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Abstract: Chronic thromboembolic pulmonary hypertension (CTEPH) is a form of pulmonary
hypertension characterized by the presence of fibrotic intraluminal thrombi and causing obliteration
of the pulmonary arteries. Although both endothelial cell (EC) dysfunction and inflammation are
linked to CTEPH pathogenesis, regulation of the basal inflammatory response of ECs in CTEPH is
not fully understood. Therefore, in the present study, we investigated the role of the nuclear factor
(NF)-κB pro-inflammatory signaling pathway in ECs in CTEPH under basal conditions. Basal mRNA
levels of interleukin (IL)-8, IL-1β, monocyte chemoattractant protein-1 (MCP-1), C-C motif chemokine
ligand 5 (CCL5), and vascular cell adhesion molecule-1 (VCAM-1) were upregulated in CTEPH-ECs
compared to the control cells. To assess the involvement of NF-κB signaling in basal inflammatory
activation, CTEPH-ECs were incubated with the NF-κB inhibitor Bay 11-7085. The increase in pro-
inflammatory cytokines was abolished when cells were incubated with the NF-κB inhibitor. To
determine if NF-κB was indeed activated, we stained pulmonary endarterectomy (PEA) specimens
from CTEPH patients and ECs isolated from PEA specimens for phospho-NF-κB-P65 and found that
especially the vessels within the thrombus and CTEPH-ECs are positive for phospho-NF-κB-P65. In
summary, we show that CTEPH-ECs have a pro-inflammatory status under basal conditions, and
blocking NF-κB signaling reduces the production of inflammatory factors in CTEPH-ECs. Therefore,
our results show that the increased basal pro-inflammatory status of CTEPH-ECs is, at least partially,
regulated through activation of NF-κB signaling and potentially contributes to the pathophysiology
and progression of CTEPH.

Keywords: chronic thromboembolic pulmonary hypertension; inflammation; nuclear factor-κB
signaling; endothelial dysfunction

1. Introduction

Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe cause of
pulmonary hypertension (PH) resulting from unresolved pulmonary emboli (PE) that
obstruct the main pulmonary arteries. In addition, vascular remodeling of muscular
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pulmonary arteries, similar to the arteriopathy observed in pulmonary arterial hypertension
(PAH), is found in CTEPH [1–3]. CTEPH patients, without medical intervention, have
a poor prognosis, with a five-year survival rate between 10 and 30% depending on the
mean pulmonary artery pressure [4]. Pulmonary endarterectomy (PEA) to remove fibrotic
organized clots from pulmonary arteries is the gold-standard treatment for eligible patients
with CTEPH and significantly improves patients’ survival and hemodynamics [5]. The
invasiveness of PEA surgery together with the insufficient effects of additional treatment
options for inoperable patients and for patients with recurrent/persistent PH (up to 35%)
after PEA indicate the importance of resolving new, potentially curative targets in CTEPH
pathogenesis [4]. Balloon pulmonary angioplasty is emerging as a treatment option for
inoperable CTEPH, but knowledge of the long-term effects on hemodynamics and patient
survival remains limited [6].

Only 75% of patients with CTEPH have a history of symptomatic acute PE [7]. To
date, the molecular and cellular mechanisms behind the lack of thrombus resolution and
vascular remodeling that result in CTEPH remain unclear. The frequently observed re-
modeling in non-occluded arteries and small pulmonary arteries, similar to that observed
in PAH, supports the presence of endothelial dysfunction in CTEPH pathogenesis [2].
Studies have reported the involvement of endothelial cells (ECs) in the process of thrombi
organization and remodeling of surrounding pulmonary arteries through impaired angio-
genesis, changes in EC function, and increased production of inflammatory cytokines and
adhesion molecules [8–13]. The pulmonary endothelium is an important interface between
the circulating blood and the underlying tissues; through the production and release of
cytokines, chemokines, and adhesion molecules, it controls inflammatory cell adhesion
and trafficking [14].

