
Talanta 241 (2022) 123273

Available online 29 January 2022
0039-9140/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A hybrid sensing system combining simultaneous optical and 
electrochemical measurements: Application to beer discrimination 
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a Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain 
b Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain   

A R T I C L E  I N F O   

Keywords: 
Hybrid sensing system 
Voltammetry 
UV–Vis absorbance 
Beer discrimination 
Partial least squares discriminant analysis (PLS- 
DA) 

A B S T R A C T   

A hybrid sensing system, which combines simultaneous cyclic voltammetric (CV) and UV–vis absorbance mea-
surements using a commercial carbon screen-printed electrode and a set of optical fibres in disposable cuvettes, is 
proposed. The hybrid system approach was applied to 27 samples of recognized beer brands, improving the 
classification power as compared to only voltammetric or only spectrophotometric measurements. The devel-
oped partial least squares discriminant analysis (PLS-DA) model was able to discriminate between five types of 
beer (lager, marzen, black/stout, alcohol-free and white/ale). The model was also successfully applied to 28 beer 
samples of white-label brands sold in local supermarkets, demonstrating their similarity to recognized brand 
beers.   

1. Introduction 

Sensors are becoming a key technology in modern quality control of 
food and beverages, which not only aims for reliability and sensitivity 
but also for easy, frequent and fast measurements [1]. In this context, the 
combination of non-specific electrochemical sensors in the form of 
electronic tongues or noses is especially relevant in the characterization, 
discrimination and authentication of food products [2,3]. For this pur-
pose, the use of chemometric methods of pattern recognition is essential 
[4,5]. 

The careful selection of sensors included in the electronic tongue is 
an important step to ensure the desired response with the minimum 
number of sensors (and therefore amount of data). Thus, cross-response 
among sensors is essential. In most electronic tongues reported in the 
literature, this cross-response is achieved by introducing modifications 
in the same type of sensors (e.g., only potentiometric, only voltam-
metric, only impedimetric …) [6–9]. However, sensors based on the 
same measurement principle have an intrinsic common behaviour that 
hinders the acquisition of completely complementary information. In 
this sense, the inclusion of sensors based on different measurement 
principles is highly desirable to gain reliability and selectivity. Such 
combined devices are usually known as hybrid electronic tongues (or 
noses) or, in a more general way, as hybrid sensing systems [10–15]. 

The benefits of hybrid sensing systems were long ago proved in the 

field of electronic noses [13–15], demonstrating that the inclusion of 
different transducers provides a much better performance than selected 
sensors from any single sensor class [13,15]. However, the imple-
mentation of truly hybrid electronic tongues has not been fully achieved. 
The usual situation in hybrid systems is the combination of different 
types of electrochemical measurements, typically potentiometric and 
voltammetric [10–12]. In contrast, works combining completely 
different measurement principles such as electrochemical and optical 
are really scarce. A valuable example of this is the strategy proposed by 
Gutiérrez-Capitán et al. [16] for the discrimination of wines, integrating 
potentiometric measurements with several ISFETs, cyclic voltammo-
grams acquired with a gold electrode and UV–vis absorbance data. 
Unfortunately, in this case data had to be acquired sequentially using a 
separate instrumentation for each type of measure, which significantly 
increases analysis time. 

In this work we have developed a hybrid sensing system combining 
simultaneous voltammetric and spectrophotometric measurements. 
Absorbance spectra are registered with two optical fibres in the trans-
mission mode, whereas electrochemical measurements are based on the 
use of screen-printed electrodes (SPE), which are cost-effective, 
disposable and reproducible devices that are commercially available 
in many formats [17,18]. The SPE unit is placed in the same disposable 
optical cell where the light beam is passing, allowing the simultaneous 
registration of absorption spectrum and cyclic voltammograms without 
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any interference. 
The new hybrid sensing system has been applied to the analysis of 

beer, a very old and popular beverage prepared from grain (usually 
malted barley but also other grains like wheat), hops, yeast and water 
[19]. Depending on the proportion of the ingredients and on the brewing 
methodology, many varieties of beer can be elaborated but, in general 
terms, they can be divided in two big families: lager beers produced by 
low fermentation (being pilsner beer its most famous variety) and ale 
beers produced by high fermentation (being IPA and white beer char-
acteristic varieties). Ale beers usually have more fruity and bitter taste 
than lager beers, as well as less CO2 content and more turbidity. In both 
families, darker beers can be obtained by using dark malt varieties, 
increasing the roasting of the grain or using authorised colorants, mostly 

