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ABSTRACT
In this paper we study a finite time horizon advertising dynamic game under the assumption of 
time-inconsistent preferences. Specifically, we consider two types of discounting, heteroge-neous 
discounting and hyperbolic discounting. In the case of heterogeneous discounting, the relative 
importance of the final function will increase/decrease as the end of the planning hori-zon 
approaches compared with current payoffs. Whereas when agents discount future payoffs 
hyperbolically, their discount rates diminish rapidly in earlier stages and then slowly in the long 
term. We compute time-inconsistent and time-consistent feedback Nash equilibrium strategies, 
and compare them with those of the standard discounting case. Our results reveal that hetero-
geneous discounting would lead to some last-minute changes, i.e., some adapting behaviours in 
the last years in accordance with their increasing/decreasing valuations of the final state. Under 
some circumstances, the change can be so radical that the pre-commitment solution takes the 
contrary path of time-consistent strategies. Concerning the competition under hyperbolic dis-
counting, the temporal evolution of advertising efforts show a quite different nature. Different 
strategies exhibit disparity in the beginning, and encounter in the neighbourhood in the end, 
which is contrary to the heterogeneous discounting. Besides, a strong commitment power might 
induce over investment.
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Advertising; Lanchester Model; Time Inconsistency; Heterogeneous Discounting; Hyperbolic 
Discounting; Differential Game

1. Introduction

It is a well-known fact that a strong commitment to advertising is the key to success. This one-
way communication from brands to customers is proved to be helpful in increasing the brand
and product awareness, building brand images, differentiating the products from those of other
companies, and so on. The importance of advertising is evidenced by the large and increasing
amount of money spent by successful corporations. According to a report by Johnson (2017),
Procter & Gamble, the largest global advertiser in 2016, allocated 10.5 billion U.S. dollars
toward advertising activities, followed by Samsung ($9.9 billion), Nestle ($9.2 billion), Unilever
($8.6 billion) and L’Oreal ($8.3 billion).

As a consequence, a great deal of academic attention has been paid to this primary com-
petitive marketing tool in highly competitive industries, and the tendency is still increasing.
Differential game approach, drawing support from mathematical modelling and quantitative
methods, successfully involves the two essential elements of the marketing problems: dynamic
and strategic considerations, and has been one of the principal methodologies in marketing
science.

One of the earliest and most attractive advertising market share response models is the
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Lanchester model introduced by Kimball (1957). It is characterised in depicting battles for
market share in a simple and elegant way, and has been adopted in many researches of dynamic
advertising competition.

In the earliest years academic attention was focused, probably for reasons of mathematical
tractability, in the specific case where agents do not discount future payoffs. Case (1979) sug-
gests that it can be seen as an approximation of small and positive discount rate. Following the
same research line, a series of theoretical and empirical studies focusing on zero discounting are
conducted. Erickson (1991, chap. 3) presents an analytical and numerical analysis of feedback
equilibria, and compares it with that of open-loop form. Both Erickson (1992) and Chintagunta
& Vilcassim (1992) empirically test the market share response function to advertising invest-
ment and examine which kind of strategies (open-loop or closed-loop) fits better the reality.
The difference between these two researches derives from the data samples and the statistical
procedures applied. Chintagunta & Vilcassim (1994) extends the previous work by considering
multiple marketing tools such as advertising, detailing, sales promotion, and so on. The cases of
zero discounting in a finite time horizon with salvage value are analysed in two empirical studies.
In Wang & Wu (2001), they use the Lanchester model as a benchmark case for an extended
Vidale-Wolfe model (Vidale & Wolfe, 1957) in terms of model fitting and forecast accuracy.
Later on, in Wang & Wu (2007) an empirical test is run for different structures of market share
response function incorporating the inflation effect. However, the zero discount case may cause
problems of convergence of the objective functionals (Jørgensen & Zaccour, 2004).

The first attempt of breaking the zero discounting assumption comes from Fruchter & Kalish
(1997), where they study a game of infinite time horizon and propose a new approach to ob-
tain the so-called time-varying closed-loop strategies, which are determined by time, current
states and initial states. This work is later extended to an oligopolistic competition in Fruchter
(1999a,b, 2001), and Fruchter & Kalish (1998), with the incorporation of market expansion,
multi-products in a growing market, and multiple marketing tools in the latter three studies.
However, the equilibrium policies are not subgame perfect due to the strategy dependence on
initial market share. Jarrar et al. (2004) and Breton et al. (2006) develop an alternative approach
to compute the feedback Nash and Stackelberg equilibrium strategies, respectively. According
to their numerical illustrations, when rates of time preferences are positive, in both modes of
play (simultaneous and sequential) the advertising strategies are decreasing in the firm’s own
market share. This property differs from the results of zero discount rates. Another way to con-
sider a positive discount rate is through the modification of the model structure. For instance,
Sorger (1989) proposes a variant of the Lanchester model, which allows for the characterisation
of feedback Nash strategies. In accordance with Jarrar et al. (2004) and Breton et al. (2006), a
higher market share also implies a decrease in advertising. The empirical support from Chinta-
gunta & Jain (1995) show that the specification made by Sorger (1989) is a good candidate for
the market of pharmaceutical products, soft drinks, beers, and detergents.

Given that a positive discount rate can have a significant impact on the advertising strategies,
it is natural to think, if the agents discount the future payoffs in another way rather than the
standard way, in which discount rates are assumed to be constant and unchanged, will they
behave differently? Besides, empirical and experimental studies show that how people discount
the future payoffs depends on the time distance and the types of goods. The curiosity of exploring
the time preferences’ impact, as well as the impropriety of standard discounting in some decision
making situations have encouraged an academic stream in the differential game literature, where
alternative discounting models are applied. Although general time preferences have proven to
be important in many areas such as behavioural economics (e.g., Fischer, 1999; O’Donoghue &
Rabin, 2001), environmental economics (for example, Karp, 2005; Karp & Tsur, 2011), financial
economics (de-Paz et al., 2013; Laibson, 1997), and so forth, such concern has never been, to
the best of our knowledge, introduced into management science.

Nonetheless, any other discount function but the standard exponential one would lead to
time inconsistency (Strotz, 1955). If we follow the standard approach, a decision obtained at a
later time does not necessarily, and in general not, coincide with that made at an earlier time.
As a consequence, the agent tends to deviate from herself constantly, and the intertemporal
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choice, even in an optimal control problem, can be considered as a dynamic game among the
“selves” of the decision maker at different instants of time.

Hence, the purpose of this paper is to, firstly, going one step further, explore the impact
of temporal discounting on advertising competition. Specifically, we confine our interest to het-
erogeneous discounting and hyperbolic discounting, two of the most studied alternative discount
models. Secondly, we then compute different types of strategies, and compare them with the
standard discounting case to analyse how firms behave under different kinds of time preferences
and different commitment power.

The rest of this paper is organised as follow. In Section 2 we describe a differential game
model, the determination of feedback Nash equilibria follows in Section 3. In Section 4 some
numerical simulations will be run to throw light on the advertising strategies and market dy-
namics. Finally, in Section 5 we summarise our results, relate them to the market observations,
discuss the limitations and suggest some future studies.

