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A B S T R A C T   

We empirically examine the relationship between traffic congestion and deaths in road accidents at the city level. 
We use panel data from 129 large cities in Europe for the period 2008–2017. We find strong evidence of a 
quadratic relationship between congestion and deaths in accidents, using both parametric and non-parametric 
econometric techniques. The threshold point at which the relationship between congestion and deaths in acci-
dents is reversed and becomes positive occurs when congestion results in about a 30 per cent increase in travel 
time compared to a free flow situation. For most congested cities, any effective measure to contain congestion 
may also lead to better safety outcomes.   

1. Introduction 

Economic and social transformation has rapidly increased mobility 
demand leading to a growth in car use, which has been aggravated by 
urban sprawl and new commuting needs. City planners are increasingly 
aware of the need to maintain a balance between facilitating mobility – 
essential for cities’ economic and social vitality – and managing or 
mitigating its negative effects. Therefore, in urban areas, addressing the 
negative externalities of transport,1 including congestion, road accidents 
and pollution, is considered an essential challenge of modern times. 
Among these externalities, the European Union considers that conges-
tion needs urgent attention, given the expected growth in transport 
demand and the associated economic cost: nearly 1% of annual Euro-
pean GDP (EU Commission, 2018; Christidis and Ibáñez, 2012). There is 
no doubt that congestion is, above all, an urban phenomenon, either in 
the core of large cities or on the interurban roads accessing and con-
necting urban hubs. Cities are at the forefront of economic growth, 
employment, knowledge and innovation – around 85% of the EU’s GDP 
is generated in European cities (European Commission, 2017) – which 
could be at risk or, at least, dampened by the inefficiencies produced by 
congestion. Moreover, congestion is set to continue being a huge burden 
on future society, with congestion costs projected to increase by about 
50%, to nearly €200bn annually, by 2050 (European Commission, 
2011). 

Congestion is not only a negative externality in its own right, but it 
can also aggravate other negative externalities. Indeed, the interaction 
of congestion with other externalities like pollution has fueled recent 

research interests. These studies have shown how congestion correlates 
with higher emissions of pollutants, producing unfavorable health out-
comes and undermining quality of life (see Currie and Walker, 2011; 
Bigazzi and Figliozzi, 2013; Bel and Rosell, 2013; Beaudoin et al., 2015 
and Simeonova et al., 2018, among others). However, the effects of road 
congestion on road safety outcomes have received less attention, 
particularly in urban areas, and the empirical literature is characterized 
by delivering mixed results and conclusions, indicating complexity in 
the relationship between these two externalities. 

The interrelations between congestion and accidents are of great 
importance for sustainable mobility in urban environments. First, 
because of the high economic and social cost of accidents when added to 
the costs of congestion. In the EU, the external economic costs of road 
accidents were estimated at 1.7% of GDP for 2008 and the annual 
number of fatalities exceeds 25,000, with a further 135,000 receiving 
serious injuries. Urban areas, moreover, are shown to account for 67% of 
these accidents and 37% of fatalities. Second, because any action 
designed to deal with congestion might have an indirect effect on road 
safety outcomes, there is a need to develop a good understanding of the 
relationship between congestion and road safety before producing 
transport policy. 

This paper is the first to draw on an international database of Eu-
ropean cities to empirically estimate the impact of congestion on urban 
road safety outcomes. While most studies in the literature evaluating 
this relationship have focused on specific roads (highways or road net-
works) or single cities (case studies), there is a dearth of papers exam-
ining the relationship across several cities. Here, we consider a total of 
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1 An externality is the cost or benefit that affects a party who did not choose to incur in that cost of benefit, and it is not reflected in market prices. 
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129 European cities – each with more than 300,000 inhabitants – in 18 
countries, between 2008 and 2017, giving us a total of 1090 observa-
tions. We apply panel data econometric techniques to empirically 
contribute to shedding light on the complex relationship between 
congestion and road safety outcomes. Our parametric and non- 
parametric results indicate that congestion effects on road safety out-
comes are non-linear. We find a quadratic relationship that suggests that 
increases in congestion in less congested cities moderately reduce the 
number of deaths per capita (safety effect). Yet, an increase in conges-
tion is found to have an adverse, detrimental effect on road safety when 
congestion levels are high (detrimental effect). Specifically, we find that 
a rough threshold between both effects is found around 30 per cent in-
crease in travel time compared to a free flow situation. 

The remainder of this paper is organized as follows. The next section 
provides a comprehensive review of the related literature relevant to our 
study. Section 3 explains the empirical approach by describing our data 
and the methods employed. Section 4 displays our main results and the 
article finishes with some discussion and concluding remarks in section 
5. 