derived from caramel. In this work, we use the term black for dark lager 
beers, marzen for middle dark lager beers and stout for dark ale beers. 
Since beer is produced in many countries, by many brands and in a large 
diversity of types, and is worldwide consumed, it requires a rigorous 
control of its quality and authenticity. This is made by means of different 
analytical methods, with predominant use of spectrophotometric and 
chromatographic techniques [20–24] although electrochemical tech-
niques are progressively gaining visibility in the form of sensors and 
electronic tongues [12,25–27]. 

In this work we explore the enhanced features of the combination of 
simultaneous electrochemical and optical measurements to go deeper in 
the discrimination of beers. Both measurements are recorded with the 
same instrumentation, which provides a data set especially rich in 
complementary information from two very different sources in a short 
analysis time. 

2. Experimental section 

2.1. Samples and instrumentation 

Beers from 27 recognized brands and 28 white-label brands (Table 1) 
were purchased in local supermarkets. They were opened at room 
temperature (20 ◦C), placed in plastic containers and analysed without 
sample pretreatment. 

Voltammetric and spectrophotometric measurements were simulta-
neously carried out using a SPELEC equipment by Dropsens-Metrohm 
(Oviedo, Spain), with the software DropView 8400 from Dropsens- 
Metrohm. The experimental set-up is shown in Fig. 1. Cyclic voltam-
metric (CV) measurements were carried out with screen-printed carbon 
electrodes (SPCE) of 4 mm diameter by Dropsens-Metrohm (reference 
DRP-C110). UV–vis measurements were performed with two optical fi-
bres (TFIBER-VIS-UV) attached to a sample holder CUV-UV by Ocean 
Insight (Orlando, USA). Collimators were included in the sample holder. 
Samples were introduced in disposable plastic cells (macro Vis cuvette, 
reference 0030079345) by Eppendorf (Hamburg, Germany), with SPCE 
units placed in a side position. A home-made cover fabricated from a 
cardboard box lid was used to protect the cell from stray light, as shown 
in Fig. 1. 

Cyclic voltammograms (CV) were registered between − 0.5 and +1.1 
V with a scan rate of 50 mV s− 1. Absorbance spectra were acquired with 
wavelengths between 200 and 900 nm in comparison with a blank of 
pure water. 

2.2. Data treatment 

The files with the experimental voltammetric and spectophotometric 
data acquired with DropView 8400 software were imported to Matlab® 
[28] for data treatment by means of home-made programs. 

As voltammograms presented some drift due to the adsorption of 
substances on the electrode surface, a new SPCE was used every four 
samples of beer, which were measured in triplicate and in random order. 
Every set of four samples included a reference beer that was always the 
same brand (Estrella Damm) and was used to correct voltammograms 
according to the method developed in Ref. [26]. It essentially consists on 
correcting the current of every beer (I) with the current measured for the 
standard beer in the first, reference electrode (I1) and in the actual 
electrode where the considered sample is measured (I2): 

Idif = I2 − I1 (1)  

Icor = I − Idif (2)  

where Icor is the current of the sample corrected by means of the stan-
dard beer. 

Corrected voltammetric data were combined with spectrophoto-
metric data and submitted to chemometric methods (principal 

Table 1 
Beer brands considered in the present study. Numbers 1–27 are recognized 
brand beers used in the calibration and validation sets, whereas numbers 28–55 
are white-label brand beers commercialised in local supermarkets and used to 
test the application of PLS-DA model.  