The expression and production of inflammatory mediators in the endothelium are
controlled by nuclear factor (NF)-κB, a central regulator of inflammation [15,16]. Activated
NF-κB translocates into the nucleus to promote the expression of target genes, such as
tumor necrosis factor alpha (TNFα), interleukin-1-beta (IL-1β), IL-8, monocyte chemoat-
tractant protein- 1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular
adhesion molecule-1 (ICAM-1), among others [15]. Several of these endothelial-derived
inflammatory factors have been shown to influence cell survival, proliferation, and the
migration of cells within the vascular wall, thereby contributing to vascular remodel-
ing [11,16–18].

Resting ECs suppress the transcription of pro-inflammatory factors to maintain vessel
homeostasis. Upon activation, the resulting expression of inflammatory cytokines and
adhesion molecules plays a pivotal role in modulating inflammation [19]. A balanced
production of cytokines is key in order to maintain an intact endothelium and healthy
pulmonary vessels [20]. In the context of PH, a pro-inflammatory component has been sug-
gested and observed in both pulmonary arterial hypertension (PAH) and CTEPH [21–25].
However, most knowledge has been obtained through studies in which ECs are stimulated
by a pro-inflammatory stimulus. Wynants et al. (2013) showed that the NF-κB pathway
is involved in C-reactive protein-induced effects on ECs in CTEPH [21]. To gain insights
into the inflammatory phenotype of unstimulated ECs, in this manuscript, we examine
basal gene expression of inflammatory factors and use inhibitory small molecules such
as Bay 11-7085 [26] to study the involvement of the NF-κB pathway in the activation of
inflammatory pathways in CTEPH-ECs.

2. Materials and Methods
2.1. Study Population and Samples Collected

This study included CTEPH-ECs derived from 8 different endarterectomy specimens
from patients with CTEPH who underwent pulmonary endarterectomy at the Hospital
Clínic of Barcelona, Spain. The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Committee on Human Research (Hospital
Clínic of Barcelona ethics committee (HCB/2018/0837 and HCB/2018/0434)). The study
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was approved by the Institutional Ethics Committee of the Hospital Clínic of Barcelona
and written informed consent was obtained from all patients. All patients were diagnosed
according to the 2015 ESC/ERS Guidelines [27].

2.2. Pulmonary Endothelial Cell Isolation and Culture

ECs isolated from endarterectomy specimens, referred to as CTEPH-ECs, were cul-
tured as previously described [28]. In short, ECs were plated onto 0.1% gelatin-coated
wells and grown in an endothelium cell medium (ScienceCell Research Laboratories) sup-
plemented with endothelial cell growth supplement, 5% fetal bovine serum (FBS), and
Penicillin/Streptomycin solution (ScienceCell Research Laboratories). The cell phenotype
was characterized by staining the cells with antibodies against a panel of endothelial and
smooth muscle cell-specific markers, including endothelial nitric oxide synthase (eNOS)
and alpha smooth muscle Actin (αSMA) [28]. The patient characteristics are presented in
Table 1. Three different batches of human pulmonary artery endothelial cells (HPAECs)
(Lonza, CC-2530) were used as control cells.

Table 1. Clinical features and hemodynamic parameters.

CTEPH (n = 8)

Female/male 5/3
Age years 63.15 ± 10.88

BMI kg·m−2 25.97 ± 4.35
mPAP mmHg 42.13 ± 9.52

PVR dyn·s·m−5 706.75 ± 230.07
PAOP mmHg 10.25 ± 3.77

Cardiac index L·min−1·m−2 2.23 ± 0.61
Right atrial pressure mmHg 9.38 ± 4.63

SvO2 % 59.50 ± 7.86
6MWD m 398.13 ± 102.02

BNP pg·mL−1 209.54 ± 360.12
History of VTE 1/7

WHO FC
I 0
II 2
III 6

Data are presented as n or mean ± SD. CTEPH: chronic thromboembolic pulmonary hypertension; BMI: body
mass index; mPAP: mean pulmonary artery pressure; PVR: pulmonary vascular resistance; PAOP: pulmonary
artery occlusion pressure; SvO2: mixed venous oxygen blood saturation; 6MWD: 6-min walking distance; BNP:
brain natriuretic peptide; VTE: venous thromboembolism; WHO FC: World Health Organization functional class.