2. Related literature 

Existing research has not yet reached an agreement on the impact of 
traffic congestion on road safety outcomes (Wang et al., 2013a). One 
strand of the literature uses volume to capacity ratios (V:C ratios) as a 
proxy of congestion. This literature generally find support to the Shefer’s 
hypothesis (Shefer, 1994), which establishes a negative relationship 
between congestion and road safety, mainly due to speed decrease 
(Shefer and Rietveld, 1997; Ivan et al., 2000; Lord et al., 2005 among 
others). Another strand of empirical papers proxy congestion with 
average daily traffic (ADT) as a measure of traffic density. Although 
some of these also find support to the negative relationship hypothesis 
(Martin, 2002; Wong et al., 2007), most studies taking this approach 
find the opposite result concluding that road safety deteriorates with 
traffic density (Voigt and Bared, 1998; Milton and Mannering, 1998 and 
Lord et al., 2005; among others). 

However, these works were not specifically examining congestion, 
what had typically been overlook in the early literature (Wang et al., 
2013). The closest approach was to distinguish the effects by time of the 
day (Peak vs. valley), what in the case of V:C papers served to consoli-
date the positive externality of congestion (Shefer and Rietveld, 1997; 
Baruya, 1998). Indeed, this literature contrasts with another vast group 
of more recent empirical studies using congestion indexes, which find 
either that congestion has little or no impact on the frequency and 
severity of accidents (Noland and Quddus, 2005; Wang et al., 2009; 
Quddus, 2010), or even more fatal and serious injury accidents, espe-
cially during peak times (Wang et al., 2013b; Shi et al., 2016). 

An intimately related strand of literature is the one has focused on 
evaluating the effects produced by congestion charges. This policy, has 
proved effective in reducing congestion, but it is also expected to pro-
duce indirect road safety effects by means of changing traffic flow 
conditions. Research shows an overall safety improvement due to the 
congestion charging scheme in London (Transport for London, 2007; Lee 
et al., 2012; Green et al., 2016), although Noland et al. (2008) find 
mixed or less positive results. 

One of the most important aspects of the literature review is the 
evidence of the non-linear relationship between traffic density and road 
safety outcomes. Interestingly, some works find that accident rates 
increased more steeply once certain high traffic thresholds had been 
crossed (See Kononov, 2008; Harwood et al., 2013), what suggests 
exponential or parabolic relationships with the highest crash rates being 
recorded at low and high traffic densities. This evidence is in line with 
Dickerson et al. (2000), who had estimated that the marginal accident 
rate rises substantially above the average rate at higher traffic flows, 
pointing to the presence of external accident costs (see Maddison et al., 
1996; Newbery, 1988). Other papers identifying non-linear 

relationships – even if some were finding decreasing relationships – are 
Zhou and Sisiopiku (1997), Ivan et al. (2000) and Lord et al. (2005). This 
suggests that models assuming linear relationships might neglect 
possible non-linearities. If the relationship for accidents involving in-
juries and fatalities become positive at the highest values of the V:C ratio 
(high congestion) or other traffic density metrics, this could be inter-
preted as being the consequence of more traffic conflicts attributable to 
congestion. 

Some studies provide different reasons to explain the positive rela-
tionship between congestion and safety outcomes at highly congested 
scenarios. Although fewer (serious) collisions are expected to occur, for 
example, within a congested queue on a motorway, the review by 
Marchesini and Weijermars (2010) indicate that at the tail of the queue 
more severe rear-end crashes are to be expected, especially if congestion 
surprises drivers arriving at or already in the queue. According to Elvik 
et al. (2009), this result can also be explained in urban areas – which is 
our framework-, where the main roads were built for lower than actual 
volumes of traffic because, in highly congested scenarios, drivers take 
diversionary routes, choosing alternative roads and streets less suited for 
high traffic flows. In line with Zhou and Sisiopiku (1997), they believe 
that the accident rate (per mile driven) may be high for low traffic V:C 
ratios because of higher speeds and night-time driving. But this de-
creases with the increase in the V:C ratio, up to 0.5 for property 
damage-only accidents and 0.7 (approx.) for injury-related accidents. 
Thus, the change in traffic conditions from free flow to dense traffic will 
necessarily result in a negative relationship that associates more traffic 
with fewer accidents, which is what most of the literature examining V:C 
ratios has found. Above these V:C ratio values, the accident rate in-
creases again, ultimately displaying a U-shaped functional form that 
illustrates the negative safety externality produced by congestion that 
increases exponentially with traffic volumes. Sun et al. (2016) also argue 
that the increase in the number of crashes is probably due to drivers’ 
frequent lane changes and keeping too close to the vehicle in front. They 
also point to the complexity of interactions among vehicles as an 
increasing risk factor. 