2. Model Formulation

2.1. Lanchester Dynamics

The Lanchester model was originally used to model military combat. It was firstly introduced
into the economic world by Kimball (1957) because of the similarity between military and indus-
trial operations, and further advanced by Case (1979) and Little (1979). This model describes
a battle for the market share where the advertising is the dominant influencing factor that only
affects the customers of the rival firm.

Denote by xi(s) and ui(s) the market share and the rate of advertising expenditure of firm
i (i = 1, ..., N) at time s, ki the advertising effectiveness, the market share and advertising are
originally related in a linear structure

ẋi(s) = kiui(s)[1− xi(s)]−
N∑
j=1
j 6=i

kjuj(s)xi(s) .

Specifically, in a duopolistic market (as in Chintagunta & Vilcassim, 1992; Erickson, 1985; Jarrar
et al., 2004; Little, 1979), by letting x = x1 and x2 = 1− x, the basic Lanchester dynamics can
be simplified as

ẋ(s) = k1u1(s)[1− x(s)]− k2u2(s)x(s) .

Sorger (1989) extended the Lanchester model adopting the square root structure in a Vidale-
Wolfe extension proposed by Sethi (1983), and formulated the instantaneous variation of market
share in the following way (specifically, k1 = k2 = 1 in Sorger’s setting)

ẋ(s) = k1u1(s)
√

1− x(s)− k2u2(s)
√
x(s) , x(t) = xt . (1)

According to Sorger (1989), the two square root terms in (1) are approximation of 1−x+x(1−x)
and x+x(1−x), respectively. Therefore, a word-of-mouth communication effect is incorporated
into the market share dynamics. Besides, (1) can also be explained as a joint effect of the
“Lanchester-type” dynamics and the excess advertising.

This formulation is highly referenced in the literature. For instance, Prasad et al. (2009) ex-
tended it to an oligopoly setting. Prasad & Sethi (2004) enriched the discussion by introducing
the decay effect of Vidale-Wolfe model as well as the stochastic setting. Bass et al. (2005a,b)
analysed the situation where firms invest in brand-advertising to capture rival firm’s customers
and in generic-advertising to increase the primary demand. Naik et al. (2008) studied the ad-
vertising competition in an oligopoly setting with market expansion and brand confusion effect,
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and offered some empirical evidence. He et al. (2011) considered an advertising battle where a
coalition comprised of a manufacturer and a retailer is competing against another independent
retailer.

In this paper, we adopt Sorger’s extension in that it offers a richer interpretation by incor-
porating word-of-mouth communication and excess advertising. Moreover, with the square root
formulation, the equilibrium market share of firm i (i = 1, 2) is of S-shape, which is considered
to be in better accordance with reality. Furthermore, as mentioned previously, Sorger’s modifi-
cation allows the computation of feedback strategies for non-zero discounting, which is critical
for further discussion related to time-inconsistent discounting.

Assuming quadratic advertising costs (which give rise to diminishing effect), the two firms
aim to maximise the sum of the current value of the profit stream over a finite planning interval
T and the scrap value assigned to the terminal state:

J1(u1, u2) =

∫ T

t
θ1(s− t)

[
π1x(s)− c1

2
(u1(s))2

]
ds+ θ1(T − t)S1x(T ) , (2)

J2(u1, u2) =

∫ T

t
θ2(s− t)

[
π2 (1− x(s))− c2

2
(u2(s))2

]
ds+ θ2(T − t)S2 (1− x(T )) , (3)

where θi(s− t) (i = 1, 2) are discount functions and will be given in the next section.
The denotation of the variables and parameters is as follows:
πi = positive constant margin per unit product of firm i,
x(t) = market share of firm 1 at time t (state variable),
ci = positive constant cost parameter of firm i,
ui(t) = rate of advertising expenditure of firm i at time t (control variable),
ki = positive constant advertising effect parameter of firm i,
Si = the valuation assigned to the final state (non-negative constant).

2.2. Discount Function

The pioneering researches into intertemporal choice mainly focused on the psychological mo-
tives that lead to time preference1. Samuelson (1937) put forward the discounted utility (DU)
model to condense all the psychological motives underlying intertemporal decisions into a single
parameter, the discount rate, which is assumed to be constant and invariant across time and for
all kinds of goods. Its simplicity made it become the dominant theoretical framework to study
intertemporal behaviours. However, numerous experimental and empirical studies conducted in
the following years have shown that in some situations, people demonstrate diminishing dis-
count rates. Furthermore, the rates of time preference vary in the types of goods and decisions.
The findings of such inadequacy of constant discounting have encouraged the development of
various alternative theoretical models (for an overview of this topic, see Frederick et al., 2002).

Maŕın-Solano & Patxot (2012) introduced a temporal bias where agents discount the utility
during the planning horizon and the final function at constant but different rates. It is labelled
as heterogeneous discounting and the corresponding discount function is given by:

θi(s− t) =

{
e−δi(s−t) if s < T ,

e−ρi(s−t) if s = T , i = 1, 2.
(4)

The essence of heterogeneous discounting is to describe a situation where the valuation of the
final function is changing over time. To better present this idea, we rewrite the discount factor
at the ending point e−ρi(T−t) as e−δi(T−t) · e−(ρi−δi)(T−t) (i = 1, 2). We can see that if ρi > δi,

1Defined as “the preference for immediate utility over delayed utility” (Frederick et al., 2002).
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after omitting the discounting effect during the planning horizon, the additional term imposed
on the final function e−(ρi−δi)(T−t) (i = 1, 2) is increasing in t, and vice versa. Therefore, we are
able to model an increasing valuation of the final function by assuming ρi > δi, and a decreasing
valuation by ρi < δi (i = 1, 2).

One typical application of this approach, as in Maŕın-Solano & Patxot (2012), is to discount
the “hard” goods, in the sense that effort has to be made prior to the enjoyment of the benefits
(some examples are sports, knowledge and human capital accumulation). It has also been applied
in the field of behavioural finance, such as the consumption and investment problem (de-Paz
et al., 2013), and the life insurance purchase behaviours (de-Paz et al., 2014), where the final
function represents the wealth at retirement or the bequest left for her descendants. In all the
cases mentioned above it appears natural to assume that the agent has an increasing concern
as the time t approaches to the end of the planning horizon T .

Introducing heterogeneous discounting into the business context (corporate level) could make
sense due to the following concerns: 1) as discussed in Maŕın-Solano & Patxot (2012), the
capital accumulation of a firm can be, to some degree, regarded as a “hard” good; 2) It appears
restrictive to assume the discount rate to be invariant over time. The rate of time preference is
affected by social factors such as regime (Pirvu & Zhang, 2014) and state of economy (Parkin,
1988), as well as by other firm-level factors like project duration, risk and fixed cost (Chen,
2012). 3) It is also of interest to consider different ways of discounting for different things. For
instance (in this model), a firm could be more concerned with the cash flow if it is required
to guarantee the development. Nevertheless, the emphasis might switch to the market coverage
when the company reaches a steady growth.