2.3. Gene Expression Analysis

The levels of IL-8, MCP-1, C-C motif chemokine ligand 5 (CCL5), IL-1β, ICAM-1, and
VCAM-1 were measured from CTEPH-ECs cultured in low-serum conditions (endothelial
cell medium with 0.1% FBS) by real-time quantitative PCR (n = 8 per group). Bay 11-7085
(Calbiochem, Millipore, North Holland, the Netherlands), a potent NF-κB inhibitor, was
applied at 1µM final concentration. Treatments were performed in an endothelial cell
medium with 0.1% FBS, and stimuli were provided for 6 h. Total RNA was extracted
using the ReliaPrep™ RNA Cell Miniprep system (Promega, Leiden, the Netherlands)
and concentrations were determined by spectrophotometry. Reverse transcription was
performed using a RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scientific,
Leiden, the Netherlands). For qRT-PCR, a QuantiTect® SYBR® Green PCR Kit (Qiagen,
Venlo, the Netherlands) and specific primers were used on the ViiA7 Real-Time PCR system
(Applied Biosystems, Bleiswijk, the Netherlands). Relative quantification was calculated
by normalizing the threshold cycle (Ct) of the gene of interest to the Ct of an endogenous
control (TATA-Box Binding Protein (TBP) and acidic ribosomal protein (ARP)) in the same
sample, using the comparative ∆∆Ct method. All primers were produced by Invitrogen,
and the primer sequences can be found in Table 2.
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Table 2. Primer sequences.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

IL-8 CTGGCCGTGGCTCTCTTG CTTGGCAAAACTGCACCTTCA
MCP-1 CTGTGCCTGCTGCTCATAG AGCTTCTTTGGGACACTTGC
CCL5 GCATCTGCCTCCCCATATTC AGTGGGCGGGCAATGTAG
IL-1β CGAATCTCCGACCACCACTAC TCCATGGCCACAACAACTGA
ICAM CTGCAGACAGTGACCATC GTCCAGTTTCCCGGACAA
VCAM CAGGCTGGAAGAAGCAGA GGCCTTTCGGATGGTATAGG

ARP CACCATTGAAATCCTGAGTGATGT TGACCAGCCGAAAGGAGAAG
TBP TGGAAAAGTTGTATTAACAGGTGCT GCAAGGGTACATGAGAGCCA

2.4. Immunostaining

Paraffin-embedded sections (5 µm) of pulmonary endarterectomy specimens from
CTEPH patients (n = 8) were incubated overnight at 4 ◦C with antibodies against phospho-
NF-κB-P65 (pP65) (rabbit anti-phospho-p65, 1:100; cat#11260, SAB Biotech, Baltimore,
MD, USA,) and platelet endothelial cell adhesion molecules (goat anti-CD31, 1:1000; R&D
Systems cat#AF3628, Minneapolis, Minnesota, USA). Sections were then incubated with
anti-rabbit Alexa Fluor 555 (Invitrogen, cat#A31572, Leiden, the Netherlands) or anti-goat
Alexa Fluor 647 (Invitrogen, cat#A21447, Leiden, the Netherlands) secondary antibodies
for 2 h. Nuclei were counterstained using Hoechst 34580 (1:800; Sigma-Aldrich, cat#63493,
Zwijndrecht, the Netherlands). Sections were imaged using a slide scanner (3DHistech Pan-
noramic 250). Colocalization analysis was performed with JACop, an ImageJ plugin [29].
We counted all of the vessels in every patient (n = 8) using whole scanned images and
found that the number of CD31+ve vessels in each patient was highly variable. Importantly,
some patients’ sections did not contain any vessels, which made it difficult to combine
the data from all patients. However, almost all of the vessels contained pP65+ve cells,
suggesting activation of the NF-κB pathway in the PEA tissue of CTEPH patients. Lung
tissue from chronic obstructive pulmonary disease (COPD, (n = 4) and healthy subjects
(n = 2) and aortic tissue from bicuspid aortic valve disease patients (n = 3) were used for
validation of the phospho-NF-κB-P65 antibody. Furthermore, paraffin-embedded sections
from both CTEPH and control subjects were incubated with only secondary antibody as a
negative control for the phospho-NF-κB-P65 antibody.

