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a b s t r a c t 

This paper focuses on the capture of Near-Earth Asteroids (NEAs) in a neighbourhood of 

the L 3 point of the Earth-Moon system. The dynamical model for the motion of the aster- 

oid is the planar Earth-Moon-Sun Bicircular problem (BCP). It is known that the L 3 point 

of the Restricted Three-Body Problem is replaced, in the BCP, by a periodic orbit of cen- 

tre ×saddle type, with a family of mildly hyperbolic tori that is born from the elliptic di- 

rection of this periodic orbit. It is remarkable that some pieces of the stable manifolds 

of these tori escape (backward in time) the Earth-Moon system and become nearly circu- 

lar orbits around the Sun. In this work we compute this family of invariant tori and also 

high order approximations to their stable/unstable manifolds. We show how to use these 

manifolds to compute an impulsive transfer of a NEA to an invariant tori near L 3 . As an ex- 

ample, we study the capture of the asteroid 2006 RH120 in its approach of 2006. We show 

that there are several opportunities for this capture, with different costs. It is remarkable 

that one of them requires a �v as low as 20 m/s. 
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1. Introduction 

Today, several space agencies and private companies are considering the exploitation of raw materials from asteroids, e.g., 

gold, iridium and platinum [1,29,37] . Metals such as gold or platinum could be transported to Earth, while more common

metals could be used for construction in space [30] . Different options have been pointed out to obtain these materials

from asteroids. One option is to send a robotic probe to visit an asteroid, collect such materials and bring them back to

Earth. A second option is to attach a propulsion system to the asteroid and, by means of a small manoeuvre, capture it into

a suitable orbit of the Earth-Moon system. This last technique, although difficult to carry out, allows for a much simpler

mining strategy once the asteroid is inside the Earth-Moon system. In this context, near Earth asteroids (NEAs) offer very 

suitable targets. 

There are several works in the literature that analyse the capture near the L 1 and L 2 collinear points (for a recent review,

see [34] ). For instance, [33] studies the capture opportunities for a selection of NEAs targeting Lyapunov and Halo orbits of

the Earth-Sun Circular Restricted Three-Body Problem (RTBP). The capture of NEAs targeting L Lyapunov and Halo orbits 
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in the Earth-Moon RTBP is discussed in [35] . In both works, the case of asteroid 2006 RH120 is analysed, resulting in costs

between 58 m/s and 298 m/s in the first case (Earth-Sun RTBP) and less than 500 m/s in the second (Earth-Moon RTBP). The

attention paid to the collinear points L 1 and L 2 is due to their strong instability and low energy level, that aids to a rapid

dynamics to enter and leave the system passing close to the small primary, either the Moon in the Earth-Moon system or

the Earth in the Sun-Earth system. However this advantage to have a fast approach is also a disadvantage to control it, since

high fuel costs have to be employed to avoid the asteroid to leave this region with the same facility as it is approached.

Not to mention the risks of a crash into the Moon or the Earth. Other works suggest the capture of an asteroid without

targeting any particular orbit, for example, in [36] , the authors analyse the lengthening of the time that the asteroid 2006

RH120 was orbiting the Earth in its last approach in 2006, by sweeping a three dimensional mesh on the parameters that

define a low thrust maneouver. Among their results, a manouver of total �v of only 32 m/s is found to have been able to

extend this time another five years. 

In this paper we propose the neighbourhood of the L 3 point of the Earth-Moon system as one of the potential destina-

tions for a captured asteroid. One of the advantages of this region is a very mild instability that allows for an extremely

cheap control to keep the asteroid there: the station keeping manoeuvres to remain in the neighbourhood of L 3 are of just

some cm/s per year [11] . So, it is very cheap to keep the asteroid in that region, in order to perform a mining process or

just waiting for the right moment to send it towards to some other region. Another advantage of this region is that, as we

will see later on, there are invariant manifolds connecting the vicinity of L 3 with the trajectories of some NEAs. 

The model we have used is the planar Bicircular model. In this model, Earth and Moon revolve in circular orbits around

their centre of mass, and this centre of mass and the Sun revolve in circular orbit around the (Earth+Moon)-Sun centre of

mass. The description of the motion of a fourth infinitesimal particle moving under the gravitational attraction of these three 

masses is known as the Bicircular problem (BCP). The BCP is usually written as a periodic time-dependent perturbation of 

the RTBP, where the time dependence comes from the presence of the Sun. In this model, when the infinitesimal particle

is at some distance from Earth and Moon it follows a nearly-Keplerian orbit around the Sun, while when enters the Earth-

Moon systems it follows the dynamics of a Restricted Three-Body Problem with a perturbation coming from the Sun. Hence, 

it seems a natural initial model to study the capture of a NEA. 

It is well-known that the L 3 point of the RTBP becomes a periodic orbit in the BCP model of centre ×saddle type. It is

also well known that, under generic conditions, the elliptic directions of such a periodic orbit give rise to a one-parametric

family of quasi-periodic motions (invariant tori) with two basic frequencies, one coming from the effect of the Sun and 

one coming from the family of periodic Lyapunov orbits of L 3 in the Earth-Moon RTBP [25,26] . If we use the temporal

Poincaré map given by the period of the Sun these quasi-periodic orbits become an invariant curve. The computation of 

these invariant tori is done on a suitable Poincaré map and it is discussed in [21] . These invariant curves are (mildly)

hyperbolic so that they have stable/unstable invariant manifolds. A standard procedure to compute these manifolds is to 

use the linear approximation to the manifolds and globalising them by numerical integration. In this case, to have a good

level of accuracy the numerical integrations have to start very close to the torus and, hence, a long integration time is

needed to move away from the neighbourhood of L 3 . This long integration time introduces some numerical difficulties (see

Section 4 ) and, for this reason, we have implemented the parametrization method to compute these invariant manifolds 

up to high order. As these computations are done in a Poincaré map, the parametrization method is combined by a jet

transport technique to propagate the high order derivatives needed in the parametrization method [13] . The last step of the

process is to refine trajectories on the stable manifold that arrive at some given position at a given time; the position and

time of the asteroid. The difference in their velocities gives the value of the impulse maneouver, �v , required to insert the

NEA into the stable manifold. 

As a test example, we have considered the capture of the asteroid 2006 RH120. This is a small asteroid ( 3 . 3 ± 0 . 4 meters

in size [28] ) that makes close approaches to the Earth-Moon system. In fact, it was orbiting the Earth from September 2006

to June 2007. We have selected the 2006 approach to show a strategy to capture it near the L 3 point of the Earth-Moon

system. We show that there are many options to capture it using a �v in the range 10 0-30 0 m/s, and some other options

to capture it with a �v below 100 m/s. Remarkably, there is one option with a �v as low as 20 m/s. 

The paper is structured as follows. Section 2 describes the BCP model and some previous results that will be used here,

Section 3 explains the computation of invariant manifolds of invariant curves, Section 4 discusses the use of these manifolds

to construct a capturing strategy, and Section 5 shows the results of applying the previous strategy to the capture of the

asteroid 2006 RH120. Finally, Section 6 is devoted to the conclusions and future work. 

2. The Bicircular model 

The Bicircular Problem (BCP) can be seen as a modification of the Circular Restricted Three Body Problem (RTBP), in 

which the effect of the gravitational field of a fourth body is introduced as a time-periodic perturbation [9,18] . We consider

the primaries to be the Earth and the Moon, and the perturbative body to be the Sun. As in the RTBP, units are taken

such that the distance between Earth and Moon ( 3 . 8440 × 10 5 km) and the sum of their masses ( 6 . 0457 × 10 24 kg) are

normalised to 1, and such that their period (27.321577 days) is normalised to 2 π . In these units the gravitational constant

is 1. Considering the synodic Earth-Moon RTBP frame of reference with the origin fixed at the Earth-Moon barycentre, the 
2 
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Fig. 1. Schematic of the Bicircular Model. Note that distance to Sun is not in scale. 

Table 1 

Parameters of the Bicircular model for the Earth-Moon system, in 

RTBP units. 

μ m s ω s a s 

0.012150582 328900.55 0.925195985 388.811143023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Earth placed at ( μ, 0 ) and the Moon at ( −1 + μ, 0 ), see Fig. 1 , the Hamiltonian for the planar BCP is written as 

H BCP = 

1 

2 

(p 2 x + p 2 y ) + yp x − xp y − 1 − μ

r PE 

− μ

r PM 

− m s 

r PS 

− m s 

a 2 s 

(y sin ϑ − x cos ϑ) , (1) 

being ( x, y, p x , p y ) the positions and momenta of the particle, such that r PE = ((x − μ) 2 + y 2 ) 1 / 2 , r PM 

= ((x − μ + 1) 2 + y 2 ) 1 / 2 

and r PS = ((x − a s cos ϑ) 2 + (y + a s sin ϑ) 2 ) 1 / 2 are the distances from Earth, Moon and Sun to the particle, respectively. m s 

is the mass of the Sun, a s is the distance between the Sun and the Earth-Moon barycentre, and ϑ = ω s t is the angle that

specifies the position of the Sun at each time t , where ω s is the Sun angular velocity with respect to the Earth-Moon system,

see Fig. 1 . In this system, the period of the Sun, T = 2 π/ω s ≈ 29 . 53 days, coincides with the synodic period of the Moon. 

