motions in the Sitnikov problem
[25, 23] and the restricted planar three-body problem [21, 16, 17] using
the transversal intersection of invariant manifolds of parabolic points
and symbolic dynamics. Parabolic manifolds also appear in the Manev
problem [11].

Parabolic periodic orbits at infinity have been found in Hamilto-
nian systems related to the study of the scattering of He atoms off
Cu surfaces with some corrugation [15]. These manifolds also play a
significant role in the study of certain systems [20, 14].

In this paper we consider two-dimensional maps having a parabolic
fixed point whose linearization does not diagonalize, concretly we as-
sume it has a double eigenvalue equal to 1. By simple changes such
maps can be brought to the form

F (x, y) =

(
x+ cy + f1(x, y)
y + f2(x, y)

)
, (0.1.1)

with c > 0, f1(0, 0) = f2(0, 0) = 0 and Df1(0, 0) = Df2(0, 0) = 0.
The origin has a center manifold of dimension two, however, inside this
manifold there may exist curves that behave topologically as stable or
unstable curves.

This class of maps was considered in [12] and the existence of an-
alytic curves was proved. Concretely the (local) sets considered there
and the ones we deal with are

W s+
ρ = {(x, y) | F n(x, y) ∈ (0, ρ)×(−ρ, ρ), ∀n ≥ 0, lim

n→∞
F n(x, y) = 0}

and

W u+
ρ = {(x, y) | F−n(x, y) ∈ (0, ρ)×(−ρ, ρ), ∀n ≥ 0, lim

n→∞
F−n(x, y) = 0}.

The main result of [12] concerns analytic stable invariant curves in the
domain {(x, y) ∈ R2 | x ≥ 0, y ≤ 0} under some appropriate conditions
on the higher order terms. Then, the existence of both stable and
unstable curves in neighborhoods of the origin are deduced from the
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main result by using the symmetries (x, y) 7→ (−x, y), (x, y) 7→ (x,−y)
and (x, y) 7→ (−x,−y) and the inverse map F−1. Moreover, a detailed
study of the local dynamics provide the uniqueness of such curves in
the category of Ck maps where k is the minimum regularity for having
a Taylor expansion providing the relevant nonlinear terms [12].

In this paper we study the existence and regularity of stable curves
in the domain {(x, y) ∈ R2 | x ≥ 0, y ≤ 0} using the parameterization
method. In the analytic case we recover the existence results of [12]
but we also provide approximations of the curves up to an arbitrarily
high order. We consider three cases of maps of the form (0.1.1), already
introduced in [12], which depend in some sense on the dominant part
of the nonlinear terms. The study depends on each case. Moreover,
we consider the differentiable case with the same method and we ob-
tain that the invariant manifolds of F are of the same regularity as F
provided some minimum regularity holds. Contrary to other works we
do not use the Poincaré normal form for the map, but a simple and
easy-to-compute reduced form.

This class of maps, assuming the fixed point is not isolated, was
studied in [10] motivated by the study of collisions in two-body prob-
lems with central force potential satisfying certain asympotic proper-
ties at the origin. A special case of this family not previously covered
is studied in [19]. These papers use an adapted form of the method of
McGehee for parabolic points without nilpotent part [22]. McGehee’s
method consists of looking for a sector-like domain S, with the fixed
point in the vertex, such that the points whose positive iterates remain
on S form a graph of some function φ. To prove analyticity, it con-
siders the complexified map and uses Rouche’s theorem to obtain the
uniqueness of φ(x) in terms of x, for x in a complex extension S of S,
so that then one can apply the implicit function theorem to obtain the
analyticity of φ(x) for x ∈ S.

Again for maps of the form (0.1.1), using different tools, some regu-
larity results are obtained in [29]. In that paper, the authors deal with
what we denote by case 1 for C∞ maps and obtain the existence of a
stable manifold W s+

ρ as the graph of some function φ by solving a fixed
point equation equivalent to the invariance of the graph of φ. This
equation is considered for functions φ in a suitable subset of the space
of functions of class C [(k+1)/2], where [·] denotes integer part, and it is
solved applying the Schauder fixed point theorem. Hence, they obtain
invariant manifolds of class C [(k+1)/2]. Instead, in this paper, we use
the parameterization method (see Section 0.2.2) and we obtain, away
from the fixed point, analytic invariant manifolds for analytic maps
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and Cr invariant manifolds for Cr maps, provided r is larger than some
quantity that depends on the nonlinear terms of the map.

One-dimensional manifolds of fixed points with linear part equal
to the identity are studied in [2] using the parameterization method.
Higher-dimensional manifolds in the same setting are considered in [1]
using a generalized version of the method of McGehee, and in [4, 5] us-
ing the parameterization method, where applications to Celestial Me-
chanics are given. The Gevrey character of one-dimensional manifolds
is studied in [3].

The main results of this paper are Theorems 0.2.1 and 0.2.3, con-
cerning the existence of analytic invariant curves of a map F of the
form (0.1.1), and Theorems 0.2.7 and 0.2.10, concerning the existence
of differentiable invariant curves. In Section 0.2 we present the param-
eterization method and the main results of the paper. The results are
stated for the stable curves. In Section 0.2.4 we show that completely
analogous results hold true for the unstable ones. In Section 0.3 we
provide an algorithm to obtain parameterizations of approximations of
the invariant curves of F , and we provide the existence of such curves
in Sections 0.4, for the analytic case, and 0.5, for the differentiable case.
The proofs of the technical results used along the paper are deferred
to Section 0.6. The paper finishes with a conclusions section where we
summarize the results of the paper.

0.2 Statement of the main results

0.2.1 Reduction of the maps to a simple form

In this paper we consider Cr, r ≥ 3, or analytic maps F : U ⊂ R2 → R2,
where U is a neighborhood of (0, 0), of the form

F (x, y) =

(
x+ c y + f1(x, y)
y + f2(x, y)

)
, (0.2.1)

with c > 0 and with f1(x, y), f2(x, y) = O(‖(x, y)‖2). Via the Cr

change of variables given by x̃ = x, ỹ = y+ 1
c
f1(x, y), F can be written

in the form

F (x, y) =

(
x+ c y

y + f(x, y)

)
,

with f(x, y) = O(‖(x, y)‖2) having the same regularity as F . In the Cr

case we denote by P (x, y) the Taylor polynomial of degree r of f(x, y).
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We write P (x, y) in the form

P (x, y) = p(x) + yq(x) + u(x, y),

where we have collected all the terms independent of y in p(x), the
terms that are linear in y in yq(x) and all remaining terms in u(x, y).
Note that all terms in u(x, y) have the factor y2. More precisely, we
write p(x) = xk(ak + · · · + arx

r−k) and q(x) = xl−1(bl + · · · + brx
r−l),

with 2 ≤ k, l ≤ r. Therefore we have f(x, y) = P (x, y) + g(x, y) with
g(x, y) = o(‖(x, y)‖)r.

Also, note that one can always assume that c > 0. If this is not
the case, then it can be attained via the linear transformation given by
L(x, y) = (x,−y), taking the conjugate map F̃ = L−1 ◦ F ◦ L. Notice
however that L sends the lower semi plane to the upper one. Hence,
any map F of the form (0.2.1) can be written in the form

F̄ (x, y) =

(
x+ c y

y + p(x) + yq(x) + u(x, y) + g(x, y)

)
, (0.2.2)

with c > 0. In the analytic case we have the same form with g(x, y)
analytic. In general we will not write the dependence of p, q, u and g
on r. Throughout the paper we will refer to (0.2.2) as the reduced form
of F and we will use the same notation F .

We will deal with maps of the form (0.2.2). We remark that in
contrast with other references [12, 29] in which they work with normal
forms of F à la Poincaré, we work with the reduced form obtained with
a simple change of variables. This is an important advantage when one
has to perform effective computations.

Following [12], we shall consider three cases depending on the indices
k and l:

� Case 1: k < 2l − 1 and ak 6= 0,

� Case 2: k = 2l − 1 and ak, bl 6= 0,

� Case 3: k > 2l − 1 and bl 6= 0.

In order to deal, whenever possible, with several cases at the same time
we associate to F the integers N and s: N = k in case 1 and N = l in
cases 2 and 3; s = 2r in case 1 and s = r in cases 2, 3. Notice that the
generic case is case 1 with k = 2.

Next we make a comment concerning notation. The superindices x
and y on the symbol of a function or an operator that takes values in R2
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will denote the first and second components of its image, respectively.
In R2 and C2 we will use the norm given by ‖(x, y)‖ = max {|x|, |y|}.
Throughout the paper, M and ρ0 will denote positive constants, and
they do not take necessarily the same value at different places.

0.2.2 The parameterization method

To study the stable curves of F we will use the parameterization method
(see [7], [8], [9], [18]). It consists in looking for the curves as images of
parameterizations, K, together with a representation of the dynamics
of the map restricted to them, R, satisfying the invariance equation,

F ◦K = K ◦R. (0.2.3)

This is a functional equation that has to be adapted to the setting of
the problem at hand. Clearly, we need the range of R to be contained
in the domain of K. It follows immediately from (0.2.3) that the range
of K is invariant. Essentially, K is a (semi)conjugation of the map
restricted to the range of K to R. Equation (0.2.3) has to be solved
in a suitable space of functions. Usually it is convenient to have good
approximations of K and R and look for a (small) correction of K, in
some sense, while maintaining R fixed. Assuming differentiability and
taking derivatives in (0.2.3) we get DF ◦K ·DK = DK ◦R ·DR which
says that the range of DK has to be invariant by DF .

In our setting we look for K = (Kx, Ky) : [0, ρ) → R2 such that
K(0) = (0, 0) and DK(t) satisfies DKy(t)/DKx(t) → 0 as t → 0.
We already know that in the parabolic case, in general, there is a loss
of regularity of the invariant curves at the origin with respect to the
regularity of the map [12], [4], [5]. Then we can not assume a priori
a Taylor expansion of high degree of the curve at t = 0. However,
we can obtain formal polynomial approximations, Kn and Rn, of K
and R, satisfying (0.2.3) up to a certain order that depends on the
degree of differentiability of F . Our results will then provide that these
expressions are indeed approximations of true invariant curves, whose
existence is rigorously established.

On the other hand we can suppose that we have approximations,
obtained in some way, that satisfy some conditions and obtain that
there are true invariant curves closeby.
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0.2.3 Main results

First we state the main results concerning the existence of analytic
stable invariant manifolds of analytic maps of the form (0.2.2). Since
an analytic map of the form (0.2.1) is analytically conjugated to a map
of the form (0.2.2), the results of the next theorems provide invariant
manifolds for (0.2.1).

Theorem 0.2.1. Let F : U ⊂ R2 → R2 be an analytic map in a
neighborhood U of (0, 0) of the form (0.2.2). Assume the following
hypotheses according to the different cases:

(case 1) ak > 0, (case 2) ak > 0, bl 6= 0, (case 3) bl < 0.

Then, there exists a C1 map K : [0, ρ) → R2, analytic in (0, ρ), such
that

K(t) =

{
(t2, Ky

k+1t
k+1) + (O(t3), O(tk+2)) case 1,

(t,Ky
l t

l) + (O(t2), O(tl+1)) cases 2, 3,
(0.2.4)

with Ky
k+1 = −

√
2ak

c(k+1)
for case 1, Ky

l =
bl−

√
b2l +4 c ak l

2 c l
for case 2 and

Ky
l = bl

cl
for case 3, and a polynomial R of the form R(t) = t+RN t

N +
R2N−1t

2N−1, with Rk =
c
2
Ky

k+1 for case 1 and Rl = cKy
l for cases 2, 3,

such that
F (K(t)) = K(R(t)), t ∈ [0, ρ).

Remark 0.2.2. This theorem provides a local stable manifold param-
eterized by K : [0, ρ) → R2 with ρ small. The proof does not give an
explicit estimate for the value of ρ. However, we can extend the domain
of K by using the formula

K(t) = F−jK(Rj(t)), j ≥ 1,

while the iterates of the inverse map F−1 exist (note that R is a weak
contraction). In particular, if the map F−1 is globally defined, as it
happens for example for the Hénon map, one can extend the domain of
K to [0,∞). This observation also applies for the next theorems 0.2.3,
0.2.7 and 0.2.10. In the analytic case the domain of K can be extended
to an open domain of C which contains (0, ρ).

Next theorem is an a posteriori version of Theorem 0.2.1 which,
given an analytic approximation, in a certain sense, of the solutions
K and R of the conjugation equation F ◦K = K ◦ R, provides exact
solutions of the equation, close to the approximations.
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Theorem 0.2.3. Let F : U ⊂ R2 → R2 be as in Theorem 0.2.1 and let
K̂ : (−ρ, ρ) → R2 and R̂ = (−ρ, ρ) → R be analytic maps satisfying

K̂(t) =

{
(t2, K̂y

k+1t
k+1) + (O(t3), O(tk+2)) case 1,

(t, K̂y
l t

l) + (O(t2), O(tl+1)) cases 2, 3,

and R̂(t) = t+ R̂N t
N +O(tN+1), R̂N < 0, such that

F (K̂(t))− K̂(R̂(t)) = (O(tn+N), O(tn+2N−1)), (0.2.5)

for some n ≥ 2 in case 1 or n ≥ 1 in cases 2, 3.
Then, there exists a C1 map K : [0, ρ) → R2, analytic in (0, ρ), and

an analytic map R : (−ρ, ρ) → R such that

F (K(t)) = K(R(t)), t ∈ [0, ρ)

and

K(t)− K̂(t) = (O(tn+1), O(tn+N)),

R(t)− R̂(t) =

{
O(t2k−1) if n ≤ k
0 if n > k

case 1,

R(t)− R̂(t) =

{
O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.

Remark 0.2.4. In case 1, condition (0.2.5) with n = 2 implies the
following relations

K̂y
k+1 = ±

√
2ak

c(k + 1)
, R̂k =

c

2
K̂y

k+1.

In cases 2 and 3 the condition (0.2.5) with n = 1 implies

R̂l = cK̂y
k+1,

{
ak + blK̂

y
l = lR̂lK̂

y
l case 2,

bl = lR̂l case 3.

Remark 0.2.5. Theorem 0.2.3 provides the existence of a stable mani-
fold assuming it has been previously approximated but the theorem is in-
dependent of the way such an approximation has been obtained. Propo-
sitions 0.3.1, 0.3.3 and 0.3.4 (in Section 0.3) provide an algorithm to
obtain polynomial maps Kn and Rn that satisfy condition (0.2.5) of
Theorem 0.2.3 for any n.
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Remark 0.2.6. The form of the map R given in the statement of
Theorem 0.2.1 is the normal form of the dynamics of a one-dimensional
system in a neighborhood of a parabolic point (see [26, 28]).