In this research, we test whether the non-linear relationship between 
accidents and congestion holds at the city level. Our focus on the urban 
context represents an important contribution to the existing literature. 
Indeed, traffic congestion is primarily an urban concern (Bull, 2004; 
OECD, 2007; Parry et al., 2007) and policy debates about the imple-
mentation of measures to deal with congestion are usually centered in 
cities. Furthermore, traffic accidents in urban roads may differ from 
accidents in inter-urban roads because many accidents involve pedes-
trians or cyclists (Ewing et al., 2014; Graham et al., 2003). Hence, it is 
valuable to examine the relationship between accidents and congestion 
at the city level. 

Few previous studies at the city level tend to focus on just one spe-
cific city. In contrast, we adopt a more general approach and take 
advantage of panel data for a large sample of cities in Europe. Finally, 
another added value of our analysis is the use of a novel dataset provided 
by TomTom in which drivers’ travel time is collected on actual GPS 
based measurements for each city. Hence, we use a congestion index that 
measures the amount of extra travel time experienced by drivers 
compared to what it would be in local free flow conditions. 

3. Methods 

3.1. Data bases 

We used data on congestion for 130 cities in countries of the EU 
whose urban population exceeds 300,000 inhabitants. These data are 
available from 2008 to 2017 and have been obtained from TomTom (htt 
ps://www.tomtom.com/en_gb/trafficindex). We cross this congestion 
data with information available in Eurostat. However, there are missing 
values for some cities/years so that our final sample, with information 
on both congestion and deaths in accidents, contains 130 cities from 18 
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countries giving a total of 1090 observations. 
Our dependent variable is the number of deaths in road accidents at 

the city level per year. Data have been obtained from Eurostat. The main 
explanatory variable is the level of congestion at the city level per year. 
We use the congestion index built by TomTom. 

Following Shi et al. (2016), congestion measures can be broken down 
into three general categories: density-based, travel time-based and 
travel speed-based. The TomTom Congestion Index belongs to this sec-
ond category. 

Rather than relying on theoretical models or simulations, TomTom 
obtains real data on drivers’ travel time from its anonymous customers 
in all cities where it is active. TomTom includes in its analysis local 
roads, arterials and highways, based on actual GPS based measurements 
for each city. 

The congestion index is built by establishing first a baseline of travel 
times during uncongested, free flow conditions across each road 
segment in each city. Then, average travel times across the entire year 
(24/7) per every vehicle in the entire network of the city are calculated. 
This information is compared against free flow periods to derive extra 
travel time. 

Hence, the congestion index represents the measured amount of 
extra travel time experienced by drivers across the entire year in the city 
due to traffic conditions. For example, a congestion level of 36% cor-
responds to 36% extra travel time for any trip, anywhere in the city, at 
any time compared to what it would be in local free flow conditions.2 

Note that our congestion index is measured in the empirical analysis 
as a proportion over 1. In order to convert the extra travel time measure 
into a travel time measure we add 1 to all observations. For example, if 
the mean extra travel time is 0.2 the travel time measure is 1 + 0.2. 

As control variables, we consider different characteristics of the cities 
or the surrounding region that may have an influence on safety out-
comes. First, we consider the total number of inhabitants per year in the 
city. Furthermore, we consider the population density of the surround-
ing region that is defined as the number of inhabitants per square kilo-
meter per year at the NUTS 3 level. The gross domestic product (GDP) 
per capita per year, with data at the region level (NUTS 2 level), is also 
included as explanatory variable. Finally, we consider an old age de-
pendency ratio, with data per year at the city level. This is the ratio 
between inhabitants aged 65 and over and the population aged between 
20 and 64. Data for all these variables been obtained from Eurostat. 

We also consider a variable that measures the network length of the 
rail system measured in line kilometers as a proxy of the quality of public 
transportation provided in the city. Note that we only account for rail 
lines within the city, not rail lines that link the city center with sur-
rounding cities. Data have been obtained from Urban rail and World 
Metro database websites and websites of operators. Finally, as a proxy of 
the quality of roads we also include a variable for the share of highways 
over total kilometers of roads in the city according to the information 
provided by TomTom. A limitation of this variable is that data are only 
available for 2017 so that we assign the values of 2017 for previous 
years. While we may expect that variability over time for cities in our 
sample in terms of highway expansions is low, this limitation in the 
availability of data must be taken into account in the interpretation of 
results for this variable. 