In addition to heterogeneous discounting, a plenty of effort has been devoted to hyper-
bolic discounting. The phenomenon that decision makers exhibit declining discount rates has
been supported experimentally and empirically by many studies (e.g., Myerson & Green, 1995;
Thaler, 1981, and so forth), and hyperbolic discounting is a response to such DU anomaly by
relaxing the constant rate assumption. Its applications have been primarily located in the fields
of macroeconomics such as consumption-saving behaviours and economic growth, behavioural
economics like procrastination and addiction, and environmental economics.

We believe that it could be meaningful to incorporate hyperbolic discounting from a com-
pany’s point of view. Firstly, a manager could have limited commitment like a public policy
maker, in that she is not sure if the business plans made currently would be followed by the
successor. Besides, as human beings, it is likely that administrators are also influenced by the
temporal bias that affect personal choice when making professional decisions. Moreover, un-
certainty over the hazard rate of payoff realisation or over the agents’ own future discount
rates would lead to hyperbolic discounting (Azfar, 1999; Dasgupta & Maskin, 2005; Farmer &
Geanakoplos, 2009).

We choose a linear combination of exponential functions which is given as follows:

θi(s− t) = λe−δi(s−t) + (1− λ)e−ρi(s−t) , (5)

with the corresponding instantaneous discount rate

ri(τ) = −θ
′
i(τ)

θi(τ)
=
λδie

−δiτ + (1− λ)ρie
−ρiτ

λe−δiτ + (1− λ)e−ρiτ
, i = 1, 2, (6)

where 0 < λ < 1 and δi > ρi (i = 1, 2). The discount function (5) implies that the instantaneous
discount rate declines relatively rapidly in the earlier stages and then more slowly in the long run.
Furthermore, when the planning horizon is sufficiently large, the pure rate of time preferences
will converge to ρi (i = 1, 2). This specification is also adopted in Ekeland & Lazrak (2010)
and Karp & Tsur (2011). Other functional forms of hyperbolic discounting that are frequently
studied in the literature include logarithmic discounting: θ(s− t) = 1/ [1 + k(s− t)] with k > 0;
the discount factor used by Barro (1999): θ(s−t) = e−[ρ(s−t)+φ(s−t)], with ρ being a constant and
φ(s− t) a continuous and twice differentiable function; and the hybrid exponential discounting
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by Tsoukis et al. (2017): θ(s− t) = e−λ(s−t) [1 + b(s− t)]−a/b, with 0 < a < 1 and b > 0.

3. Determination of Feedback Nash Equilibria

We confine our interest to the feedback Nash equilibria for some reasons. It is theoretically de-
sirable in that firstly, it is more robust than the open-loop equilibria; secondly, empirical studies
show that the feedback strategies can better explain the real dynamic advertising competition
(Chintagunta & Vilcassim, 1992; Erickson, 1992); thirdly, evaluation of different kinds of strate-
gies has been made by means of estimating market share response model independently of the
strategies, the results suggest that feedback strategies perform strategically better for profit
maximisation (Wang & Wu, 2007). In addition, it is managerially attractive since the feedback
rules, which are time and state dependent, allow the flexibility of responding to the changing
market.

For the sake of completeness we introduce the definitions of some commonly used strategy
concepts in dynamic inconsistency setting. A feedback equilibrium is sub-game perfect in the
standard (constant discount rate) case, however it does not necessarily, and in general it does
not, hold while applying any kind of non-constant discounting. This is intuitive because a
decision made at time t is (normally) not optimal for the agent herself at a future time t′ due to
her time-varying preferences. An individual with time-inconsistent preferences may or may not
be aware of that. If the agent solves the optimisation problem at the beginning of the planning
horizon, and she believes that her preferences will not change in the future (and in fact they
do), or she can commit herself to follow this strategy made at time 0, we call it pre-commitment
solution.

Under heterogeneous discounting, the pre-commitment agents need to solve a standard game
in the beginning of the planning horizon. The corresponding system of dynamic programming
equations (DPEs) for feedback Nash equilibrium are given as follows (we use P to denote “pre-
commitment”):

δiV
P
i −

∂V P
i

∂s
= max
{uP

i }

{
πixi −

ci
2

(ui)
2 +

∂V P
i

∂x

(
k1u1

√
1− x− k2u2

√
x
)}

, i = 1, 2, (7)

with boundary conditions V P
i (T, x) = e−(ρi−δi)TSixi(T ).

However, the decision maker would tend to deviate from the ex ante policy as time goes on.
If she re-optimises the problem in a future time t′ according to her interest of that time and
applies it, and repeats this procedure in a later time t′′... As a consequence, she will end up
solving the problem at every instant and applying the solution only in that particular point of
time. This kind of strategy is defined as naive solution (denoted by superscript N).

If the decision makers under heterogeneous discounting act in a naive way, at every moment
t they will solve

δiV
t
i −

∂V t
i

∂s
= max
{uN

i }

{
πixi −

ci
2

(uti)
2 +

∂V t
i

∂x

[
k1u

t
1

√
1− x− k2u

t
2

√
x
]}

, i = 1, 2, (8)

together with the boundary conditions V t
i (T, x) = e−(ρi−δi)(T−t)Sixi(T ). Moreover, they will

only apply the solutions obtained from (8) at the moment s = t.
Note that neither the pre-commitment nor the naive solutions are time-consistent. A solution

can be time-consistent (named as sophisticated solution) if the agent can anticipate and take into
account her future preferences while making decisions, which implies no reason for future selves
to deviate from it. Using superscript S to represent sophisticated solutions, under heterogeneous
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discounting, the feedback Nash equilibrium is computed by solving

ρiV
S
i +Ki −

∂V S
i

∂t
= max
{uS

i }

{
πixi −

ci
2

(uSi )2 +
∂V S

i

∂x

[
k1u

S
1

√
1− x− k2u

S
2

√
x
]}

, (9)

with

Ki(t, x) = (δi − ρi)
∫ T

t
e−δi(s−t)

[
πixi(s)−

ci
2

(u∗i )
2
]
ds , i = 1, 2, (10)

where u∗i maximises the right-hand side term of equation (9). The corresponding boundary
conditions are V S

i (T, x) = Sixi(T ), and Ki(T, x) = 0 (i = 1, 2). By differentiating (10) with
respect to t, we can get a simplified version

δiKi −
∂Ki

∂t
= (δi − ρi)

[
πixi −

ci
2

(u∗i )
2
]

+
∂Ki

∂x

[
k1u
∗
1

√
1− x− k2u

∗
2

√
x
]
, i = 1, 2. (11)

We now proceed to compute the pre-commitment, naive and sophisticated solutions under
heterogeneous discounting.