Notice that, the Hamiltonian in (1) is the Hamiltonian of the RTBP plus the last two terms that account for the solar

gravity perturbation. To justify that the effect of the Sun is small, let us note that if we expand the potential of the Sun at

the Earth-Moon barycentre ( x = y = 0 ), the first order term cancels with the Coriolis term m s (y sin ϑ − x cos ϑ) /a 2 s so that

the contribution due to the gravity of the Sun starts at second order with the coefficient m s /a 3 s which makes its contribution

small (in fact, in [20] it is shown that the radiation pressure on a Solar sail in the Earth-Moon system is higher than the

gravitational effect of the Sun on the sail). In Table 1 the parameters for Earth-Moon-Sun BCP are presented in adimensional

units. Notice that in this reference frame, the Sun is seen as rotating around the Earth-Moon barycentre. Notice that in the

BCP, the gravitational attraction of the Sun affects the particle, and not to the primaries. Nevertheless, BCP has been proved

to describe dynamical phenomena in the Earth-Moon system through comparison with real system integrations, [21,22,32] . 

Under generic conditions, the equilibrium points of the RTBP are replaced by periodic orbits in the BCP, with the period

of the perturbation. In particular, for the Earth-Moon system under solar perturbation, each of the three collinear points, L 1 ,

L 2 and L 3 , are replaced by one unstable periodic orbit 1 and the triangular equilibrium points, L 4 and L 5 (that are linearly

stable in the RTBP) are replaced by three periodic orbits; two of them stable and the other one, linearly unstable, see [22,32] .

2.1. The Lyapunov family of quasi-periodic orbits near L 3 

The periodic orbit of the BCP replacing the L 3 point of the RTBP is of centre ×saddle type. Therefore, under generic hy-

pothesis, there exists a Cantor family of quasi-periodic orbits emanating from its centre direction [25,26] . The fact that the

family is Cantorian means that there is an infinite number of holes in the family. These holes correspond to resonances and

are exponentially small with the order of the resonance [26] . This implies that only a few of them are visible, corresponding

to low order resonances. The resonances here are all of high order and this makes that, with the usual double precision

accuracy, the family looks like if it were continuous. The family of quasi-periodic solutions around L 3 have two basic fre-

quencies (the frequency of the Sun in the BCP plus a frequency coming from the centre direction of the periodic orbit) and

inherit the hyperbolic character of the periodic orbit. Next, we summarise the computation of this family of quasi-periodic 

motions and their linear stability (for more details, see [21] ). 
1 The L 2 point is a bit more involved, see [5,19,31] 
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Fig. 2. Left: the family of invariant curves around L 3 projected in XY -plane; the Earth is included as a black circle of corresponding radius. Right: hyperbolic 

eigenvalues of the invariant curves according to their distance to the periodic orbit replacing L 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the time dependence of the Hamiltonian is periodic, we use the Poincaré map P defined with the period T of this

time dependence. This is a 4D discrete autonomous dynamical system whose fixed points correspond to periodic orbits of 

period T of the Hamiltonian. In the same way, the above-mentioned quasi-periodic orbits become invariant curves for this 

map. An invariant curve can be represented by a smooth map ϕ : T 

1 → R 

4 that satisfies an invariance condition, 

P (ϕ(θ )) = ϕ(θ + ω) , ∀ θ ∈ T 

1 , (2) 

where ω ∈ T 

1 is the frequency of the invariant curve. To approximate invariant curves, we represent them by truncated

Fourier series and we apply a Newton method to find the Fourier coefficients that solve the invariance equation (2) . The

number of Fourier coefficients is selected according to the accuracy requirements. Once the invariant curve is computed, its 

stability is obtained from the following generalised eigenvalue problem, 

D x P (ϕ(θ )) ψ(θ ) = λ
ω ψ(θ ) , (3) 

where 
ω denotes the operator 
ω : C(T 

1 , C 

4 ) → C(T 

1 , C 

4 ) such that 
ω ψ(θ ) = ψ(θ + ω) . As before, this eigenproblem is

solved in the space of Fourier coefficients. Following [23] it is not difficult to see that it has 4 distinguished eigenvalues: a

couple of 1 (a 1 refers to the tangent direction to the invariant curve and a 1 refers to the tangent direction to the family of

invariant curves), and a real couple λu , λs = λ−1 
u with, say, | λu | > 1 . Then, the eigenfunctions of eigenvalues λu and λs give

the linear approximation to the unstable and stable manifolds: for instance, if ϕ is the invariant curve, and ψ the stable 

eigenfunction, then 

(θ, σ ) �→ ϕ(θ ) + ψ(θ ) σ, (θ, σ ) ∈ T 

1 × R , (4) 

is the linear approximation to the stable manifold. Of course, this approximation is accurate only for small values of | σ | . 
Fig. 2 (left) shows the family of invariant curves that emanates from the centre direction of the periodic orbit that

replaces L 3 in the BCP model. This family and its stability has already been computed in [21] . Fig. 2 (right) shows the

eigenvalues λs and λu . The horizontal axis identifies the invariant curves by their distance to the periodic orbit replacing L 3 .

This distance is defined as follows. The periodic orbit that replaces L 3 is seen as a fixed point p 0 of the map P . Due to the

symmetries of this problem, it happens that p 0 is on the OX axis. On the other hand, the parametrization of the invariant

curves, θ �→ ϕ(θ ) , has been chosen such that ϕ(0) is on the OX axis and to the left of p 0 . Then, the distance between the

curves and the periodic orbit is defined as the distance, on the OX axis, between the points p 0 and ϕ(0) . This distance is

what we have called “distance to L 3 ”, for short. 

3. Invariant manifolds of invariant curves 

In this section we focus on the effective com putation a high order approximation to the invariant manifolds of an invari-

ant curve. We will use the well-known parametrization method, that has been used for numerical computations in the 80’s 

by C. Simó to approximate the invariant manifolds of equilibrium points of ODEs and fixed points of maps (see also [10] ),

but it is remarkable that this method is also an excellent tool to prove the existence of invariant manifolds, as shown in

[7] . A very good exposition can be found in the book [16] . The case of the stable/unstable manifolds of an invariant curve

of quasi-periodic maps is considered in [17] . In this paper, we combine the parametrization method with the jet transport

technique to compute accurate high order approximation of stable/unstable manifolds of invariant curves of Poincaré maps. 
4 
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3.1. Jet transport 

Jet transport is a computational technique to compute high order derivatives of the flow of an ODE with respect to initial

data and/or parameters [2–4,6,38] . It is based on using automatic differentiation [15] on a numerical integration of ODEs. The

main idea is to replace the basic arithmetic of the integrator by an arithmetic of (truncated) formal power series in several

variables. The formal power series codifies the value of a function (the constant term) and their derivatives (the coefficients 

of each monomial), and the propagation of these power series through the numerical integration produces exactly the same 

results as the integration of the corresponding high order variational equations of the ODE [13] . Although other options are

possible, here we have used, as basic numerical integrator, the Taylor method [27] that has been modified to operate on

power series, see [13] . 

3.2. The parametrization method 

Let us describe the procedure with some level of detail for our situation. First, let us write a formal Taylor-Fourier ex-

pansion of the invariant manifold depending on two parameters, θ ∈ T 

1 and σ ∈ R , 

W (θ, σ ) = a 0 (θ ) + a 1 (θ ) σ + 

∑ 

k ≥2 

a k (θ ) σ k , 

where a k (θ ) ∈ R 

4 . It is clear that a 0 is the parametrization of the invariant curve ( ϕ in (4) ) and a 1 the eigenfunction ( ψ in

(4) ) and this gives the linear approximation to the invariant manifold. To compute the functions a k , k ≥ 2 , we use that the

manifold must be invariant under the Poincaré map P , 

P (W (θ, σ )) = W (θ + ω, λσ ) , (5) 

where λ is the eigenvalue related to the eigenfunction ψ . This invariance condition can also be visualized with the help of

a commutative diagram, 

where (
ω × �)(θ, σ ) = (θ + ω, λσ ) . It is clear that 

W (θ + ω, λσ ) = a 0 (θ + ω) + a 1 (θ + ω) λσ + 

∑ 

k ≥2 

a k (θ + ω) λk σ k . 

As it is usual in these situations, we find the coefficients a k order by order. Let us denote by W m 

the truncation 

W m 

(θ, σ ) = a 0 (θ ) + a 1 (θ ) σ + 

m ∑ 

k =2 

a k (θ ) σ k , 

and let us assume that we know W m −1 and we want to compute W m 

(that is, we assume we know a 0 ,..., a m −1 and we want

to compute a m 

). Applying the Poincaré map P to W m 

, 

P (W m 

(θ, σ )) = P (W m −1 (θ, σ )) + DP (W m −1 (θ, σ )) a m 

(θ ) σ m + O m +1 (σ ) 

= P (W m −1 (θ, σ )) + DP (a 0 (θ )) a m 

(θ ) σ m + O m +1 (σ ) . (6) 

As W m −1 is the Taylor-Fourier expansion of the invariant manifold, we have that it is invariant up to degree m − 1 , that is 

P (W m −1 (θ, σ )) = W m −1 (θ + ω, λσ ) + b m 

(θ ) σ m + O m +1 (σ ) , 

where b m 

(θ ) denotes the coefficient at order m that appears in the evaluation up to order m of the Poincaré map of W m −1 .

Therefore, putting this last expression into (6) we obtain 

P (W m 

(θ, σ )) = W m −1 (θ + ω, λσ ) + b m 

(θ ) σ m + DP (a 0 (θ )) a m 

(θ ) σ m + O m +1 (σ ) . 

Next, we impose the invariance condition (5) up to degree m , to obtain 

b m 

(θ ) σ m + DP (a 0 (θ )) a m 

(θ ) σ m = a m 

(θ + ω) λm σ m , 

which can be rewritten as 

(DP (a 0 (θ )) − λm 
ω ) a m 

(θ ) = −b m 

(θ ) . (7) 

This is an equation that, under generic conditions of non-resonance, uniquely determines the function a m 

. The numerical 

treatment of this equation is discussed in the next section. 