3.2. Statistical modelling 

The use of count models is common in the analysis of the de-
terminants of road traffic accidents. Our preferred regressions, 

consistent with the literature, use the Negative Binomial Distribution. 
The empirical equation to estimate for city c in year t is as follows:  

Deathsct = α + β1Traveltimect + β2Traveltime_squarect + β3Densityct +

β4GDP per capitact + β5Oldct + β6Share_highwaysct + β7Railct + λ′Country +
γ′Year + ε                                                                                      (1) 

The dependent variable in equation (1) is the total number of deaths 
in road accidents on each city per year. As we mention above, we esti-
mate a negative binomial model in the analysis of the determinants of 
deaths in accidents so that the city population variable is included as an 
exposure variable to enable us to interpret the results in terms of rates 
per capita. As the exposure variable, the coefficient of the population 
variable is restricted to 1. However, as a robustness check, we also es-
timate the equation of the determinants of accidents using the Ordinary 
Least Squares (OLS) method. In this latter case, the dependent variable is 
expressed in terms of deaths per capita. 

The main explanatory variable is the mean travel time in the city per 
year (1 + Congestion index values). To the test the existence of a non- 
linear relationship between accidents and congestion, we add the 
square of the travel time variable as the explanatory variable 
(traveltime_square).3 

From a theoretical point of view, we should consider the potential 
endogeneity bias due to the simultaneous determination between acci-
dents and congestion. Indeed, it could be argued that accidents may also 
have an influence on the congestion records of a city. 

In this regard, our data for congestion refer to a mean annual average 
value for the entire city. Furthermore, our variable for safety refers to 
deaths in accidents, meaning only the most serious accidents are 
considered. These represent a very low proportion of total trips made in 
a city during a year. This point made can be illustrated by means of an 
example. The number of deaths in road accidents are about 300 per year 
in London, the city with the maximum values for this variable every year 
in our sample. According to Transport for London (TfL) annual reports, 
the number of car trips per day are about 26 million. TomTom does not 
specify the number of car trips involved in the calculation of the 
congestion index, but they specify that the kilometers of GPS data from 
actual driven trips used to calculate the congestion in London was 
4,484,839,830 in 2017. Thus, several million of trips per year are used to 
build the congestion index. The low number of trips with serious acci-
dents in relation to the total number trips suggest that our travel time 
variable is not affected by trips with serious accidents. 

While we do not expect a potential simultaneous bias to be driving 
our results, we report the results of additional regressions to examine 
this possibility. Hence, we use a standard approach to deal with the 
potential endogeneity bias that is using lags of the endogenous explan-
atory variable as instruments. We can expect that lagged values of travel 
time variables are correlated with their contemporaneous values. 
Furthermore, the value of the travel time variable should not be affected 
by accidents that take place in later years. 

As we mention above, we include as control variables population 
density (Density), Gross Domestic Product per capita (GDP per capita), 
the old age dependency ratio (Old), the length of rails (Rail) and the 
share of highways (Share_highways). Furthermore, we add year 
dummies to control for yearly effects that are common to all cities. 
Finally, we include country dummies to control for omitted variables 
that are correlated with the variables of interest and which do not 
change over time. In this regard, some relevant omitted factors may 
have a strong influence on safety outcomes. This is the case, for example, 
with specific road safety policies such as the maximum blood/alcohol 
concentration allowed, the maximum speed limits on urban roads and 

2 Speed measurements are used to compute travel times on individual road 
segments and over entire networks within the city. A weighting is then applied, 
considering the number of measurements. By weighting the number of mea-
surements, busier and more important roads in the network have more influ-
ence on the city’s congestion level than quieter, less important roads. 

3 Results are essentially identical when considering the congestion index 
variable measured as extra travel time and its square as main explanatory 
variables. 
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whether a penalty point system for driver licensing is in force. These 
road safety policies are enacted through national legislation but varia-
tions in the period considered are very low as legislation across the 
countries has generally remained consistent since before 2008. Thus, 
most of the impact of these road safety policies should already be 
captured by the country dummies. 

Note that in all regressions, standard errors are robust to hetero-
scedasticity and clustered at the city level to account for any autocor-
relation problem. Table 1 shows the descriptive statistics of all variables 
used in the empirical analysis. 

4. Results 

Table 2 displays the results of the estimates. In columns (I) to (IV), we 
show the results when the estimation is made using the negative bino-
mial method. As discussed above, we use population as an exposure 
variable so that we are effectively estimating the ratio of traffic fatalities 
to population. In column (I), we show the results when considering, as 
explanatory variables, only the two variables of travel time. In column 
(II), we show the results when adding the rest of the control variables 
related to the characteristics of the city or the surrounding region. In 
column (III), we include the population as an explanatory variable 
rather than as an exposure variable so that the coefficient of the variable 
is estimated and not restricted to be 1. Finally, in column (IV) we add the 
country dummies. An interesting complementary regression would be to 
include city dummies instead of country dummies but the negative 
binomial regression with city dummies does not converge to any value. 