The following are the main results concerning the existence and
regularity of stable invariant manifolds of Cr maps of the form (0.2.2).
As in the analytic case, the results provide also the existence of invariant
manifolds for maps of the form (0.2.1).

Theorem 0.2.7. Let F : U ⊂ R2 → R2 be a Cr map in a neighborhood
U of (0, 0) of the form (0.2.2) with r ≥ 3.

Assume the following hypotheses according to the different cases:

� (case 1) ak > 0 and r ≥ 3
2
k,

� (case 2) ak > 0, bl 6= 0, r > k and

max
{ β

(r − 2l + 2)(r − l + 1)

(
2l(l−1)+

c k ak
b2l

β
)
,

2l β

r − l + 1

}
< 1,

where β = 2l |bl|
|bl−

√
b2l +4 c ak l|

.

� (case 3) bl < 0, r > 2l − 1 and l(l−1)
(r−2l+2)(r−l+1)

< 1.

Then, there exists a C1 map H : [0, ρ) → R2, H ∈ Cr(0, ρ), of the

form (0.2.4), with Hy
k+1 = −

√
2ak

c(k+1)
for case 1, Hy

l =
bl−

√
b2l +4 c ak l

2 c l

for case 2 and Hy
l = bl

cl
for case 3, and a polynomial R of the form

R(t) = t + RN t
N + R2N−1t

2N−1, with Rk = c
2
Hy

k+1 for case 1 and
Rl = cHy

l for cases 2, 3, such that

F (H(t)) = H(R(t)), t ∈ [0, ρ).

If the map F is C∞ then the parameterization H is C∞ in (0, ρ).

Remark 0.2.8. The assumptions ak > 0 and k ≤ r for cases 1 and
2 and bl < 0 and l ≤ r for case 3 are necessary conditions for the
existence of a formal, locally unique stable invariant curve of F asymp-
totic to (0, 0). The other hypotheses of the theorem are nondegeneracy
conditions on the reduced form of F , sufficient to ensure the existence
of a stable invariant curve of class Cr asymptotic to (0, 0). We do not
claim that these conditions on r are sharp.
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Remark 0.2.9. For case 2, the condition on the coefficients of F is
always satisfied provided that r is sufficiently larger than l. Another
sufficient condition for it to be satisfied is that β is small enough. The
smallness of the coefficient β is a measure of how fast the dynamics on
the associated invariant manifold is. For case 3, a sufficient nondegen-
eracy condition for the stable manifold to exist is given by r ≥ 4

3
(2l−1).

Notice that the assumption r ≥ 2l−1 is necessary for the constructions
we will do.

We also provide an a posteriori version of Theorem 0.2.7.

Theorem 0.2.10. Let F : U ⊂ R2 → R2 be a map satisfying the hy-
potheses of Theorem 0.2.7 and let K̂ : (−ρ, ρ) → R2 and R̂ = (−ρ, ρ) →
R be analytic maps satisfying

K̂(t) =

{
(t2, K̂y

k+1t
k+1) + (O(t3), O(tk+2)) case 1,

(t, K̂y
l t

l) + (O(t2), O(tl+1)) cases 2, 3,

and R̂(t) = t+ R̂N t
N +O(tN+1), R̂N < 0, such that

F (K̂(t))− K̂(R̂(t)) = (O(tn+N), O(tn+2N−1)),

for some n ≥ 2 in case 1 or n ≥ 1 in cases 2, 3.
Then, there exists a C1 map H : [0, ρ) → R2, H ∈ Cr(0, ρ), and an

analytic map R : (−ρ, ρ) → R such that

F (H(t)) = H(R(t)), t ∈ [0, ρ)

and
H(t)− K̂(t) = (O(tm), O(tm+N−1)),

where m = min {n+ 1, 2r− 2k + 2} (case 1) and m = min {n+ 1, r−
2l + 2} (cases 2, 3), and

R(t)− R̂(t) =

{
O(t2k−1) if n ≤ k
0 if n > k

case 1,

R(t)− R̂(t) =

{
O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.

The structure of the proof is analogous to the one of Theorem 0.2.3
and uses the constructions of the approximations in the proofs of The-
orems 0.2.1 and 0.2.7. It will be omitted.

As mentioned, using the conjugations (x, y) 7→ (±x,±y) and F−1

we can obtain the local phase portraits and the location of the local
invariant manifolds of F depending on the studied cases (see [12]).
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Remark 0.2.11. The invariant manifolds obtained in Theorems 0.2.1,
0.2.3, 0.2.7 and 0.2.10 are unique. For that we refer to Theorem 4.1 of
[12], where it is proved that if the map F is Ck, in all the considered
cases the local stable set W s+

ρ is a graph and therefore is unique. This is
proved by checking that both the iterates of the points that are above and
the ones that are below the invariant curve cannot converge to the fixed
point by a detailed study of the behaviour of the iterates. However,
the parameterizations are not unique because if K and and R satisfy
F ◦K = K ◦ R, then for any invertible map β : [0, ρ] → R, the maps
K̃ = K ◦ β and R̃ = β−1 ◦R ◦ β satisfy F ◦ K̃ = K̃ ◦ R̃.

0.2.4 Unstable manifolds

Assuming F satisfies the hypotheses of Theorem 0.2.1 if F is analytic,
or the ones of Theorem 0.2.7 if F is differentiable, in cases 1 and 2, the
results for the unstable manifolds are obtained from the stated theorems
without having to compute the inverse map F−1. Only in case 2 for
differentiable maps one has to check a technical condition as explained
below. For case 3, if one assumes bl > 0 instead, then an analogous
result is obtained for the existence of an unstable manifold of F .

Next, we show that the expansions of the parameterizations of the
unstable curves obtained in Section 0.3 are approximations of true in-
variant curves, as it happens for the stable ones.

Assume we have a map of the form (0.2.2). Then, by Propositions
0.3.1, 0.3.3 or 0.3.4 we have approximations Kn and Rn such that

Gn(t) = F (Kn(t))−Kn(Rn(t)) = (O(tn+N), O(tn+2N−1)), (0.2.6)

with Rn(t) = t+RN t
N +O(tN+1) and RN > 0, which means that 0 is

a repellor for Rn. Also, Rn is invertible and we have

R−1
n (t) = t−RN t

N +O(tN+1),

and

F−1

(
x
y

)
=

(
x− cy + cak(x− cy)k + cbly(x− cy)l−1 +O(xk+1) +O(yxl)

y − ak(x− cy)k − bly(x− cy)l−1 +O(xk+1) +O(yxl)

)
.

Then, composing by F−1 and R−1
n in (0.2.6) we obtain

F−1(Kn(t))−Kn(R−1
n (t)) = (O(tn+N), O(tn+2N−1)).
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Moreover, there exists a change of variables of the form C(x, y) =
(x,−y)+O(‖(x, y)‖N) that transforms F−1 into its reduced form G :=
C−1 ◦ F−1 ◦ C, and then G reads

G

(
x
y

)
=

(
x+ cy

y + akx
k − blyx

l−1 +O(xk+1) +O(yxl)

)
.

We also have

G(C−1(Kn(t)))− C−1(Kn(R−1
n (t))) = (O(tn+N), O(tn+2N−1)).

Thus, if F is in case 1 with ak > 0 then G is also in case 1 with the
same coefficient ak positive. Also, if F is in case 2 with ak > 0 and
bl 6= 0 then G is also in case 2 with the corresponding coefficients ak
positive and bl different from 0. If F is in case 3 with bl > 0 then G
is also in case 3 and the coefficient of yxl−1 is given by −bl. Therefore,
by Theorem 0.2.3 there exist a map K : [0, ρ) → R2, analytic in (0, ρ)
and an analytic map R : (−ρ, ρ) → R such that G ◦K = K ◦R, with

K(t)− C−1Kn(t) = (O(tn+1), O(tn+N)), (0.2.7)

R(t)−R−1
n (t) =

{
O(t2k−1) if n ≤ k
0 if n > k

case 1,

R(t)−R−1
n (t) =

{
O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.

Hence, we have F−1 ◦C ◦K = C ◦K ◦R, which means that C ◦K is a
parameterization of an unstable manifold of F . Moreover, from (0.2.7)
and the form of C, we have

C(K(t))−Kn(t) = (O(tn+1), O(tn+N)),

and therefore Kn is an approximation of a parameterization of such
unstable manifold.

In the Cr case one has to apply Theorem 0.2.10. If F satisfies the
conditions of case 1, G also does. The same happens for case 3 if we
assume bl > 0 instead of bl < 0. If F satisfies the conditions of case 2,
since the coefficient bl of F becomes −bl for G, one has to check the
condition involving the maximum taking now β as β = 2l |bl|

|−bl−
√

b2l +4 c ak l|
.

Then, for cases 1 and 3 or for case 2 when that condition holds, we
conclude as we have explained for the analytic case.
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0.3 Formal polynomial approximation of

the parameterizations of the curves

In this section we consider Cr maps F of the form (0.2.2) and we provide
algorithms, depending on the case, to obtain two polynomial maps, Kn

and Rn, that are approximations of solutions K and R of the invariance
equation

F ◦K = K ◦R. (0.3.1)

Because of the nature of the problem, the two components of Kn will
have a different order and different degrees. The index n has to be seen
as an induction index. Higher values of n mean better approximation.

The obtained approximations correspond to formal invariant curves.
They correspond to stable curves when the coefficient Rk (case 1) or
Rl (cases 2, 3) of Rn are negative (see below). When those coefficients
are positive they correspond to unstable curves.

Proposition 0.3.1 (Case 1). Let F be a Cr map of the form (0.2.2)
with 2 ≤ k ≤ r. Assume that k < 2l − 1 and ak > 0. Then, for all
2 ≤ n ≤ 2(r− k+1), there exist two pairs of polynomial maps, Kn and
Rn, of the form

Kn(t) =

(
t2 + · · ·+Kx

nt
n

Ky
k+1t

k+1 + · · ·+Ky
n+k−1t

n+k−1

)
and

Rn(t) =

{
t+Rkt

k if 2 ≤ n ≤ k,

t+Rkt
k +R2k−1t

2k−1 if n ≥ k + 1,

such that

Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+k), O(tn+2k−1)). (0.3.2)

For the first pair we have

Ky
k+1 = −

√
2 ak

c (k + 1)
, Rk = −

√
c ak

2(k + 1)
=
c

2
Ky

k+1,

and for the second one

Ky
k+1 =

√
2 ak

c (k + 1)
, Rk =

√
c ak

2(k + 1)
=
c

2
Ky

k+1.

If F is C∞ or analytic, one can compute the polynomial approxima-
tion Kn up to any order.
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Remark 0.3.2. The algorithm described in the proof of this (and the
next) propositions can be implemented in a computer program to calcu-
late R and the expansion of Kn.

Notation Along the proof, given a Cr one-variable map f , we will
denote [f ]n, 0 ≤ n ≤ r, the coefficient of the term of order n of the jet
of f at 0.

Proof. We will see that we can determine Kn and Rn iteratively.
For n = 2, we claim that there exist polynomial maps K2(t) =

(t2, Ky
k+1t

k+1) and R2(t) = t + Rkt
k, such that G2(t) = F (K2(t)) −

K2(R2(t)) = (O(tk+2), O(t2k+1)).
Indeed, from the expansion of G2 we have

G2(t) =

(
t2 + cKy

k+1t
k+1 − t2 − 2Rkt

k+1 +O(t2k)
Ky

k+1t
k+1 + akt

2k −Ky
k+1t

k+1 − (k + 1)Ky
k+1Rkt

2k +O(t2k+1)

)
,

so, if the conditions

cKy
k+1 − 2Rk = 0, ak − (k + 1)Ky

k+1Rk = 0,

are satisfied, then we clearly have G2(t) = (O(t2+k), O(t2k+1)), and we
obtain the values of Ky

k+1 and Rk given in the statement.
Now we assume that we have already obtained maps Kn and Rn,

2 ≤ n < 2(r − k + 1) such that (0.3.2) holds true, and we look for

Kn+1(t) = Kn(t)+

(
Kx

n+1 t
n+1

Ky
n+k t

n+k

)
, Rn+1(t) = Rn(t)+Rn+k−1 t

n+k−1,

such that Gn+1(t) = (O(tn+k+1), O(tn+2k)).
Using Taylor’s theorem, we write

Gn+1(t) = F (Kn(t) + (Kx
n+1 t

n+1, Ky
n+k t

n+k))

− (Kn(t) + (Kx
n+1 t

n+1, Ky
n+k t

n+k)) ◦ (Rn(t) +Rn+k−1 t
n+k−1)

= Gn(t) +DF (Kn(t)) · (Kx
n+1t

n+1, Ky
n+kt

n+k)

− (Kx
n+1t

n+1, Ky
n+k t

n+k) ◦ (Rn+1(t))

+

∫ 1

0

(1− s)D2F (Kn(t) + s(Kx
n+1t

n+1, Ky
n+kt

n+k)) ds (Kx
n+1t

n+1, Ky
n+kt

n+k)⊗2

−DKn(Rn(t))Rn+k−1 t
n+k−1

−
∫ 1

0

(1− s)D2Kn(Rn(t) + sRn+k−1 t
n+k−1) ds (Rn+k−1 t

n+k−1)2.
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Performing the computations in the previous expression we have

Gn+1(t) = Gn(t)

+

(
[cKy

n+k − (n+ 1)RkK
x
n+1 − 2Rn+k−1] t

n+k +O(tn+k+1)
[k akK

x
n+1 − (n+ k)RkK

y
n+k − (k + 1)Ky

k+1Rn+k−1] t
n+2k−1 +O(tn+2k)

)
.

(0.3.3)

Since, by the induction hypothesis, Gn(t) = (O(tn+k), O(tn+2k−1)), to
complete the induction step we need to make [Gx

n+1]n+k and [Gy
n+1]n+2k−1

vanish.
From (0.3.3) we have

[Gx
n+1]n+k = [Gx

n]n+k + cKy
n+k − (n+ 1)RkK

x
n+1 − 2Rn+k−1,

[Gy
n+1]n+2k−1 = [Gy

n]n+2k−1 + k akK
x
n+1 − (n+ k)RkK

y
n+k − (k + 1)Ky

k+1Rn+k−1.