Note that this procedure is valid for parametrizing both the stable and the unstable invariant manifold of an invariant

curve. However, when applying the map P forward in time to compute the stable invariant manifold the expanding effect 
5 
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of the (unwanted) unstable direction amplifies the error propagation. For this reason, it is more accurate to parametrize 

the stable invariant manifold by imposing the invariance equation on the inverse of the Poincaré map, that can be easily 

obtained by integrating backward in time, 

P −1 (W (θ, σ )) = W (θ − ω, 
σ

λ
) . (8) 

Again, we solve (8) order by order. Obviously, as before, order 0 and order 1 correspond to the invariant curve and the

associated eigenfunction, respectively. In general, assuming that we know the coefficients up to order m − 1 , coefficient 

a m 

(θ ) satisfies the system given by 

(DP −1 (a 0 (θ )) − λ−m 
−ω ) a m 

(θ ) = −b −m 

(θ ) , m ≥ 2 , (9) 

where, as before, b −m 

(θ ) denotes the coefficient at order m of the evaluation by the inverse Poincaré map of the manifold

up to order m − 1 . 

3.3. The numerical algorithm 

We have already seen that the order zero and one coefficients, a 0 and a 1 , correspond to the invariant curve and to

the linear approximation to the invariant manifold, respectively, and that the coefficients of order higher than one, a k are

obtained by solving recursively the system in Eqs. (7) or (9) . In this section we detail the algorithm for computing these

coefficients of the parametrization of the invariant manifolds. 

As it has been mentioned before, the procedures to compute the invariant curve and linear stability can be found in

[8,12,23] . There, the discretization of the invariant curve is done by means of a real (truncated) Fourier series in terms of

the angle θ ∈ [0 , 2 π ] , 

ϕ(θ ) ≈ α0 + 

N ∑ 

κ=1 

ακ cos (κθ ) + βκ sin (κθ ) , (10) 

being ( α0 , ακ , βκ ) the Fourier coefficients for the modes κ ∈ [1 , N] . The generalised eigenvalue problem (3) is also solved in

terms of the Fourier coefficients, so that eigenfunctions are also approximated by Fourier series truncated at order N. 

Expressing the invariant curve and eigenfunction as Fourier series is very convenient from the point of view of compu- 

tations, due to their fast convergence. Moreover, the operator 
ω is just a 2 ×2 block diagonal matrix matrix that applies

a rotation equal to ω to each pair of coefficients (ακ , βκ ) . Following this idea, we solve the system in (7) in terms of the

Fourier coefficients, what gives the expression for each a k also as a Fourier series. 

Then, the algorithm for computing the parametrization of the invariant manifold of an invariant curve up to order K starts 

by defining a mesh of angles along the curve: θ j = 2 π j/� , being � the number of points of the mesh such that j ∈ [0 , � ] and

θ j ∈ [0 , 2 π ] , and to apply the jet transport to each of these points in order to obtain the values b k (θ j ) . Notice that, the jet

transport algorithm applied to an invariant manifold up to order k − 1 gives the coefficients of order equal and higher than

k , but only order k is of interest at each application. 

Once we have the table of values ( b k (θ j ) , θ j ), we compute the corresponding Fourier series for the b k (θ ) coefficients,

and solve one linear system in terms of Fourier coefficients to find coefficients a k (θ ) as Fourier series: 

(DP (a 0 (θ )) − λk 
ω ) a k (θ ) = −b k (θ ) . (11) 

Note that, b k (θ ) is then parametrized by a Fourier series of � = 2 N + 1 , Fourier coefficients, and consequently, the series for

a k (θ ) has the same number of modes. For convenience, we start using the same number of modes used for discretizing

the invariant curve and its eigenfunction. However, it may happen that this number, that is good enough for approximating 

the invariant curve and the eigenfunction, does not approximate accurately some of the a k (θ ) for k ≥ 2 , and therefore it

is necessary to add modes to the Fourier series in order to improve the approximation of the invariant manifold. As the

accuracy of each a k (θ ) is related to the accuracy of the corresponding b k (θ ) , when we compute the Fourier series of b k (θ )

we check the Euclidean norm of its last two modes to be below some tolerance. If it is not, we re-compute the table

of values ( b k (θ j ) , θ j ) for a larger number of points such that the number of modes of b k (θ ) is increased, as well as the

number of modes of a k (θ ) . 

Let us now summarise our numerical implementation. The starting point is a truncated Fourier series that approximates 

the invariant curve ( ϕ) and a truncated Fourier series that approximates the eigenfunction ψ giving the linear approximation 

to the manifold. Then, a 0 = ϕ and a 1 = ψ . Moreover, we need the (2 N + 1) n × (2 N + 1) n matrix that contains the matrix

flow DP (a 0 ) (this is the same matrix that appears in the Newton method and in the stability computation (3) ). As before,

2 N + 1 is the number of Fourier coefficients and n the dimension of the dynamical system ( n = 4 in our case). The chosen

values of N and the accuracy is discussed later on (see also [21] ). 

Note that at each step we have to evaluate P (W m 

) , where W m 

is a Taylor-Fourier series. As the jet transport technique

only allows to evaluate P on power series, we compute { W (θ j , σ ) } j being θ j a suitable equispaced mesh of values of θ . Each

 (θ j , σ ) is now a power series so we can compute P (W (θ j , σ )) and, using a Fourier transform, we obtain P (W m 

) . 

To end this section, let us summarise the computation of the coefficients a k , k ≥ 2 , which is done recurrently order by

order. So, assume that we know W m −1 and we want to compute W m 

. We also assume that we have computed and stored

the matrix (of size (2 N + 1) n × (2 N + 1) n ) DP (a (θ ) . Then, 
0 

6 
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1. Evaluate W m −1 (θ j , σ ) on a mesh { θ j } � −1 
j=0 

of � points ( θ j = 2 π j/� , � = 2 N + 1 ), to obtain � polynomials of degree m − 1 . 

2. Apply the jet transport algorithm (working with polynomials of degree up to m ) to each of the W m −1 (θ j , σ ) polynomials

to obtain the table of values ( θ j , b m 

(θ j ) ) from the coefficient of degree m . 

3. Apply a Fourier transformation to obtain b m 

(θ ) . We use as an estimate of the error the size of the last terms of these

Fourier coefficients. If this estimate is not small enough, we repeat steps 1 and 2 with larger value of � . 

4. Solve the linear system in (11) to obtain a m 

, and then W m 

= W m −1 + a m 

σ m . 

These steps are applied up to the desired degree for the invariant manifold. 

The previous algorithm is applied “as is” to compute the unstable manifold. For the stable manifold, to minimise the 

error propagation, this method is applied to the inverse map P −1 . The reason for this better numerical behaviour is that the

stable manifold is a repelling manifold under P and not repelling under P −1 (and the unstable manifold is repelling under

P −1 and not repelling under P ). Moreover, note that the computation of the inverse of the Poincaré map, P −1 , can be done 

very easily by simply integrating backward in time. 

3.4. Fundamental Cylinder (FC) 

The stable/unstable manifolds of an invariant curve can be seen as cylinders, parametrized by the same angle as the 

invariant curve ( θ ) and a parameter to move away from the invariant curve ( σ ). Looking at these parameters, the dynamics

on this cylinder is very simple: the point corresponding to the parameter values (θ, σ ) in the unstable manifold is mapped

to (θ + ω, λu σ ) through P , and, equivalently, the point corresponding to the parameter values (θ, σ ) in the stable manifold

is mapped to (θ − ω, λ−1 
s σ ) through P −1 . This means that we can define a set of the form θ ∈ T 

1 , σ ∈ [ σ0 , λu σ0 ] for the

unstable manifold (and σ ∈ [ σ0 , λ
−1 
s σ0 ] for the stable), which can be seen as a set that generates, under iteration of the

map P (and P −1 ), the complete manifold. We will refer to such set as Fundamental Cylinder (FC). 

To simplify the discussion, let us focus on the unstable manifold. An approximation for a curve of the fundamental

cylinder of the unstable manifold is given by W 

u 
K 
(θ, σ0 ) , where K is the order of the approximation and σ0 is a sufficiently

small value. If we choose this curve as the “lower part” of the cylinder, then the “upper part” is given by W 

u 
K 
(θ, λu σ0 ) .

Note that neglecting the rotation of the angle for the upper curve does not affect the definition of the fundamental domain.

The parametrization of the fundamental cylinder for the unstable invariant manifold, W 

u 
K 
(θ, σ ) = 

∑ K 
k =0 a 

u 
k 
(θ ) σ k such that

σ ∈ [ σ0 , λu σ0 ] , is the following: 

z(θ, τ ) = 

K ∑ 

k =0 

a u k (θ )((1 + τ (λu − 1)) σ0 ) 
k , (12) 

where τ ∈ [0 , 1] is a parameter: when τ = 0 , z(θ, τ ) parametrizes the lower curve, W 

u 
K 
(θ, σ0 ) , and when τ = 1 , it

parametrizes the upper curve, W 

u 
K 
(θ, λu σ0 ) . The FC is used as starting place for the numerical integrations used to ex-

tend the manifold as much as needed. Note that the value σ0 has to be chosen small enough such that this representation

of the FC is accurate, but large enough to minimise the integration time to reach the asteroid. The choice of σ0 is discussed

in the next section. 

Finally, let us mention that for the fundamental cylinder of the stable manifold, W 

s 
K 
(θ, σ ) = 

∑ K 
k =0 a 

s 
k 
(θ ) σ k such that

σ ∈ [ σ0 , λ
−1 
s σ0 ] , we use 

z(θ, τ ) = 

K ∑ 

k =0 

a s k (θ )((1 + τ (1 /λs − 1)) σ ) k . (13) 

Again, z(θ, τ ) parametrizes the lower curve, W 

s 
K 
(θ, σ0 ) , when τ = 0 , and when τ = 1 it parametrizes the upper curve,

 

s 
K 
(θ, λ−1 

s σ0 ) . The globalisation is done using the inverse of the Poincaré map. 