Number Name Type Class % Alcohol (v/v) 

1 Estrella Damm Lager 1 5.4 
2 Moritz Lager 1 5.4 
3 Cruzcampo Lager 1 4.8 
4 Mahou Lager 1 5.5 
5 Heineken Lager 1 5.0 
6 Carlsberg Lager 1 5.0 
7 Selecta San Miguel Marzen 2 6.2 
8 Amstel oro Marzen 2 6.2 
9 Daura marzen Damm Marzen 2 7.2 
10 Ambar export 3 maltas Marzen 2 7.0 
11 Bock Damm negra Munich Black 3 5.9 
12 Leffe bruin Black 3 6.5 
13 Praga dark lager Black 3 4.5 
14 Mahou maestra dunkel Black 3 6.1 
15 Guiness draught Stout 3 4.2 
16 Super bock stout Stout 3 5.0 
17 Guiness original Stout 3 5.0 
18 Buckler 0,0 Alcohol-free 4 0.0 
19 San Miguel 0,0 Alcohol-free 4 0.0 
20 Moritz 0,0 Alcohol-free 4 0.0 
21 Paulaner White 5 5.5 
22 Erdinger White 5 5.3 
23 Patronus White 5 5.5 
24 San Miguel IPA Ale 5 6.1 
25 Cruzcampo IPA Ale 5 5.5 
26 Mahou IPA Ale 5 4.5 
27 Damm complot IPA Ale 5 6.6 
28 Adlerbrau Lager 1 5.0 
29 Argus clásica Lager 1 4.8 
30 Pilsen Condis Lager 1 5.6 
31 Clásica El Corte Inglés Lager 1 4.8 
32 Clásica Spar Lager 1 4.5 
33 Argus especial Lager 1 5.6 
34 Carrefour especial Lager 1 5.6 
35 Bonpreu clàssica Lager 1 5.6 
36 Aliada Lager 1 4.8 
37 Aurum pilsen Lager 1 4.8 
38 Pils Carrefour Lager 1 5.5 
39 Doble malta Mercadona Marzen 2 7.4 
40 Argus extra malta Marzen 2 6.8 
41 Mercadona tostada Marzen 2 5.9 
42 Alderbrau tostada Marzen 2 5.5 
43 Aurum tostada Marzen 2 6.6 
44 Black (Mercadona) Black 3 6.0 
45 Dia black Black 3 5.6 
46 Argus negra Black 3 5.6 
47 Carrefour negra Black 3 5.0 
48 Carrefour 0,0 Alcohol-free 4 0.0 
49 Alderbrau sin alcohol Alcohol-free 4 0.0 
50 Aurum 0,0 Alcohol-free 4 0.0 
51 Mercadona trigo White 5 5.3 
52 Aurum weissbier White 5 5.0 
53 Blanca trigo Carrefour White 5 5.2 
54 Session IPA Carrefour Ale 5 4.5 
55 IPA Tibidabo Brewing Ale 5 5.7  
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component analysis, PCA, and partial least-squares discriminant anal-
ysis, PLS-DA) with PLS-Toolbox by Eigenvector Research (Wenatchee, 
USA) [29]. From the measured data points, a sampling was made at 
regular ranges: 161 out of 642 in voltammetry and 168 out of 2007 in 
spectrophotometry resulting in two matrices of similar size (I for vol-
tammograms and A for UV–vis spectra). In order to have similar mag-
nitudes, several preprocessing strategies were tested such as autoscaling 
or mean center but the best results were achieved by dividing I (origi-
nally in μA) by 300 and A by 2.5. Then, both matrices were row-wise 
combined as shown in Fig. 2. 

Exploratory and classification models were built by PCA and PLS-DA. 
For the latter, the first set of 81 samples (three replicates of 27 recog-
nized beer brands) was divided, by means of the Kennard-Stone algo-
rithm [30], into a calibration set with 52 measurements and a validation 
set with 29 measurements. As for the 28 white-label brands, the samples 
were also measured in triplicate and generated 84 couples of voltam-
metric and spectrophotometric signals that were treated according to 
the same procedure. This set was considered as a test set to assess the 
performance of the developed PLS-DA model in new samples. 

3. Results and discussion 

Beer samples from the 27 recognized brands were measured by 
triplicate, generating 81 measurements by both voltammetry and spec-
trophotometry. Fig. 2 summarizes the typical shape of the cyclic vol-
tammetric (Fig. 2a) and spectrophotometric (Fig. 2b) signals combined 

in the augmented data matrix (Fig. 2c and 2d). It should be noted that 
cyclic voltammograms are represented as a continuous line in the 
augmented data matrix. 