By maximising the right hand side of equations (7), (8), and (9), we get the optimal adver-
tising strategies. We make the informed guess that the value functions are linear in the state
variable V σ

i (t, x) = ησi (t)x+νσi (t). Then, the feedback Nash equilibrium advertising policies are
given by

uσ∗1 (t, x) =
k1

c1
ησ1 (t)

√
1− x , uσ∗2 (t, x) =

k2

c2
ησ2 (t)

√
x , σ = P,N, S. (12)

For the agent who can commit herself to following the decision taken at the beginning of
planing horizon t = 0, she needs to solve (7). Substituting the advertising rules uP∗1 , uP∗2 , the
value functions V P

1 , V P
2 and their partial derivatives into (7), after rearranging, we obtain[

δ1η
P
1 (s)− η̇P1 (s)− π1 +

(k1)2

2c1

(
ηP1 (s)

)2 − (k2)2

c2
ηP1 (s)ηP2 (s)

]
x

= −δ1ν
P
1 (s) + ν̇P1 (s) +

(k1)2

2c1

(
ηP1 (s)

)2
,

(13)

[
δ2η

P
2 (s)− η̇P2 (s) + π2 −

(k2)2

2c2

(
ηP2 (s)

)2
+

(k1)2

c1
ηP1 (s)ηP2 (s)

]
x

= −δ2ν
P
2 (s) + ν̇P2 (s) + π2 +

(k1)2

c1
ηP1 (s)ηP2 (s) .

(14)

Equations (13) and (14) hold for every x, if and only if the parameters of x are equal to zero,
thus we have get a system of two Ricatti differential equations with boundary conditions

ηPi (T ) = (−1)i−1e−(ρi−δi)TSi , i = 1, 2. (15)

We can find out the naive solutions following the same pattern. By substituting uN∗1 , uN∗2 ,
V N

1 , V N
2 and the corresponding partial derivatives into (8), we get the same DPEs as (13) and

(14), but with different boundary conditions

ηNi (T ) = (−1)i−1e−(ρi−δi)(T−t)Si , i = 1, 2. (16)
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Regarding the sophisticated solutions, apart from V S
i , we also need to make a guess of the

structure of the term Ki in (9). We conjecture a linear structure, as for the value functions.

V S
i (t, x) = ηSi (t)x+ νSi (t), Ki(t, x) = αi(t)x+ βi(t), i = 1, 2. (17)

Accordingly,

∂V S
i

∂x
= ηSi (t) ,

∂V S
i

∂t
= η̇Si (t)x+ ν̇Si (t) ,

∂Ki

∂x
= αi(t) ,

∂Ki

∂t
= α̇i(t)x+ β̇i(t) , i = 1, 2.

(18)

We then substitute (12), (17), and (18) into (9) and (11). After rearrangement, we obtain[
ρ1η

S
1 (t) + α1(t)− η̇S1 (t)− π1 +

(k1)2

2c1

(
ηS1 (t)

)2 − (k2)2

c2
ηS1 (t)ηS2 (t)

]
x

= −ρ1ν
S
1 (t)− β1(t) + ν̇S1 (t) +

(k1)2

2c1

(
ηS1 (t)

)2
,

(19)

[
ρ2η

S
2 (t) + α2(t)− η̇S2 (t) + π2 −

(k2)2

2c2

(
ηS1 (t)

)2
+

(k1)2)

c1
ηS1 (t)ηS2 (t

]
x

= −ρ2ν
S
2 (t)− β2(t) + ν̇S2 (t) + π2 +

(k1)2

c1
ηS1 (t)ηS2 (t) ,

(20)

[δ1α1(t)− α̇1(t)− (δ1 − ρ1)π1

−(k1)2(δ1 − ρ1)

2c1

(
ηS1 (t)

)2
+

(k1)2

c1
α1(t)ηS1 (t)− (k2)2

c2
α1(t)ηS2 (t)

]
x

= −δ1β1(t) + β̇1(t)− (k1)2(δ1 − ρ1)

2c1

(
ηS1 (t)

)2
+

(k1)2

c1
α1(t)ηS1 (t) ,

(21)

[δ2α2(t)− α̇2(t) + (δ2 − ρ2)π2

+
(k2)2(δ2 − ρ2)

2c2

(
ηS1 (t)

)2 − (k2)2

c2
α2(t)ηS2 (t) +

(k1)2

c1
α2(t)ηS1 (t)

]
x

= −δ2β2(t) + β̇2(t) + (δ2 − ρ2)π2 +
(k1)2

c1
α2(t)ηS1 (t) .

(22)

Equations (19)-(22) hold for every x, if and only if the parameters of x are equal to zero.
Therefore, we obtain a system of four differential equations of ηSi (t) and αi(t), with boundary
conditions ηSi (T ) = Si and αi(T ) = 0 (i = 1, 2).

The equilibrium of the game under heterogeneous discounting is characterised in the follow-
ing proposition.

Proposition 3.1. The pre-commitment, naive and sophisticated feedback Nash equilibria solu-
tions for the the advertising competition under heterogeneous discounting are determined by

uσi (s, x) = (−1)i−1ki
ci
ησi (s)

√
1− xi(s)

= (−1)i−1ki
ci
ησi (s)

√
xj(s) , {i, j} = {1, 2}, σ = P,N, S.

(23)
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• For pre-commitment solutions, ηPi (s) (i = 1, 2) are the solutions to the system of dif-
ferential equations

η̇Pi (s) = (−1)i−1 (ki)
2

2ci

(
ηPi (s)

)2
+ (−1)i

(kj)
2

cj
ηPi (s)ηPj (s) + δiη

P
i (s) + (−1)iπi ,

{i, j} = {1, 2},
(24)

with boundary conditions ηPi (T ) = (−1)i−1e−(ρi−δi)TSi (i = 1, 2).
• For naive solutions of t-agent, ηNi (s) (i = 1, 2) solve the system

η̇Ni (s) = (−1)i−1 (ki)
2

2ci

(
ηNi (s)

)2
+ (−1)i

(kj)
2

cj
ηNi (s)ηNj (s) + δiη

N
i (s) + (−1)iπi ,

{i, j} = {1, 2},
(25)

with boundary conditions ηNi (T ) = (−1)i−1e−(ρi−δi)(T−t)Si (i = 1, 2).
• For sophisticated solutions, ηSi (s) (i = 1, 2) solve the system of differential equations

η̇Si (s) = (−1)i−1 (ki)
2

2ci

(
ηSi (s)

)2
+ (−1)i

(kj)
2

cj
ηSi (s)ηSj (s) + ρiη

S
i (s) + αi(s) + (−1)iπi ,

α̇i(s) = (−1)i
(ki)

2(δi − ρi)
2ci

(
ηSi (s)

)2
+ (−1)i−1 (ki)

2

ci
αi(s)η

S
i (s) + (−1)i

(kj)
2

cj
αi(s)η

S
j (s)

+ δiαi(s) + (−1)i(δi − ρi)πi , {i, j} = {1, 2},
(26)

with boundary conditions ηSi (T ) = (−1)i−1Si, αi(T ) = 0 (i = 1, 2).

Next we derive the time-inconsistent (Pre-commitment and Naive) and time-consistent (So-
phisticated) solutions for agents with hyperbolic discounting.

The system of DPEs for pre-commitment solutions are

ri(s)V
P
i −

∂V P
i

∂s
= max
{uP

i }

{
πixi −

ci
2

(ui)
2 +

∂V P
i

∂x

[
k1u1

√
1− x− k2u2

√
x
]}

, (27)

with boundary conditions V P
i (T, x) = Sixi(T ) (i = 1, 2).