3.5. Accuracy and tests 

In this section we discuss the choice of the degree K of the parametrization of the manifolds, the estimation of the

domain of validity of the computed parametrization, and the tests used to check the correctness of the results. We recall

that, applying the algorithm given in Section 3.3 , we approximate the coefficients a k , up to some order K, as a truncated

Fourier series, 

a k (θ ) ≈ α0 + 

N ∑ 

κ=1 

ακ cos (κθ ) + βκ sin (κθ ) . 

As a general rule, we have that the higher the degree of the parametrization K and the number of Fourier modes N, the

more accurate is the approximation of the parametrization of the invariant manifold W (θ, σ ) = 

∑ K 
k =0 a k (θ ) σ k . However,

when K is large enough, the gain of accuracy provided by a new degree K + 1 of the parametrization does not compensate

the computational cost needed to obtain this new degree. 

To fix the discussion, let us focus on the unstable manifold (a similar discussion is valid for the stable one), and let

us also assume that the value N has already been chosen to have the required accuracy, may be depending on K (see the
7 
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discussion in Section 3.3 ). A fast error estimate for the truncated expansion of the manifold follows from the size of the last

computed term (the one of degree K), 

‖ a K ‖ 1 | σ | K ≈ ε, ‖ a K ‖ 1 = | α0 | + 

N ∑ 

κ=1 

| ακ | + | βκ | . 

We have to choose a value σ̄0 > 0 such that the parametrization of a fundamental domain as in (12) is accurate up to λu ̄σ0 .

Hence, from the previous formula we obtain that 

σ̄0 ≈ 1 

λu 

(
ε 

‖ a K ‖ 1 

)
1 /K . (14) 

Therefore, given an accuracy ε, we compute the value of σ̄0 and use some σ0 ≤ σ̄0 for computing the approximation to the 

FC. Notice that, in the presence of symmetries, checking only the last order of the parametrization may cause problems 

since it could vanish depending on its parity. In this case the last two terms of the expansion have to be used. 

In order to check the final accuracy of the approximation of the invariant manifold we compare the error of the invari-

ance condition for the parametrization of the invariant manifold, W (θ, σ ) , at a given angle θ , but at two different values of

σ , say σ1 and σ2 = σ1 / 2 . Obviously, if the parametrization of the manifold has been computed up to order K, the truncation

error depends on the power K + 1 of the parameter σ . Then, for σ1 we would have that 

ε1 = | P (W K (θ, σ1 )) − W K (θ + ω, λσ1 ) | ≈ cσ K+1 
1 , 

and for σ2 , 

ε2 = | P (W K (θ, σ2 )) − W K (θ + ω, λσ2 ) | ≈ cσ K+1 
2 , 

where c is a constant. The relation between the two errors is 

ε1 

ε2 

≈ σ K+1 
1 

( σ1 

2 
) K+1 

≈ 2 

K+1 . 

Therefore, we compute the quantity 

log (ε1 /ε2 ) 

log (2) 
, 

and check that the result corresponds to K + 1 . This test has been passed for the manifolds used in this work. 

4. Computational strategy 

Some parts of the invariant manifolds of the quasi-periodic orbits near L 3 move around the Earth-Moon system, while 

other parts escape and orbit the Sun [21] . The main idea to capture a NEA in the vicinity of L 3 is to propagate, backward

in time, the stable invariant manifold of a quasi-periodic orbit near L 3 looking for encounters in positions with the target

object. The difference in velocities at this “meeting point” gives the manoeuvre to inject the NEA in the manifold so that

the natural dynamics of the problem sends the asteroid to the neighbourhood of L 3 . As mentioned in the Introduction, the

advantages of using L 3 are mainly a very low cost for the station keeping there, the possibilities offered to reach a different

region from there and the low risk of crashing during the transfer. 

It is worth mentioning that a preliminary exploration of the possibilities of L 3 for the capture was done using the linear

approximation of the invariant manifolds of the invariant curves shown in Fig. 2 . However we do not aim just to find an

invariant manifold that passes close to the position of an asteroid to justify the capture, but to be able to find the initial

condition on the fundamental domain of a torus that is sent (by the backwards flow of the BCP) to the position of the

asteroid at the right time. Notice that, when using the linear approximation of the invariant manifolds, the fundamental 

domain needs to be defined very close to the invariant curve (for σ ≤ 10 −5 ), therefore the globalisation of those initial

conditions requires numerical integration of trajectories that spend a significant amount of time just closely following the 

quasi-periodic orbit, increasing the numerical errors and making more difficult to find the initial condition that corresponds 

exactly with the position of the asteroid. This difficulty is solved using a high order parametrization method for the invariant

manifolds. 

The computational strategy for the capture that we present here is based on three steps. First of all, the positions and

velocities of the asteroid are obtained from the JPL Horizons system [24] in the ecliptic reference frame at some Julian

epochs. Therefore, a change of positions, velocities and time 2 is needed to transfer the information on the location of the

asteroid to the Bicircular model. This is done in Section 4.1 . The second step is to define the fundamental domains of the

stable invariant manifolds of tori around L 3 , globalise them backward in time, see Section 4.2 , and compare the position of

the manifold with that of the asteroid. This allows to identify sets of initial conditions on the FC that approach the asteroid.
2 We recall that the BCP is a time-dependent model. 

8 
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Finally, in Section 4.3 , we explain a Newton method used to compute the initial condition on the FC that arrives, backward

in time, to the location (positions and time) of the asteroid. 

As the BCP is a periodically time-dependent model, we can look for encounters NEA-manifolds at different times. If we 

use the Poincaré map P then we only look for encounters at time t = 0 mod T (that is, after an integer number of periods

of the BCP). In our analysis of the capture we define different temporal sections, corresponding to an integer number of

periods, to a quarter, to a half and to three quarter of the period. This has two effects; on the one hand, the relative

position with respect to the Sun changes and this can aid (or difficult) the capture, and on the other hand, the positions of

the asteroid itself are also different. 

Finally, we want to emphasise that this work studies, as an example, the capture of the asteroid 2006 RH120 in its last

approach to the Earth, but it is easy to see that the whole strategy described here can be used to study the capture of any

other asteroid of interest. 

4.1. Change of coordinates and time 

In order to define the change of coordinates and time for the asteroid from the ones provided by JPL (ecliptic coordinates

centered at the Solar system barycentre) to BCP coordinates we make use of two facts: first, in the BCP the positions of the

Earth, Moon and Sun at time 0 correspond to a lunar eclipse, so it is easy to identify a real lunar eclipse and take it as the

origin for time ( t 0 = T ECLIPSE in Julian days), the second fact is that the time is a periodic variable in this model, therefore,

at every solar period the Earth, the Moon and the Sun come back to their initial positions at time 0. According to these

two facts, we can establish any initial time, t 0 , and take the ephemerides of the asteroid at every solar period, such that all

those different Julian epochs of the asteroid correspond to the same temporal section in the BCP. Then, the positions and

velocities of the asteroid are translated to the synodic reference frame of the BCP and compared with those of the invariant

manifolds of invariant curves computed at the same temporal sections. 

As it has been mentioned before, we analyse different temporal sections. Epochs defined as 

t = t 0 + N T T , where t 0 = T ECLIPSE + S T T , S T = 

{ 

0 , 
1 

4 

, 
1 

2 

, 
3 

4 

} 

, 

being t 0 the origin of time, T the solar period, N T an integer number of solar periods and S T a fraction defines the temporal

sections; for S T = 0 the epochs correspond to times 0 or “N T T ” (integer number of periods) in the BCP, for S T = 

1 
4 epochs

correspond to temporal section at a quarter of the period, for S T = 

1 
2 to a half of the period and for S T = 

3 
4 to three quarter

of the period. 

Since T = 

2 π
ω s 

in RTBP units, T = 

2 π
ω s 

27 . 321577 
2 π in days, the Julian epochs of interest for the asteroid are those such that 

t = t 0 + N T 
27 . 321577 

ω s 
where t 0 = T ECLIPSE + S T 

27 . 321577 

ω s 
, S T = 

{ 

0 , 
1 

4 

, 
1 

2 

, 
3 

4 

} 

. (15) 

Once we select suitable epochs, JPL Horizons database is used to obtain the positions and velocities of the asteroid in

the ecliptic’s plane at those specific times. A change of coordinates needs to be applied to them for their analysis in the

Bicircular Problem. In [14,21] , the change of coordinates to translate a position in the adimensional synodical reference frame 

to the ecliptic one is explained, so let us only summarise it here. Let e be the positions of the asteroid in the ecliptic frame

and a its positions on the adimensional BCP system; e and a are related by an orthogonal matrix C to change from rotating

to non-rotating frame, by a scale factor k = || R E − R M 

|| to correct the length unit and by a translation to move the origin

from the Earth-Moon barycentre b to the barycentre of the solar system, 

e = kCa + b. (16) 

Matrix C is composed by three unitary column vectors, 

c 1 = 

R E − R M 

|| R E − R M 

|| , c 3 = 

(R M 

− R E ) ∧ (V M 

− V E ) 

|| (R M 

− R E ) ∧ (V M 

− V E ) || , c 2 = c 3 ∧ c 1 , 

where R E , R M 

, V E and V M 

are the positions and the velocities of the Earth and Moon in the ecliptic frame. 

Three observations need to be done. First one, in order to translate velocities between the two systems, it is necessary

to derive (16) with respect to time, what involves the accelerations of the Earth and the Moon. Second one, as we want to

translate the positions provided by the JPL database to the BCP frame, we have to apply the inverse change of coordinates.

This requires the inverse of matrix C, that does not suppose any difficulty since it is orthogonal. And the last one, since we

consider the planar BCP, we project the positions a and their velocities to the XY -plane. 