Considering that voltammograms present a drift caused by the 
adsorption of beer matrix onto the SPCE surface, a correction of vol-
tammetric data was necessary. Figure S1 in the Supplementary Material 
file demonstrates the effect of the correction method described in the 
experimental section on three cyclic voltammograms obtained for the 
same beer (red lines). As it can be observed, the correction using the 
voltammograms of a reference beer (blue lines) significantly decreases 
the variability among replicates as compared to the original data (red 
lines). 

Fig. 3 shows the augmented data matrix of representative beers from 
each class: lager, marzen, black, alcohol-free, and ale. As it can be 
observed, different types of beer produce different signals, especially in 
the region of more positive potentials of voltammograms, corresponding 
to variable numbers ca. 60 to 90 in the augmented data matrix and in the 
region of spectra between 300 and 500 nm, corresponding to variable 
numbers ca. 180 to 230. 

Taking advantage of these differences, an exploratory PCA was 
performed with all the samples (81) from the 27 recognized brands. The 
diagram of scores (Fig. 4) shows a clear separation between lager, 
marzen, alcohol-free, indian pale ale (IPA) and stout beers. However, the 
couples IPA/white and stout/black beers are very similar. This is not 
strange, considering that both IPA beers and white beers (also known as 
wheat beer, weissbier or witbier) are pale-coloured beverages produced 

Fig. 1. Experimental setup for the simultaneous voltammetric and spectrophotometric measurements, which were made with the home-made cover shown in the 
bottom right photography. 
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Fig. 2. Typical shape of voltammetric (a) and spectrophotometric (b) signals and their combination into an augmented data matrix (c, d).  

Fig. 3. Comparison of the combined signals of characteristic beers: Estrella Damm as a typical lager (red), Selecta San Miguel as a typical marzen (green), Leffe bruin 
as a typical black (dark blue), Moritz 0.0 as a typical alcohol-free (cyan) and Cruzcampo IPA as a typical ale (magenta). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Scores plot of the two first principal components of the PCA analysis of the set of 81 beer samples from the 27 recognized brand beers, containing both 
electrochemical and optical data. Samples have been labelled with different colours depending on their variety, which is written in the graph. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Most-probable class prediction of the calibration (samples 1 to 52) and validation (samples 53 to 81) sets by using a PLS-DA model with 6 latent variables. 
Classes are identified with different colours and labelled in the graph. Misclassified samples are marked with a brown ellipse. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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by high fermentation. As for the confusion between black lagers and 
stouts, it seems that the dark colour in spectrophotometry and the 
presence of colorants or products derived from roasted malts in vol-
tammetry are more important for discrimination than the differences 
generated by the type of fermentation. 

As a consequence, we decided to define five classes of beer for the 
further supervised discriminant analysis: i) lager, ii) marzen, iii) black/ 
stout, iv) alcohol-free, and v) white/IPA. Table 1 summarizes the classes 
assigned to each studied beer. 

The above-mentioned five pre-defined classes were used for the 
construction of a PLS-DA model, splitting the total data set into cali-
bration and validation sets (see experimental section for further details). 
The average cross-validation suggested the use of 6 latent variables (LV). 
As shown in Fig. 5, this model allowed a successful classification of all 
the brands, with only one sample misclassified out of 52 (1.92% of 
classification error). The application to the validation set produced a 
slightly higher error, with one sample misclassified out of 29 (3.45% of 
classification error). Table 2 summarizes the main features of the PLS- 
DA classification model. Considering the model built from both elec-
trochemical and optical data, it is remarkable the very good sensitivity 
and specificity of black/stout and alcohol-free beers, the good behaviour 

Table 2 
Comparison between prediction indicators obtained in the development of PLS-DA models from the recognized brand beers (calibration and validation sets) when only 
electrochemical or only optical data are considered and when both kinds of data are analysed together (shown in bold typing). LV indicates the number of latent 
variables chosen, as provided by cross-validation.  