As to the naive agents, they need to solve, at every instant t,

ri(s− t)V t
i −

∂V t
i

∂s
= max
{uN

i }

{
πixi −

ci
2

(uti)
2 +

∂V t
i

∂x

[
k1u

t
1

√
1− x− k2u

t
2

√
x
]}

, (28)

together with the boundary conditions V N
i (T, x) = Sixi(T ) (i = 1, 2), and follow the solutions

obtained only at the moment s = t.
The DPEs for sophisticated agents in a game of finite time horizon under non-constant

discounting is derived in Maŕın-Solano & Navas (2009). Following their approach, the time-
consistent equilibrium strategies can be obtained by solving the set of DPEs

ri(T − t)V S
i +Ki −

∂V S
i

∂t
= max
{uS

i }

{
πixi −

ci
2

(uSi )2 +
∂V S

i

∂x

[
k1u

S
1

√
1− x− k2u

S
2

√
x
]}

, (29)

with

Ki(t, x) =

∫ T

t
θi(s− t)[ri(s− t)− ri(T − t)]

[
πixi(s)−

ci
2

(uSi )2
]
ds , (30)
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and

V S
i (T, x) = Sixi(T ) , Ki(T, x) = 0 , i = 1, 2, (31)

where uSi (i = 1, 2) maximise the right-hand side of (29). Similarly, the term Ki (i = 1, 2) can
be simplified by differentiating both sides with respect to t. If the discount factor is a linear
combination of exponential functions given in (5), by differentiating (30) we obtain

Ωi(t)Ki −
∂Ki

∂t
= Φi(t)

[
πixi −

ci
2

(uSi )2
]

+
∂Ki

∂x

[
k1u

S
1

√
1− x− k2u

S
2

√
x
]
, (32)

with

Ωi(t) =
λρie

−δi(T−t) + (1− λ)δie
−ρi(T−t)

λe−δi(T−t) + (1− λ)e−ρi(T−t)
, Φi(t) =

λ(1− λ)(ρi − δi)
[
e−δi(T−t) − e−ρi(T−t)

]
λe−δi(T−t) + (1− λ)e−ρi(T−t)

.

(33)
Following the same procedures for the case of heterogeneous discounting, by solving equa-

tions of (27), (28), (29) and (32), we characterise the feedback Nash equilibria for the case of
hyperbolic discounting, which are summarised in the following proposition.

Proposition 3.2. The pre-commitment, naive and sophisticated feedback Nash equilibria solu-
tions for the advertising competition under hyperbolic discounting are determined by

uσi (s, x) = (−1)i−1ki
ci
ησi (s)

√
1− xi(s)

= (−1)i−1ki
ci
ησi (s)

√
xj(s) , {i, j} = {1, 2}, σ = P,N, S.

(34)

• For pre-commitment solutions, ηPi (s) (i = 1, 2) are the solutions to

η̇Pi (s) = (−1)i−1 (ki)
2

2ci

(
ηPi (s)

)2
+ (−1)i

(kj)
2

cj
ηPi (s)ηPj (s) + ri(s)η

P
i (s) + (−1)iπi ,

{i, j} = {1, 2},
(35)

with boundary conditions ηPi (T ) = (−1)i−1Si, i = 1, 2.
• For naive solutions of t-agent, ηNi (s) (i = 1, 2) solve the system

η̇Ni (s) =(−1)i−1 (ki)
2

2ci

(
ηNi (s)

)2
+ (−1)i

(kj)
2

cj
ηNi (s)ηNj (s)

+ ri(s− t)ηNi (s) + (−1)iπi , {i, j} = {1, 2},
(36)

with ri(τ) defined in (6) and boundary conditions ηNi (T ) = (−1)i−1Si (i = 1, 2). Note that
the solutions will be obtained and adopted only at the instant s = t.
• For sophisticated solutions, ηSi (s) (i = 1, 2) solve the system of differential equations

η̇Si (s) =(−1)i−1 (ki)
2

2ci

(
ηSi (s)

)2
+ (−1)i

(kj)
2

cj
ηSi (s)ηSj (s) + ri(T − t)ηSi (s) + αi(s)

+ (−1)iπi,

α̇i(s) =(−1)i
(ki)

2

2ci
Φi(s)

(
ηSi (s)

)2
+ (−1)i−1 (ki)

2

ci
αi(s)η

S
i (s) + (−1)i

(kj)
2

cj
αi(s)η

S
j (s)

+ Ωi(s)αi(s) + (−1)iπiΦi(s) , {i, j} = {1, 2},

(37)
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with Ωi(s) and Φi(s) given in (33), and with boundary conditions ηSi (T ) = (−1)i−1Si,
αi(T ) = 0 (i = 1, 2).

Remark 1. The feedback Nash equilibrium of the game with infinite time horizon under hyper-
bolic discounting can be easily obtained by setting T →∞ and S1 = S2 = 0 (for more details,
see Karp, 2007). Here, we focus on the sophisticated solutions since they are time-consistent,
and the corresponding equilibrium is subgame perfect. However, it is straightforward to achieve
a similar analysis of pre-commitment and naive solutions.

The set of DPEs for time-consistent equilibrium with infinite horizon are

ρiṼ
S
i + K̃i = max

{ũS
i }

{
πixi −

ci
2

(ũSi )2 +
∂Ṽ S

i

∂x

[
k1ũ

S
1

√
1− x− k2ũ

S
2

√
x
]}

, (38)

with

δiK̃i = λ(δi − ρi)
[
πixi −

ci
2

(ũSi )2
]

+
∂K̃i

∂x

[
k1ũ

S
1

√
1− x− k2ũ

S
2

√
x
]
. (39)

After maximising the right hand side of (38) and (39), we conjecture that both the value
functions and the term K̃i have linear structures, namely, Ṽ S

i = η̃Si x + ν̃Si , K̃i = α̃ix + β̃i
(i = 1, 2). By solving the system of DPEs, we can characterise the sophisticated solutions,
determined as

ũSi (x) = (−1)i−1ki
ci
η̃Si
√

1− xi = (−1)i−1ki
ci
η̃Si
√
xj , (40)

where η̃Si (i = 1, 2) solve the system of four equations

(−1)i−1 (ki)
2

2ci

(
η̃Si
)2

+ (−1)i
(kj)

2

cj
η̃Si η̃

S
j + ρiη̃

S
i + α̃i + (−1)iπi = 0,

(−1)i
(ki)

2

2ci
λ(δi − ρi)

(
η̃Si
)2

+ (−1)i−1 (ki)
2

ci
α̃iη̃

S
i + (−1)i

(kj)
2

cj
α̃iη̃

S
j + δiα̃i + (−1)iλ(δi − ρi)πi = 0,

{i, j} = {1, 2}.
(41)

A graphical presentation of the policies defined above will be given in section 4.2.

4. Numerical Illustrations

Since the system of differential equations cannot be solved explicitly, we provide some numerical
illustration to throw light on the impact time preferences have on firms’ behaviours and the
evolution of the market. Numerical solutions are calculated using Wolfram Mathematica v11.2.