In our example, we study the cost to capture the asteroid 2006 RH120 near L 3 . This NEA was naturally captured by the

Earth from September 2006 to June 2007. We analyse the possibilities of capture at different epochs that verify (15) , such

that all these epochs correspond to the same temporal section in the BCP for a given S T . The selected epochs go from April

2006 and May 2007, some months before and along the time of the natural capture. The reasons for choosing this time

span are the following: at these epochs the vertical coordinate is lower than in previous epochs, the change of coordinates

(16) is more precise close to (or inside) the Earth-Moon system, and finally, considering positions close to the system, the 

propagation time of the invariant manifolds is quite low, so that we can guarantee a certain level of control on the numerical

errors. 
9 
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Table 2 

Fifteen epochs corresponding to time 0 or N T T in the BCP, and the coordinates of the asteroid 2006 RH120 in the planar BCP at these 

epochs. 

it Epoch (Julian Day) x y p x p y 

1 2453838.552774182 (2006-Apr-13) 8.49569856e + 00 5.32382756e + 00 -1.32303889e + 00 6.39230591e-01 

2 2453868.083357353 (2006-May-12) 4.30485868e + 00 2.69869849e + 00 -5.98173604e-01 4.69696447e-01 

3 2453897.613940524 (2006-Jun-11) 2.20409179e + 00 3.15215977e + 00 -2.31495071e-01 4.09922742e-01 

4 2453927.144523695 (2006-Jul-10) 1.79617205e + 00 3.52278287e + 00 4.88502390e-02 5.27242305e-02 

5 2453956.675106866 (2006-Aug-09) 8.44580321e-01 1.94256864e + 00 -1.83258282e-01 -2.87989646e-01 

6 2453986.205690037 (2006-Sep-07) -2.03317473e + 00 3.96100179e-01 -3.27669077e-01 3.32987066e-02 

7 2454015.736273209 (2006-Oct-07) -1.77595242e + 00 -6.00168179e-01 1.34571469e-01 -5.87429182e-02 

8 2454045.266856380 (2006-Nov-05) -1.59983939e + 00 -1.84351841e + 00 -1.29626305e-01 1.68008169e-02 

9 2454074.797439550 (2006-Dec-05) -2.52446813e + 00 -1.45236080e + 00 4.97133752e-02 2.81586255e-01 

10 2454104.328022720 (2007-Jan-03) 5.36966985e-01 1.89106392e-01 9.19935708e-01 -1.16359612e-01 

11 2454133.858605890 (2007-Feb-02) 1.01383428e + 00 -1.06799662e + 00 -2.12516151e-01 1.87709985e-01 

12 2454163.389189060 (2007-Mar-03) -5.50357733e-01 4.66104142e-01 -1.47342869e-01 2.34743158e-01 

13 2454192.919772240 (2007-Apr-02) 1.55999311e-01 -1.47760228e + 00 1.76720970e-01 -6.54112731e-01 

14 2454222.450355410 (2007-May-01) -1.05304516e + 00 -1.90933922e + 00 1.94206705e-01 1.00575691e-01 

15 2454251.980938580 (2007-May-31) -3.67319092e-01 5.92231168e-01 2.52078533e-01 2.49872133e-01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The exact epochs and coordinates of the asteroid in the planar BCP at a temporal section corresponding to integer num-

ber of solar periods ( S T = 0 in (15) and taking T ECLIPSE = 2451564 . 69787 Julian Days) for the selected time span, are shown

in Table 2 . First column designates an identity number to each epoch. 

4.2. Invariant manifolds 

The Bicircular Problem, as many other classical mechanical systems, presents a symmetry when inverting the time; if 

(x (t) , y (t) , p x (t) , p y (t) , t) is a particular solution of the system, also is (x (t) , −y (t) , −p x (t) , p y (t) , −t) . Since the computed

invariant curves near L 3 cut symmetrically the OX axis, they are symmetric to themselves (self-symmetric), and their stable 

and unstable manifolds associated are also symmetric between them. Also, in our frame of the BCP, λu = λ−1 
s due to the

Hamiltonian structure. Therefore, we can compute only one invariant manifold (either the stable or the unstable) and have 

both, since 

W 

s (θ, σ ) { x, y, p x , p y } = W 

u (θ, σ ) { x, −y, −p x , p y } . 
In this work we have computed the unstable manifolds and we have used the symmetry to obtain the stable one. 

The family of invariant curves around L 3 covers a wide area of the Earth-Moon system, see Fig. 2 . However, not all of

them are of interest for our application, since the outermost curves are too big and too close to the Earth. Therefore we focus

on those at a maximum distance of 0.65 adimensional units from L 3 . Within this distance the parametrization method is

applied to a subset of curves separately by, approximately, 10 −3 adimensional length units, to obtain a total of 614 invariant 

curves. 

We have followed the algorithm in Section 3.3 to compute the parametrization of the invariant manifolds of these 614 

invariant curves up to order K = 16 . Looking at Fig. 2 it is clear that each invariant curve in the family has different shape

and different eigenvalues as their distance to L 3 increases. This is is why each of them is discretized by a different number

of Fourier modes. Moreover, the number of Fourier modes is not kept constant during the computation of the manifold: as it

has been explained in Section 3.3 , the number of modes is increased from one order of the parametrization to the next when

needed. Notice that each order of the parametrization, m , is computed tentatively with the same number of Fourier modes

as the coefficient of the previous order, m − 1 . The criteria we have followed to increase this number is for the Euclidean

norm of the last two terms of b m 

to be below some tolerance that also depends on the order of the parametrization, being

tol 2 = 10 −10 at order 2 and tol m 

= 2 tol m −1 for m > 2 . When this tolerance is reached, the number of modes is increased by

20. The reason for this criteria is that the requirement of accuracy can be decreased for higher order terms without loss

of accuracy for the manifold. The full computation of the parametrizations of the invariant manifolds for the 614 invariant 

curves following the procedure explained here takes less than 1.5 hours in a computer with 16 processors. 

Table 3 shows the number of Fourier modes for the coefficients of the parametrization at order 0, N κ=0 (the invariant

curve), and the number of modes needed for the coefficient at order 16, N κ=16 , for curves at different distances from L 3 in

order to illustrate how the size of the discretizing series increases according to the shape of the invariant curve and to the

degree of the parametrization. 

Once we have the parametrizations of the stable invariant manifolds for the computed curves, we check up to which 

distance from the invariant curve each of the parametrizations can be trusted. Following the criteria defined by (14) in the

Section 3.5 , for the parametrizations to satisfy an error ε below 10 −14 , the values of σ must be between 1 . 34 × 10 −1 for the

inner invariant curves of the family to 3 . 86 × 10 −2 for the outer ones, see Table 3 . This supposes a big improvement with

respect to the value σ ≈ 10 −5 needed for the linear approximation. 
10 
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Table 3 

Values of the unstable eigenvalue ( λu ), the number of Fourier modes 

needed for the orders of the parametrizations 0 ( N κ=0 ) and 16 

( N κ=16 ) and the σ parameter such that the error of the parametriza- 

tion up to order K = 16 is below 10 −14 , for invariant curves at dif- 

ferent distances from L 3 . 

distance to L 3 λu N κ=0 N κ=16 σ̄0 from (14) 

10 −3 3.37281360 25 25 1.34E-01 

0.1 3.36135224 27 27 9.28E-02 

0.2 3.32665559 28 48 7.20E-02 

0.3 3.26751807 29 69 5.86E-02 

0.4 3.18166131 32 92 5.02E-02 

0.5 3.06474188 45 125 4.45E-02 

0.6 2.90843912 72 332 4.04E-02 

0.65 2.79811097 84 424 3.86E-02 

Table 4 

Values of σ and the number of divisions taken for the mesh of ( θ, τ ) to 

define the fundamental cylinders for the invariant curves depending on 

their distance to L 3 . 

distances to L 3 | σ | considered divisions in θ divisions in τ

10 −3 - 0.1 5.00E-02 1000 500 

0.1 - 0.3 5.00E-02 2000 500 

0.3 - 0.4 5.00E-02 2500 400 

0.4 - 0.65 2.50E-02 5000 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have the information needed to define fundamental domains for the stable invariant manifolds (13) , as explained

in Section 3.4 . These domains are cylinder shaped and they are parametrized by two parameters, θ and τ , 

(θ, τ ) ∈ [0 , 2 π ] × [0 , 1] �→ z(θ, τ ) = 

K ∑ 

k =0 

a s k (θ )((1 + τ (1 /λs − 1)) σ ) k . 

Notice that σ may have positive or negative values, in order to parametrize the two branches of the stable invariant mani-

fold. Therefore, to analyse the fundamental domains, first, we need to specify a value for σ and to make a mesh on the two

parameters, such that every point in the fundamental cylinder, (θ, τ ) , is an initial condition on the stable invariant mani-

fold. For each invariant curve we need to specify the value of σ and of the number of divisions taken along the angle θ and

in parameter τ to define the mesh of its fundamental cylinder. The selected values are taken attending to the differences

observed between the parametrizations of the manifolds for curves at different distances to L 3 . Table 4 collects the values

considered depending on the range of distance at which the curve is placed. This way, the mean distance between each two

points in the mesh of any of the FC is of the order of 5 × 10 −4 adimensional units, around 200 km. 

Each of the points in the mesh, i.e. initial condition on the FC, is integrated backward in time for a maximum of 15

solar periods, by means of a Taylor method [27] . After each period of the BCP, we compute the distance to each of the

fifteen positions of the asteroid given in Table 2 and we store the minimum of this distance, jointly with the differences in

velocities between the point of minimum distance and the asteroid (we will refer to this difference as �v ). 
If, during the integration, a trajectory in the stable manifold crashes with the Earth or the Moon the integration is

stopped and we keep the information of the closest approach to the asteroid before the crash. We also compute the growth

of the derivative of the trajectory w.r.t. the initial condition (this is the typical computation done to estimate Lyapunov 

exponents) to have an idea of the error propagation due to the instabilities of the problem. If this factor grows more than

10 9 , we proceed as in the crash case, in order to discard those trajectories with significant error accumulated. 

