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 14 

Abstract 15 

16 

An algorithm has been designed and tested which was devised as a tool assisting the 17 

analysis of geological structures solely from orientation data. More specifically, the 18 

algorithm was intended for the analysis of geological structures that can be approached 19 

as planar and piecewise features, like many folded strata. Input orientation data is 20 

expressed as pairs of angles (azimuth and dip). The algorithm starts by considering the 21 

data in Cartesian coordinates. This is followed by a search for an initial clustering 22 

solution, which is achieved by comparing the results output from the systematic shift of 23 

a regular rigid grid over the data. This initial solution is optimal (achieves minimum 24 

square error) once the grid size and the shift increment are fixed. Finally, the algorithm 25 
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corrects for the variable spread that is generally expected from the data type using a 26 

reshaped non-rigid grid. The algorithm is size-oriented, which implies the application of 27 

conditions over cluster size through all the process in contrast to density-oriented 28 

algorithms, also widely used when dealing with spatial data. Results are derived in few 29 

seconds and, when tested over synthetic examples, they were found to be consistent and 30 

reliable. This makes the algorithm a valuable alternative to the time-consuming 31 

traditional approaches available to geologists. 32 

Highlights 33 

- Structural data (azimuth/dip) classification into Orientation Domains 34 
- Development of a grid-based proximity-oriented algorithm with square-error criterion 35 
- Automatic cluster partition 36 
- Corrections designed to improve clustering results and maintain geologic criterion 37 
Keywords: 38 

Structural analysis, bedding orientation, size-oriented clustering algorithm, shifting grid, 39 

square error criterion. 40 

 41 

1. Introduction 42 

1.1 Structural analysis from orientation data 43 

The representation of the geometry of geological structures is central to several resource 44 

and environmental applications of geology, like the characterization of hydrocarbon 45 

traps, aquifers, waste disposal and CO2 repositories. In this scenario, an accurate 46 

reconstruction is fundamental to reproduce the structures under study, and this can only 47 

be achieved following a 3D approach (Zanchi et al., 2009 and references within the 48 

same volume). 49 

Orientation data analysis is a recognized fundamental step on the reconstruction of 50 

geological structures (Ramsay, 1967; Suppe, 1985; Groshong, 2006). One of the 51 

objectives of the analysis of orientation data is the discrimination of clusters. Clusters 52 
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are data subsets that represent portions of the structure having a characteristic 53 

orientation (i.e. dip domains, Gill, 1953; Suppe, 1983; Fernández, 2004; Groshong, 54 

2006). This approach can be useful where geological structures, and specially folded 55 

strata, can be represented as planar and piecewise features (Shaw et al., 2005; 56 

Groshong, 2006) and helpful in areas where structures are complex and/or under-57 

sampled (Wise, 1992; Torrente, M. 2000; Fernández et al. 2004; Carrera et al 2009). 58 

Typically, clusters can be derived by following a semi manual approach (Cruden and 59 

Charlesworth, 1972; Fernández, 2004; Mencos, 2011) which summarizes as follows.  60 

The analyst selects a subgroup of orientation data from the entire data set, which is 61 

regarded as a candidate for cluster. This selection is based on spatial and geological 62 

considerations. This is followed by the inspection of scatter and density stereoplots and 63 

the study of the relationships between the eigenvectors and eigenvalues that result from 64 

the Principal Component Analysis. Stereographic projections have been traditionally 65 

used in geology to represent and analyze different types of data sets (i.e. lines or planes) 66 

at the same time and without considering their geographical position.  67 

Two conditions need to be satisfied for the candidate to be accepted as a cluster: 68 

a) In order to compare the eigenvalues in an objective way, Woodcock (1977) 69 

introduced a criterion, which is also referred to in Fernández (2005). The 70 

condition for a set of poles to perform the same cluster is that their first ordered 71 

eigenvalue (�1) is high enough in comparison with the second (�2) and the third 72 

