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Can a denaturant stabilize DNA? Pyridine reverses DNA

denaturation in acidic pH **

Guillem Portella, Montserrat Terrazas, Nuria Villegas, Carlos Gonzalez and Mo

Abstract: The stability of DNA is highly dependent on its solvent
environment, such as ionic strength, pH and the presence of
denaturants and osmolytes. Addition of pyridine is known to unfold
DNA by replacing t-m stacking interactions between bases,
stabilizing conformations where the nucleotides are solvent exposed.
We show here experimental and theoretical evidences that pyridine
can change its role and in fact stabilize the DNA under acidic
conditions. NMR and MD simulations demonstrate that the reversal
in the denaturing role of pyridine is specific, and is related to its
character as pseudo groove binder. The present study sheds light
into the nature of DNA stability and on the relationship between DNA
and solvent, with clear biotechnological implications.

The biological role of DNA is intimately related to its structure
and stability in water solution. Full dehydration of DNA or the
substitution of water by a solvent of lower polarity results in large
changes in the structure of DNA '\, Variations in ionic strength of
the solution yield remarkable structural plasticity ¥, and changes
in the nature of counterions can even reverse the canonical
rules of duplex DNA stability™®. Some osmolytes such as urea,
formamide, guanidinium chloride, dimethylsulfoxide or pyridine
are known to chemical denaturants ™.
microsecond-long molecular dynamics (MD)
demonstrate that the very strong denaturant properties
are related to its ability to capture microscopic unfoldingevents
by stacking on open, solvent-exposed nucleobases .
explore the denaturant properties of Pyr in the p
another powerful denaturant agent: the pH. In
evaluate whether the effect of these two denatura
cooperative, or anti-cooperative.

We first explored the denaturing properties of p.
pH for three DNA duplexes with different GC conte
Results shown in Figure 1(A,B) and Supplementary Ta
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, we observe a rise in melting temperature for MetC
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the melting temperature of wild-type Seq. 3 decreases by ~46
degrees when moving from pH=7.8 to 3.8; while the Tm
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Sequence (% of GC content)

Seq. 1 d(TATGTATATTTTGTAATTAA) (10%)
Seq. 2 d(CGTTTCCTTTGTTCTGGA) (44%)
Seq. 3

d(GTCCACGCCCGGTGCGACGG) (80%)
?Sequences given from 5’ to 3’, only the Watson strand is reported, the
second strand is complementary in sequence.

Based on these results, it could be extrapolated that addition of
Pyr would decrease even further the stability of DNA in acidic
conditions. Results show in Figure 1 and Suppl. Table $1
demonstrate that the opposite occurs. Adding 200 mM of Pyr,
which destabilized duplexes at neutral pH by 2-5 degrees,
stabilized the same duplexes by 6-7 degrees at acidic pH
(Figure 1). Increasing the concentration of Pyr to 400 mM
induces a decrease of up to 12.5 degrees at neutral pH, while
the same amount of Pyr stabilizes the same duplex by more
than 10 degrees at acidic pH (Figure 1). It is therefore clear that
the effect of Pyr is drastically different when added to a neutral
or to an acidic solution.
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Figure 1. A-F) Effect of pyridine and Na" concentration on the thermal stability of
differences in melting temperature with respect to a solution containing no pyridine
whereas in B, D and F the contain 400 mM of pyridine. G-L) Effect of 2,4-lutidine
content at different pH values, measured as differences in melting temperature with ri
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d 150 mM N he experiments in A, C and E contain 200 mM of pyridine,
a” concel ion on the thermal stability of DNA sequences of varying GC
ct to a solution containing no 2,4-lutidine and 150 mM Na®.

NA sequenj varying GC content at different pH values, measured as
we repeated the melting experiments using 2-4-
yridine (2,4-Lutidine: Lut). This aromatic molecule is
, and has a pKa of 6.63, which implies that at it
tral at pH=8.0 and fully protonated at pH<5.2.
. 2 and Suppl. Table S3 demonstrate that neutral
Lut is a strong denaturant (even better than Pyr). However,
protonated Lut does not offer the same DNA stabilizing effect as
protonated Pyr does, and in fact the stabilization found for Lut®
ic pH is smaller than that obtained by adding equivalent
ty of NaCl (Figure 2). This confirms that the strong
llizing effect of Pyr at acidic pH is related to short-ranged,
cific duplex-Pyr" contacts, which are less likely to occur for
e bulkier Lut molecule.
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Figure 2. A) B) '"H NMR spectra of the imino region of duplexes 1 and 3
acquired at pH values of 4.2 and 7.8 and in the presence of 400 mM
deuterated pyridine. C) NOESY spectrum (100 ms mixing time) of duplex 1
acquired pH 4.2 and in the presence of 400 mM deuterated pyridine (T = 5°C).
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Figure 3. A) Comparison of protonated pyridine and sodium binding positions along the major and minor gms five different DNA sequences: the three
sequences experimentally studied, the Drew-Dickerson dodecamer and GCA,T,GC. The sequences are specified in a top-to-bottom, 5'-to-3', orientation for the
Watson strand. The heat maps display the radial distribution function (RDF) of particle density with gespect to the radial position in the major and minor grooves

ong the dti’;#equence (vertical axis). The reference of the RDF for both

(plotted against the horizontal axis, reversed for the major groove) and the position
grooves is placed close to the center of the mass of the base pair. The density
spherical section of 1 nm cutoff, using an angular cutoff of 2.35 rad. The green line
major groove curve). B) C) Protonated pyridine in the typical binding locations along (
of GC steps. The non-polar pyridine hydrogen atoms and all the DNA hydrogen atoms'

tified as a function of the distance to the reference within a
laid on the'maps displays the groove width (we subtracted 0.6 nm for the
inor groove (MinG) of AT steps, and along (C) the major groove (MajG)
omitted for clarity. The green transparent volumes contain regions of

pyridine nitrogen density three times larger than the corresponding bulk density (2 M pyri

pyridine at low pH (all Pyrs were considered protonated)
as control simulations in 2 M NaCl (full details in Supp.
performed 10 independent simulations of 1.5 micros
each for the sequences 5-GCAAAATTTTGC-3’ (
CGCGAATTCGCG-3' (DDD), which could pote
unfolding in the microsecond time scale . To

time-scale and with the same for
unfolding events when simulated in n
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.71 Analysis of cation distributi