4.3. Refining an initial condition on the FC 

In this section we present a Newton method to refine an initial condition on the FC, identified by two values θ and

τ , that arrives to the position of the asteroid, at a specific time. The seed for the Newton method is given by the first

approximation obtained in the previous section. The FC is parametrized according to (13) as 

z(θ, τ ) = 

K ∑ 

k 

a s k (θ )((1 + τ (λ−1 
s − 1)) σ ) k , 

where z(θ, τ ) is a four-dimensional vector, ( z = { x, y, p x , p y } ). Therefore, what we want is to find parameters (θ, τ ) such that

the trajectory starting at this point reaches, at some time t f , the position of the asteroid. This condition is written as 

F (θ, τ ) = { x (θ, τ ) , y (θ, τ ) } t f − { x asteroid , y asteroid } = 0 . 
11 
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This is the equation we will solve using a Newton method. The derivatives of F with respect to θ and to τ follows from the

chain rule, 

∂F 

∂θ
(θ, τ ) = D f (z(θ, τ )) t f 

K ∑ 

k =0 

∂a s 
k 
(θ ) 

∂θ

[ 
σ (1 + τ (λ−1 

s − 1)) 
] 

k , 

∂F 

∂τ
(θ, τ ) = D f (z(θ, τ )) t f 

K ∑ 

k =0 

a s k (θ ) σ k k [1 + τ (λ−1 
s − 1)] k −1 (λ−1 

s − 1) , 

being D f (z(θ, τ )) t f a 4 × 4 matrix that contains the derivative of the flow at the final time. Notice that for k = 0 , the

derivative of F (θ, τ ) w.r.t. τ is zero, since at this order, the parametrization corresponds just to the invariant curve, that

does not depend on τ . Note that these expressions involve four dimensions, but we are only interested on the first two

components, since we want to refine the values of (θ, τ ) that give the desired values for the (x, y ) coordinates at the final

time. 

5. Results for the asteroid 2006 RH120 

The strategy explained in the previous section has been applied to four different temporal sections, that is four Poincaré

maps defined at times corresponding to an integer number of solar periods ( T ), to a quarter ( T / 4 ), to a half ( T / 2 ) and to

three quarter ( 3 T / 4 ) of solar periods. 

In the time span considered, we have found several trajectories that approach different positions of the asteroid, and 

requiring a low �v for the capture at any of the four temporal sections. Since we want to compute the trajectory in the

stable manifold that arrives exactly to the position of the asteroid at the right time, we look for areas in the fundamental

domain of the invariant curves that show clearly a minimum of the distance to the position of the asteroid, what we have

called “minimum distance areas” for short. 

In order to visualise the results of globalising the invariant manifolds, we make use of colour maps corresponding to 

fundamental cylinders, such that the horizontal axis corresponds to θ ∈ [0 , 2 π ] , the vertical one to τ ∈ [0 , 1] . Therefore,

every point ( θ , τ ) is an initial condition on the FC, that is integrated backward in time and coloured according to some

magnitude. Details about the meshes used and how to compute these trajectories in the stable manifolds are presented in 

Section 4.2 . 

Each point of the FC is coloured according to the minimum distance of the trajectory starting at this point to the asteroid,

making easy to identify sets of trajectories, covering some area of the FC, that approach significantly the asteroid. In order

to reduce the possibilities to the most convenient ones, we add two restrictions for the coloured maps. The first one is

regarding to the distance to the asteroid and the second one to the maximum affordable �v . Only trajectories that get

closer than 10 5 km to the asteroid with a difference in velocities below 1 km/s, are included in the maps. Note that these

are not strong restrictions, the reason for them is only to make easy to recognise the minimum distance areas and to have

an idea of the �v that may be involved. Actually, between all the suitable trajectories that have been found, only some

of those requiring a �v below 500 m/s are presented. Also, once the minimum distance areas are identified, we use the

method explained in Section 4.3 to refine a trajectory nearby that arrives to the asteroid position. The accuracy imposed 

to the Newton method is for the trajectory in the manifold to lay as close as 10 −10 adimensional units ( ≈ 3 . 8 cm) to the

asteroid position at the right time; this tolerance is achieved with just three or four Newton iterations. 

The way to present and interpret the results is the same for any of the temporal sections, so an extended examination of

the results corresponding to the temporal section at times “0” or N T T are first given in Section 5.1 , and some of the results

for the other three temporal sections are collected, in a more schematic way, in Section 5.2 . 

At the end of Section 5.1 , we also give a brief explanation about the continuity in time of the minimum distance areas,

and its effect on the �v , in order to express the robustness of the trajectories susceptible to be used for the capture and to

point out the possibility of implementing optimisation algorithms. 

5.1. Temporal Poincaré sections at time T 

The first results show that stable invariant manifolds of tori close to L 3 (that are also the most unstable ones) reach

the positions of the NEA before the asteroid enters the Earth-Moon system (epochs it = 1, 2 and 3 of the Table 2 ), with a

low difference in velocities. Once the asteroid has entered the Earth-Moon system there are many initial conditions that 

approach the asteroid, specially for stable invariant manifolds of tori in the middle of the family, not very close to L 3 ,

however, the difference in velocities when the asteroid is in the region close to the Earth and Moon is higher than when

the asteroid is far away from any massive body, as expected according to some results found in the literature [33,35] . Finally,

when the asteroid is leaving the system, the stable manifolds reach its position with a smaller difference in the velocities

than when it is inside. In order to support these comments, three epochs are analysed in detail; it = 2, it = 7, and it = 14. Since

the procedure to obtain and present the results is the same for the three cases, we give a more detailed explanation for the

first one, and limit ourselves to a brief version for the other two, again to avoid being repetitive. 
12 
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it = 2, (2006-May-12) 

In Fig. 3 , colour maps of the FC of different tori, covering distances to L 3 from 0.01257 to 0.05784 (a length of ∼ 17400 . 33

km) are shown. The first six maps, in the first two rows, are coloured according to the minimum distance, in km, reached

between the trajectory in the stable manifold and the position of the asteroid at epoch it = 2. Belonging the first colour map

to the invariant curve that is closer to L 3 and the following ones, to invariant curves increasingly further away from L 3 . The

last six maps in Fig. 3 correspond to the same fundamental cylinders as the first two rows, this time coloured according to

the instantaneous �v in km/s, needed for the insertion of the asteroid in those trajectories belonging to stable manifolds.

Remember that only trajectories that approach that position at least at 10 5 km and require a �v of less than 1 km/s are

included in the maps. 

Recalling the effective continuity of the family of quasi-periodic orbits, we can compute any invariant curve between 

those shown in Fig. 3 and observe a similar dynamics for the invariant manifolds than that of their neighbour curves,

including presenting similar minimum distance areas. Altogether, considering the union of all these tori that present some 

clear zones of minimum distance, there exists some three dimensional regions of significant size where there are points 

that allow the capture of the asteroid with a single manoeuvre. 

Now, we analyse the maps in Fig. 3 separately. It is clear that for the first FC, two minimum distance areas are identified,

very close one to the other, for values of θ between 3 and 4, and for some τ around 0.6. Let us call the minimum distance

area on the left Minimum 1, and Minimum 2 to the one on the right. We can see these two minimum distance areas on

the FC of the manifolds of nearby invariant curves that are further away from L 3 . These minima start moving away and two

other minimum distance areas appear for the FC in the second colour maps, named Minimum 3 (the one on the left) and 4

(the one of the right). For the FC in the third map of the first row another two minima are already found, Minimum 5 and

6. In the following maps these six minima can be easily identified. Looking at same maps in last two rows of Fig. 3 , it is

clear that these minimum distance areas correspond to low values of �v . It is worth mentioning that these maps are very

similar for epochs it = 1 and it = 3. 

For each of the six minimum distance areas, and for different tori, we have computed the trajectory that exactly arrives

to the asteroid position at epoch it = 2, with the Newton method introduced in Section 4.3 . Table 5 collects the results for

the initial condition in the fundamental cylinder, θ and τ , along with the number of solar periods, N T , that this trajectory

needs to reach the position of the asteroid and the amount of �v required for the transfer. The trajectories in the stable

manifold that reach the asteroid corresponding to the first bigger two minima need five solar periods to reach the position

of interest and the �v to take advantage of their dynamics is around 254 m/s. For the next two minima, smaller in size than

the previous ones, six solar periods are required and the �v is of less than 115 m/s. Finally, for the last two, even smaller

in size, another extra solar period is needed in the propagation of the trajectories and the costs are of less than 132 m/s. 

Now, we perform the simulation of the capture of asteroid 2006 RH120. For this, we consider as starting point the

coordinates of the asteroid at epoch it = 2, add the corresponding velocity impulse, the �v included in the Table 5 , and

integrate forward in time in the planar BCP, making sure that the asteroid is trapped by the stable invariant manifolds of

L 3 , and lead to the neighbourhood of L 3 , where it remains, just spinning around the corresponding torus for long time. 

In Fig. 4 , we show the trajectories corresponding to the six minima present in the fifth colour map of Fig. 3 . It is clear

that the trajectories of the first two minima almost overlap, specially when they are far from the Earth-Moon system. Similar

effect is observed with the trajectories of the second two minima, and with the ones of the third two minima. It is clear

also the reason for the different values of the number of solar periods needed for each of the trajectories. Finally, these

trajectories do not approach much neither of the massive bodies, although they pass at a distance of less than sixty thousand

kilometres from the Moon, which makes that the norm of the derivative of the actual position w.r.t. the initial conditions

be in the range between 10 3 and 10 4 . This is a moderate error increasing factor. 

it = 7, (2006-Oct-07) 

In this case, we consider the capture in an epoch in which the asteroid has already entered the Earth-Moon system.