In all four regressions, we find evidence of a quadratic relationship 
between number of deaths in accidents and travel time. The variable of 
travel time is negative and statistically significant at the 1% level, while 
the square of the travel time variable is positive and statistically sig-
nificant at 1%. This means that the change from low to moderate levels 
of congestion leads to a decrease in the number of deaths in accidents. 
However, the change from moderate to high levels of congestion leads to 
an increase in the number of deaths in accidents. In cities with low levels 
of congestion, an increase in traffic may be associated with a reduction 
in the speed of vehicles, as found in most research using V:C ratios. In 
cities with high levels of congestion, greater exposure to accidents seems 
to be more strongly linked than the speed of vehicles to the incidence of 
road traffic fatalities. Our results are, therefore, in line with those in the 

empirical literature cited, pointing to a U-shaped relationship. 
We also find that the number of deaths in accidents are higher in 

denser cities. The concentration of traffic at fewer points seems to lead to 
poorer safety outcomes. Taking into account that we expect a positive 
relationship between congestion and density, the results for the density 
variable reinforce our previous finding that high levels of congestion 
imply more deaths in accidents. 

We also find a greater number of deaths in accidents in cities with a 
higher proportion of over 65s in the population. Old people may be more 
vulnerable to accidents. An additional result is a lower number of deaths 
in accidents in cities that have a higher proportion of motorways. Hence, 
the quality of roads seems to help improving road safety outcomes. 
However, note that these two latter results do not hold when we add 
country dummies. Finally, the number of deaths in accidents is higher in 
bigger cities. 

In columns (V) to (VI), we show the results when the estimation is 
made using the OLS method. Although our preferred method is the 
negative binomial, we show the results when using the OLS, as a 
robustness check. Recall that the dependent variable here is the number 
of deaths in accidents per capita. In column (V), we show the results of a 
regression that considers all explanatory variables including country 
dummies. Column (VI) considers city dummies instead of country 
dummies. 

The results of these additional regressions confirm the quadratic non- 
linear relationship between congestion and deaths in road accidents. 
Thus, our main result holds, regardless of the econometric technique 
employed. In terms of controls, only the variable of density is positive 
and statistically significant when considering country fixed effects. 

Results for control variables become distorted when we add city 
dummies. Note that this last regression relies on the within variation, 
which is low for all the explanatory variables considered. In this regard, 
the control variables that are statistically significant is that for density 
and older inhabitants, but the sign is the opposite of that obtained in 
previous regressions. More importantly, the travel time variable remains 
negative while the square of travel time remains positive. Hence, the 
positive relationship between congestion and deaths in accidents for 
highly congested cities holds, even after adding hundreds of city 
dummies in the regression. Thus, we can conclude that there is strong 
evidence that an increase in congestion in highly congested cities leads 
to poorer safety outcomes. 

Table 1 
Descriptive statistics of the variables used in the empirical analysis.   

Type Description Source Mean Standard 
deviation 

Deaths Dependent variable 
(negative binominal 
regressions) 

Total number of deaths in road accidents on 
each city per year 

Eurostat 19.08 27.75 

Deaths_capita Dependent variable (OLS 
regression) 

Total number of deaths per capita in road 
accidents on each city per year 

Eurostat 0.00003 0.00002 

Congestion Main explanatory variable Mean extra travel time (in percentage) 
compared to what it would be in local free 
flow conditions 

TomTom 0.25 0.07 

Travel time Main explanatory variable 1 + Congestion TomTom 1.25 0.07 
Density Control factor Total number of inhabitants per square 

kilometer per year at the NUTS 3 level 
Eurostat 1695.60 2359.67 

GDP per capita Control factor Gross domestic product per capita per year 
at NUTS 2 level. 

Eurostat 29626.82 11341.36 

Old Control factor Ratio between inhabitants aged 65 and over 
and the population aged between 20 to 64 
per city per year 

Eurostat 28.82 7.42 

Share_highways Control factor Share highways over total roads (proportion 
over total kilometers) 

TomTom 0.55 0.16 

Rail Control factor Length of rail (kilometers) Urban rail ((http://www.urbanrail.net/), World 
Metro database ((http://mic-ro.com/metro/table. 
html) and websites of operators 

43.23 59.85 

Population Exposure variable in 
negative binomial 
regressions 

Total number of inhabitants per year at the 
city 

Eurostat 686,257.1 886,873.7  
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Table 2 
Estimation results.   