Thus, the conditions [Gx
n+1]n+k = [Gy

n+1]n+2k−1 = 0 are equivalent to(
−(n+ 1)Rk c

k ak −(n+ k)Rk

)(
Kx

n+1

Ky
n+k

)
=

(
−[Gx

n]n+k + 2Rn+k−1

−[Gy
n]n+2k−1 + (k + 1)Ky

k+1Rn+k−1

)
.

(0.3.4)
If n 6= k the matrix in the left hand side of (0.3.4) is invertible, so we

can take Rn+k−1 = 0 and then obtain Kx
n+1 and K

y
n+k in a unique way.

When n = k, the determinant of the matrix is zero. Then, choosing

R2k−1 =
2k Rk [Gx

n]2k + c [Gy
n]3k−2

2 (3k + 1)Rk

,

system (0.3.4) has solutions. In this case, however, Kx
k+1 and Ky

2k are
not uniquely determined.

Proposition 0.3.3 (Case 2). Let F be a Cr map of the form (0.2.2),

with r ≥ k ≥ 2. We assume k = 2l−1, ak 6= 0, bl 6= 0 and ak > − b2l
4cl
. If

ak < 0 we assume also ak 6= −2l+1
3l−1

b2l . Then, for all 1 ≤ n ≤ r−2l+2 =
r − k + 1, there exists two pairs of polynomial functions Kn and Rn of
the form

Kn(t) =

(
t+ · · ·+Kx

nt
n

Ky
l t

l + · · ·+Ky
n+l−1t

n+l−1

)
(0.3.5)

and

Rn(t) =

{
t+Rlt

l if 1 ≤ n ≤ l − 1,

t+Rlt
l +R2l−1t

2l−1 if n ≥ l,
(0.3.6)
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such that

Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+l), O(tn+2l−1)).

For the first pair we have

Ky
l =

bl −
√
b2l + 4 c ak l

2 c l
, Rl =

bl −
√
b2l + 4 c ak l

2l
= cKy

l ,

and for the second one

Ky
l =

bl +
√
b2l + 4 c ak l

2 c l
, Rl =

bl +
√
b2l + 4 c ak l

2l
= cKy

l .

If ak = −2l+1
3l−1

b2l and bl < 0 we can compute the first pair up to

n = l − 1 and the second pair for any n ≤ r − 2l + 2. If ak = −2l+1
3l−1

b2l
and bl > 0 we can compute the first pair up to n ≤ r − 2l + 2 and the
second pair up to n = l − 1.

If F is C∞ or analytic, one can compute the polynomial approxima-
tions Kn up to any order, except when ak = −2l+1

3l−1
b2l .

Proposition 0.3.4 (Case 3). Let F be a Cr map of the form (0.2.2),
with r ≥ l ≥ 2. Assume k > 2l − 1, bl 6= 0 Then, for all 1 ≤ n ≤
r− 2l+ 2, there exist a pair of polynomial functions Kn and Rn of the
form (0.3.5) and (0.3.6) respectively, such that

Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+l), O(tn+2l−1)).

We have

Ky
l =

bl
c l
, Rl =

bl
l
= cKy

l .

If we further assume that k ≤ r and ak 6= 0, then for 1 ≤ n ≤
r − (k − l)l − 2l + 1 there exists another pair Kn and Rn with

Kn(t) =

(
t+ · · ·+Kx

nt
n

Ky
k−l+1t

k−l+1 + · · ·+Ky
n+k−lt

n+k−l

)
and

Rn(t) =

{
t+Rk−l+1t

k−l+1 if 2 ≤ n ≤ k − l,

t+Rk−l+1t
k−l+1 +R2(k−l)+1t

2(k−l)+1 if n ≥ k − l + 1,

such that

Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+k−l+1), O(tn+k)).
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We have
Ky

k−l+1 = −ak
bl
, Rk−l+1 = cKy

k−l+1.

If F is C∞ or analytic, one can compute the polynomial approxima-
tions Kn up to any order.

The proofs are analogous to the one of Proposition 0.3.1.

0.4 The analytic case

This section is devoted to prove Theorems 0.2.1 and 0.2.3. Following
the parameterization method, given a map F of the form (0.2.2), first
we consider polynomial approximations Kn : R → R2 and Rn : R → R
of solutions of equation (0.3.1) obtained in Section 0.3 up to a high
enough order, to be determined in the proof. Then, keeping R = Rn

fixed, we look for a correction ∆ : [0, ρ) → R2, for some ρ > 0, of Kn,
analytic on (0, ρ), such that the pair K = Kn+∆, R = Rn satisfies the
invariance condition

F ◦ (Kn +∆)− (Kn +∆) ◦R = 0. (0.4.1)

The proof of Theorem 0.2.1 is organized as follows. First, taking
into account the structure of F we rewrite equation (0.4.1) to separate
the dominant linear part with respect to ∆ and the remaining terms.
This motivates the introduction of two families of operators, Sn,R and
Nn, F , and the spaces where these operators will act on. We provide
the properties of these operators in Lemmas 0.4.6 and 0.4.7.

Finally, we rewrite the equation for ∆ as the fixed point equation

∆ = Tn, F (∆), where Tn, F = S−1
n,R ◦ Nn, F

and we apply the Banach fixed point theorem to get the solution. The
properties of the operators Tn,F are deduced in Lemma 0.4.10. At the
end of the section we prove Theorem 0.2.3.

0.4.1 The functional equation

Let F : U ⊂ R2 → R2 be an analytic map in a neighborhood U of
(0, 0), satisfying the hypotheses of Theorem 0.2.1,

F (x, y) =

(
x+ c y

y

)
+

(
0

p(x) + y q(x) + u(x, y) + g(x, y)

)
,
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where c > 0, p, q and u are the polynomials introduced in Section 0.2.1
and g(x, y) is an analytic function. We take p, q and u of degree at
least k in case 1 and degree at least 2l − 1 in cases 2 and 3. Then we
have g(x, y) = O(‖(x, y)‖k+1) for case 1 and g(x, y) = O(‖(x, y)‖2l) for
cases 2 and 3. We denote v(x, y) = u(x, y) + g(x, y).

From Propositions 0.3.1, 0.3.3 and 0.3.4 we take n, with n ≥ k + 1
in case 1 and n ≥ l is cases 2 and 3, and we have that there exist
polynomials Kn and R = Rn such that

En(t) = (O(tn+N), O(tn+2N−1)), (0.4.2)

where En = F ◦ Kn − Kn ◦ R. Since we are looking for the stable
manifold we will take the approximations corresponding to R = Rn

with the coefficient RN < 0.
Hence, we look for ρ > 0 and a map K = Kn + ∆ : [0, ρ) → R2,

analytic on (0, ρ) satisfying (0.4.1), where Kn and R are the mentioned
maps that satisfy (0.4.2). Moreover, we will ask ∆ to satisfy ∆ =
(∆x,∆y) = (O(tn), O(tn+N−1)).

Using (0.4.2) we can rewrite (0.4.1) as

∆x ◦R−∆x = c∆y + Ex
n ,

∆y ◦R−∆y = p ◦ (Kx
n +∆x)− p ◦ Kx

n +Ky
n · (q ◦ (Kx

n +∆x)− q ◦ Kx
n)

+ ∆y · q ◦ (Kx
n +∆x) + v ◦ (Kn +∆)− v ◦ Kn + Ey

n.

(0.4.3)

0.4.2 Function spaces, the operators Sn,N and Nn,N

and their properties

Next we introduce notation, suitable function spaces, and some opera-
tors.

Definition 0.4.1. Given β, ρ > 0 such that ρ < 1 and β < π, let S be
the sector

S = S(β, ρ) =
{
z ∈ C | | arg(z)| < β

2
, 0 < |z| < ρ

}
.

Given a sector S = S(β, ρ) let Xn, for n ∈ N, be the Banach space
given by

Xn = {f : S → C | f ∈ Hol(S), f((0, ρ)) ⊂ R, ‖f‖n := sup
z∈S

|f(z)|
|z|n

<∞},

where Hol(S) denotes the space of holomorphic functions on S.
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Note that when n ≥ 1 the functions f in Xn can be continuously
extended to z = 0 with f(0) = 0 and, if moreover, n ≥ 2, the derivative
of f can be continuously extended to z = 0 with f ′(0) = 0.

Note also that Xn+1 ⊂ Xn, for all n ∈ N, and that if f ∈ Xn+1, then
‖f‖n ≤ ‖f‖n+1. Moreover if f ∈ Xm, g ∈ Xn, then fg ∈ Xm+n and
‖fg‖m+n ≤ ‖f‖m ‖g‖n.

Given n, m ∈ N we denote Xm,n := Xm × Xn the product spaces,
endowed with the product norm

‖f‖m,n = max {‖fx‖m, ‖f y‖n}, f = (fx, f y) ∈ Xm,n.

Given n ≥ 1, N ≥ 2, we define the space

Σn,N = Xn, n+N−1,

endowed with the product norm. Also, given α > 0, we define the
closed ball

Σα
n,N = {f ∈ Σn,N | ‖f‖Σn,N

≤ α}.

For the sake of simplicity, we will omit the parameters ρ and β in the
notation of the spaces Σn,N and the balls Σα

n,N .
Now let F be as in Theorem 0.2.1, and Kn and R = Rn be the

polynomials provided in Section 0.3 satisfying (0.4.2) with n ≥ k + 1
in case 1 and n ≥ l in cases 2, 3.

Since F is analytic in U , it has a holomorphic extension to some
neighborhood W of (0, 0) in C2. Let d > 0 be the radius of a ball in
C2 contained in the domain where F is holomorphic. Also, Kn and
R are defined on any complex sector S(β, ρ). Then it is possible to
set equation (0.4.3) in a space of holomorphic functions defined in a
sector S(β, ρ), and look for ∆ being an analytic function of a complex
variable that takes real values when restricted to the real line.

To solve equation (0.4.3), we will consider n big enough and we will
look for a solution, ∆, in a closed ball of the space Σn,N . In order for
the compositions in (0.4.3) to make sense we need to ensure the range
of Kn +∆ to be contained in the domain where F is analytic. We take

α = min
{

1
2
, d

2

}
.

In this way, sinceKn(0) = (0, 0), taking ρK ∈ (0, 1) such that supz∈S(β, ρK) ‖Kn(z)‖
< d/2 and ρ ≤ ρK , if ∆ : S(β, ρ) → C2 belongs to the ball of radius α
of Xn,m, with n, m ≥ 0, we have

sup
z∈S(β, ρ)

‖∆(z)‖ = sup
z∈S(β, ρ)

max{ |∆x(z)|, |∆y(z)|} ≤ max {d
2
ρn, d

2
ρm} <

d

2
.
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Therefore, under the previous conditions, if ρ ≤ ρK and ∆ ∈ Σα
n,N

then ‖Kn(z) + ∆(z)‖ < d and the composition F ◦ (Kn + ∆) is well
defined.

Next we introduce two families of operators that will be used to
deal with (0.4.3). The definition of such operators is motivated by the
equation itself.

First, we state the following auxiliary result (see [3]),

Lemma 0.4.2. Let R : S(β, ρ) → C be a holomorphic function of the
form R(z) = z + RNz

N + O(|z|N+1), with RN < 0. Assume that 0 <
β < π

N−1
. Then, for any ν ∈ (0, (N − 1)|RN | cosλ), with λ = β N−1

2
,

there exists ρ > 0 small enough such that

|Rj(z)| ≤ |z|
(1 + j ν |z|N−1)1/N−1

, ∀ j ∈ N, ∀ z ∈ S(β, ρ),

where Rj refers to the j-th iterate of the map R. In addition, R maps
S(β, ρ) into itself.

Then, if f is defined in S(β, ρ), with suitable values of the parame-
ters β, ρ, and R satisfies the conditions of the lemma, the composition
f ◦R is well defined.

Definition 0.4.3. Given n ≥ 1, N ≥ 2 and a polynomial R(z) =
z + RNz

N + O(|z|N+1) satisfying the hypotheses of Lemma 0.4.2, let
Sn,R : Σn,N → Σn,N be the linear operator defined component-wise as
Sn,R = (Sx

n,R, S
y
n,R), with

Sx
n,R f = Sy

n,R f = f ◦R− f.

Remark 0.4.4. Notice that although both components of Sn,R are for-
mally identical they act on spaces of holomorphic functions of different
orders.

Definition 0.4.5. Let F be the holomorphic extension of an analytic
map of the form (0.2.2) satisfying the hypotheses of Theorem 0.2.1. For
n ∈ N, we introduce Nn, F = (N x

n, F ,N
y
n, F ) : Σα

n,N → Xn+N−1, n+2N−2,
by

N x
n, F (f) = c f y + Ex

n ,

N y
n, F (f) = p ◦ (Kx

n + fx)− p ◦ Kx
n +Ky

n · (q ◦ (Kx
n + fx)− q ◦ Kx

n)

+ f y · q ◦ (Kx
n + fx) + v ◦ (Kn + f)− v ◦ Kn + Ey

n.
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By the properties of R and the choice of α, the operators Sn,R and
Nn, F are well defined and Sn,R is linear and bounded.

Using these operators, equations (0.4.3) can be written as

Sn,R ∆ = Nn, F (∆).

The following lemma states that the operators Sn,R have a bounded
right inverse and provide a bound for the norm ‖S−1

n,R‖.

Lemma 0.4.6. Given N ≥ 2 and n ≥ 1, the operator Sn,R : Σn,N →
Σn,N , has a bounded right inverse

S−1
n,R : Xn+N−1, n+2N−2 → Σn,N = Xn, n+N−1,

given by

S−1
n,R η = −

∞∑
j=0

η ◦Rj, η ∈ Xn+N−1, n+2N−2. (0.4.4)

Moreover, for any fixed ν ∈ (0, (N − 1)|RN |), there exists ρ > 0 such
that, taking S(β, ρ) with β < π

N−1
as the domain of the functions of

Xn+N−1, n+2N−2, we have the operator norm bounds

‖(Sx
n,R)

−1‖ ≤ ρN−1 + 1
ν

N−1
n
, ‖(Sy

n,R)
−1‖ ≤ ρN−1 + 1

ν
N−1

n+N−1
.

The operators Nn, F are Lipschitz and we provide bounds for their
Lipschitz constants.