(�3) ordered ones. This relationship can be expressed as: 73 

�1 >> �2 >�� �3 � 0  (1) 74 

b) The second condition to be satisfied is that the subgroup of poles must lie within 75 

a range of orientations, such that: 76 

umax-umin � u0 and vmax-vmin � v0   (2) 77 



4 
 

where umax-umin denotes the range in azimuth of the data subset, vmax-vmin is the 78 

range in dip within the data subset, and [u0,v0] is a range or threshold defined by 79 

the analyst, which accounts for the variability that can be expected within 80 

orientation domains. This variability reflects instrumental error, geological 81 

roughness (e.g. lithology, bedding, texture, etc.) and sharpness (e.g. quality of 82 

exposure) of the measured feature (Cruden and Charlesworth, 1976). 83 

If both conditions are met, then the cluster characterizes an orientation domain and can 84 

be subsequently enlarged with other measurements. If not, other subgroups have to be 85 

tested. In this way, clusters characteristic of different orientation domains are retrieved 86 

by a trial and error process driven by expertise. At the end of the process, a set of mean 87 

azimuth and dip values (from now on referred to as centroids) representative of each 88 

planar orientation domain are obtained. 89 

This approach can yield different results depending upon the analyst expertise. It is also 90 

time-consuming, since it requires continued supervision and generally involves working 91 

with several types of software (for example CAD, database management systems, 92 

structural analysis and structural modelling applications, etc.). 93 

Aimed to overcome these problems, the algorithm herein provides with a fast analysis 94 

tool reading from simple ASCII text files. Interaction with user is restricted to initial 95 

input parameters and the process remains essentially unsupervised. Output stands also 96 

simple, with initial orientation data grouped as clusters representing planar orientation 97 

domains. It is important to note that the algorithm does not consider the spatial 98 

distribution of the data, hence the results do not represent structural domains. 99 

Subsequent analysis leading to structural domains can be achieved by loading the output 100 

data on a georeferenced 3-D visualization software. This is possible as the output data 101 
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preserves their original XYZ location. Then, the user needs to manually select the 102 

structural domains. 103 

It is noteworthy that this algorithm fits within a workflow developed for the 104 

reconstruction of geological structures in 3D (Fernández, 2004; Mencos, 2011). Thus, 105 

this workflow supports some aspects of the structural analysis that are not tackled by the 106 

algorithm, (e.g. the definition of structural domains on site). 107 

1.2 Clustering methods 108 

The term “clustering” regards to the unsupervised classification of elements into groups, 109 

called clusters. The existing standard methods for clustering can be divided into two 110 

main families: hierarchical and partitioning (non-hierarchical) methods. Hierarchical 111 

methods produce a nested series of partitions, while non-hierarchical methods produce 112 

only one partition. Several surveys on clustering analysis are available in the literature 113 

(Jain et al., 1999; Bock, H.H, 2002; Xu, R., 2005). 114 

Hierarchical methods are strongly dependent on the first classification step and do not 115 

have a clear criterion for the final cluster partition. Moreover, when large amounts of 116 

data need to be classified, a typical method in hierarchical clustering such as the 117 

dendrogram visualization becomes unpractical. 118 

Computationally efficient partitioning methods try to reach an optimal partition 119 

depending on a given criterion function, for instance minimizing the square-error 120 

function (i.e. the squared distances inside the clusters). The k-means (MacQueen, 1967), 121 

the simplest and most commonly used algorithm employing a square-error criterion, 122 

tends to work well with a number of isolated and compact clusters, but this condition is 123 

not guaranteed in orientation measurements. Moreover, most of the non-hierarchical 124 

methods require an a priori knowledge of the number of clusters to be obtained (e.g. 125 

Zhou and Maerz, 2002) and this condition is seldom met in geological studies. 126 
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In geological engineering, several studies exist that have been developed and used 127 

clustering algorithms to classify, group and/or characterize discontinuities. Zhou and 128 

Maerz (2002) and Tokhmechi et al. (2011) compare the application of some classical 129 

methods (Parzen classifiers, k-means, nearest neighbor, etc.). Jimenez-Rodriguez and 130 

Sitar (2006) develop a spectral clustering algorithm that combines the k-means method. 131 

Nevertheless, the above mentioned methods do not impose a size restriction to the 132 

cluster members, hence arbitrary cluster sizes are obtained (in contrast with the 133 

orientation domains here defined, see condition (2)). 134 

Thus, the above described methods will not give analogous results to the classical 135 

procedure described in the previous section. For this reason an ad hoc tool for 136 

automated clustering has been designed. This tool lays within the framework of the 137 

grid-based clustering algorithms, although with some differences compared to others 138 

existing in the literature. 139 

Central to grid-based methods is that individual measurements are converted to cell 140 

values. However, the existing methods merge initial calculated cells with surrounding 141 

ones in function of their density (i.e. number of individual measurements within each 142 

cell). These density-oriented methods are widely applied to spatial data and image 143 

processing, but they are not suitable for the geometric characterization of geological 144 

structures, in which the number of individual measurements does not necessarily 145 

constitute a criterion for cluster partition. In fact, since data distribution is not 146 

homogeneous, one orientation domain can be represented by a single data measurement. 147 