Dependent variable: deaths – negative binomial Dependent variable: deaths per capita - OLS 

Variables (I) (II) (III) (IV) (V) (VI) 

Traveltime − 54.51 − 48.57 − 14.55 − 21.31 − 0.0009 − 0.0004 
(13.41)*** (11.66)*** (5.76)*** (4.32)*** (0.0002)*** (0.0002)** 

Traveltime_square 21.59 19.20 6.81 8.24 0.0003 0.0002 
(5.22)*** (4.52)*** (2.25)*** (1.69)*** (0.0001)*** (0.00009)** 

Population   0.0007    
1 1 (0.00003)*** 1 – – 

Density – 0.00004 0.00004 0.00004 1.32e-09 − 3.48e-09 
(0.00002)** (0.00002)** (5.31e-06)*** (6.57e-10)** (1.95e-09)* 

GDP per capita – − 4.68e-06 − 0.00001 − 2.16e-06 − 2.21e-11 6.62e10 
(3.09e-06) (2.27e-06)*** (1.62e-06) (1.05e10) (4.73e-10) 

Old – 0.03 0.028 0.007 2.94e-08 − 9.11e-07 
(0.004)*** (0.002)*** (0.008) (2.68e-07) (4.47e-07)** 

Share_highways – − 0.67 0.19 − 0.25 − 8.96e-06 – 
(0.23)*** (0.14) (0.20) (6.10e-06) 

Rail – − 0.0006 − 0.0006 − 0.0001 − 4.10e-09 3.86e-08 
(0.0005) (0.0004 (0.0006) (1.67e-08) (1.98e-07) 

Intercept 24.09 20.14 9.35 2.68 0.0006 0.0003 
(8.58)*** (7.51)*** (3.69)*** (2.44) (0.00001)*** (0.0001)** 

Year dummies YES YES YES YES YES YES 
Country dummies NO NO NO YES YES NO 
City dummies NO NO NO NO NO YES 

Maximum Likelihood R2 0.15 0.31 0.64 0.54 – – 
Log pseudolikelihood − 3789.35 − 3582.81 − 4303.16 − 3369.45 – – 
Likelihood ratio chi-square (joint sign.) 182.00*** 413.09*** 1135.76*** 839.80*** – – 
Akaike’s Information Criterion (AIC) 6.81 6.60 6.89 6.24 – – 
R2 – – – – 0.52 0.71 
F test (joint. Sign.) – – – – 36.94*** 16.57*** 

N 1090 1090 1090 1090 1090 1090 

Note: Standard errors in parenthesis (robust to heterocedasticity and clustered at the city level). Statistical significance at 1% (***), 5% (**) and 10% (*). 

Table 3 
Estimation results (lags of congestion variables as regressors).   

Technique: Use of lags instead of contemporaneous values of congestion variables  

Dependent variable: deaths – negative binomial 

Lags One Two Three Four Five Six Seven Eight Nine 
lag lags lags lags lags lags lags lags lags 

Variables          

Traveltime − 49.86 − 49.03 − 41.96 − 43.91 − 49.06 − 53.02 − 52.19 − 54.70 − 68.83 
(9.85) (10.41) (10.48) (10.44) (10.93) (11.42) (12.47) (12.66) (23.62) 
*** *** *** *** *** *** *** *** *** 

Traveltime_ 19.70 19.39 16.56 17.25 19.22 20.68 20.41 21.34 26.85 
Square (3.79) (4.00) (4.02) (4.00) (4.22) (4.42) (4.84) (4.90) (8.99)  

*** *** *** *** *** *** *** *** *** 
N 969 850 736 610 496 375 259 153 47 
Maximum Likelihood R2 0.32 0.32 0.33 0.32 0.33 0.35 0.36 0.37 0.51  

Technique: Instrumental variables regression with lags of congestion variable as instruments  
Dependent variable: deaths per capita 

Lags One Two Three Four Five Six Seven Eight Nine 
lag lags lags lags lags lags lags lags lags 

Variables          

Traveltime − 0.002 − 0.002 − 0.002 − 0.002 − 0.002 − 0.002 − 0.003 − 0.003 − 0.003 
(0.0004) (0.0006) (0.0006) (0.0007) (0.0008) (0.0007) (0.0008) (0.0008) (0.001) 
*** *** *** *** *** *** *** *** *** 

Traveltime_ 0.0008 0.001 0.0009 0.001 0.001 0.001 0.001 0.001 0.001 
Square (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0005)  

*** *** *** *** *** *** *** *** *** 
R2 0.79 0.78 0.78 0.77 0.76 0.76 0.77 0.78 0.77 
N 969 850 736 610 496 375 259 153 47 
Under-identification test (instruments) 16.08 13.72 10.90 8.43 10.29 13.78 20.20 20.99 6.21 

*** *** *** *** *** *** *** *** ** 

Note: Standard errors in parenthesis (robust to heterocedasticity and clustered at the city level). Statistical significance at 1% (***), 5% (**) and 10% (*). All re-
gressions include the rest of control variables and year dummies. 
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Table A1 in the appendix shows the results using the negative 
binomial method but excluding the square of the travel time variable as 
explanatory variable. We consider the equation with all explanatory 
variables. In column (I), country dummies are not considered. Column 
(II) add country dummies. In both regressions, the travel time variable is 
not statistically significant. Therefore, we do not find a significant 
relationship between road safety and congestion when the functional 
form is modelled as linear. The identification of such relationship seems 
to be more accurate when the functional form is modelled as quadratic. 