CTEPH-ECs and HPAECs were seeded at 1 × 105 cells/mL in 24-well plates pre-
coated with 1% gelatin and covered with glass cover slides and allowed to grow in a
complete endothelial cell medium. After 48 h, the cells were incubated in an endothe-
lial cell medium with 0.1% FBS. Next, the cells were washed with cold PBS and fixated
with 4% paraformaldehyde. The cells were then permeabilized with PBS/0.25% Triton
and blocked with PBS/0.1% Triton/10% FBS. Next, the slides were incubated at 4 ◦C
overnight with antibodies against phospho-P65 (rabbit anti-phospho-P65 1:100; cat#11260,
SAB Biotech, Baltimore, MD, USA) and CD31 (mouse anti-CD31 1:250; Dako, cat#M0823,
Santa Clara, CA, USA). The slides were then incubated with anti-rabbit Alexa Fluor 488
(Invitrogen, cat#A21206, Leiden, the Netherlands) or anti-mouse Alexa Fluor 647 (Invit-
rogen, cat#A21447, Leiden, the Netherlands) secondary antibodies for 1 h. The nuclei
were counterstained with DAPI (ProLong™ Gold Antifade Mountant with DAPI, Invitro-
gen, cat#P36931, Leiden, the Netherlands). The slides were imaged using a Leica DM6B
microscope and the mean fluorescence intensity was quantified using ImageJ software.

2.5. Statistical Analysis

Results are described as mean ± standard deviation and were compared using un-
paired t-test (immunofluorescence analysis) or unpaired t-test with Welch’s correction
(gene expression analysis). Statistical analyses were performed using GraphPad Prism
version 8. p-values ≤ 0.05 were considered statistically significant.
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3. Results
3.1. Basal Inflammatory Gene Expression in CTEPH-ECs and PAH-ECs

A controlled release of inflammatory cytokines is essential to maintain a quiescent
endothelium that prevents disease development. We determined whether the basal gene
expression of inflammatory cytokines is disturbed in CTEPH-ECs, as a potential contributor
to disease pathology. mRNA expression levels of IL-8 and MCP-1 showed a 5.5-fold
(p = 0.009) and a 2.5-fold (p = 0.05) increase, respectively, compared to control cells. CCL5
showed a seven-fold increase (p = 0.03) in mRNA expression levels compared to control
cells. ICAM-1 showed a trend towards increased levels in CTEPH-ECs but did not reach
significance (p = 0.07). IL-1β showed a six-fold increase (p = 0.02) in mRNA levels compared
to HPAECs. Finally, mRNA levels of VCAM-1 showed a three-fold (p = 0.03) increase in
CTEPH-ECs compared to control cells (Figure 1).
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Figure 1. Basal inflammatory gene expression in cultured CTEPH endothelial cells (ECs). mRNA expression levels of
interleukin (IL)-8, IL-1β, monocyte chemoattractant protein- 1 (MCP-1), C-C motif chemokine ligand 5 (CCL5), vascular
cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) were found increased under basal
conditions (0.1 serum) in CTEPH-ECs compared to human pulmonary artery endothelial cells (HPAECs). CTEPH-EC, n = 8
donors; HPAEC, n = 3 donors; unpaired t-test with Welch’s correction, p < 0.05 = *, data are expressed as mean ± SD.