Fig. 5 contains colour maps of the FC of different tori, covering distances to L 3 from 0.53075 to 0.60047 (a length of about

26800.76 km). Again, the first six maps are coloured according to the minimum distance, in km, reached between the tra-

jectory in the stable manifold and the position of the asteroid, this time at epoch it = 7. And the last six maps in Fig. 5 cor-

respond to the same fundamental cylinders but coloured according to the instantaneous �v in km/s. 

In the first fundamental cylinder of Fig. 5 only one minimum distance area is identified, lets call it Minimum 1. However,

as we consider fundamental domains of curves increasingly distant to L 3 , this minimum is split into two different minimum

distance areas. Let us call Minimum 2 to the minimum distance area at higher value of τ . In the third colour map, the

first two minima are moving apart and a third one appears for low values of τ , Minimum 3. If we keep on examining

fundamental domains of invariant curves further away from L 3 , we observe that the third minimum splits into two, naming

Minimum 4 the one at lower value of τ . In the fifth colour map, the four minimum distance areas are clearly identified,

and for the last colour map Minimum 2 passes to be at the lower part of the fundamental domain. Keep in mind that this

is a normal phenomenon since there is a continuity between the boundaries of these maps. The fact that this minimum

passes from the upper part of the fundamental domain to the lower part makes necessary to integrate an extra period,

see Table 6 , since now this initial condition is closer to the invariant curve and it requires more time to approximate the

asteroid. Minimum 1 and Minimum 3 come closer as moving through the family of invariant curves of L 3 , until they join

and then disappear. Concerning to Minimum 2 and Minimum 4, they have been tracked through more invariant curves, 
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Fig. 3. Six fundamental cylinders of tori at different distances from L 3 between 0.01257 and 0.05784. Plots in the first two rows show the FCs coloured 

according to the distance to the asteroid at position it = 2, in km. Plots in the last two rows show the same FCs this time coloured according to the 

instantaneous �v in km/s. 
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Fig. 4. Simulation of the capture of the asteroid at May 12, 2006, through the trajectories in the stable manifold of the fifth FC of Fig. 3 when applying 

the obtained �v , Table 5 . The Earth and the Moon are included as black circles of corresponding radius, and the initial position of the asteroid as a red 

star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Values of θ and τ corresponding to the initial conditions in the fundamental cylinders in 

Fig. 3 , that lay on the position of the asteroid at May 12, 2006, (it = 2) after N T BCP periods, 

and the �v required for each of them. 

Min 1 Min 2 

dist to L 3 N T θ τ �v (m/s) N T θ τ �v (m/s) 

0.01257 5 3.589 0.600 254.159 5 4.029 0.609 254.188 

0.02043 5 2.953 0.580 254.098 5 4.654 0.632 254.260 

0.03213 5 2.755 0.564 254.045 5 4.826 0.659 254.341 

0.03947 5 2.709 0.555 254.018 5 4.849 0.676 254.392 

0.04926 5 2.681 0.545 253.986 5 4.839 0.701 254.464 

0.05784 5 2.672 0.537 253.962 5 4.805 0.725 254.529 

Min 3 Min 4 

dist to L 3 N T θ τ �v (m/s) N T θ τ �v (m/s) 

0.01257 

0.02043 6 3.065 0.664 114.391 6 3.702 0.690 114.414 

0.03213 6 2.591 0.636 114.346 6 4.149 0.729 114.426 

0.03947 6 2.501 0.624 114.320 6 4.216 0.749 114.425 

0.04926 6 2.442 0.611 114.283 6 4.237 0.776 114.416 

0.05784 6 2.419 0.601 114.248 6 4.222 0.801 114.403 

Min 5 Min 6 

dist to L 3 N T θ τ �v (m/s) N T θ τ �v (m/s) 

0.01257 

0.02043 

0.03213 7 3.132 0.681 131.324 7 3.506 0.707 131.301 

0.03947 7 2.791 0.656 131.348 7 3.827 0.740 131.272 

0.04926 7 2.628 0.638 131.366 7 3.958 0.771 131.247 

0.05784 7 2.556 0.626 131.379 7 3.997 0.797 131.228 

 

 

 

 

 

 

 

 

 

 

further to L 3 that the six fundamental domain included here, however the �v needed for using them in a capture increases,

see the last map in Fig. 5 . Therefore, we only focus on the results of the fundamental cylinders included in the Fig. 5 . 

As in the previous case, we use a Newton method to find the initial condition ( θ and τ on the FC) that arrives to the

asteroid 2006 RH120 at epoch it = 7. The results are collected in Table 6 . It can be observed that the �v required for the

trajectories corresponding to the minimum distance areas 1 and 3 decreases as the curve they belong to is further away

from L 3 . The opposite effect happens with the trajectories of the minima 2 and 4. 

Finally, we take the coordinates of the asteroid at epoch it = 7, we add the velocity impulse of Table 6 and we integrate

these trajectories forward in time in the planar BCP to check that the asteroid is lead towards L 3 (this is also a final test

of correctness of all the computations). In Fig. 6 the trajectories corresponding to the four minimum distance areas of the

fifth fundamental cylinder in Fig. 5 are shown. They correspond to an invariant curve for which Minimum 1 and 3 have not

yet come together, but it can be appreciated how their trajectories are approaching. For trajectories of Minima 1 and 3 the

expansion factor for the error is only of the order 10 2 , because they do not approach much any massive body and because
15 
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Fig. 5. Six fundamental cylinders of tori at different distances from L 3 between 0.53075 and 0.60047. Plots in the first two rows show the FCs coloured 

according to the distance to the asteroid at position it = 7, in km. Plots in the last two rows show the same FCs this time coloured according to the 

instantaneous �v in km/s. 
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Fig. 6. Simulation of the capture of the asteroid at October 7, 2006, through the trajectories in the stable manifold of the fifth FC of Fig. 5 when applying 

the obtained �v , Table 6 . The Earth and the Moon are included as black circles of corresponding radius, and the initial position of the asteroid as a red 

star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Values of θ and τ corresponding to the initial conditions in the fundamental cylinders in 

Fig. 5 , that lay on the position of the asteroid at the October 7, 2006, (it = 7) after N T BCP 

periods and the �v required for each of them. 

Min 1 Min 2 

dist to L 3 N T θ τ �v (m/s) N T θ τ �v (m/s) 

0.53075 6 2.970 0.539 402.596 

0.55281 6 2.867 0.585 388.037 6 3.358 0.702 427.682 

0.56617 6 2.844 0.628 379.142 6 3.451 0.800 433.318 

0.57624 6 2.840 0.656 373.419 6 3.506 0.870 436.837 

0.59139 6 2.850 0.691 365.138 6 3.584 0.985 442.115 

0.60047 6 2.872 0.691 360.775 7 4.158 0.021 445.375 

Min 3 Min 4 

dist to L 3 N T θ τ �v (m/s) N T θ τ �v (m/s) 

0.53075 

0.55281 

0.56617 6 3.307 0.204 406.799 

0.57624 6 3.146 0.285 389.217 6 3.600 0.216 434.045 

0.59139 6 3.027 0.420 373.829 6 3.737 0.280 446.723 

0.60047 6 2.964 0.533 365.323 6 3.802 0.326 452.982 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the short integration time. This factor is of the order of 10 3 for the trajectory of Minimum 4, and increases to 10 4 for

Minimum 2, due to the fact that the trajectory approaches the Moon. 

it = 14, (2007-May-01) 

In this last example of temporal section corresponding to time t = 0 mod T (or t = N T T ), we show the results for the

capture of 2006 RH120 when it is starting to leave the Earth-Moon system. As the evolution of the minimum distance ar-

eas between different tori has been detailed in previous cases, from now on the results are presented in a short version.

Fig. 7 shows the fundamental cylinders for tori at distances to L 3 from 0.52061 to 0.59139 (a length of ∼ 27207 . 85 km). In

the first three FCs, each initial condition is coloured according to the minimum distance, in km, to the position of the aster-

oid at epoch it = 14, and in the last three, they are coloured according to the difference in velocities between the trajectories

in the stable manifolds and those of the asteroid, in km/s. 

In the first colour map of Fig. 7 a curved minimum distance area seems to appear for high values of τ (if we zoom

that region we realise that there are actually two very close minima). As we examine the colour maps corresponding to

invariant curves increasingly further away from L 3 , the distance between these two separated minima increases: note that 

they move toward higher values of τ until they appear in the lower part of the fundamental cylinders. When this happens,

the trajectories corresponding to those that lay on the exact position of the asteroid, obtained as in the previous cases and

collected in Fig. 8 (left), require an extra period of integration. At the right in the same Figure, the trajectories described by

the asteroid, starting at epoch it = 14 and propagated forward in time after adding the computed �v for the two minima of

the third fundamental cylinder are presented. In this case, the two trajectories approach a little the position of the Moon,

specially the red one, for this reason the expansion factor for the error is between 10 3 − 10 4 . Nevertheless, an expansion

factor of this value is acceptable. 
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Fig. 7. Three fundamental cylinders of tori at different distances from L 3 between 0.52061 and 0.59139. Plots in the first row show the FCs coloured 

according to the distance to the asteroid at position it = 14, in km. Plots in the last row show the same FCs this time coloured according to the instantaneous 

�v in km/s. 