Figure 3. Furthermore, we
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placed in the minor groove
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interacting directl
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r (G-C) grooves of DNA. When
Figure 3B) the Pyr" ring is
e with the acidic proton

minor groove width is widest, e.g.
around the extre uence (5-ApA and the 3'-TpT),
mimicking the situation found for choline and TMA and in

previously described binding modes for a large
ions "8 Binding specificity of sodium cations is
imilar to that of Pyr®, but the binding free energy is
significantly smaller (~-1.4 kcal/mol for Na+, ~-2.4 kcal/mol for
Pyr'; see methods section of S| material). lon uptake
riments (S| material and Table S4) show that the number of
cations that condense with Seq. 3 approximately double
umber of sodium cations, in good agreement with the
puted binding free energy and cation densities in Figure 3.
t* is bulkier than Pyr* and therefore does not penetrate the
NA grooves as efficiently: few Lut+ are bound to the major
groove, and while present in minor groove they are always
placed at more distant locations from the bottom of the groove
(Figure S4), which justifies its smaller stabilizing effect.
Thermodynamic analysis of the melting of duplex Seq. 3 in Pyr"
and NaCl solutions confirmed the differential stabilization of DNA
in these two solutions (Table S5), which seems to be due to
enthalpic origin related to the strong interactions of well-
positioned Pyr" in the minor grooves. As expected due to its size,
Pyr" distorts the minor groove hydration pattern found in NaCl
solutions. Thus, our simulations reveal that solvents sites in the
presence of Na' are organized in a pattern reminiscent of a
fused hexagonal motif® (Figure S5A and S5D), and that Pyr*
disrupts somewhat such a pattern of hydration in the minor
groove (Figure S5B, S5E and differential plots S5C and S5F).
Our study reveals that one of the most powerful denaturants of
DNA can become structure protective when combined with
another strong denaturant: acidic pH. This effect appears to be
specific, as neither Na*, nor the closely related DNA denaturant
2,4-lutidine exhibit the same behaviour. Our MD simulations
suggest that Pyr denaturant properties can be explained
considering its ability to stack nucleobases®, while the
protective properties of Pyr® are related to sequence-specific
interactions of protonated pyridine molecules along the grooves
of DNA. Overall, our results highlight the tuneable nature of
pyridine as denaturant and open new means to alter the thermal



stability of nucleic acids. The switchable behavior of the Pyr'/Pyr
pair might find applications in the field of nanobiotechnology. For
example, it has been shown that a mixture of glycerol and
choline chloride allows for a more efficient folding of DNA
nanostructures such as DNA origamis"®. The similar mode of
interaction between choline and Pyr" cations with DNA suggests
an avenue for the design of new DNA agents for
nanobiotechnological applications, such as nanodevices with
applications in photonics, litography and electronics. Also, the
tunable denaturing/renaturing effect of Pyr could aid the
development of programmable fluorophore-quencher DNA-
based nanoswitches such as pH nanosensors with ability to
respond to pH changes of their localized environment'. The
structural origin of Pyr® stabilization could be also exploited in
experiments where DNA should be kept stable while other
macromolecules are unfolded. Finally, our results could be
exploited to design new cationic pyridine derivatives for the
delivery of genes which should act on acidic media '?. These
potential applications of Pyr will be explored in future works.

Experimental Section

Analysis of the thermal stability of DNA duplexes. Ultraviolet (UV)
absorbance was measured on a JASCO V-650 spectrophotometer
equipped with thermoprogrammer. UV melting curves at 290 nm were
measured at 1 pM strand concentration in buffers containing different
amounts of protonated/deprotonated pyridine and in the corresponding
control buffers, containing no pyridine (see the Supporting Information).
Experiments were performed in Teflon-stoppered quartz cells of 1
path length. The samples were heated to 95 °C, allowed to cool slow
4 °C, and then warmed during the denaturation experiments at a ra
°C min-1 to 90 °C. Melting curves were determined by computer fit of the
first derivative of absorbance with respect to 1/T"®. Further dguai
described in S| material.
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Molecular Dynamics simulations The DNA duplexes were immersed in
an octahedral box of previously equilibrated mixtures of water and
solutes (protonated pyridine, protonat 4-lutidine or NaCl) at a 2 M
concentration. Systems containing ATTTTGC-3"  (AsT4)
sequence and the Drew-Dickerson d r sequence (5-
CGCGAATTCGCG-3’, DDD) in a 2 M proto solution were
simulated independently 10 timgs for 1.5 d sequences
1 to 3 were simulated for 1.5 ch. The systems A;T4 and
DDD were also simulated in 2 M 2 M protonated 2,4-lutidine
solution for 500 ns. The simulatj out using the Gromacs-
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The thermal stability of duplex DNA can be decreased by addition of pyridine, a well-known denaturant. In acidic solutions, pyridine is
found protonated and displays its role as DNA renaturant, which ingreases the, Iting temperature of the duplex further than a
solution of NaCl at the same concentration. This orthogonal behavigilis rather cific to pyridine, e.g. the effect is not observed in
bulkier derivatives, such as 2,4 dimethylpyridine.