3.2. Fluorescence Staining of Phospho-P65 in CTEPH-Ecs

Activation of the expression of inflammatory cytokines is often the result of NF-κB
signaling. Therefore, we studied NF-κB activation in CTEPH-ECs by monitoring nuclear
translocation of the p65 subunit by immunofluorescence. Cultured CTEPH-ECs, isolated
from four different pulmonary endarterectomy specimens and three different control
HPAECs, were stained for CD31/PECAM and pP65. Both CTEPH-ECs and HPAECs
were positive for the endothelial marker CD31/PECAM (Figure 2A). The number of cells
showing nuclear anti-p65 was determined from three randomly selected areas. CTEPH-ECs
and HPAECs showed a positive fluorescence signal for pP65, which was mainly found
within DAPI-positive nuclei (Figure 3A). The amount of nuclear translocation of the pP65
subunit was determined by quantifying the intensity of the fluorescence signal inside the
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nuclei, and CTEPH-ECs showed a trend towards a 2.4-fold higher (p = 0.06) nuclear signal
intensity compared to the control cells (Figure 2B).
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Figure 2. Fluorescence staining of phospho-P65 in cultured ECs. (A) HPAECs (top) and CTEPH-ECs (bottom) were
stained for endothelial marker CD31/PECAM (red) and phospho-NF-κB-P65 (pP65; green). Both ECs showed the presence
of CD31/PECAM and nuclear pP65 staining (indicated by the white arrows). Nuclei were counterstained with DAPI; scale
bar, 10 µm. (B) The presence of nuclear pP65 was quantified in both CTEPH-ECs and HPAECs. CTEPH-ECs showed a
2.4-fold higher presence of nuclear pP65 compared to control cells (p = 0.06) (unpaired t-test); CTEPH-ECs, n = 4 donors;
HPAECs, n = 3 donors. Data are expressed as mean ± SD.
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Figure 3. Pulmonary endarterectomy (PEA) immunofluorescence. (A) Representative images show-
ing the localization of phospho-NF-κB-P65 (pP65) in vessels in endarterectomy specimens from
patients with CTEPH (n = 8), using double labeling with CD31/PECAM (green) and pP65 (red). (B)
pP65 immunoreactivity was observed in endothelial cells from vessels within the thrombus (magenta,
indicated by the white arrows). Nuclei were counterstained with DAPI (blue). Scale bar, 100 µm
(panel (A)) and 25 µm (panel (B)).

3.3. Endothelial Localization of Phospho-P65 in CTEPH Specimen

Based on these in vitro results, pulmonary endarterectomy specimens from CTEPH
patients were stained for the presence of phospho-NF-κB-P65 (pP65) and CD31/PECAM.
Thrombus vessels present in the tissue stained positive for CD31/PECAM. Interestingly, in
these areas, pP65 was shown to colocalize with CD31/PECAM, indicating the presence
of pP65 ECs lining vessels within the thrombus. Cells positive for pP65, but negative
for CD31/PECAM, were also observed throughout the tissue. These cells are most likely
infiltrating inflammatory cells (Figure 3A,B).

3.4. Effect of NF-κB Inhibition in CTEPH-ECs

In order to confirm that the increased basal gene expression of inflammatory factors
is due to increased NF-κB activity in CTEPH-ECs, cells were incubated with 1 µM Bay
11-7085, an inhibitor of NF-κB through inhibition of IκB degradation. mRNA levels of
VCAM-1 showed a 1.6-fold reduction (p = 0.02) in CTEPH-ECs compared to the control
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condition without the inhibitor. ICAM-1 and MCP-1 showed a tendency towards reduction
after incubation with Bay 11-7085 but did not reach significance (p = 0.09 and p = 0.08,
respectively). mRNA levels of IL-8 were found to be unchanged in CTEPH-ECs after
incubation with Bay 11-7085 compared to the control condition (Figure 4).
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Figure 4. Effect of NF-κB inhibition on CTEPH-ECs. Cultured CTEPH-ECs were incubated with
the NF-κB inhibitor Bay 11-7085 at a final concentration of 1 µM. mRNA levels of VCAM-1 were
significantly reduced in CTEPH-ECs after treatment with Bay 11-7085. mRNA levels of ICAM-1 and
MCP-1 showed a trend towards reduction after Bay 11-7085 incubation. IL-8 mRNA expression levels
were found to be similar between the CTEPH-ECs incubated with Bay 11-7085 and those without.
CTEPH-ECs, n = 5 donors; unpaired t-test, p < 0.05 = *, data are expressed as mean ± SD.