Lemma 0.4.7. For each n ≥ 3, there exists a constant, Mn > 0, for
which the operator Nn, F satisfies

Lip N x
n, F = c,

and

Lip N y
n, F ≤ k |ak|+Mnρ, (case 1),

Lip N y
n, F ≤ max{((l − 1) |Ky

l bl|+ k |ak|) +Mnρ, |bl|+Mnρ}, (case 2),

Lip N y
n, F ≤ max{(l − 1) |Ky

l bl|+Mnρ, |bl|+Mnρ}, (case 3),

where ρ is the radius of the sector S(β, ρ) where the functions of Σα
n,N

are defined.

Now, we define the third family of operators, Tn, F .
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Definition 0.4.8. Let F be the holomorphic extension of an analytic
map of the form (0.2.2) satisfying the hypotheses of Theorem 0.2.1.
Given n ≥ 3 we define Tn, F : Σα

n,N → Σn,N by

Tn, F = S−1
n,R ◦ Nn, F .

Remark 0.4.9. Note that given a map F , to define the previous opera-
tors we always take together the associated triple (F, Kn, R) satisfying
F ◦ Kn − Kn ◦ R = En. Then, the operators Sn,R, Nn, F and Tn, F are
associated not only with the map F itself but to the approximation of a
particular invariant manifold of F .

Lemma 0.4.10. Given an analytic map F satisfying the hypotheses of
Theorem 0.2.1, there exist n0 > 0 and ρ0 > 0 such that if ρ < ρ0, then,
for every n ≥ n0, we have Tn, F (Σ

α
n,N) ⊆ Σα

n,N and Tn, F is a contraction
operator in that ball.

The proofs of the previous three lemmas are deferred to Section 0.6.

0.4.3 Proofs of Theorems 0.2.1 and 0.2.3

Now we are ready to give the proofs of Theorems 0.2.1 and 0.2.3.

Proof of Theorem 0.2.1. First we consider the holomorphic extension
of F to a neighborhood of the origin which contains a ball of radius
d > 0 in C2 and let α = min {1/2, d/2}. Let Kn and R(t) = Rn(t) =
t+RN t

N +R2N−1t
2N−1 be the polynomials given by Propositions 0.3.1,

0.3.3 or 0.3.4 , with n ≥ k + 1 or n ≥ l respectively, satisfying

En(t) = F ◦ Kn(t)−Kn ◦ Rn(t) = (O(tn+N), O(tn+2N−1)).

We also assume that n > n0, where n0 is the integer provided by Lemma
0.4.10. We rewrite

F ◦ (Kn +∆)− (Kn +∆) ◦R = 0

in the form (0.4.3), or using the previously defined operators,

Sn,R ∆ = Nn, F (∆).

By Lemma 0.4.6, if ρ is small, Sn,R has a right inverse and we can
rewrite the equation as

∆ = Tn, F (∆).
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By Lemma 0.4.10 we have that Tn, F maps Σα
n,N into itself and is a

contraction. Then it has a unique fixed point, ∆∞ ∈ Σα
n,N . Note that

this solution is unique once Kn is fixed. Finally K = Kn +∆∞ satisfies
the conditions in the statement.

The C1 character of K at the origin follows from the order condition
of K at 0.

Proof of Theorem 0.2.3. We write the proof for case 1, the other cases
being almost identical except for some adjustments in the indices of the
coefficients of Rn. Let n0 be the integer provided by Lemma 0.4.10. If
the value of n given in the statement is such that n < n0, first we look for
a better approximation Kn0 of the form Kn0(t) = K̂(t) +

∑n0

j=n+1 K̂
j(t)

with K̂j(t) = (K̂x
j t

j, K̂y
j+k−1t

j+k−1) and

Rn(t) =

{
R̂(t) if n ≥ k + 1,

R̂(t) + R̂2k−1t
2k−1 if n ≤ k.

The coefficients K̂x
j , K̂

y
j+k−1 and R̂2k−1 are obtained imposing the con-

dition

F ◦ Kn0(t)−Kn0 ◦ Rn0(t) = (O(tn0+k), O(tn0+2k−1)).

Proceeding as in Proposition 0.3.1, we obtain K̂j iteratively. We denote
Kj(t) = K̂(t)+

∑j
m=n+1 K̂

m(t) andRj(t) = R̂(t)+R̃j(t), where R̃j(t) =
δj,k+1R2k−1t

2k−1. In the iterative step we have

F ◦ Kj(t)−Kj ◦ Rj(t) = (O(tj+k), O(tj+2k−1)).

Then,

F (Kj(t) + K̂j+1(t))−(Kj + K̂j+1) ◦ (R̂(t) + R̃j(t))

=F (Kj(t))−Kj(R̂(t))

+DF (Kj(t))K̂
j+1(t)− K̂j+1(R̂(t) + R̃j(t))

+

∫ 1

0

(1− s)D2F (Kj(t) + sK̂j+1(t))(K̂j+1(t))⊗2 ds

−DKj(R̂(t))R̃j(t)

−
∫ 1

0

(1− s)D2Kj(R̂(t) + sR̃j(t))(R̃j(t))
2 ds.

The condition

F ◦ Kj+1(t)−Kj+1 ◦ Rj+1(t) = (O(tj+k+1), O(tj+2k))
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leads to the same equation (0.3.4) as in Proposition 0.3.1 which we
solve in the same way. From this point we can proceed as in the proof
of Theorem 0.2.1 and look for ∆ ∈ Xn0, n0+k−1 such that the pair K =
Kn0 +∆, R = Rn0 satisfies F ◦K = K ◦R. We have that

K(t)−K̂(t) = Kn0(t)−K̂(t)+∆(t) = (O(tn+1), O(tn+k))+(O(tn0), O(tn0+k−1)),

with n < n0.
If n ≥ n0 we look for K∗(t) = K̂(t) + K̂n+1(t) with

K̂n+1(t) = (K̂x
n+1t

n+1, K̂y
n+kt

n+k)

and

R∗
n(t) =

{
R̂(t) if n ≥ k + 1,

R̂(t) + R̂2k−1t
2k−1 if n ≤ k.

We determine K̂x
n+1, K̂

y
n+k so that F◦K∗(t)−K∗◦R∗(t) = (O(tn+k+1), O(tn+2k))

as in the previous case and we look for ∆ ∈ Xn+1, n+k such that the pair
K = K∗ + ∆, R = R∗ satisfies F ◦ K = K ◦ R. As before we obtain
K(t) − K̂(t) = (O(tn+1), O(tn+k)). Again, the C1 character of K at 0
follows form the order condition of K.

0.5 The differentiable case

This section is devoted to prove Theorem 0.2.7 for

F (x, y) =

(
x+ c y

y

)
+

(
0

p(x) + y q(x) + u(x, y) + g(x, y)

)
.

As in Section 0.4 we use the parameterization method. To get the
initial approximation we first consider the Taylor polynomial of F or
degree r which we denote by F≤ and reads

F≤(x, y) =

(
x+ c y

y

)
+

(
0

p(x) + y q(x) + u(x, y)

)
.

Since F≤ is analytic, Theorem 0.2.1 provides a C1 map K : [0, ρ) →
R, analytic on (0, ρ) and a polynomial, R, such that

F≤ ◦K −K ◦R = 0 on [0, ρ).

Then, we look for ρ > 0 and a Cr function, H = K +∆ : (0, ρ) →
R2, such that

F ◦ (K +∆)− (K +∆) ◦R = 0, (0.5.1)
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In Section 0.5.1, we establish a functional equation for ∆ obtained
from (0.5.1) which will be the object of our study. In Section 0.5.2 we
describe the function spaces where we will set such an equation and
the operators SL,R and NL,F together with their properties (Lemmas
0.5.6 and 0.5.7). Notice that although the notation of the operators is
similar to the one of the operators in Section 0.4, both pair of families
of operators are different.

In Section 0.5.3 we recall the fiber contraction theorem and we also
introduce the family of operators TL,F given by TL,F = S−1

L,R ◦ NL,F

and we describe its properties in Lemmas 0.5.9 and 0.5.10. Finally,
in Section 0.5.4 we prove the existence of a solution of the functional
equation and we conclude the proof of Theorem 0.2.7.

0.5.1 The functional equation

Let F : U ⊂ R2 → R2 be a Cr map of the form (0.2.2) satisfying the
hypotheses of Theorem 0.2.7. Along the section, once having taken a
Cr map F of the form (0.2.2), the maps K and R will always refer to
the analytic solutions of F≤ ◦K −K ◦ R = 0, on some interval [0, ρ)
given by Theorem 0.2.1.

Using (0.5) and the previous notation, condition (0.5.1) can be
rewritten as

∆x ◦R−∆x = c∆y,

∆y ◦R−∆y = p ◦ (Kx +∆x)− p ◦Kx +Ky · (q ◦ (Kx +∆x)− q ◦Kx)

+ ∆y · q ◦ (Kx +∆x) + u ◦ (K +∆)− u ◦K + g ◦ (K +∆).

(0.5.2)

Clearly, a continuous function ∆ satisfies (0.5.1) if and only if it
satisfies (0.5.2). Since we want to prove differentiablity of ∆, next we
derive r equations for the derivatives of ∆ by formally differentiating
equation (0.5.2). In our approach we will look for continuous solutions
of these equations.

After having differentiated (0.5.2) L times, 1 ≤ L ≤ r, we obtain

DL∆x ◦R (DR)L −DL∆x = cDL∆y + J x
L,N(∆, . . . , D

L−1∆),

DL∆y ◦R (DR)L −DL∆y

= p′ ◦ (Kx +∆x)DL∆x + (Ky +∆y) q′ ◦ (Kx +∆x)DL∆x

+ q ◦ (Kx +∆x)DL∆y + (Du+Dg) ◦ (K +∆) ·DL∆

+ J y
L,N(∆, . . . , D

L−1∆),

(0.5.3)



26

where J x
L, F and J y

L, F are given by

J x
L, F (f0, . . . fL−1) = Λx

L,R(f
x
0 , . . . f

x
L−1),

J y
L, F (f0, . . . fL−1) = Λy

L,R(f
y
0 , . . . f

y
L−1) + ΩL,F (f0, . . . , fL−1),

(0.5.4)

and Λi
L,R, i = x, y, by

Λi
1, R(f

i
0) = 0,

Λi
2, R(f

i
0, f

i
1) = −f i

1 ◦RD2R,

Λi
L,R(f

i
0, . . . , f

i
L−1) = D[Λi

L−1, R(f
i
0, . . . , f

i
L−2)]

− (L− 1) f i
L−1 ◦R (DR)L−2D2R, L ∈ {3, . . . , r},

(0.5.5)

where in the expansion of the derivative D[Λi
L−1, R(f

i
0, . . . , f

i
L−2)] we

substitute Dfi by fi+1. Note that Λi
L,R does not depend on f0. More-

over, ΩL,F is given by

Ω1, F (f0) = DKx (p′ ◦ (Kx + fx
0 )− p′ ◦Kx) +DKy · (q ◦ (Kx + fx

0 )− q ◦Kx)

+Ky ·DKx (q′ ◦ (Kx + fx
0 )− q′ ◦Kx) + f y

0 ·DKx q′ ◦ (Kx + fx
0 )

+ (Du ◦ (K + f0)−Du ◦K)DK +Dg ◦ (K + f0)DK,

ΩL,F (f0, . . . , fL−1) = D[ΩL−1, F (f0, . . . , fL−2)] +D[p′ ◦ (Kx + fx
0 )]f

x
L−1

+D[(Ky + f y
0 )q

′ ◦ (Kx + fx
0 )]f

x
L +D[q ◦ (Kx + fx

0 )]f
y
L−1

+D[(Du+Dg) ◦ (K + f0)] · fL−1, L ∈ {2, . . . , r}.
(0.5.6)

Note that ΛL,R(f0, . . . , fL−1) comes from the differentiation on the
left hand side of (0.5.2) and ΩL,F (f0, . . . , fL−1) comes from the dif-
ferentiation on the right hand side of the second equation of (0.5.2).
Expanding the derivatives in (0.5.5) and (0.5.6) and changing Dfi by
fi+1 we obtain expressions that have to be understood as operators
acting on (f0, . . . , fL−1), considering the fj’s as independent variables.

It is important to note that Λi
L,R and Ωi

L,F , i = x, y, depend in a
polynomial way on fj for j ≥ 1, but not on f0.

0.5.2 Function spaces, the operators SL,R and NL,F

and their properties

We introduce next the notation and the function spaces that we will
use to study the functional equations (0.5.2) and (0.5.3).
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Definition 0.5.1. Given 0 < ρ < 1, let Yn, for n ∈ Z, be the Banach
space given by

Yn = {f : (0, ρ) → R | f ∈ C0(0, ρ), ‖f‖n := sup
(0, ρ)

|f(t)|
|t|n

<∞},

where C0(0, ρ) denotes the space of continuous functions on (0, ρ).

Note that when n ≥ 1 the functions f in Yn can be continuously
extended to t = 0 with f(0) = 0 and, if moreover, n ≥ 2, the derivative
of f can be continuously extended to t = 0 with f ′(0) = 0. For n < 0
the functions contained in Yn may be unbounded in a neighborhood of
0.

Note also that Yn+1 ⊂ Yn, for all n ∈ Z. If f ∈ Ym, g ∈ Yn, then
fg ∈ Ym+n and ‖fg‖m+n ≤ ‖f‖m ‖g‖n. If f ∈ Yn+1, then ‖f‖n ≤
‖f‖n+1.

Given n, m ∈ Z we denote Ym,n := Ym × Yn the product space,
endowed with the product norm

‖f‖m,n = max {‖fx‖m, ‖f y‖n}, f = (fx, f y) ∈ Ym × Yn.

Given s, r, N positive integer numbers and L ∈ {0, . . . , r}, we de-
fine the spaces

ΣL,N =
L∏

j=0

(Ys−2N+2−j, s−N+1−j), 0 ≤ L ≤ r

and
DΣL−1, N = Ys−2N+2−L,s−N+1−L, 1 ≤ L ≤ r

both endowed with the product norm. Clearly, we have ΣL,N = ΣL−1, N×
DΣL−1, N , and ΣL,N = Σ0, N ×

∏L
i=1DΣi−1, N , for 1 ≤ L ≤ r.

For notational convenience we also write DΣ−1, N = Σ0, N .
Also, let αi > 0, 1 ≤ i ≤ r. Given L we write α = (α0, . . . , αL).

We define the closed balls

Σα0
0, N = {f ∈ Σ0, N | ‖f‖Σ0, N

≤ α0},
DΣαi

i−1, N = {f ∈ DΣi−1, N | ‖f‖DΣi−1, N
≤ αi}, i ∈ {1, . . . , r},

and the products of balls

Σα
L,N = Σα0

0, N ×
L∏
i=1

DΣαi
i−1, N , L ∈ {1, . . . , r},
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For notational convenience we will write Σα
0, N = Σα0

0, N .