On the contrary, the developed algorithm has been designed specifically with geological 148 

considerations during cluster partition. Moreover, it represents a new approach that 149 

merges a square-error criterion function and a grid-based but size-oriented technique, as 150 

it will be detailed below. 151 
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2. The mobile rectangular grid algorithm with spherical correction 152 

2.1 Principles and notations 153 

Denoted by (u, v) is a pair of orientation angles (azimuth and dip respectively) with 154 

spherical coordinates, where azimuth u (or dip direction measured from North in a 155 

clockwise direction) takes values in [0, 360º] and dip v in [0, 90º] measured downward 156 

from horizontal. Taking unitary radius, the orientation pairs (u, v) correspond to the 157 

following Cartesian 3D-coordinates (Xs, Ys, Zs): 158 

Xs = sin u sin v,  Ys = cos u sin v,  Zs = cos v (3) 159 

These normalized direction cosinus represent unitary vectors on the sphere, and the 160 

domains separation must respect the inherent spherical geometry. Several statistical 161 

techniques exist to specifically treat the distributional properties of spherical data 162 

(Fisher et al., 1987), although they are not suitable when working on regular grids on 163 

sphere. 164 

The algorithm is based on the planar representation of orientation data considering their 165 

Cartesian coordinates (azimuth against dip in a 2-axis Cartesian plot or u-v plot). It is 166 

well known that the representation of oriented data on a u-v plot introduces a distortion 167 

that is more accentuated towards the horizontal values (maximum distortion tends to a 168 

singularity in horizontal dips) and invalidates the results of the clustering analysis. For 169 

example, in a stereographic projection, the poles of the subhorizontal planes appear 170 

clustered around the centre of the sphere, leading to the interpretation of a single 171 

orientation domain. On the contrary, in the u-v plot data close to the horizontal appear 172 

scattered in the lower part resulting in an overrepresented classification (Figure 1 A).  173 

Without losing sight of the distortion problem (that can be corrected a posteriori as it 174 

will be explained afterwards), the advantages of using a u-v plot are: 175 
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a) it facilitates the definition of a regular mesh that takes into account the range in 176 

azimuth (u0) and dip (v0) observed within orientation domains (and explained in 177 

the previous section 1.1). This regular mesh divides the orientations space in n x 178 

m regular cells or isometric areas defining orientation domains characterized by 179 

the [u0,v0] range (Figure 1 B); 180 

b) it is manageable, from a computational point of view, as opposite to spherical 181 

representations; 182 

c) a rigid shift of an initial grid can be easily implemented. 183 

With these assumptions in mind, the proposed clustering process uses the cylindrical 184 

projection (identifying continuity between 0º and 360º in azimuth, Figure 1 C, D and E). 185 

In this projection it superimposes a family of regular grids in order to find out which 186 

grid in that family best separates the orientation data. This gives a first clustering 187 

classification that is corrected later on in order to avoid singularities and correct the 188 

distortion. 189 

Before going further, given below are some details about the distortion. The distortion 190 

can be numerically evaluated as follows: 191 

Assuming a small rectangular [u0,v0] cell in the planar representation with centre (U,V). 192 

The area of its spherical image can be approximated by 193 

u0·sin(V)·v0 (4) 194 

which is smaller than u0 x v0 unless v=90º. Thus, in order to guaranty spherically 195 

isometric domains, the rectangular cells should be locally corrected taking 196 

u0 (V) × v0,  where u0 (V) = u0 / sin V  (5) 197 

where V is the dip mean value for all the measurements in the cell. Thus, the size of the 198 

cells corresponding to subhorizontal dips is enlarged, while the cells for vertical dips 199 

remain practically unchanged. The first clustering classification is then modified by 200 
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merging the domains that fit all together into a new (enlarged) cell, this new cell being 201 

centred in the redefined common centroid point. The corrections ensure that, at the end, 202 

the clusters cells are approximately of equal spherical area. These local modifications 203 

adapt the final solution to the configuration of the orientation measures and break the 204 

rigidity of the initial mesh too. 205 

206 

2.2 The algorithm 207 

2.2.1 Part I: Rigid shifting grid-based method 208 

The first part of the algorithm determines an initial partition of the orientation angles 209 