As we mention above, we do not expect a potential simultaneous bias 
to be driving our results but Table 3 shows the results of additional re-
gressions that examine this possibility. Table 3 shows the results of 
additional regressions for congestion variables considering separately 
all available lags (up to nine) of such congestion variables as in-
struments. In particular, the negative binomial regression uses directly 
the lags of congestion variables as regressors because an instrumental 
variables procedure cannot be implemented (in theory, both procedures 
are equivalent). In the equation where the dependent variable is deaths 
per capita, we implement the instrumental variables procedure with the 
lags of congestion variables as instruments. In these latter regressions, 
we can also show the results of the underidentification test that confirms 
that instruments are strong. Results for congestion variables with the 
lags approach are very similar to previous regressions. Hence, we can 
confirm that any potential endogeneity bias should not distort our 
analysis. 

We also examine the relationship between deaths in accidents and 
congestion through a non-parametric analysis. In this regard, Fig. 1 
shows the range scatter that illustrate the relationship road safety and 
congestion for all observations in our sample. While there is a high 
dispersion in the data, cities with high levels of congestion have usually 
poor safety outcomes. 

Fig. 2 provides additional evidence of the quadratic relationship 
between deaths in accidents and congestion. This figure shows a median 
spline graph that estimates the relationship between congestion and 
deaths in accidents per capita with no assumptions about the functional 
form. The median spline graph is based on the calculation of cross me-
dians between the two variables and then the cross medians are used as 
knots to fit a cubic spline that is graphed as a line plot. 

The median spline graph confirms the quadratic relationship that we 
have found in the multivariate econometric analysis. Interestingly, the 
threshold point at which the relationship between congestion and deaths 
in accidents is reversed and becomes positive occurs when congestion 
results in a 30 per cent (approx.) increase in travel time. 

Fig. 3 shows the histogram of the congestion variable. A large 
number of cities in our sample have congestion records that are close to 

or greater than the threshold of 30%. Specifically, 24% of cities in our 
sample have congestion records greater than 30% while 43% have 
congestion records greater than 25%. For all these congested cities, any 
effective measure to contain congestion may also lead to better safety 
outcomes. 

5. Discussion and conclusions 

The mitigation of transport-related negative externalities is a major 
challenge faced by large cities and urgently needs transport policies that 
can provide a more sustainable and efficient mobility model. However, 
policy action to tackle these negative externalities must be based on a 
sound understanding of their causes and effects, as well as of their im-
pacts on other linked externalities. The limited availability of empirical 
evidence on the interrelation between congestion and road accidents, 
and the mixed results obtained, hamper this task, allowing only incon-
clusive predictions of the impact of lowering congestion levels on road 
safety. The literature presents this relationship as complex and pub-
lished results are ambiguous and highly dependent on the methods and 
data used and the context considered. Some papers indicate a positive 
safety effect produced by congestion; others report a contrary detri-
mental impact. In order to add to our knowledge and shed more light on 

Fig. 1. Scatter plot between deaths per capita in road accidents and congestion.  

Fig. 2. Median spline between deaths per capita in road accidents 
and congestion. 

Fig. 3. Histogram of the congestion variable.  
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this complex relationship, this paper has empirically explored both ex-
ternalities with a sample of 130 European cities monitored between 
2008 and 2017. 

Our parametric and non-parametric results suggest a non-linear 
quadratic relationship that confirms a beneficial safety effect for low- 
congested cities, and a detrimental effect for highly congested cities. 
On this regard, our results align with the recent literature showing a 
non-linear relationship that suggests that the most damaging impacts of 
congestion on road safety is found for the most highly congested states of 
traffic (Harwood et al., 2013; Shi et al., 2016, among others). Therefore, 
we call for the importance of considering this non-linearity to avoid 
misleading conclusions regarding the study on the relationship of 
congestion and road safety in line with Zhou and Sisipiku (1997). 

This result may seem counter-intuitive if the reader thinks of a single 
motorway, because increasing V:C ratios should necessarily reduce 
average speeds, contributing to fewer injury-related crashes. Even in this 
framework, there is evidence supporting that congestion may also be 
associated with severe accidents. Wang, Ison and Quddus (2013b) found 
that traffic congestion was associated with more fatal and serious injury 
accidents due to the higher speed variance among vehicles within and 
between lanes and erratic driving behavior in the presence of conges-
tion. Similarly, Shi et al. (2016) found that since congestion causes 
stop-and-go traffic conditions, rear-end crashes at all severity levels are 
more likely to occur, what was consistent with Marchesini and Wei-
jermars (2010), who found that at the tail of the queue more severe 
rear-end crashes are to be expected, especially if congestion surprises 
drivers. 