An element of ΣL,N will be denoted by (f0, . . . , fL), with f0 =
(fx

0 , f
y
0 ) ∈ Σ0, N , and fi = (fx

i , f
y
i ) ∈ DΣi−1, N , for i = 1, . . . , L.

For the sake of simplicity we do not write the dependence with
respect to r, s and ρ in the notation of the previous objects.

To solve the functional equation (0.5.1), we look for a solution, f0, of
(0.5.2) contained in a closed ball Σα0

0, N , and for a solution, (f1, . . . , fL),
of (0.5.3) in a product Σα

L,N , for each L ∈ {1, . . . , r}. In order for the
compositions in (0.5.3) to be meaningful we have to deal with f0 in
a ball of sufficiently small radius. Arguing as in the analytic case we
take α0 = min

{
1
2
, d

2

}
, where d is the radius of a ball contained in the

domain where F is Cr. The values of the radii αi, 1 ≤ i ≤ r, will be
determined later (see proof of Lemma 0.5.10).

In the differentiable case we consider analogous operators as in the
analytical case but now we need a family of them, depending on L, to
deal with the equations (0.5.3) for the derivatives of ∆. Their defini-
tions are determined by the structure of such equations.

First, we state two auxiliary results about the iterates of R and
their derivatives.

Lemma 0.5.2. Let R : [0, ρ) → R be a differentiable map of the form
R(t) = t + RN t

N + O(|t|N+1), with RN < 0. Then, for any ν, µ such
that 0 < ν < (N − 1)|RN | < µ, there exists ρ > 0 such that

t

(1 + j µ tN−1)1/N−1
< Rj(t) <

t

(1 + j ν tN−1)1/N−1
, ∀ j ≥ 1, ∀ t ∈ (0, ρ).

(0.5.7)
As a consequence, R maps (0, ρ) into itself.

If R were a polynomial the upper bound in Lemma 0.5.2 would be
an immediate corollary of Lemma 0.4.2.

Proof. Let λ > 0 and φλ(t) =
t

(1+λ tN−1)1/N−1 for t ≥ 0. A computation

shows that d
dt
φλ(t) = 1

(1+λ tN−1)N/N−1 > 0 and hence φλ is increasing.

We prove (0.5.7) by induction. When j = 1, it is easy to see that there
exists ρ > 0 such that

φµ(t) =
t

(1 + µ tN−1)1/N−1
< R(t) <

t

(1 + ν tN−1)1/N−1
= φν(t), ∀ t ∈ (0, ρ).
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Assuming (0.5.7) for j ≥ 1,

Rj+1(t) = R(Rj(t)) < φν(R
j(t)) < φν

( t

(1 + j ν tN−1)1/N−1

)
=

t

(1 + (j + 1) ν tN−1)1/N−1

in the same interval (0, ρ). The lower bound is obtained in a completely
analogous way using φµ.

Lemma 0.5.3. Let R : [0, ρ) → R be a differentiable map of the form
R(t) = t + RN t

N + O(|t|N+1), with RN < 0, such that DR(t) = 1 +
NRN t

N−1 +O(|t|N). For any ν, µ such that 0 < ν < (N − 1)|RN | < µ,
let κ = ν/µ. Then, there exists ρ > 0 such that

DRj(t) ≤ 1

(1 + j µ tN−1)κN/N−1
, ∀ j ∈ N, ∀ t ∈ (0, ρ). (0.5.8)

Proof. Since N |RN | > ν N
N−1

, by the form of the derivative DR, there
exists ρ > 0 such that

0 < DR(t) < 1− νN

N − 1
tN−1, ∀ t ∈ (0, ρ).

Using the chain rule DRj(t) = Πj−1
m=0DR(R

m(t)) and the lower bound
in (0.5.7) we can write

DRj(t) = exp

j−1∑
m=0

logDR(Rm(t)) ≤ exp

j−1∑
m=0

log
(
1− νN

N − 1
(Rm(t))N−1

)
≤ exp

(
−νN
N − 1

j−1∑
m=0

(Rm(t))N−1

)
≤ exp

(
−νN
N − 1

j−1∑
m=0

tN−1

(1 +mµtN−1)

)

≤ exp

(
−νN
N − 1

∫ j

0

tN−1

(1 + sµtN−1)
ds

)
= exp

(
−νN

µ(N − 1)

∫ jµtN−1

0

1

1 + ξ
dξ

)

= exp

(
−κN
N − 1

log(1 + jµtN−1)

)
=

1

(1 + jµtN−1)κN/N−1
.

From now on we assume R is as in the previous lemmas and ρ
satisfies the conclusions of them, in particular, R(0, ρ) ⊂ (0, ρ).
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Definition 0.5.4. Given L ∈ {0, . . . , r}, let SL,R : DΣL−1,N → DΣL−1,N

be the linear operator defined component-wise as SL,R = (Sx
L,R, S

y
L,R),

with

Sx
L,R f = Sy

L,R f = f ◦R (DR)L − f.

Notice that although both components are formally identical, they
act on different domains.

Definition 0.5.5. Given a map F of class Cr satisfying the hypotheses
of Theorem 0.2.7, let N0, F : Σα

0, N → Ys−N+1, s be the operator given by

N x
0,F (f0) = c f y

0 ,

N y
0,F (f0) = p ◦ (Kx + fx

0 )− p ◦Kx +Ky · [q ◦ (Kx + fx
0 )− q ◦Kx]

+ f y
0 · q ◦ (Kx + fx

0 ) + u ◦ (K + f0)− u ◦K + g ◦ (K + f0),

and let NL,F : Σα
L,N → Ys−N+1−L, s−L, L ∈ {1, . . . , r}, be the operator

given by

N x
L,F (f0, . . . , fL) = c f y

L + J x
L,N(f0, . . . , fL−1),

N y
L,F (f0, . . . , fL) = p′ ◦ (Kx + fx

0 ) · fx
L + (Ky + f y

0 ) · q′ ◦ (Kx + fx
0 ) f

x
L

+ q ◦ (Kx + fx
0 ) · f

y
L + (Du+Dg) ◦ (K + f0) · fL

+ J y
L,N(f0, . . . , fL−1),

where JL,N are already introduced in (0.5.4), (0.5.5) and (0.5.6).

From the definition of the operators SL,R and NL,F , the recursive
expressions of ΛL,R and ΩL,F obtained in (0.5.5) and (0.5.6) and the
choice of α0 it is clear that the operators SL,R and NL,F are well defined
and that SL,R is linear and bounded.

Note that with the operators introduced above, equations (0.5.2)
and (0.5.3) can be written now as

SL,RD
L∆ = NL,F (∆, . . . , D

L∆), (∆, . . . , DL∆) ∈ Σα
L,N ,

for each L ∈ {0, . . . , r} and α0 as fixed previously and some αi > 0,
1 ≤ i ≤ L.

In the following lemmas we prove that each of the operators SL,R

has a bounded right inverse and we provide a bound for the norm
‖S−1

L,R‖. We also show that each of the operators NL,F is Lipschitz
with respect to the last variable and we provide a uniform bound for
the Lipschitz constant for the family NL,F , L ∈ {0, . . . , r}. For the
proofs of Lemmas 0.5.6 and 0.5.7, see Section 0.6.
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Lemma 0.5.6. Let 0 ≤ L ≤ r. Assume r > k in case 1 and r > 2l− 1
in cases 2 and 3. Then, given 0 < ν < (N − 1)|RN | < µ such that
κ = ν/µ satisfies κ > 1/N , there exists ρ > 0 small enough such
that, taking (0, ρ) as the domain of the functions of Ys−N+1−L, s−L, the
operator SL,R : DΣL−1, N → DΣL−1, N has a bounded right inverse,

S−1
L,R : Ys−N+1−L, s−L → DΣL−1, N = Ys−2N+2−L, s−N+1−L,

given by

S−1
L,R η = −

∞∑
j=0

η ◦Rj (DRj)L, η ∈ Ys−N+1−L, s−L, (0.5.9)

and we have the operator norm bound

‖(Sx
L,R)

−1‖ ≤ ρN−1 + 1
ν

N−1
s−2N+2+L(κN−1)

,

‖(Sy
L,R)

−1‖ ≤ ρN−1 + 1
ν

N−1
s−N+1+L(κN−1)

.

Lemma 0.5.7. Let 0 ≤ L ≤ r. Assume r > k in case 1 and r > 2l− 1
in cases 2 and 3. There exists a constant, M > 0, for which the family
of operators NL,F satisfy, for each L ∈ {0, . . . , r},

Lip N x
L, F (f0, . . . , fL−1, ·) = c,

and

Lip N y
L, F (f0, . . . , fL−1, ·) ≤ k |ak|+Mρ, (case 1),

Lip N y
L, F (f0, . . . , fL−1, ·)

≤ max{((l − 1) |Ky
l bl|+ k |ak|) +Mρ, |bl|+Mρ}, (case 2),

Lip N y
L, F (f0, . . . , fL−1, ·) ≤ max{(l − 1) |Ky

l bl|+Mρ, |bl|+Mρ}, (case 3),

where (0, ρ) is the domain of the functions of Σα
L,N .

Note that the bound we have found for Lip NL,F (f0, . . . , fL−1, ·)
does not depend on L, and the obtained bounds for ‖(Sx

0, R)
−1‖ and

‖(Sy
0, R)

−1‖ do not depend on κ.
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0.5.3 Main lemmas and the fiber contraction the-
orem

From SL,R and NL,F introduced in Section 0.5.2, we can define the
operators TL,F and T ×

L,F .

Definition 0.5.8. Given a map F of class Cr satisfying the hypotheses
of Theorem 0.2.7, let TL,F : Σα

L,N → DΣL−1, N be the operator given by

TL,F = S−1
L,R ◦ NL,F , L ∈ {0, . . . , r},

and let T ×
L,F : Σα

L,N −→ ΣL,N be the operator given by

T ×
L,F = (T0, F , . . . , TL,F ), L ∈ {1, . . . , r}.

In the following results we show that, under appropriate conditions,
the operators TL,F have some properties strongly related to the hy-
potheses of the fiber contraction theorem.

Lemma 0.5.9. Let F be a Cr map satisfying the hypotheses of Theorem
0.2.7, αi > 0, 1 ≤ i ≤ r, and α = (α0, . . . , αL), 0 ≤ L ≤ r. Then, for
every L ∈ {0, . . . , r− 1}, the operator TL,F : Σα

L,N → DΣL−1, N is Lip-
schitz on Σα

L,N with respect to (f0, . . . , fL−1), with Lipschitz constant
independent of fL.

Moreover, the operator Tr, F : Σα
r,N → DΣr−1, N can be decom-

posed as T (1)
r, F + T (2)

r, F , where T (1)
r, F is Lipschitz on Σα

r,N with respect to
(f0, . . . , fr−1), with Lipschitz constant independent of fr and

T (2)
r, F =

(
0, (Sy

r,R)
−1 ◦ (Drg ◦ (K + f0)(DK + f1)

r)
)
,

which is continuous with respect to (f0, f1).

Next we introduce a convenient rescaling. Given γ > 0, let

Tγ(x, y) = (x, γ y). (0.5.10)

We define F̃ = T−1
γ ◦F ◦Tγ. If K and R are analytic maps associated to

F , then the corresponding analytic maps associated to F̃ will be given
by K̃ = T−1

γ ◦K and R̃ = R. Concretely, the parameterizations of F̃

and K̃ with respect to the coefficients of F and K will be given by

F̃ (x, y) =

(
x+ γcy

y

)
+

(
0

γ−1 ak x
k + bl y x

l−1 + · · ·

)
,



0.5. THE DIFFERENTIABLE CASE 33

and

K̃(t) =

(
t2 + · · ·

γ−1Ky
k+1 t

k+1 + · · ·

)
, for case 1,

K̃(t) =

(
t+ · · ·

γ−1Ky
l t

l + · · ·

)
, for cases 2 and 3.

Lemma 0.5.10. Given a Cr map F satisfying the hypotheses of The-
orem 0.2.7, there exist ρ0 > 0 and a linear transformation Tγ as in
(0.5.10) such that if ρ < ρ0, then the operator TL, F̃ : Σα

L,N → DΣL−1, N

associated to F̃ = T−1
γ ◦ F ◦ Tγ, for L ∈ {0, . . . , r}, is contractive

with respect to the variable fL ∈ DΣα
L−1, N . Moreover, for a proper

choice of α = (α0, . . . , αL), TL, F̃ maps Σα
L,N into DΣαL

L−1, N , for each
L ∈ {0, . . . r}.

For the proofs of Lemmas 0.5.9 and 0.5.10, see Section 0.6.

Remark 0.5.11. The value α0 denoting the radius of the ball Σα0
0, N ,

obtained previously, is forced by the definition of N0, F (and thus, of
T0, N). Indeed, since we will look for the invariant curves of F as pa-
rameterizations of Σα0

0, N , their image must be contained in the domain
where F is Cr. This is not the case for the derivatives of the invariant
curves, for which we do not need to put a bound on them to have the
operators well defined. Also, the definition of TL,F , for L ∈ {1, . . . , r}
does not force any restriction to the size of the arguments f1, . . . , fL
since the dependence with respect to these variables is polynomial. The
values α1, . . . , αr obtained in Lemma 0.5.10 provide then upper bounds
for the norms of the derivatives of the invariant curves of F .

Finally, for the convenience of the reader, we recall the fiber con-
traction theorem [24] which will be used in the proof of Theorem 0.2.7.
We use a version of it stated in [13].

Theorem 0.5.12 (Fiber contraction theorem). Let Σ and DΣ be met-
ric spaces, DΣ complete, and Γ : Σ×DΣ → Σ×DΣ a map of the form
Γ(γ, φ) = (G(γ), H(γ, φ)). Assume that

(a) G has an attracting fixed point, γ∞ ∈ Σ,

(b) H is contractive with respect to the second variable, ie, for all
γ ∈ Σ, LipH(γ, ·)
< 1.

Let φ∞ ∈ DΣ be the fixed point of H(γ∞, ·).
(c) H is continuous with respect to γ at (γ∞, φ∞).

Then, (γ∞, φ∞) is an attracting fixed point of Γ.
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0.5.4 Proof of Theorem 0.2.7.

We give next the proof of Theorem 0.2.7, where we use the setting and
the results obtained along the previous sections.