(u,v) into clusters. At the end, all the angle pairs within the same cluster will be close 210 

enough one to each other to satisfy condition (2). Solution is approached by applying a 211 

rigid shifting grid-based method to find a kind of optimal fitting. Each step is listed 212 

below in detail (Figure 2 a to e):213 

a) The algorithm reads from an ASCII file consisting in n pairs of orientation angles 214 

(u1,v1),...,(un,vn). Additional information in the ASCII file are geographical 215 

coordinates in UTM format (x, y, z) and polarity (defined by N as normal; I as 216 

reversed). 217 

b) User is required to type the tolerance accepted within an orientation domain (grid 218 

width u0; grid height v0) and a grid mobility increment parameter (p). This parameter 219 

p will determine the shifting of the regular mesh at later steps. 220 

c) The algorithm searches for horizontal data within the file (v=0). If horizontal data are 221 

found they are omitted in the cluster calculation and printed in a separate file as a 222 

single horizontal domain. This step prevents any division by 0 (see equation 5). 223 

d) The algorithm generates a regular grid with grid spacing (u0,v0) and grid vertex (the 224 

lower left point of the lower left cell) anchored in the origin of the coordinate system. 225 
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This grid separates the data into the grid cells. Given two orientation measurements 226 

(ui,vi) and (uj,vj), if they are in the same cell, then they satisfy 227 

|ui-uj | � u0  and |vi-vj | � v0  (6) 228 

At this stage, all the measurements in a cell perform a cluster. For any cluster 229 

partition, the usual R2 (R-square) statistic index is computed, 230 

R2 = 1-(variability within clusters)/(total variability) (7) 231 

where the variability is computed as the sum of the squared distances of the measures 232 

with respect to the corresponding centroid. This index is a quality criterion of fit to 233 

the particular partition. It is computed in terms of (u,v), i.e. the cylindrical 234 

representation, but it works locally well on the sphere because of the small cells size. 235 

e) The algorithm looks for an optimum cluster classification (based on R2 criterion). 236 

This is performed by moving rigidly the grid vertex (anchoring point) of that initial 237 

grid, both horizontally and vertically and by tiny increments of p size (user defined 238 

increment parameter). There will exist as many grid configurations as points fit 239 

within the lower left grid cell of the initial grid, depending on p parameter. Each of 240 

these new generated grids satisfies condition (2). The optimum, in this case 241 

depending on p, is reached when the rigid rectangular grid best fits the set of nodes, 242 

i.e. maximises R2. Notice that highest R2 is equivalent to a minimum square-error 243 

criterion function (Jain et al., 1999). The idea of shifting a grid structure has been 244 

used by several authors for shape recognition (Ma and Chow, 2004; Chang et al., 245 

2009). 246 

247 
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2.2.2 The algorithm. Part II: spherical and unrigidity corrections 248 

The second part of the method consists in applying a correction to the initial cluster 249 

distribution (Figure 2 e), aiming to reduce the distortion and improve the obtained 250 

results. The correction consists in two operations that are done simultaneously (Figure 2 251 

f to h): 252 

f) Spherical adaptation: This step is necessary to adapt the grid partition to the spherical 253 

geometry of data (Figure 3). It consists in converting the initial (u0,v0) cells 254 

(isometric on the Cartesian plane) to pseudo-isometric clusters on the sphere (Figure 255 

3 A). As it has been pointed out previously, to correct areal distortion, the resulting 256 

cell size can be rewritten as (5).257 

The new rectangular cells which size is defined by (5) are wider as they approach the 258 

zero dip area. The spherically adapted clusters are not isometric any more in the 259 

plane but they approximately are on the sphere. In this way, orientation domains 260 

(highly) horizontal will admit a strong variation in the u component (Figure 1 A). 261 

Ideally, subhorizontal nodes will be part of a single orientation domain despite of 262 

their azimuth attitude. 263 

g) Unrigidity correction: A pair of nodes can be close enough one to each other to be 264 

part of the same orientation domain (i.e. accomplish condition (2)), but the partition 265 

obtained after step (e) separates them into different clusters. This situation is related 266 

to the rigidity of the mesh that cannot be adapted to the entire set of nodes. This 267 

mesh rigidity can be improved through the application of a proximity criterion, so as 268 

to regroup some domains originally separated during the initial calculation (Figure 269 