For reasons of research interest, the two firms are assumed to be symmetric, with the ex-
ception of their time preferences and initial market share. By controlling π1 = π2, c1 = c2, and
k1 = k2, we are able to concentrate on how firms’ advertising investments alter in accordance
with their time preferences. Furthermore, it is not impractical to assume such symmetry. For
products satisfying some specific properties, it is likely that both firms have similar net profit
ratio, have achieved excellence in cost control, and are of symmetric abilities in relation to media
buying, quality control and some other capabilities, which implies the technical/economic sym-
metry. For instance, Chintagunta & Jain (1995) conducted some empirical tests using Sorger’s
specification, and found that the advertising effectiveness of the two duopolies in markets of
pharmaceutical product, soft drink and beer are almost identical. In the following, we set
π1 = π2 = 300, c1 = c2 = 2, k1 = k2 = 0.3, as what has been used in Jarrar et al. (2004).
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The values of S1 and S2 should be carefully chosen. Sorger (1989), Wang & Wu (2001) and
Wang & Wu (2007) show that how advertising efforts evolve over time is highly connected with
S1 and S2, the parameters representing the importance of market share in the end of planning
horizon for each firm. Specifically, let ûi(η̂i(s), x) denote the feedback Nash equilibrium strategies
of both firms under standard discounting, and η̄i be the values such that ˙̂ui(s) = 0 (i = 1, 2).
If the ending market shares are relatively important (Si > η̄i) for both firms, then once the
market shares reach near the steady state, they will both increase the advertising budget over
time when approaching time T , whereas the contrary happens if the final functions are relatively
unimportant (Si < η̄i)

2.
In order to mitigate these effects, here we let S1 and S2 be proportional to the shadow

prices of market share (A1 and A2) for the game of infinite time horizon starting at time T
with discount rate ρi for heterogeneous discounting, and with ρ̄i defined in (42) for hyperbolic
discounting (i = 1, 2). Specifically, Si = ωiAi (i = 1, 2), where A1 and A2 are the solutions to
the system

PiAi + (−1)iqi + (−1)i+1 (ki)
2

2ci
(Ai)

2 + (−1)i
(kj)

2

cj
AiAj = 0 , {i, j} = {1, 2},

where Pi = ρi for heterogeneous discounting, and Pi = ρ̄i for hyperbolic discounting (i = 1, 2).
It can be easily verified that Ai decrease in Pi, and that Ai coincide with η̄i (i = 1, 2). The
purpose of introducing ωi (i = 1, 2) is to gain the flexibility of formulating a greater variety
of situations under heterogeneous discounting, which will be explained in the next section. For
standard and hyperbolic discounting, we assume that ω1 = ω2 = 1.

Under this setting, the current model under standard discounting and with ω1 = ω2 = 1
will coincide with the game of infinite time horizon.

4.1. Heterogeneous Discounting

We start by discussing the possible situations we can take into account by assigning different
values of ωi (i = 1, 2). Without loss of generality, take the symmetric case under heterogeneous
discounting with δi < ρi as an example. The discounted final function is given by e−ρi(T−t)ωiAi
(i = 1, 2), with the additional term e−(ρi−δi)(T−t) increasing in t (from the previous discussion
in Section 2.2). Depending on the values of ωi (i = 1, 2), we can model the following cases:

• If ωi = 1, then e−ρi(T−t)ωiAi < e−δi(T−t)Ai and e−ρi(T−T )ωiAi < e−δi(T−T )Ai.
The values that firms ascribe to the ending market shares are relatively low. Though as
time goes by, the valuations of the final states are increasing, they are always inferior to
the valuations of the profits during the period t to T .
• If 1 < ωi < e(ρi−δi)(T−t), then e−ρi(T−t)ωiAi < e−δi(T−t)Ai and e−ρi(T−T )ωiAi >
e−δi(T−T )Ai.
The assessment of scrap values is relatively lower in the beginning of the planning hori-
zon t, then increases as firms move toward the ending point and eventually surpasses the
importance of the profits before the end of the planning period.
• If ωi > e(ρi−δi)(T−t), then e−ρi(T−t)ωiAi > e−δi(T−t)Ai and e−ρi(T−T )ωiAi > e−δi(T−T )Ai.

The importance of final states is higher in the beginning in comparison with the cash flow
during the period, and such importance is increasing across time.

For the case of δi > ρi, different situations of final functions whose importance is decreasing
with the passage of time can also be modeled by letting ωi = 1 (the final state is always more
important compared with the profits obtained from t to T ), e(ρi−δi)(T−t) < ωi < 1 (initially
more relevant but eventually less), and ωi < e(ρi−δi)(T−t) (always less important), i = 1, 2.

Figures 1 and 2 illustrate the advertising strategies of both firms in a symmetric case of
δ1 = δ2 = 0.05, ρ1 = ρ2 = 0.1, ω1 = ω2 = 1.4, x0 = 0.01, t = 0, and T = 15. Since ρi > δi

2For more detailed discussion, we refer to the Section 4 of Sorger (1989).
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Pre-commitment
Standard

Sophisticated
Naive

Figure 1. Advertising of Firm 1 (Heterogeneous Dis-
counting)

Naive

Standard
Pre-commitment

Sophisticated

Figure 2. Advertising of Firm 2 (Heterogeneous Dis-
counting)

(i = 1, 2), both firms have increasing valuations of the ending market shares. Furthermore,
as explained previously, these valuations are initially inferior to the concerns with the profits
throughout the planning horizon, but eventually become dominant. We confine our interest to
this special case since it can perfectly demonstrate the difference between time-inconsistent and
time-consistent strategies. The standard case of δi = ρi = 0.05 and ωi = 1 (i = 1, 2) is also
graphed to serve as a benchmark.

As shown in Figure 1, for all kinds of discounting and solution types, firm 1, which is
at a disadvantage at the beginning (as x0 < 0.5), pumps money into advertising in order to
seize market share as soon as possible. The investment is decreasing over time, as her own
market share is growing and the target market is reducing the size. On the contrary, holding
a dominant market position, firm 2 invests little in the beginning and eventually increases the
budget (Figure 2). Our finite-horizon model also exhibits the asymptotic properties that are
discussed in Fershtman & Kamien (1990), where they borrow the terminology of “turnpike
properties” in growth theory to discuss these features. The previously described battle stage
lasts until the market share distribution reaches the neighbourhood of the stationary equilibrium
corresponding to the game of infinite time horizon (around the year 8.5). From that moment
on, each firm invests the same amount of money in advertising and holds half of the market
(because of the symmetry).

If firms have standard time preferences, during the quasi-stationary period, both firms would
keep the same advertising efforts until the end of planning horizon (due to the values chosen
for S1 and S2). However, firms under heterogeneous discounting make last-minute shifts in
accordance with how they discount the final market. Note that when agents commit themselves
to the decision made at the beginning, they act as if they were under standard discounting, but
with different boundary conditions. Here, the pre-commitment solutions are consistent with that
of a standard discounting game with final function e−(ρi−δi)(T−t)ωiSixi. Given ρi > δi, the values
that firms ascribe to the ending market share are relatively low, which implies a sharp decrease
in advertising. However, as time goes by and firms approach the ending point, the relevance of
the final states is increasing and at one point, it takes the priority. Anticipating such changing
taste, sophisticated agents’ last-minute accommodation is an increase in advertising, which is
contrary to the behaviours of players with commitment power. It is worth mentioning that
naive solutions and sophisticated solutions are almost identical, probably because when the
last-minute change happens, the importance of final states is already dominant.