Data LV Class Calibration External validation 

sensitivity specificity classification error (%) sensitivity specificity classification error (%) 

only electrochemical 4 1 (Lager) 0.727 0.610 33.15 0.714 0.409 43.83 
2 (Marzen) 1.000 0.717 14.13 1.000 0.478 26.09 
3 (Black/Stout) 0.467 0.838 34.77 0.167 0.826 50.36 
4 (Alcohol-free) 0.833 0.826 17.03 1.000 1.000 0.00 
5 (White/IPA) 0.714 0.842 22.18 0.143 0.955 45.13 

only optical 7 1 (Lager) 1.000 0.878 6.10 1.000 0.955 2.27 
2 (Marzen) 1.000 0.804 9.78 1.000 0.739 13.04 
3 (Black/Stout) 1.000 1.000 0.00 1.000 1.000 0.00 
4 (Alcohol-free) 1.000 1.000 0.00 1.000 1.000 0.00 
5 (White/IPA) 0.857 0.842 15.04 1.000 0.591 20.45 

electrochemical þ optical 6 1 (Lager) 1.000 0.902 4.88 1.000 0.909 4.54 
2 (Marzen) 1.000 0.935 3.26 1.000 0.783 10.87 
3 (Black/Stout) 1.000 1.000 0.00 1.000 1.000 0.00 
4 (Alcohol-free) 1.000 1.000 0.00 1.000 1.000 0.00 
5 (White/IPA) 1.000 0.921 3.94 1.000 0.864 6.82  

Fig. 6. VIP scores of the PLS-DA model corresponding to the second class (marzen beers). Variables above the red line are these relevant for sample classification. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Prediction indicators obtained in the application of the PLS-DA model to white- 
label brand beers as compared to the type of beer declared in the bottle/can.  

Class sensitivity specificity classification error (%) 

1 (Lager) 1.000 0.765 11.76 
2 (Marzen) 0.733 0.870 19.85 
3 (Black/Stout) 1.000 1.000 0.00 
4 (Alcohol-free) 1.000 1.000 0.00 
5 (White/IPA) 0.800 0.884 15.79  

C. Pérez-Ràfols et al.                                                                                                                                                                                                                           



Talanta 241 (2022) 123273

7

of lager and white/IPA beers and the reasonable classification of marzen 
beers, which present a moderate specificity in validation as compared to 
the other classes. 

The analysis of VIP scores suggests a major contribution of spectro-
photometric data to the discrimination of beers. However, the contri-
bution of the region of voltammograms at higher potentials is also 
relevant, as shown by the VIP plot corresponding to the class of marzen 
beers (Fig. 6). A proof of this is the comparison in Table 2 with the results 
obtained with only voltammetric and only spectrophotometric data. 
Although the optical results are clearly better than the electrochemical 
ones, the combined results are the best ones. These results confirm the 
benefits of hybrid systems combining data coming from different mea-
surement principles. 

The developed PLS-DA model was validated with external samples 
using white-label brand beers purchased in local supermarkets. 
Reasonable predictions were achieved with only slightly higher errors as 
compared to calibration and validation steps (Table 3). This fact can also 
be seen in Fig. 7, where only 11 samples from a total of 84 were mis-
classified (13.10% of classification error). Moreover, it can be seen that 
the predictions are very accurate for lager beers, which are the most 
common variety in supermarkets. Most problems arise in marzen and 
white/IPA beers, which are ‘intermediate’ varieties, with colour and 
flavour intensities between the extreme types lager and black/stout. 
Such prediction error could be partly due to the model, but also to the 
higher diversity in the production of these modalities of beer. Anyway, it 
must be said that, in general terms, the characteristics of the white-label 
brands tested are quite comparable to these of recognized brand beers. 

4. Conclusions 

The investigations described so far show the promising features for 
sample discrimination of hybrid sensing systems combining 

voltammetric signals and UV–vis spectra simultaneously obtained with a 
synchronised instrumentation, especially when supported by supervised 
classification methods like PLS-DA. In the case of beers, the combination 
of complementary information about colour and oxidable substances 
has allowed a successful discrimination of five varieties of beers: lager, 
marzen, black/stout, alcohol-free and white/IPA, not only for recog-
nized brands, but also for white-label brand beers commercialised in 
local supermarkets, which appear to be not much different to their ho-
mologous recognized brand beers. It is expected that in the future the 
implementation of new electrochemical and optical sensors in hybrid 
sensing systems will provide a powerful tool for fast identification, 
classification, and authentication of beverages and food products. 
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