Fig. 8. Left, values of the initial conditions in the FCs of Fig. 7 , that after N T BCP periods lay on the position of the asteroid at May 1, 2007, (it = 14), 

and the �v required for each of them. Right, simulation of the capture of the asteroid by the trajectories in the minimum distance areas of the third FC 

when applying the obtained �v . The Earth is included as a black circle of corresponding radius, and the initial position of the asteroid as a red star. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

5.1.1. Temporal continuity 

We have performed some computations in order to analyse how the minimum distance area evolve at different time 

sections, close in time to the temporal section treated in the previous examples. The asteroid was considered twelve hours 

before and another twelve hours after the three epochs such that the time spans cover one day and are centered in each of

the three cases. 

For the first case, twelve hours before it = 2, the �v of minima 1, 2, 3 and 4 increases about 10 m/s, however for the

minima 5 and 6 it decreases to ≈ 120 m/s. When we study these minima twelve hours later than it = 2, we see that the
18 
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difference in velocities has increased for the six trajectories; about 30 m/s for Minimum 1 and 2, ≈ 70 m/s for Minimum 3

and 4 and more than 100 m/s for Minimum 5 and 6. 

In the second case, twelve hours before it = 7, the �v grows of the order of a couple of tens of m/s for the four minima.

And, twelve hours after it = 7, the minimum distance areas do not appear well defined for the first five invariant curves, but

the first two minima appear in the fundamental domain corresponding to the last one, requiring less �v for both; about 20

m/s less for Minimum 1 and about 40 m/s less for Minimum 2. 

Finally, for the last case the differences are more homogeneous. Roughly speaking, twelve hours before it = 14 the �v
needed is about 20 m/s lower than the one obtained for the two minima studied, and twelve hour after it = 14, it increases

more or less the same quantity. 

Therefore, the same minimum distance areas that are found at a specific temporal section, appear at different close 

temporal sections, varying a little the difference between the velocities of the trajectories in the stable manifolds and those 

of the asteroid. This can be used to look for the optimal time (less �v required) to perform the capture, or to use all these

minima, continuous in time, to perform a low thrust. This is left for future work. 

5.2. Temporal Poincaré sections at times T / 4 , T / 2 and 3 T / 4 

Looking at the variety of possible trajectories for the capture of asteroid 2006 RH120 offered by the stable manifolds

of the invariant curves of L 3 , it is expected that many other possibilities appear when applying the same strategy for the

capture at temporal Poincaré sections corresponding to T / 4 , T / 2 and 3 T / 4 . 

Actually, several new minimum distance areas have been found for any of these three temporal sections and for the 

different epochs of the asteroid. We do not aim to present neither all the possibilities nor different cases for any of the

temporal sections, but to give some representative results in a qualitative way and to explain, quantitatively, a couple of 

examples. 

First, we discuss the situation where the asteroid has not still entered the Earth-Moon system. Regardless of the temporal 

section applied, the obtained colour maps corresponding to fundamental cylinders of the inner tori in the family, are very 

similar to those presented in Fig. 3 , with some variations in the required �v . This is in good agreement with the temporal

continuity of the minimum distance areas exposed in Section 5.1.1 . 

Notice that the fact that these minimum distance areas are present in the fundamental cylinders of inner tori covering a

time span of more than three months and different temporal section, implies a long continuity in time of these possibilities

of capture, which is good. The reason for this to happen is that the trajectories in the stable invariant manifolds that are far

from the Earth and the Moon, are orbiting the Earth-Moon system while approaching it, the same behaviour is shown by

the asteroid before entering the system. Therefore, the trajectory of the asteroid and the trajectories on the stable manifolds 

of L 3 are continually meeting before finally entering the system, where they may behave differently. 

In fact, such a long temporal continuity is not found for any of the other minimum distance areas corresponding to

epochs in which the asteroid is inside the system. What we have observed for these epochs is a decrease in the required

�v , being in many cases even lower than 200 m/s. However, for these new temporal sections, less possibilities are available

for the epochs in with the asteroid is leaving the system. 

Finally, we present two cases, the first one concerns to the lowest �v found for the epochs in which the asteroid has

not entered yet the system, and the second one is devoted to an example of relative low �v when the asteroid is already

inside the system. 

A very cheap transfer 

If we look closely to the maps in Fig. 3 , we can observe that in the minimum distance areas, the trajectory corresponding

to the one that lays on the position of the asteroid is placed, roughly speaking, in the centre of zone, however, when we

look at the same colour maps coloured according to the �v , we see that the minimum value of �v for those areas is not

placed at their centres. It happens that half a period after epoch it = 3, the minimum in distance and the minimum in �v
more or less overlap for the first two minima of the six observed, leading to trajectories that require less than 20 m/s for

the capture. 

In Fig. 9 we show some fundamental cylinders of tori close to L 3 , at distances from 0.02159 to 0.03947. The first three

maps are coloured according to the distance between the position of the asteroid at the 25 of June of 2006 (half a period

after epoch it = 3) and the trajectories in the stable manifolds at the temporal section T / 2 ; the other three colour maps are

coloured according to the difference between velocities. It is easy to observe that the required �v has decreased significantly 

for the first bigger minima, but not for the other four. Fig. 10 (left) contains the table with the data for the initial conditions

in the FCs, corresponding to those two minima, that leads to the trajectories laying on the position of the asteroid, together

with the trajectories described by the asteroid, forward in time, after adding the velocity impulse of the third presented 

fundamental cylinder. These trajectories not only require a very low �v but also do not come close to any of the primaries,

suggesting a safe and very cheap journey for the asteroid. 

A last example 

Fig. 11 shows some fundamental cylinders for tori at distances from L 3 between 0.44160 and 0.53075. In the first three

plots, the initial conditions are coloured according to the distance between the position of the asteroid at the 14 of October
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Fig. 9. Three fundamental cylinders of tori at different distances from L 3 between 0.02159 and 0.03947. Plots in the first row show the FCs coloured 

according to the distance to the asteroid T / 2 after position it = 3, in km. Plots in the last row show the same FCs this time coloured according to the 

instantaneous �v in km/s. 

Fig. 10. Left, values of the initial conditions in the FCs of Fig. 9 , that after N T BCP periods lay on the position of the asteroid at June 25, 2006, (half a 

period after it = 3) and the �v required for each of them. Right, simulation of the capture of the asteroid by the trajectories in the two bigger minimum 

distance areas on the third FC when applying the obtained �v . The Earth and the Moon are included as black circles of corresponding radius, and the 

initial position of the asteroid as a red star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

of 2006 (a quarter of period after epoch it = 7) and the trajectories in the stable manifolds at temporal section T / 4 ; the other

three maps correspond to the same FCs, now coloured according to the difference between their velocities. Two minima are 

found, for one of them, the �v increases with the distance to L 3 , and for the other one, it decreases. As before, we have

refined trajectories near these minima that arrive exactly to the asteroid, the results are collected in Fig. 12 , left. At the

right of this figure, the trajectories corresponding to the integration of the asteroid forward in time, after adding a velocity
20 
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Fig. 11. Three fundamental cylinders of tori at different distances from L 3 between 0.44160 and 0.53075. Plots in the first row show the FCs coloured 

according to the distance to the asteroid T / 4 after position it = 7, in km. Plots in the last row show the same FCs this time coloured according to the 

instantaneous �v in km/s. 

Fig. 12. Left, values of the initial conditions in the FCs of Fig. 11 , that after N T BCP periods lay on the position of the asteroid at October 14, 2006, (a 

quarter of period after it = 7), and the �v required for each of them. Right, simulation of the capture of the asteroid by the trajectories in the minimum 

distance areas on the third FC when applying the obtained �v . The Earth is included as a black circle of corresponding radius, and the initial position of 

the asteroid as a red star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

impulse to reach the third fundamental domain are also included. In this last example, the asteroid is so close to the family

of tori around L 3 that the trajectories are pretty short. 

6. Conclusions 

This paper presents a strategy for capturing a NEA in a neighbourhood of the L 3 point of the Earth-Moon system. It is

based on the use of stable invariant manifolds of invariant tori around L of the planar Bicircular Earth-Moon system. To
3 
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compute the manifolds we first obtain a high order approximation to them by combining jet transport and the parametriza- 

tion method, and then we globalise them by means of numerical integration. This shows that a part of these manifolds exits

the Earth-Moon system and then orbits the Sun in a trajectory close to that of the Earth around the Sun, which intersects

the region of motion of NEAs. When these manifolds intersect with the position of a NEA, the difference between their

velocities ( �v ) gives the necessary manoeuvre to inject the NEA in the manifold so that it travels to the neighbourhood of

L 3 . For a NEA following an orbit similar to that of the Earth, this difference of velocities should not be very large. 

We have applied this procedure to study the capture of the asteroid 2006 RH120. In general, several possibilities for the

capture have been found, for the different positions of the asteroid and for the different temporal Poincaré maps applied 

to the stable manifolds. As expected, the �v varies depending on the relative position of the asteroid with respect to the

massive bodies in the system, being higher when the asteroid is inside the Earth-Moon system and significantly lower when 

it is still outside. In fact, one option for the capture that only requires a manoeuvre of less than 20 m/s has been analysed. 

In addition, it has been observed that the possibilities for the capture vary continuously between nearby tori in the 

family and also depend continuously in time. This suggest that the dynamics below these opportunities is robust. Moreover, 

these continuities can be exploited to perform optimisation methods and reduce, even more, the required �v . 
We want to emphasise that this machinery is valid for studying the capture of any other asteroid or space debris with

an orbit close to that of the Earth. It is also possible to use other families of quasi-periodic orbits as a target destination for

the captured object, and it may also be a tool to analyse the deflection of NEAs (with an orbit close to that of the Earth)

that pose a collision threat to the Earth. 

Finally, let us comment on some extensions of this work. The next natural steps are to use the 3D Bicircular model, to

refine the transfer trajectory and the destination orbit near L 3 to a realistic model (for instance, based on the JPL ephemeris),

and to consider the use of a low thrust propulsion system for the transfer manoeuvre. These are work in progress. 
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