3). This operation is performed by searching for all the initial clusters that, even 270 

separated, fit entirely within a spherically adapted cell. The search is done in an 271 

organized way starting by the closest centroid pair. 272 
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h) Final results: Output file is an ASCII data file including the location (x,y,z) of the 273 

original data point; its orientation (azimuth, dip); identification number of the 274 

orientation domain to which it belongs to; number of nodes within that orientation 275 

domain; calculated cluster azimuth (centroid azimuth); calculated cluster dip 276 

(centroid dip); distance in azimuth between the data point and the calculated cluster 277 

centroid; distance in dip between the data point and the calculated cluster centroid; 278 

range in azimuth within calculated orientation domain; range in dip within calculated 279 

orientation domain; identification number relating the data points to the position of 280 

these data points in the original file; and finally the polarity, using 0 as a normal or 1 281 

as an inverse (Table 1). 282 

As a summary, the designed algorithm subdivides a set of orientation data into constant 283 

orientation domains, using user-defined tolerance thresholds that account for variability 284 

within orientation domains. The designed approach does not require a prior knowledge 285 

of the number of clusters to identify as well as their geographic location. The program 286 

has been implemented in C. 287 

3. Sample synthetic experiments 288 

A set of experiments has been designed to test the capability of the algorithm. These 289 

experiments consist in different synthetic geological structures, each one representing a 290 

fold with a specific structural configuration. The first experiment is used to illustrate the 291 

algorithm behaviour in detail (Figure 4 B and C, see Figure 5, and 6 for results). The 292 

other experiments (Figure 7 and 8) represent more complex structures and are used to 293 

test the algorithm response in front of different ideal situations. The objective is to 294 

illustrate the relationship between the output of the algorithm and the synthetic 295 

structures, i.e. the capability of the algorithm to identify representative orientation 296 

domains at convenience. 297 
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The experiments set up has been done as follows: each structure was generated in a 3D 298 

reconstruction program by creating a folded surface (with a scale of hundreds of 299 

meters). After that, some roughness was added to the surface in order to mimic the 300 

variability that accounts for instrumental error, natural roughness and sharpness (except 301 

experiment 3, Figure 7 B). This was done using a random function (urand(0.5, -0.5) in 302 

meters) applied to the Z value of each node of the initial surface (Fig 4 A). As a result, 303 

the final orientation of the surface triangles could vary up to +-10º. Finally, a set of 304 

discrete orientation values was randomly picked on the surface, aiming to represent a 305 

realistic field data acquisition (Figure 4 B). Thus, the final result is a set of scattered 306 

points, each of them having a particular location and orientation (x, y, z, azimuth, dip). 307 

After that, the experiment set up was ready for conventional structural analysis (Figure 308 

4 C). 309 

In the first experiment, the generated structure corresponds to a kink-type fold including 310 

six planar regions separated by sharp hinges (Figure 4 B). Fold geometry is cylindrical 311 

with horizontal axis. Each of the planar regions has a characteristic orientation 312 

(dip/azimuth value). The results of the conventional structural analysis are shown in 313 

Figure 4 C, and are consistent with the six-region structure. 314 

In the second experiment, the created structure is also a kink-type fold constituted by 315 

five planar regions, within which azimuth and dip remain more or less constant (Figure 316 

7 A.1). In this case fold geometry is conical with horizontal axis. 317 

In the third experiment, the created structure is a smooth folded surface that represents a 318 

conical fold with continuous curvature (Figure 7 B.1), i.e. it can be defined as 319 

constituted by an infinite number of planar regions. In this case, dip and azimuth show a 320 

progressive change that is more pronounced close to the cone apex. 321 
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The fourth experiment represents also a kink-type fold with cylindrical fold geometry 322 

and horizontal axis. In this case, the fold has three cylindrical domains with two 323 

structural trends (Figure 7 C.1). 324 

Two additional experiments have been designed using the above described bi-axial 325 

kink-type cylindrical fold: The fifth experiment, consisting in the selection of a data 326 

subset considering only one cylindrical domain of the fourth experiment (Figure 8 A). 327 

Finally, the sixth experiment, consisting in a random selection of data extracted from 328 

the experiment 4 (Figure 8 B).  329 

3.1. Test results 330 

Experiment 1: The algorithm has been run nine times (T1 to T9) with different values of 331 

dip range (v0). Azimuth threshold has been maintained constant through all tests 332 