Proof of Theorem 0.2.7. Let F be as in the statement and Tγ, γ > 0,
be defined by (0.5.10). It is clear that given maps H and R, the triple
(F, H, R) satisfies F ◦ H = H ◦ R if and only if (F̃ , H̃, R̃) satisfies
F̃ ◦ H̃ = H̃ ◦ R̃, where F̃ = T−1

γ ◦ F ◦ Tγ, H̃ = T−1
γ ◦ H and R̃ = R.

Clearly F and F̃ belong to the same case 1, 2 or 3 of the reduced form
(0.2.2).

To prove the theorem, we shall look for ρ > 0 and a function H :
(0, ρ) → R2, with H(0) = 0 and H ∈ Cr(0, ρ), and a map of the form
R(t) = t+RN t

N +R2N−1t
2N−1, with RN < 0, such that

F ◦H = H ◦R, (0.5.11)

with N = k for case 1 of (0.2.2) and N = l for cases 2 and 3.
We take the value γ > 0 associated with F provided in Lemma

0.5.10, and we set F̃ = T−1
γ ◦ F ◦ Tγ. Let F̃≤ be the Taylor polynomial

of F̃ of degree r at the origin. Then it is a polynomial of the form

F̃≤(x, y) =

(
x+ γ c y

y

)
+

(
0

γ−1 ak x
k + bl y x

l−1 + h.o.t.

)
.

Since we assumed ak > 0 for cases 1 and 2 and bl < 0 for case 3,
then by Theorem 0.2.1, there exists, for each case, an analytic map K̃
and a polynomial R of the form R(t) = t+RN t

N +R2N−1 t
2N−1, with

RN < 0, satisfying F̃≤ ◦ K̃ − K̃ ◦R = 0.
Given such maps K̃ and R, we look for ρ > 0 and a function ∆ :

(0, ρ) → R2, ∆ ∈ Cr(0, ρ), such that

F̃ ◦ (K̃ +∆)− (K̃ +∆) ◦R = 0. (0.5.12)

To do so, we consider the set of r equations described in (0.5.2) and
(0.5.3). We take α = (α0, . . . , αr) with α0 = min

{
1
2
, d

2

}
, where d is

the radius of a centered ball in R2 contained in the domain where F̃ is
of class Cr, and α1, . . . , αr given in Lemma 0.5.10. We also take the
value ρ > 0 associated to F̃ provided in Lemma 0.5.10.

Given such values of ρ and α, we take the function spaces Σα
L,N , for

L ∈ {0, . . . , r}, with domain (0, ρ) ⊂ R.
With the operators introduced in Definition 0.5.8, equation (0.5.2)

can be written as

f0 = T0, F̃ (f0), f0 ∈ Σα
0, N , (0.5.13)
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and each of the equations (0.5.3) can be written as

fL = TL, F̃ (f0, . . . , fL), (f0, . . . , fL) ∈ Σα
L,N ,

for L ∈ {1, . . . , L}, or equivalently, all of them together as a unique
equation,

(f0, . . . , fr) = T ×
r, F̃

(f0, . . . , fr), (f0, . . . , fr) ∈ Σα
r,N . (0.5.14)

By Lemma 0.5.10 and the Banach fixed point theorem, T0, F̃ has an
unique attracting fixed point, f∞

0 ∈ Σα
0,N , which is a solution of equation

(0.5.13) and which ensures that there exists a continuous solution, ∆∞,
of (0.5.12). We will see next that in fact the solution f∞

0 of (0.5.13) is
a function of class Cr.

We will proceed by induction. First we prove that f∞
0 is C1.

Let us pick a C1 function f 0
0 ∈ Σα0

0, N such that f 0
1 := Df 0

0 belongs
to DΣα1

0, N . For simplicity we take f 0
0 = 0. Then we take the sequence

(f j
0 , f

j
1 ) = (T ×

1, F̃
)j(f 0

0 , f
0
1 ). From the definition of the operator T1, F̃ , we

have
D(T0, F̃ (f

0
0 )) = T1, F̃ (f

0
0 , f

0
1 ). (0.5.15)

Applying (0.5.15) inductively we have that f j
1 = Df j

0 , for all j. Also,
since f 0

0 is C1 and f 0
1 = Df 0

0 , all the iterates f j
0 = (T0, F̃ )

j(f 0
0 ) are C

1,
and as we have said the sequence converges in Σα0

0, N to f∞
0 .

Again, by Lemma 0.5.10, the operator T1, F̃ : Σα
0,N × DΣα1

0,N →
DΣα1

0, N is contractive with respect to the variable f1 ∈ DΣα
0, N . Thus,

T1, F̃ (f
∞
0 , ·) has a unique attracting fixed point, f∞

1 ∈ DΣα
0,N .

Moreover, by Lemma 0.5.9, T1, F̃ is continuous with respect to f0
at any point (f0, f1) ∈ Σα

1, N . Hence, by the fiber contraction theorem,
(f∞

0 , f
∞
1 ) ∈ Σα

1, N is an attracting fixed point of T ×
1, F̃

, which means

that the sequence f i
1 = Df j

0 converges in DΣ0, N . That is, f
i
1 converges

uniformly in C0(0, ρ) and therefore we have f∞
1 = Df∞

0 and thus,
f∞
0 ∈ C1(0, ρ).
Now, for every L ∈ {2, . . . , r}, we assume that there exists a unique

attracting fixed point of T ×
L−1, F̃

, given by (f∞
0 , . . . , f

∞
L−1) ∈ Σα

L−1, N ,

such that f∞
0 ∈ CL−1(0, ρ) and

f∞
1 = Df∞

0 , . . . , f
∞
L−1 = DL−1f∞

0 .

We will see next that in fact f∞
0 is of class CL.

Let us pick again the function f 0
0 = 0 ∈ CL(0, ρ), and let us take also

f 0
1 := Df 0

0 , . . . , f
0
L := DLf 0

0 . Then we have (f 0
0 , . . . f

0
L−1) ∈ Σα

L−1, N

and f 0
L ∈ DΣαL

L−1, N .
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From the definition of the operator TL, F̃ , we have

D(TL−1, F̃ (f
0
0 , . . . , f

0
L−1)) = TL, F̃ (f

0
0 , . . . , f

0
L). (0.5.16)

Then let (f j
0 , . . . , f

j
L) = (T ×

L,F̃
)j(f 0

0 , . . . , f
0
L). Applying (0.5.16) in-

ductively we have f j
1 = Df j

0 , . . . , f
j
L = DLf j

0 , for all j, and then
the iterates (f j

0 , . . . , f
j
L−1) = (T ×

L−1, N)
j(f 0

0 , . . . , f
0
L−1) are such that

f j
m ∈ CL−m, for m ∈ {0, . . . , L − 1}. By the induction hypothe-
sis, the sequence (f j

0 , . . . , f
j
L−1) converges in ΣL−1, N to the solution

(f∞
0 , . . . , f

∞
L−1) and

f∞
1 = Df∞

0 , . . . , f
∞
L−1 = DL−1f∞

0 .

Also, applying Lemmas 0.5.9 and 0.5.10 and the fiber contraction
theorem, the sequence f j

L = DLf j
0 converges in DΣL−1, N . That is, f j

L

converges uniformly in C0(0, ρ) and therefore we have f∞
L = DLf∞

0

and thus, f∞
0 ∈ CL(0, ρ). In conclusion f∞

0 ∈ Cr(0, ρ).
Finally, the Cr map H̃ = K̃ + ∆ with ∆ = f∞

0 parameterizes the
stable manifold of F̃ and therefore it is Cr.

When F is C∞, to see that the stable manifold is C∞ we take r1
satisfying the hypotheses of the theorem and r2 > r1. The previous
proof provides H1 = Kr1 + ∆1 and H2 = Kr2 + ∆2 defined in (0, ρ1)
and (0, ρ2) and of class Cr1 and Cr2 respectively that parameterize
stable manifolds W1 and W2. Theorem 4.1 of [12], which is proved by
geometric methods, provides the uniqueness of the stable manifold in
this setting. If ρ2 < ρ1, since we deal with stable manifolds we can
extend W2 iterating by F−1 to recover W1. Then W1 is Cr2 for all
r2 > r1.

0.6 Proofs of the technical results

We will give detailed proofs for Lemmas 0.5.6, 0.5.7, 0.5.9 and 0.5.10,
which correspond to the differentiable case. Lemmas 0.4.6, 0.4.7 and
0.4.10 are simplified complex versions of Lemmas 0.5.6, 0.5.7 and 0.5.10
respectively.

0.6.1 Properties of the operators SL,R and NL,F

Proof of Lemma 0.5.6. A simple computation shows that the expres-
sion (0.5.9) of SL,R formally satisfies SL,R ◦ (SL,R)

−1 η = η, for η ∈
Ys−N+1−L, s−L.
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We give the details of the proof for the second component Sy
L,R :

Ys−N+1−L → Ys−N+1−L of the operator SL,R, the details for Sx
L,R :

Ys−2N+2−L → Ys−2N+2−L being completely analogous. The results for
SL,R follow immediately because the components of the operator are
uncoupled.

We take κ > 1/N and µ, ν such that 0 < ν < (N − 1)|RN | < µ and
ν/µ = κ. By Lemmas 0.5.2 and 0.5.3 there exists ρ > 0 such that R
maps the interval (0, ρ) into itself and the bounds (0.5.7) and (0.5.8)
hold. Then, given η ∈ Ys−L

|(η ◦Rj(DRj)L)(t)| ≤ ‖η‖s−L |Rj(t)|s−L |DRj(t)|L

≤ ‖η‖s−L
ts−L

(1 + j ν tN−1)
s−L
N−1

1

(1 + j µ tN−1)
κNL
N−1

≤ M ‖η‖s−L
1

j
s+L(κN−1)

N−1

, ∀ t ∈ (0, ρ),

hence, since s ≥ r ≥ N > N − 1, (0.5.9) converges uniformly on (0, ρ)
by the Weierstrass M -test. Thus, (Sy

L,R)
−1 η = −

∑∞
j=0 η ◦ Rj(DRj)L

is continuous on (0, ρ).

Now, we prove that (Sy
L,R)

−1 is a bounded operator from Ys−L to
Ys−N+1−L and we obtain a bound for its norm. Again, having chosen
κ = ν/µ, from Lemmas 0.5.2 and 0.5.3 one has,

‖(Sy
L,R)

−1 η‖s−N+1−L ≤ sup
t∈(0,ρ)

1

ts−N+1−L

∞∑
j=0

|η(Rj(t))(DRj(t))L|

≤ ‖η‖s−L sup
t∈(0,ρ)

1

ts−N+1−L

∞∑
j=0

ts−L

(1 + jνtN−1)
s−L
N−1

1

(1 + jµtN−1)
κNL
N−1

,

and, bounding the sum by an appropriate integral, we obtain the bound

1

ts−N+1−L

∞∑
j=0

ts−L

(1 + jνtN−1)
s−L
N−1

1

(1 + jµtN−1)
κNL
N−1

≤ tN−1

(
1 +

∫ ∞

0

1

(1 + xνtN−1)
s−L+κNL

N−1

dx

)
= tN−1 +

1

ν

N − 1

s−N + 1 + L(κN − 1)
.
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Therefore, we get

‖(Sy
L,R)

−1 η‖s−N+1−L

≤ ‖η‖s−L sup
t∈(0,ρ)

(
tN−1 +

1

ν

N − 1

s−N + 1 + L(κN − 1)

)
, η ∈ Xs−L,

which shows that (Sy
L,R)

−1 : Ys−L → Ys−N+1−L is bounded and

‖(Sy
L,R)

−1‖ ≤ ρN−1 +
1

ν

N − 1

s−N + 1 + L(κN − 1)
.

In the same way, (Sx
L,R)

−1 : Ys−N+1−L → Ys−2N+2−L is bounded and

‖(Sx
L,R)

−1‖ ≤ ρN−1 +
1

ν

N − 1

s− 2N + 2 + L(κN − 1)
.

Proof of Lemma 0.4.6. The operators Sy
n,R do not contain the term

(DR)L so that the proof is similar to the one of Lemma 0.5.6 with
L = 0. However, the domain of the functions in the spaces Xn is the
complex sector S(β, ρ), and therefore in this case we have to apply
Lemma 0.4.2. Notice that in this case we do not need lower bounds for
Rj(z).

Proof of Lemma 0.5.7. To distinguish the roles of the variables (f0, . . . , fL−1)
and fL we will denote the latter by hL. The statement concerning the
component N x

L,F is clear by the definition of NL,F .
For N y

L,N we first deal with the case L = 0.
Since g(x, y) = o(‖(x, y)‖r) and g ∈ Cr we haveDig(x, y) = o(‖(x, y)‖r−1), i =

1, 2.
For every h0, h̃0 ∈ Σα

0,N , from the definition of the operator N y
0,F ,

one can write

N y
0, F (h0)−N y

0, F (h̃0)

=
(∫ 1

0

p′ ◦ (Kx + h̃x0 + s(hx0 − h̃x0)) ds

+ (Ky + hy0)

∫ 1

0

q′ ◦ (Kx + h̃x0 + s(hx0 − h̃x0)) ds

+

∫ 1

0

(D1u+D1g) ◦ (K + h̃0 + s(h0 − h̃0)) ds
)
(hx0 − h̃x0)

+
(
q ◦ (Kx + h̃x0) +

∫ 1

0

(D2u+D2g) ◦ (K + h̃0 + s(h0 − h̃0)) ds
)
(hy0 − h̃y0).
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Let us denote, for s ∈ [0, 1]

ξs = ξs(h0, h̃0) = K + h̃0 + s(h0 − h̃0),

φ = φ(h0, h̃0) =

∫ 1

0

p′ ◦ ξxs ds+ (Ky + hy0)

∫ 1

0

q′ ◦ ξxs ds+
∫ 1

0

(D1u+D1g) ◦ ξs ds,

ψ = ψ(h0, h̃0) = q ◦ (Kx + h̃x0) +

∫ 1

0

(D2u+D2g) ◦ ξs ds,

so that we have

‖N y
0,F (h0)−N y

0,F (h̃0)‖s ≤ ‖φ(h0, h̃0)(hx0− h̃x0)‖s+‖ψ(h0, h̃0)(hy0− h̃
y
0)‖s.