Furthermore, note our units are whole metropolitan areas with large 
networks of roads and streets, and not just a single road. Thus, our re-
sults might be interpreted as evidence supporting the thesis of Elvik et al. 
(2009), which stated that in urban areas the main roads were built for 
lower than actual volumes of traffic and in highly congested scenarios, 
drivers take diversionary routes, choosing alternative roads and streets 
less suited for high traffic flows. This network-based explanation points 
out to the role of spatial spillovers and negative externalities of 
congestion being produced in a large network of roads, particularly 
damaging the road safety of less central – and therefore relatively less 
congested - parts of the network. These roads and streets may receive 
traffic with high speed variance and might be technically less prepared – 
in terms of infrastructure and circulation systems-for throughput flows. 
If erratic driving and high-speed variance is found in congested motor-
ways, it seems also reasonable to expect high speed variance, re-routing, 
and erratic driving also along the wider set of alternative routes of a 
network. 

Moreover, because our dependent variable accounts for all road fa-
talities, whatever the vehicle involved, another connected potential and 
complementary explanation is the effect of congestion on the safety of 
other types of vehicles and pedestrians. The literature has showed how 
congestion imposes costs to travelers – mainly via in-vehicle travel time- 
and influence their modal choice (See for example the recent contribu-
tion by Ha et al., 2020). Avoiding congestion might be easier using 
alternative vehicles such as powered two-wheelers and bicycles, whose 
drivers are more vulnerable than car drivers (Blaizot et al., 2013). Modal 

shift produced by congestion to these modes might also imply an in-
crease of interactions with vulnerable drivers and vulnerable pedes-
trians. Modal shifts produced by congestion and congestion-relief 
measures (i.e. congestion charging) on road safety is an important fur-
ture research area. 

In all, our results also have policy implications. Urban planners and 
policy makers should take into account the degree of congestion in their 
cities before designing transport policies to tackle congestion. According 
to our results, active policies to tackle congestion are urgently needed 
and might be further justified by the congestion-related additional cost 
regarding road safety outcomes in highly congested cities. Cities in 
which the average extra travel time compared to free flow situations 
rises above 30% show great potential for reducing both externalities via 
the taking of policy action. However, note that this percentage is just the 
result of a bivariate regression not considering other predictors. In any 
case, our multivariate analysis results suggest a virtuous circle of rein-
forcement between both externalities. Yet, in low-congested cities, the 
impact of these policies might be just the opposite, given that easing 
traffic flows may result in worse road safety outcomes. In this regard our 
findings are in line with papers that identify a positive externality of 
congestion, but only in cases of moderate levels of congestion. More 
attention, therefore, should be paid to the worst case scenarios, that is, 
those cities with the highest levels of congestion. Here, our results 
identify a number of cities – 24% of our sample – with congestion levels 
that exceed this 30% threshold. 

This empirical analysis is not free of limitations, which should be 
underlined calling for caution in the interpretation of our results. First, 
data used are aggregated at the annual and city level. The results of our 
study could be complemented with further research that uses a more 
disaggregated level of information both geographically, distinguishing 
between different types of roads within the city, and temporally, dis-
tinguishing between peak and off-peak periods. In addition, it is 
necessary to analyze in greater detail the possible simultaneous deter-
mination between accidents and congestion. Finally, this analysis is 
centered in large European cities. Further studies could examine 
whether the non-linear relationship between road accidents and 
congestion is confirmed for smaller cities and cities from other 
geographical areas. 
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APPENDIX  

Table A1 
Estimation results (negative binomial excluding traveltime_square as covariate)  

Variables (I) (II) 

Traveltime 0.55 − 0.29 
(0.57) (0.42) 

Population 1 1 
Density 0.00003 0.00004 

(0.00002)* (0.00001)*** 

(continued on next page) 
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Table A1 (continued ) 

Variables (I) (II) 

GDP per capita − 4.70e-06 − 1.49e-06 
(3.47e-06) (3.39e-06) 

Old 0.03 0.007 
(0.004)*** (0.008) 

Share_highways − 0.62 − 0.18 
(0.26)*** (0.20) 

Rail − 0.0007 − 0.0001 
(0.0006) (0.00007) 

Intercept − 11.22 − 10.78 
(0.82)*** (0.66)*** 

Year dummies YES YES 
Country dummies NO YES 
City dummies NO NO 
Maximum Likelihood R2 0.25 0.52 
Log pseudolikelihood − 3631.39 − 3381.31 
Likelihood ratio chi-square (joint sign.) 315.93*** 816.08*** 
Akaike’s Information Criterion (AIC) 6.69 6.26 
N 1090 1090  
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