(u0=10º), as changes in strike are negligible in the designed synthetic structure. v0 333 

ranges from 5 to 45 degrees, with an incremental value of 5 degrees in each run. Results 334 

are summarized in figures 5 and 6.  335 

Experiment 2: The algorithm has been run two times varying dip range (v0 = 5º, 15º) 336 

and maintaining azimuth constant (u0=10º) to enhance the dip influence in cluster 337 

identification. The second run (u0,v0 = 10º,15º) solved the five planar regions of the 338 

synthetic structure (Figure 7 A.2 and A.3). 339 

Experiment 3: The algorithm has been run two times maintaining dip range constant 340 

(v0=15º) and varying azimuth range (u0= 10º, 45º). The algorithm tends to separate the 341 

data into narrower orientation domains as [u0,v0] decreases. Subvertical limbs do not 342 

show significant differences between runs due to very low azimuth variability in these 343 

areas; in contrast, subhorizontal domains are larger as azimuth increases, due to a 344 

greater variability in azimuth (Figure 7 B.2 and B.3). 345 

 346 
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Experiment 4: The algorithm has been run two times (u0,v0 = 15º,15º and 30º,15º). In 347 

this case, the algorithm identified orientation domains despite their geographical 348 

position (e.g. orientation domains within cylindrical domain number 2, Figure 7 C.2). 349 

Greater azimuth ranges (u0=30º) give a fewer number of clusters in the hinge area, 350 

where azimuth variability is higher (compared to the fold limbs). 351 

Experiment 5: The algorithm has been run once, using the same tolerance thresholds of 352 

the fourth experiment (u0,v0 = 30º,15º) to compare the results. Fewer clusters were 353 

found near the hinge area compared to experiment 4, due to a lower variability in 354 

azimuth and dip (e.g. compare the circled areas in Figure 8 A, each one containing a 355 

single cluster, in contrast with the same areas of Figure 7 C.3). This lower variability in 356 

azimuth and dip can be related to a fewer amount of data. 357 

Experiment 6: The algorithm has been run once with the same tolerance thresholds than 358 

experiment 4 (u0,v0 = 30º,15º). The use of fewer data implies les azimuth and dip 359 

variability, and therefore fewer orientation domains are obtained (Figure 8 B). However, 360 

the structure is well defined. 361 

362 

4. Discussion 363 

The synthetic experiments allowed exploring the capability of the program to solve the 364 

given structures with different resolutions, by varying one or both of the user-defined 365 

initial parameters (dip or azimuth values). Some of the results are discussed below. 366 

In the first experiment, considering that the synthetic cylindrical structure has been built 367 

using six planar domains, the best solution is when the six expected domains are 368 

distinguished (u0,v0 = 10º,5º and u0,v0 = 10º,10º). Dip ranges greater than these values 369 

produce an under-sampled structure. If the structure under study is a kink-type fold 370 
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conical structure (experiment 2), the application of the algorithm can also identify the 371 

expected five planar regions. 372 

In a real case, where the geometry of the structure under study is generally unknown, 373 

there is not a unique best-fit solution, as all possible solutions would be computationally 374 

correct. The best-fit orientation-domain discrimination will depend on the available 375 

data, the desired resolution and the geological properties of the materials under study 376 

(e.g. lithology, bedding or texture, among others) (Figure 9). Moreover, if the structure 377 

could be defined as continuous, as for example in experiment 3, then the desired 378 

resolution is definitely a key-factor for cluster partition. In such a case, there would be 379 

as many clusters as initial data exist, because the structure is defined as smooth and 380 

continuous (Figure 7 B). Ideally, there are not a finite number of planar domains that 381 

define the geometry of the structure, so that the final solution depends on the analyst. 382 

Initially, no geographic position is required to identify planar regions considering their 383 

orientation, hence orientation data with similar values can be grouped into the same 384 

cluster even if they are geographically separated (experiment 4, Figure 7.C). This can 385 

give relevant information about the fold geometry and/or evolution when it is framed 386 

within a reconstruction process. As the reconstruction process goes forward, it could be 387 

necessary to spatially select data subsets in order to refine the results (Figure 8 A) 388 

The extraction of a data set from experiment 4 by area or randomly (experiments 5 and 389 