(0.6.1)
For case 1 we have K ∈ Y2, k+1 and, since s = 2r and r > k, then

for every h0, h̃0 ∈ Σα
0, k we have (h0, h̃0) ∈ Y4, k+2. Thus we can bound

the norm

‖ξxs ‖2 = sup
t∈(0,ρ)

1

t2
|Kx(t) + h̃x0(t) + s(hx0(t)− h̃x0(t))| ≤ 1 +Mρ,

for all s ∈ [0, 1].
Moreover, checking the orders of φ and ψ, taking into account the

properties of p, q, u and g, we have

φ ∈ Y2k−2, ψ ∈ Yk ⊂ Yk−1, ∀ h0, h̃0 ∈ Σα
0, k.

More precisely, we can bound

‖φ‖2k−2 ≤ sup
s∈[0,1]

(‖p′ ◦ ξxs ‖2k−2 + ‖(Ky + hy0) q
′ ◦ ξxs +D1g ◦ ξs +D1u ◦ ξs‖2k−2)

≤ sup
s∈[0,1]

sup
t∈(0,ρ)

1

t2k−2
(k |ak||ξxs (t)|k−1 +M t2k−1)

≤ k|ak|+Mρ,

(0.6.2)

‖ψ‖k−1 ≤Mρ, (0.6.3)

for all h0, h̃0 ∈ Σα0
0,k.

Then, from (0.6.1) we have

‖N y
0,F (h0)−N y

0,F (h̃0)‖s ≤‖φ‖2k−2 ‖hx0 − h̃x0‖s−2k+2 + ‖ψ‖k−1 ‖hy0 − h̃y0‖s−k+1

≤(k|ak|+Mρ)‖hx0 − h̃x0‖s−2k+2 + ρM ‖hy0 − h̃y0‖s−k+1,

which proves that Lip N y
0,F ≤ k |ak|+Mρ, for case 1.
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For cases 2 and 3 the bounds for Lip N y
0, F are obtained in an anal-

ogous way. In these cases we have K ∈ Y1, l and we obtain ξs ∈ Y2, l+1.
Take h0, h̃0 ∈ Σα

0,l. Since r > 2l − 1,

φ ∈ Y2l−2, ψ ∈ Yl−1,

with the following bounds for their norms,

‖φ‖2l−2 ≤ k |ak|+(l−1)|Ky
l bl|+Mρ, ‖ψ‖l−1 ≤ |bl|+Mρ, (0.6.4)

in case 2 and

‖φ‖2l−2 ≤ (l − 1)|Ky
l bl|+Mρ, ‖ψ‖l−1 ≤ |bl|+Mρ, (0.6.5)

in case 3.
The proof for L ≥ 1 is similar. Given f0, . . . , fL−1 and hL, h̃L ∈

DΣL−1, N , from the definition of N y
L,N , we have

N y
L, F (f0, . . . , fL−1, hL)−N y

L, F (f0, . . . , fL−1, h̃L)

=
(
p′ ◦ (Kx + fx

0 ) + (Ky + f y
0 ) q

′ ◦ (Kx + fx
0 )

+ (D1u+D1g) ◦ (K + f0)
)
(hxL − h̃xL)

+
(
q ◦ (Kx + fx

0 ) + (D2u+D2g) ◦ (K + f0)
)
(hyL − h̃yL).

Given f0 ∈ Σα
0,N , we denote

φ̃ = φ̃(f0) = p′ ◦ (Kx + fx
0 ) + (Ky + f y

0 ) q
′ ◦ (Kx + fx

0 ) + (D1u+D1g) ◦ (K + f0),

ψ̃ = ψ̃(f0) = q ◦ (Kx + fx
0 ) + (D2u+D2g) ◦ (K + f0),

so that we can write

‖N y
L,F (f0, . . . , fL−1, hL)−N y

L,F (f0, . . . , fL−1, h̃L)‖s
≤ ‖φ̃(f0)(hxL − h̃xL)‖s + ‖ψ̃(f0)(hyL − h̃yL)‖s.

The orders of φ̃ and ψ̃ are the same as the ones of the corresponding
φ and ψ when L = 0, respectively, for each of the cases 1, 2 and 3. That
is,

φ̃ ∈ Y2k−2, ψ̃ ∈ Yk ⊂ Yk−1,

for case 1 and
φ̃ ∈ Y2l−2, ψ̃ ∈ Yl−1,

for cases 2 and 3. As in the case L = 0, for each f0 ∈ Σα0
0,N , the order of

K + f0 is the same as the one of K. Therefore we get the same bounds
for the norms of φ̃ and ψ̃, namely those obtained in (0.6.2) - (0.6.5),
and finally the bounds in the statement.
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Proof of Lemma 0.4.7. The proof is completely analogous to the proof
of Lemma 0.5.7 in the case L = 0, the only difference being that here
the functions in the spaces Xn are defined in sectors S(β, ρ) instead of
the interval (0, ρ).

0.6.2 Proofs of Lemmas 0.5.9 and 0.5.10

Proof of Lemma 0.5.9. As before, to distinguish the roles of the vari-
ables fL and (f0, . . . , fL−1) we will denote the former by hL. Since
TL,F = S−1

L,R ◦NL,F and S−1
L,R is linear and bounded, along the proof we

will deal only with NL,F .
Given a function hL ∈ DΣαL

L−1,N we decompose

NL,F (f0, . . . , fL−1, hL) = AhL, F (f0) + JL,F (f0, . . . , fL−1),

where AhL, F := (Ax
hL, F

,Ay
hL, F

) : Σα
0,N → Ys−N+1−L,s−L is the auxiliary

operator

Ax
hL, F

(f0) = c hyL,

Ax
hL, F

(f0) = p′ ◦ (Kx + fx
0 ) · hxL + (Ky + f y

0 ) · q′ ◦ (Kx + fx
0 )h

x
L

+ q ◦ (Kx + fx
0 ) · h

y
L + (Du+Dg) ◦ (K + f0) · hL,

and we will work on AhL, F and JL,F separately.
Clearly Ax

hL, F
is uniformly Lipschitz on Σα

0, N . To deal with Ay
hL, F

,

let f0, f̃0 ∈ Σα
0, N . Then

Ay
hL, F

(f0)−Ay
hL, F

(f̃0) = φhL
(f0, f̃0)(f

x
0 − f̃x

0 ) + ψhL
(f0, f̃0)(f

y
0 − f̃ y

0 )

+ θ(f0, f̃0)(f0 − f̃0) · hL,

with

φhL
= φhL

(f0, f̃0) = hxL

∫ 1

0

p′′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds

+ hyL

∫ 1

0

q′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds

+ hxL (K
y + f y

0 )

∫ 1

0

q′′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds,

ψhL
= ψhL

(f0, f̃0) = hxL q
′ ◦ (Kx + f̃x

0 ),

θ = θ(f0, f̃0) =

∫ 1

0

(D2u+D2g) ◦ (K + f̃0 + s(f0 − f̃0)) ds.
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First we deal with case 1. By similar arguments as in Lemma 0.5.7 we
have φhL

(f0, f̃0)
∈ Y2r−2−L ⊆ Y2k−2−L, ψhL

(f0, f̃0) ∈ Yr−1−L ⊆ Yk−1−L. All the entries
of the matrix θ(f0, f̃0) belong to Y0. Also, it is clear that the quanti-
ties ‖φhL

(f0, f̃0)‖2k−2−L, ‖ψ (f0, f̃0)‖k−1−L and the ‖ · ‖Y0-norm of the
entries of θ (f0, f̃0) are uniformly bounded for f0, f̃0 ∈ Σα

0,N , the norm
depending on α0 in the form ρmα0 for some m > 0 and depending
linearly on αL.

Then, since hL is fixed, we get

‖Ay
hL, F

(f0)−Ay
hL, F

(f̃0)‖2r−L ≤ ‖φhL
(f0, f̃0)‖2k−2−L ‖fx

0 − f̃x
0 ‖2r−2k+2

+ ‖ψhL
(f0, f̃0)‖k−1−L ‖f y

0 − f̃ y
0 ‖2r−k+1

+M‖hL‖DΣL−1,k
‖f0 − f̃0‖Σ0,k

≤M αL‖f0 − f̃0‖Σ0,k
.

Similarly we also obtain ‖Ay
hL, F

(f0)−Ay
hL, F

(f̃0)‖2r−L ≤M αL‖f0−
f̃0‖Σ0,k

for cases 2 and 3, where in these cases we have φhL
∈ Yr−L−1,

ψhL
∈ Yr−l−L and the entries of θ belong to Y0. This proves that AhL, F

is uniformly Lipschitz on Σα
0, N .

Next we deal with JL,F . Recall that we have, for every L ∈
{1, . . . , r},

J x
L, F (f0, . . . , fL−1) = Λx

L,R(f
x
0 , . . . , f

x
L−1),

J y
L,F (f0, . . . , fL−1) = Λy

L,R(f
y
0 , . . . , f

y
L−1) + ΩL,F (f0, . . . , fL−1),

where Λx
L,R and Λy

L,R are given recursively in (0.5.5) and ΩL,F is given
recursively in (0.5.6).

From (0.5.5), Λi
1,R = 0 and, for L ≥ 2, one can check by induction

that

Λi
L,R(f

i
1, . . . , f

i
L−1) =

L−1∑
j=1

PL, j f
i
j ◦R, i = x, y, (0.6.6)

where each function PL, j is a polynomial on the variable t.

Indeed, P2, 1(t) = −D2R(t) ∈ YN−2. Assuming (0.6.6) and applying
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the recurrence (0.5.5) we have

Λi
L+1, R =

L−1∑
j=1

P ′
L, j f

i
j ◦R +

L−1∑
j=1

PL, j f
i
j+1 ◦RDR− Lf i

L ◦R (DR)L−1D2R

= P ′
L, 1 f

i
1 ◦R +

L−1∑
j=2

(
P ′
L, j + PL, j−1DR

)
f i
j ◦R

+
(
PL,L−1DR− L(DR)L−1D2R

)
f i
L ◦R.

We also have the recurrences

PL+1, 1(t) = P ′
L, 1(t),

PL+1, j(t) = P ′
L, j + PL, j−1DR, 2 ≤ j ≤ L− 1,

PL+1, L(t) = PL,L−1DR− L(DR)L−1D2R,

and then we also deduce by induction that PL, j = YN+j−1−L.
From this, it is clear that ΛL,R = (Λx

L,R, Λ
y
L,R) : Σ

α
L−1,N → Ys−N+1−L,s−L

is linear and bounded, so it is uniformly Lipschitz in Σα
L−1, N .

Also, from (0.5.6), one can see that ΩL,F is a polynomial operator
on the variables f1, . . . , fL−1 having coefficients depending on f0.

When L = 1,

Ω1, F (f0)− Ω1, F (f̃0)

=DKx

∫ 1

0

(p′′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds (f

x
0 − f̃x

0 )

+DKy

∫ 1

0

(q′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds (f

x
0 − f̃x

0 )

+ (Ky + f̃ y
0 )DK

x

∫ 1

0

q′′ ◦ (Kx + f̃x
0 + s(fx

0 − f̃x
0 )) ds (f

x
0 − f̃x

0 )

+ (f y
0 − f̃ y

0 )DK
x q′ ◦ (Kx + fx

0 )

+DKx

∫ 1

0

(D2u+D2g) ◦ (K + f̃0 + s(f0 − f̃0)) ds (f0 − f̃0)

and hence there exists M > 0 depending on F and α0 such that

‖Ω1, F (f0)− Ω1, F (f0)‖s−1 ≤M‖f0 − f̃0‖Σ0,N
.

For L > 1, we decompose ΩL,F = Ω
(1)
L,F + Ω

(2)
L,F , where

Ω
(2)
L,F = Ω

(2)
L,F (f0, f1) = DLg ◦ (K + f0)(DK + f1)

L,
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and Ω
(1)
L,F = ΩL,F−Ω

(2)
L,F . The difference Ω

(1)
L,F (f0, . . . , fL−1)−Ω

(1)
L,F (f̃0, . . . , f̃L−1)

is a sum of terms of the form cL(f0, f̃0)Π, where Π is a product of factors
among fx,y

j , f̃x,y
j and fx,y

j −f̃x,y
j and such that cL(f0, f̃0)Π ∈ Ys−L. From

(0.5.6) we estimate Ω
(1)
L,F (f0, . . . , fL−1)−Ω

(1)
L,F (f̃0, . . . , f̃L−1) iteratively,

where a part of it comes from

D[Ω
(1)
L−1, F (f0, . . . , fL−2)− Ω

(1)
L−1, F (f̃0, . . . , f̃L−2)].

When one differenciates formally the terms cL−1(f0)Π, the new terms
cL−1(f0, f̃0)

′Π and cL−1(f0, f̃0)Π
′ appear.

The factors of each function cL(f0, f̃0) are derivatives of K
i, f i

j , f̃
i
j ,∫ 1

0
(Q1(K

i + f̃ i
0 + s(f i

0 − f̃ i
0)) ds (f

x
0 − f̃x

0 ) and (Q2(K
i + f i

0), where Q1,
Q2 are polynomials (derivatives of p, q or u), and the derivative of∫ 1

0

Dmg ◦ (K + f̃0 + s(f0 − f̃0)) ds (f0 − f̃0), m ≤ L− 1. (0.6.7)

When taking a derivative, each term generates several terms, each one
having bigger order, the same order or the same order minus one unit.
The term Ω

(2)
L,F is Lipschitz when L < r. When L = r, it is continuous

(in the given topology) since Drg isuniformly continuous in closed balls.
On the other hand, when taking a derivative to Π we obtain terms

which have the same factors except one which is transformed to its
derivative, that is, fx,y

j is transformed to fx,y
j+1 or fx,y

j − f̃x,y
j is trans-

formed to fx,y
j+1 − f̃x,y

j+1. In any case the order decreases by one unit so
we have that their ‖ · ‖s−L-norm is bounded by ML‖(f0, . . . , fL−1) −
(f̃0, . . . f̃L−1)‖ΣL,N

, where the constant ML depends on α0, . . . , αL and
F but not on the (f i

j)
′s.

Proof of Lemma 0.5.10. By its definition, the operator TL,F satisfies

Lip TL,F (f0, . . . , fl−1, ·) ≤ max{‖(Sx
L,R)

−1‖Lip N x
L, F (f0, . . . , fL−1, ·),

‖(Sy
L,R)

−1‖Lip N y
L,F (f0, . . . , fL−1, ·)}.