By anticipating future preferences, time-consistent strategies can help firms to act according
to their true preferences. Nonetheless, sophisticated solutions do not necessarily increase or
decrease the payoffs. The graphic presentation of market share dynamics is omitted because the
patterns in all four cases are extremely similar. Intuitively, lower advertisement spending yields
higher payoffs. We can see that agents are better off with pre-commitment than sophisticated
solutions in this case.
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Figure 3. Advertising Strategies in New Entrant Game
(a)

u1 | Benchmark (b)

u1 | New Entrant Game

u2 | Benchmark (b)
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Figure 4. Advertising Strategies in New Entrant Game
(b)

Benchmark (a)

New Entrant Game

Figure 5. Market Share Dynamics in New Entrant
Game (a)

Benchmark (b)

New Entrant Game

Figure 6. Market Share Dynamics in New Entrant
Game (b)

Next we study another case with asymmetric discounting, as described in the following.
New Entrant Game: A new entrant in the industry is competing with the incumbent. As the

new entrant could have a smaller firm size, more financial constraints, higher instantaneous crisis
rate and more urgent developing necessities, she would be more impatient with the financial
return, thus discounting future payoffs more heavily. However, the manager believes that after
some years’ developing, the firm will be less constrained and relatively more far-sighted.

We can incorporate such future belief using heterogeneous discounting. For firm 1 (the new
entrant) we set δ1 = 0.15 and ρ1 = 0.05, whereas firm 2 (the incumbent) uses the same constant
and smaller discount rate δ2 = ρ2 = 0.05. Since the emphasis here is not the time-variant final
function, we let ω1 = ω2 = 1. The initial market distribution is set to be x0 = 0.01, and the
planning horizon is from year 0 to 15. For better interpretation, we also present graphically two
benchmark cases of (a) δ1 = ρ1 = 0.15, δ2 = ρ2 = 0.05 and (b) δ1 = ρ1 = δ2 = ρ2 = 0.05. Figures
3 to 6 demonstrate the scenario described above. Here we focus on the sophisticated solutions,
since they are theoretically more desirable and the corresponding equilibrium is subgame perfect.

As shown in Figure 3, instead of making last-minute changes as in the symmetric case, here
the new entrant, the sophisticated agent under heterogeneous discounting, starts her accom-
modation much earlier. In the battle period both firms act similarly as in Figures 1 and 2, the
initially smaller firm tries hard to steal the market share from her rival, whereas the market
dominant allocates relatively little but increasing resources. In the adapting stage, the new en-
trant raises her advertising budget at a firstly increasing then decreasing speed. As a response
to the new entrant’s adjustment, firm 2 (the incumbent) chooses a lower advertising level, in
comparison with the standard case, in the accommodation stage. Notice that the new entrant
will end up with higher advertising spending than the incumbent, even when the difference be-
tween δ1 and ρ1 is extremely small. Figure 5 displays the corresponding market share evolution.
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If the new entrant discounts the future in a standard way with a relatively higher discount rate
compared with the incumbent, she will end up with a smaller portion of the whole market. If
the manager believes that the new firm can catch up with the incumbent regarding the financial
achievement, crisis management, etc., which may lead to a convergence in time preferences, the
two firms will share almost equally the market in the end.

As to the benchmark (b), by comparing Figures 3 and 4, and Figures 5 and 6, one can
clearly see that the new entrant game is an intermediate case between these two benchmarks.

4.2. Hyperbolic Discounting

In the following we present some numerical illustrations of advertising competition under hy-
perbolic discounting.

We start, like previously, with a symmetric case of λ = 0.5, δ1 = δ2 = 0.3, ρ1 = ρ2 = 0.05,
ω1 = ω2 = 1, x0 = 0.01, t = 0, and T = 15. The benchmark here is the standard case that
shows the same overall level of impatience as the pre-commitment agent. Specifically, we apply
the discount function e−ρ̄i(s−t), where ρ̄i is the solution to∫ T

t
e−ρ̄i(s−t)ds =

∫ T

t

(
λe−δi(s−t) + (1− λ)e−ρi(s−t)

)
ds, i = 1, 2. (42)

Strulik (2015) proposed this concept in the framework of infinite time horizon3, under such
restriction, both discounting methods give equivalent present value for a unitary profit stream
over the planning period. Therefore, the observed difference in players’ behaviours should come
from the form (rather than the “amount”) of temporal preferences. However, complication arises
when it comes to a finite-horizon setting. It can be easily verified that the ρ̄i (i = 1, 2) derived
from (42) is dependent on t, namely, it only provides equal discounted profit stream for t-agent.
One way to cope with this problem is to compute a time-varying overall impatience rate, but, as
pointed out by Caliendo & Findley (2014), at the cost of losing the time-consistency property
of exponential discounting. They therefore opt to adjust the hyperbolic function as a parallel
approach. Nevertheless, this method changes the structure of the general discount functions in a
way that lies beyond the scope of our study. Hence, we choose an equivalent overall impatience
level from the perspective of the 0-agent as the benchmark case. Despite this, the comparison
among pre-commitment, naive and sophisticated strategies remains valid. Besides, at the end of
this section, we also present a graphical illustration of the case of infinite time horizon, where
additional adjustment is not required for a fair comparison.

Note that the hyperbolic discounting is to some extent similar to heterogeneous discounting
with δi > ρi, in the sense that in both cases, the ending discount rate is smaller compared to that
during the planning period. Therefore, we can observe some behaviours that are qualitatively
consistent with those under heterogeneous discounting. For example, firm 1, who is situated at
a weak market position in the beginning of time horizon, shows similar investment patterns in
Figures 1 and 7. In the battle stage, she starts with heavy budget to take hold of market share,
and reduces the amount over time. There also appears an adjustment during the last years
based on the solution types. Specifically, the pre-commitment agent decreases the resources
allocation, whereas the naive and sophisticated agents choose to do the opposite. The same
kind of similarity can also be found for firm 2 in Figures 2 and 8.

Nonetheless, unlike the heterogeneous discounting case, here different types of solution show
greater divergence throughout the planning horizon, especially during the quasi-stationary pe-
riod. Furthermore, the sophisticated agents always apply higher advertising policies than naive
agents, but in general they are quite similar. In Table 1 we summarise the strategies ranking in
different periods. Note that the pre-commitment policy is equivalent to the naive strategy com-
puted at t = 0, so they start with the same level at the beginning of planning horizon. Strategies
made at this moment under standard discounting has the highest amount, as the corresponding

3The corresponding ρ̄ is computed from
∫∞
t e−ρ̄(s−t)ds =

∫∞
t θ(s− t)ds.
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Figure 9. Market Dynamics (Hyperbolic Discounting)
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Figure 10. Difference Between the Market Shares Cor-
responding to each Solution and that of Standard Case

instantaneous discount rate ρ̄i (i = 1, 2) is lower than that of hyperbolic discounting4. The
sophisticated decision is located between that of standard and pre-commitment/naive. From
the point of view of an agent with strong commitment power, her instantaneous discount rate
is decreasing over time, which translates to a relative increment in advertising with respect to
other solutions. Accordingly, the ranking of pre-commitment is getting higher as time goes by.