4. Discussion

In this study, we showed that the basal gene expression of the inflammatory factors
downstream of the NF-κB signaling pathway such as IL-8, IL-1β, CCL5, MCP-1, and VCAM-
1, was increased in CTEPH-ECs. The increase in the expression of inflammatory factors
was accompanied by an increased nuclear localization of pP65 in the cultured CTEPH-ECs,
indicating the presence of more active NF-κB signaling in CTEPH-ECs compared to the
control HPAECs. Furthermore, pP65-positive thrombus vessels were observed in CTEPH
PEA specimens. Lastly, CTEPH-ECs incubated with the NF-κB inhibitor Bay 11-7085
showed a decrease in the expression of VCAM-1, ICAM-1, and MCP-1.

Although a pro-inflammatory phenotype in CTEPH is to be expected [22], we showed
that, in contrast to previous studies [21], CTEPH-ECs also present, under basal conditions,
a pro-inflammatory status. Only a few studies have been performed to better understand
the regulatory pathways of inflammation in CTEPH pathogenesis. Ataam et al. recently
reported that increased ICAM-1 contributes to EC dysfunction in CTEPH [12]. In the
present study, we showed that cultured CTEPH-ECs have increased nuclear phospho-p65
under basal conditions compared to control cells. In addition to phosphorylation and
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degradation of inhibitory protein IκBs, NF-κB activation also involves phosphorylation of
the P65 subunit. This phosphorylation is an important event to enhance the transcriptional
capacity of DNA-bound NF-κB and activates the transcription of the key targets VCAM-1,
ICAM-1, and MCP-1 in ECs [30–32]. Therefore, our results indicate that the observed
increase in phosphorylation of the P65 subunit is key to the elevated basal expression
of inflammatory cytokines in CTEPH-ECs. Several inflammation-related diseases such
as cancer, atherosclerosis, restenosis, and asthma have been associated with increased
activation of NF-κB and expression of its downstream mediators [33–37]. Based on the
increase in NF-κB activation observed, we hypothesized that inhibition of NF-κB signaling
could reverse the basal pro-inflammatory profile in CTEPH-ECs. In the current study,
we found that the inhibition of NF-κB signaling by blocking the phosphorylation of the
NF-κB inhibitor IκB-α with the inhibitory small molecule Bay 11-7085 results in a reduced
expression of the inflammatory cytokines VCAM-1, ICAM-1, and MCP-1 in CTEPH-ECs.
These findings confirm that the increased inflammatory cytokines in CTEPH-ECs are, at
least partially, regulated through NF-κB signaling. Cancers such as multiple myeloma,
where NF-κB signaling plays a significant role in the pathogenesis, have been successfully
treated with drugs that have NF-κB as their primary or secondary target [38], suggesting
that inflammation is a potential target in the search for novel pharmacological interventions
to prevent disease progression in CTEPH.

Limitations of this study: Due to the high heterogeneity among the CTEP-ECs
(n = 8) used in this study, more ECs from CTEPH patients should be included to fur-
ther strengthen the current findings. Another potential limitation is the lack of validation
of the NF-κB-dependent pP65 expression levels by Western blotting and the detection of
pro-inflammatory cytokines by ELISAs. Therefore, future research should be warranted to
investigate this signaling pathway in more detail using large number of samples.

Based on the results obtained in this study, we can conclude that CTEPH-ECs have a
basal pro-inflammatory status, shown by the increased production of the inflammatory
cytokines IL-8, MCP-1, IL-1β, CCL5, ICAM-1, and VCAM-1 under basal conditions. More
importantly, we showed that this basal pro-inflammatory status observed in CTEPH-ECs
is, at least partially, regulated through NF-κB signaling, and blocking NF-κB activation
might be an important target in CTEPH to prevent disease progression or recurrent PH.
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