(0.6.8)

From the estimates obtained in Lemmas 0.5.6 and 0.5.7 we have that
the bounds of Lip NL,F (f0, . . . , fL−1, ·) do not depend on L, and
taking κ < 1 close to 1 the obtained bounds for ‖S−1

L,R‖ decrease as L
increases, so that it holds

Lip TL,F (f0, . . . , fL−1, ·) ≤ Lip T0,F (f0, . . . , fL−1, ·), ∀ L ∈ {0, . . . , r}.
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Actually, this inequality is for the obtained bounds for the Lipschitz
constants of the family {TL,F}L. Note also that Lip T0, F (f0, . . . , fL−1, ·)
does not depend on κ.

To prove the first part of the lemma we will find an appropriate map
Tγ given in (0.5.10) (that is, an appropriate value for γ) such that if
the coefficients of F satisfy the hypotheses of Theorem 0.2.7, then the
corresponding operator TL, F̃ associated to F̃ = T−1

γ ◦ F ◦ Tγ satisfies
Lip TL, F̃ (f0, . . . , fL−1, ·) < 1.

We start by considering case 1. From (0.6.8) and the estimates
obtained in Lemmas 0.5.6 and 0.5.7, given ν ∈ (0, (k− 1)|Rk|) there is
ρ̃0 such that for ρ < ρ̃0 we have the bound

Lip TL, F̃ (f0, . . . , fL−1, ·) ≤ max
{(
ρk−1 +

1

ν

k − 1

2r − 2k + 2

)
γ |c|,(

ρk−1 +
1

ν

k − 1

2r − k + 1

)
(γ−1 k ak +M ρ)

}
.

Clearly, the condition

max
{
γ

|c|
|Rk|

1

2r − 2k + 2
, γ−1 k ak

|Rk|
1

2r − k + 1

}
< 1, (0.6.9)

is sufficient to ensure that there exists 0 < ρ0 < ρ̃0 such that Lip TL,F̃ (f0, . . . , fl−1, ·)
< 1 for ρ < ρ0, since keeping κ fixed one can choose a value for ν close
enough to (k − 1)|Rk|.

Then, taking γ =
√

k ak
c

2r−2k+2
2r−k+1

, condition (0.6.9) is given by

2k(k + 1)

(2r − 2k + 2)(2r − k + 1)
< 1,

which holds for any k ≥ 2 and r ≥ 3
2
k. Hence, if r ≥ 3

2
k, the operator

TL, F̃ associated to F̃ = T−1
γ ◦ F ◦ Tγ for the chosen value of γ satisfies

Lip TL, F̃ (f0, . . . , fL−1, ·) < 1, for every L ∈ {0, . . . , r}, provided that
ρ < ρ0.

For cases 2 and 3 of the reduced form of F the result follows in a
similar way choosing an appropriate value for the parameter γ.

For case 2 we have, from (0.6.8) and the estimates obtained in Lem-
mas 0.5.6 and 0.5.7, that the condition

max
{
γ

|c|
|Rl|

1

r − 2l + 2
, γ−1 (l − 1) |Ky

l bl|+ k ak
|Rl|

1

r − l + 1
,
|bl|
|Rl|

1

r − l + 1

}
< 1,

(0.6.10)
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is sufficient to ensure that there exists ρ0 > 0 such that Lip TL,F (f0, . . . , fl−1, ·) <
1 for ρ < ρ0.

Then, taking γ =
√

(l−1) |Ky
l bl|+k ak
c

r−2l+2
r−l+1

, condition (0.6.10) is given

by

max
{ β

(r − 2l + 2)(r − l + 1)

(
(l − 1) +

c k ak
b2l

β
)
,

β

r − l + 1

}
< 1,

where β = 2l |bl|
|bl−

√
b2l +4 c ak l|

, which is the condition for F assumed for case

2.
For case 3 we have, again from (0.6.8) and the estimates obtained

in Lemmas 0.5.6 and 0.5.7, that the condition

max
{
γ

|c|
|Rl|

1

r − 2l + 2
, γ−1 (l − 1) |Ky

l bl|
|Rl|

1

r − l + 1
,
|bl|
|Rl|

1

r − l + 1

}
< 1,

(0.6.11)
is sufficient to ensure that there exists ρ0 > 0 such that Lip TL,F (f0, . . . , fl−1, ·) <

1 for ρ < ρ0.

Taking γ = |bl|
|c|

√
(l−1)(r−2l+2)

l(r−l+1)
, condition (0.6.11) is given by

max
{ l(l − 1)

(r − 2l + 2)(r − l + 1)
,

l

r − l + 1

}
< 1,

that is,
l(l − 1)

(r − 2l + 2)(r − l + 1)
< 1,

which is the condition for F assumed for case 3.
Finally we prove that given a map F satisfying the hypotheses of

Theorem 0.2.7 such that the associated operators TL,F satisfy Lip TL,F (f0, . . . , fL−1, ·) <
1 for ρ < ρ0, one can find a new ρ0, maybe smaller than the previous
one, and a choice for the values α1, . . . , αr such that, if ρ < ρ0, then
TL,F maps Σα

L,N into DΣαL
L−1, N , for every L ∈ {0, . . . , r}.

For later use, we estimate ‖TL,F (0, . . . , 0)‖DΣL−1, N
. From Definition

0.5.5 of NL,F and the definition of JL,F in (0.5.4) we have

NL,F (0, . . . , 0) = JL,F (0, . . . , 0) = (0, DL(g ◦K)).

Moreover DL(g ◦K)(t) = o(|t|s−L). Therefore, for every ε > 0, there is
ρ0 > 0 such that if ρ < ρ0, then

‖TL,F (0, . . . , 0)‖DΣL−1,N
≤ ‖(Sy

L,R)
−1‖ ‖N y

L, F (0, . . . , 0)‖s−N+1−L, s−L

≤ ‖(Sy
L,R)

−1‖ sup
t∈(0, ρ)

|DL(g ◦K)(t)|
ts−L

≤ ‖(Sy
L,R)

−1‖ ε.

(0.6.12)
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Next we proceed by induction. For L = 0, we have, for all f0 ∈ Σα0
0,N ,

‖T0, F (f0)‖Σ0, N
≤ ‖T0, F (f0)− T0,F (0)‖Σ0, N

+ ‖T0, F (0)‖Σ0, N

≤ α0 Lip T0, F + ‖T0, F (0)‖Σ0, N
.

We need to see then that there exists ρ0 > 0 such that ‖T0, F (f0)‖Σ0, N
≤

α0 provided that ρ < ρ0. Clearly this holds from the estimate obtained
in (0.6.12) since we have Lip T0, F < 1, and then one can take ρ0 such
that α0 Lip T0, F + ‖T0,F (0)‖Σ0, N

≤ α0 for ρ < ρ0. Hence we have
T0, F (Σ

α0
0, N) ⊆ Σα0

0, N .
Now, we take ρ1 < ρ0 and we denote by εL the quantity

εL = ‖TL,F (0, . . . , 0)‖DΣL−1, N
, L ∈ {1, . . . , r},

taking as the domain of the functions of Σα
L,N the interval (0, ρ1).

Continuing with the induction procedure, for each L ∈ {1, . . . , r},
we decompose

‖TL,F (f0, . . . , fL)‖DΣL−1,N
≤ ‖TL,F (f0, . . . , fL)− TL,F (f0, . . . , fL−1, 0)‖DΣL−1,N

+ ‖TL,F (f0, . . . , fL−1, 0)− TL,F (0, . . . , 0)‖DΣL−1,N

+ ‖TL,F (0, . . . , 0)‖DΣL−1,N
.

(0.6.13)

Also, from the definitions of TL,F and NL,F we have

TL,F (f0, . . . , fL−1, 0) = S−1
L,R◦NL,F (f0, . . . , fL−1, 0) = S−1

L,R◦JL,F (f0, . . . , fL−1).

Now we have to consider separately the cases L < r and L = r. For
L < r we have, from Lemma 0.5.9, that TL,F (f0, . . . , fL) is uniformly
Lipschitz with respect to (f0, . . . , fL−1) in Σα

L,N , and in particular,

Lip TL,F (·, 0) = Lip (S−1
L,R ◦ JL,F ).

Therefore, from (0.6.13) we have

‖TL,F (f0, . . . , fL)‖DΣL−1, N
≤ Lip TL,F (f0, . . . , fL−1, ·) ‖fL‖DΣL−1, N

+ Lip (S−1
L,R ◦ JL,F ) ‖(f0, . . . , fL−1)‖ΣL−1, N

+ ‖TL,F (0, . . . , 0)‖DΣL−1, N

≤ αL Lip TL,F (f0, . . . , fL−1, ·) + max {α0, . . . , αL−1}Lip (S−1
L,R ◦ JL,F ) + εL.

(0.6.14)

Then we can choose a value for the radius αL of DΣαL
L−1, N to ensure

that TL,F maps Σα
L,N intoDΣαL

L−1, N . Since we have Lip TL,F (f0, . . . , fL−1, ·) <
1, then taking

αL =
εL + Lip (S−1

L,R ◦ JL,F ) max {α0, . . . , αL−1}
1− Lip TL,F (f0, . . . , fL−1, ·)

,



48

we have, applying (0.6.14),

‖TL,F (f0, . . . , fL)‖DΣL−1, N
≤ αL,

for each (f0, . . . , fL) ∈ Σα
L,N , as we wanted to see.

For L = r we proceed in an analogous way, except for the fact that
we use the decomposition T (1)

r, F + T (2)
r, F given in Lemma 0.5.9. Since

T (1)
r, F is Lipschitz with respect to (f0, . . . , fr), its contribution is as

in the cases L < r. As we also have Tr, F (f0, . . . , fL−1, 0) = S−1
r,R ◦

Jr, F (f0, . . . , fr−1) and S−1
r,R is linear, we can denote T (i)

r, F (f0, . . . , fr−1, 0) =

S−1
r,R◦J

(i)
r,F (f0, . . . , fr−1), for i = 1, 2, with J (2)

r, F (f0, . . . , fr−1) = (0, Drg◦
(K + f0)(DK + f1)

r).
We proceed as in (0.6.13), but now for the second term of the sum

we have, applying Lemma 0.5.9,

‖Tr, F (f0, . . . , fr−1, 0)−Tr, F (0, . . . , 0)‖DΣr−1, N

≤ Lip (S−1
r,R ◦ J (1)

r, F ) ‖(f0, . . . , fr−1)‖Σr−1, N

+ ‖(Sy
r,R)

−1‖‖Drg ◦ (K + f0)(DK + f1)
r‖s−r.

To bound the quantity ‖Drg ◦ (K + f0)(DK + f1)
r‖s−r, note that we

have Drg(x, y)
= o(‖(x, y)‖0).

For case 1 of the reduced form of F we have (DK + f1)
r ∈ Yr and

thus, for every ε > 0 there is ρ0 such that if ρ < ρ0, then

‖Drg◦(K+f0)(DK+f1)
r‖r = sup

t∈(0,ρ)

1

tr
|Drg◦(K+f0)(t)(DK+f1)

r(t)| < ε.

Similarly, for cases 2 and 3 we have (DK + f1)
r ∈ Y0 and

‖Drg◦(K+f0)(DK+f1)
r‖0 = sup

t∈(0,ρ)
|Drg◦(K+f0)(t)(DK+f1)

r(t)| < ε.

Then, for the chosen radius ρ1 we denote ε̂ = ‖Drg ◦ (K + f0)(DK +
f1)

r‖s−r and similarly as in (0.6.14) we have

‖Tr, F (f0, . . . , fr)‖DΣr−1, N

≤ αr Lip Tr, F (f0, . . . , fr−1, ·) + max {α0, . . . , αr−1}Lip (Sr,R ◦ J (1)
r, F ) + εr + ε̂,

and therefore the statement of the lemma follows choosing

αr =
ε̂+ εr + Lip (S−1

r,R ◦ J (1)
r,F ) max {α0, . . . , αr−1}

1− Lip Tr, F (f0, . . . , fr−1, ·)
.
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Proof of Lemma 0.4.10. The proof is a simplified version of the one
of Lemma 0.5.10, here the functions in the spaces Xn being defined
in sectors S(β, ρ) instead of the interval (0, ρ). To prove that Tn,N is
contractive for n > n0 we proceed as in Lemma 0.5.10 for L = 0, but
here the index n appears in the denominator of the bound obtained for
Lip Tn,N , proving that the operator is contractive for n large enough.
The second part of the lemma if proved also as in Lemma 0.5.10 for L =
0. In this case we have Tn,N(0) = S−1

n,N En, and thus ‖Tn,N(0)‖Σn,N
< ε

for ρ sufficiently small.

0.7 Conclusions

In this paper, we have considered two-dimensional maps with a parabolic
fixed point with non-diagonalizable linear part in both the analytic and
differentiable cases. We have considered three different cases depending
on the nonlinear terms (the generic maps are contained in case 1).

In the analytic case, we have proved the existence of an analytic
one-dimensional invariant manifold (away from the fixed point) under
suitable conditions on some of the coefficients of the nonlinear terms of
the map. The existence of an analytic manifold in such case was already
proved in [12] using a variation of McGehee’s method. However, here we
have used the parameterization method, which provides approximations
of the manifolds up to any order, and we have also presented an a
posteriori result.

In the Cr case, first we have used our results for analytic maps ap-
plied to the Taylor polynomial of degree r of the map. In this way we
have obtained an analytic invariant manifold which is used as an ap-
proximation to apply the parameterization method to the original map.
Moreover, we have applied the fiber contraction theorem to obtain the
differentiability result. Concretely, we have proved that if the regularity
of the map is bigger than some (easily computable) value, then there
exists an invariant manifold of the same regularity, away from the fixed
point.

This is in contrast with the results in [29], where in our case 1, it is
proved that the manifolds are of class C [(k+1)/2], where k is as in Section
0.2.1, even if they use the Poincaré normal form instead of our reduced
form. In that case, the obtained regularity also holds at the fixed point.

Throughout the paper, the results are stated for stable curves. How-
ever, we showed that the same results hold true for unstable curves and
that they can be obtained directly from the stated results, without hav-
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ing to invert explicitly the given map.
As in the analytic case, for the Cr case we provided approximations

of the invariant manifolds up to an order that depends on the regularity
of the map.

We remark that, from the computational point of view, since the
dynamics on the invariant manifold close to the fixed point is extremely
slow, it is important to have good approximations of the manifold in
a not so small neighborhood of the fixed point in order to be able to
globalize the local manifold with a reasonably small number of itera-
tions.

Acknowledgments. The second author acknowledges a useful dis-
cussion with Lev M. Lerman. Both authors thank the referees for
their comments, which permitted to improve the final version of the
manuscript.



Bibliography

[1] (MR2030148) [10.1016/j.jde.2003.07.005] I. Baldomá and E.
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