6, respectively, Figure 8) leads to similar results with small differences since initial data 390 

are different. However, these differences do not prevent to obtain a correct geometry of 391 

the analyzed structure. 392 

A lower threshold of azimuth and/or dip range can be established, below which the 393 

orientation-domain configuration will not describe the geological geometry of the 394 

structure under study (Figure 10). The orientation-domain configuration below this 395 
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threshold would be biased by the instrumental error, geological roughness and 396 

sharpness (Figure 9). 397 

As the azimuth and/or dip range increases, the geometry depicted by orientation 398 

domains has lower resolution, and the number of identified planar regions decreases 399 

(Figure 5 and 6). At the end, there is an upper tolerance threshold such that all the 400 

available data will belong to a single orientation domain (Figure 9). 401 

Compared to the semi-manual approach, the designed algorithm is fast for the 402 

orientation domain definition, as well as it gives objective results. This last fact is due to 403 

an automatic grouping of the original data considering only the user-established initial 404 

thresholds.  405 

A potential alternative to our approach could be based on quaternions (lying in the 406 

hypersphere S3), which provide a computationally efficient way to store and rotate 3-407 

dimensional vectors (e.g. Karney, C., 2007). In Karney, C., 2007, the quaternions 408 

algebra is used to solve several problems in the orientations space. In particular, they 409 

describe the projection of a cubical regular grid (defined on a tesseract or 4-dimensional 410 

cube), over the hypersphere. This results in a distorted grid with maximum distortion in 411 

the corners. The implementation of this method to our context would imply projections 412 

of a regular grid onto a classical sphere (S2) causing a distortion too. The regular shift of 413 

the grid would cause unchecked distortions that would not add significant improvement 414 

to our implementation. 415 

416 
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5. Conclusions 417 

An algorithm is presented to automatically obtain constant orientation domains. It is 418 

based on a shifting rectangular grid clustering algorithm. Three main requirements led 419 

to the use of a grid-based algorithm: unknowing the number of clusters to be obtained, 420 

omitting the geographic location of data during process and obtaining clusters 421 

composed of close orientations. 422 

The algorithm first generates data clusters from a set of orientation data. These initial 423 

clusters are subsequently improved by making a deformation of the grid to adapt it to 424 

the spherical geometry inherent to the orientation measurements. 425 

The resulting domain classification is based on preserve a size criterion for the output 426 

cluster orientation domains. It starts working in the angular space and then corrects the 427 

distortion to be almost isomorphic on the spherical representation given by the director 428 

cosinus. 429 

It depends on the user parameter specifications. The accurate definition of the threshold 430 

parameters is a fundamental task for the analyst. The effects of measurements accuracy, 431 

the work scale, the lithology, the structural style of deformation, etc., must be taken into 432 

account when defining the parameter thresholds. By testing different thresholds, the 433 

computed partitions can be improved and this is controlled by the quality criteria of fit. 434 

Nevertheless, before a definitive final orientation domain assignment, the output 435 

domains should be plotted on a 3D representation of the terrain, where other variables 436 

can be taken into account (i.e. geographic proximity, stratigraphic position or lithology, 437 

among others). 438 

The performed experiments conclude that the algorithm gives acceptable results on the 439 

selected tolerances with respect to the data distribution, for the selected geometries.  440 
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The introduction of the “mobile grid algorithm with spherical adaptation and unrigidity 441 

correction” speeds up the process of structural analysis and improves the existent 442 

workflow for the reconstruction of geological structures (Fernández, 2004). The 443 

obtaining of any output result is fast compared to the manual approach, so that the 444 

algorithm can be applied multiple times with different input parameters. With such a 445 

procedure, multiple possible solutions can be explored in a short amount of time, until 446 

an adequate result is obtained.447 
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Figure Captions 522 

Figure 1. Stereographic (equal-area lower hemisphere stereoplots) versus Cartesian 523 

representation of orientation data. A. Differences between stereographic and u-v plot 524 

representations of a subhorizontal data set. B. Regular mesh superimposed to the u-v 525 

plot and defined by n x m cells in function of the defined u0 and v0 values. White nodes 526 

are azimuth-dip angle pairs. Black node is the mean azimuth and dip value (centroid). 527 

C. Stereographic projection of a set of nodes. D. u-v planar plot representation of the 528 

same data set. E. u-v cylindrical representation with 0º and 360º identification. 529 

Figure 2. Flow-chart describing the procedure followed by the algorithm. See text for a 530 

more detailed explanation of a to h steps. 531 

 532 

Figure 3. Corrections (gray lines) applied to the initial cluster distribution (black lines). 533 

Black dots denote the initial clusters centroids without corrections. Grey dots denote the 534 

new clusters centroids after corrections. Sphericity correction: note that the influence of 535 

this correction is important in lower dips (A) and small in higher ones (B), because 536 

when v � 90º, then sin(v) � 1. Rigidity correction: Performed to join a pair of nodes 537 

close enough to be part of the same orientation domain. This correction affects in the 538 

same way all considered nodes, independently of their position in the Cartesian plot (A 539 

and B). 540 

Figure 4. Initial setup for the first sample synthetic experiment. A. Illustration of how 541 

roughness is applied to the original folded surface using a random function. This 542 

function modifies Z values of the surface nodes and consequently the orientation of the 543 

surface triangles. B. Six-region kink-type fold geometry and the set of points randomly 544 

picked on the surface (represented as oriented disks). C. Stereographic representation 545 

(equal-area lower hemisphere stereoplot) and associated statistics of the data set 546 
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showing a cylindrical distribution and a six-region structure. E1, E2 and E3 denote the 547 

resulting eingenvectors (E1 representing the highest one and E3 the lowest). 548 

Figure 5. Test results on the synthetic data set for the first experiment: u-v plot (left) and 549 

perspective view (right). To the left, blue corresponds to data points and red 550 

corresponds to centroids. To the right, the coloured disks correspond to the orientation 551 

points picked on the surface, coloured in function of the cluster assignment (note that 552 

colour is assigned randomly in each run). C1 to C6 indicate the orientation domains. 553 

Test results separated from A to D in function of the given tolerance thresholds: T1: v0 554 

= 5º; T2: v0 =10º; T3: v0 =15º; T4: v0 =20º; T5: v0 = 25º; T6: v0 = 30º; T7: v0 = 35º; T8: 555 

v0 = 40º; T9: v0 = 45º. 556 

Figure 6. Summary of the obtained results. Setup parameters are: T1: v0 = 5º; T2: v0557 

=10º; T3: v0 =15º; T4: v0 =20º; T5: v0 = 25º; T6: v0 = 30º; T7: v0 = 35º; T8: v0 = 40º; T9: 558 

v0 = 45º. Obtained orientation domains are: T1-T2; 6 clusters; T3-T6: 4 clusters; T7: 3 559 

clusters; T8-T9: 2 clusters. 560 

Figure 7. Set up configuration and test results for experiments 2, 3 and 4, corresponding 561 

respectively to a conical kink-type fold (A), conical smooth fold (B) and bi-axial 562 

cylindrical kink-fold (C). For each experiment, 1 shows the stereographic projection of 563 

initial data, 2 shows the test results in a 3D perspective view (disks are coloured in 564 

function of cluster assignment), 3 shows the test results plotted on a u-v plot (with 565 

initial data points and clusters centroids). 566 

Figure 8. Test results for experiments 5 and 6. A. Experiment 5: Cylindrical kink-type 567 

fold extracted from one sector of the experiment 4. B. Experiment 6: Data subset 568 

randomly selected from experiment 4 configuration (Bi-axial kink-type fold geometry is 569 

preserved). See text for more detailed explanations. 570 
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Figure 9. Plot of the number of obtained clusters in function of v0. The number of 571 

identified planar regions decreases for larger v0 thresholds. Note that the orientation 572 

ranges below a certain threshold can be attributed to an inherent error in the orientation 573 

domain separation. 574 

Figure 10. Orientation domains identified for experiment 1 when using a tolerance 575 

threshold below the resolution of the designed experiment. A. Cluster distribution in a 576 

perspective view (v0 = 1). Disks are coloured in function of cluster assignment. B. 577 

Number of planar domains obtained using small dip thresholds.  578 

Table Captions 579 

Table 1. Example of output results. The table represents part of an output ASCII file 580 

showing 26 initial data grouped into two orientation domains (the first one with 11 data 581 

and the second one with 15) and the given related parameters for each point: x, y and z 582 

coordinate, azimuth and dip values, orientation domain assignation, number of points 583 

included in the domain, azimuth and dip of the calculated centroid, distance in 584 

orientation between the point and the corresponding centroid, orientation domain range, 585 

identification number for the point and polarity. 586 

587 
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