It is worth mentioning that, in Figure 9, the market share dynamics are approximately
the same under both discounting methods and for all kinds of solutions. A closer inspection
can give us the ranking of x(t), the market share of firm 1 in the cases where players adopt
different strategies. As shown in Figure 10 and outlined in Table 1, its ranking is consistent
with that of policies (although the duration of each phase differs slightly), due to the fact that a
higher amount of advertising investment gives rise to a more fierce competition and a stronger
fluctuation of market shares, thus firm 1 can seize the market more quickly. However, the
difference in the market share evolution under distinct solutions is negligible. If firms precommit
their advertising policies, or are not able to incorporate future changes in time preferences into
decision making, their spending is much higher. Therefore, under hyperbolic discounting, strong
commitment power leads to over-investment.

Let us reconsider the New Entrant Game described in Section 4.1. If both new entrant and
the incumbent are under hyperbolic discounting, it is likely that the new entrant has a faster
decreasing discount factor due to greater uncertainty, which can be depicted by the case of
λ = 0.5, δ1 = 0.6, δ2 = 0.3, ρ1 = ρ2 = 0.05, ω1 = ω2 = 1, x0 = 0.01, t = 0, and T = 15
(Figures 11 and 12). Notice that, in this setting, the discount rates of both firms approximately
converge to the same value at time T . Firm 2 applies a lower discount rate throughout the whole

4In the sensitivity analysis provided in Section 4.3, we will see that a higher instantaneous discount rate implies a lower

investment.
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Table 1. Comparison of Different Strategies and the Corresponding State (Hyperbolic Discounting: Symmetric Case)

Phase 1 Standard > Sophis. > Pre-c. > Naive

Phase 2 Standard > Pre-c. > Sophis. > Naive

Phase 3 Pre-c. > Standard > Sophis. > Naive

u2 | 1= 2=0.3, 1= 2=0.05

u1 | 1= 2=0.3, 1= 2=0.05

u1 | 1=0.6, 2=0.3, 1= 2=0.05

u2 | 1=0.6, 2=0.3, 1= 2=0.05

Figure 11. Advertising Strategies in New Entrant
Game

1= 2=0.3, 1= 2=0.05
1=0.6, 2=0.3, 1= 2=0.05

Figure 12. Market Share Dynamics in New Entrant
Game

planning horizon, which leads her to implement a higher advertising rate when the equilibrium
stays in the neighbourhood of stationary state (year 7 to 12). Firm 1, being more impatient,
starts the accommodation stage earlier, and with a greater increasing rate than firm 2. However,
this last-minute effort can not compensate completely the loss during the planning horizon, as
shown in Figure 12, the market ends up with firm 1 acquiring less portion than firm 2.

Finally, we present graphically the case of infinite planning horizon when agents discount
future profits hyperbolically. We confine our interest to the time-consistent solutions, which are
characterised in Remark 1. As a benchmark, we also plot the standard discounting case with
equivalent overall impatience level, where the discount rate is computed using (42) with T =∞.
We use the same set of parameters as that used in the symmetric case of finite time horizon, and
the numerical simulation is given in Figure 13. The qualitative properties of players’ behaviours
coincide with the results obtained by Sorger (1989), where the advertising budgets decrease
in market share. Furthermore, as in the finite-time-horizon case, standard discounting induces
higher investment than hyperbolic discounting, even they exhibit the same overall impatience
level.

Standard
Hyperbolic (sophisticated)

u1
u2

Figure 13. Advertising Strategies with Infinite Time
Horizon (Hyperbolic Discounting)
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Table 2. Sensitivity Analysis: Sophisticated Solutions (Finite Time Horizon)

Variable Discounting
Parameters ({i, j} = {1, 2})

λ δi δj ρi ρj πi πj ci cj ki kj

Advertising uSi
Heterogeneous / − + − +

+ − − + + −
Hyperbolic − − + − +

4.3. Sensitivity Analysis

We have run multiple simulations by altering parameters and initial conditions to confirm the
robustness of our results, and the sensitivity analysis is summarised in Table 2.

We explore the effect of each parameter on advertising strategies for a given market share
distribution. Since larger values of δi, ρi (for both discounting methods), and λ (for hyperbolic)
all yield higher instantaneous discount rate, their effects are coherent. Firms respond to this
increase by lowering the advertising budget. On the contrary, a higher rival’s instantaneous
discount rate will imply heavier investment. These results are consistent with those of the
standard case. Moreover, and intuitively, the firms will increase the advertising if the product is
more profitable (higher πi), the advertising is more effective (larger ki) and/or less costly (lower
ci). If their rivals have these advantages, they would lower the resource allocation.

Next we explore if the discounting method has influenced the sensitivity. To do so, we focus
on the case of the infinite time horizon because of the following reasons. Firstly, in the scale of
the finite planning period, players’ behaviours are quite time sensitive, in the sense that policies
might vary over time even for a given market share. Besides, as explained previously, the overall
impatience level causes complexity in this setting. However, concentrating on the scenario of
infinite planning period would allow us to make a fair comparison and a neater presentation.

Hence, we perform several numerical simulations of the model under standard and hyperbolic
discounting. Each time when we assign new value to one single parameter, leaving the others
unchanged, the corresponding variations in advertising strategies with respect to the benchmark
case are computed in percentage terms. The parameters of the benchmark case are set as:
λ = 0.5, δ1 = δ2 = 0.3, ρ1 = ρ2 = 0.05, π1 = π2 = 300, c1 = c2 = 2, and k1 = k2 = 0.3. The
instantaneous discount rate ρ̄i (i = 1, 2) is obtained by solving (42) with T =∞.

In Table 3 we display the comparison made upon some parameters, where the greater relative
changes are highlighted5. Not surprisingly, the signs of changes are in line with those in the finite-
horizon scenario (Table 2). Furthermore, under standard discounting, firms are more sensitive
to product margin πi, advertising costliness ci, and ρi (i = 1, 2). On the other hand, under
hyperbolic discounting, the alteration of δi (i = 1, 2) implies a stronger fluctuation. The results
seem to be rather responsive to the advertising effectiveness ki (i = 1, 2) in combination with
time preferences. When one firm is slightly more effective in advertising than the other, the
standard discounting induces a larger variation. However, when the asymmetry is considerably
big (for instance, twice effective), the agent with advantage would increase the budget at a larger
scale under hyperbolic discounting. It is also worth mentioning that δi and ρi are favoured by
different discounting forms, due to the fact that, by definition, δi affects the instantaneous rate
of hyperbolic discounting more heavily than ρi, and vice versa (i = 1, 2). Accordingly, when λ
(the parameter connected to δi) takes small value, the hyperbolic players’ are more susceptible,
whereas decision makers under standard discounting reacts more intensively to λ of large value.

5. Concluding Remarks

This paper has gone some way towards enhancing our understanding of horizontal advertis-
ing competition by introducing some biases in the temporal preferences. Specifically, we have
introduced two alternatives to the standard exponential discounting in order to capture some

5Due to space constraints, we do not present the sensitivity analysis of all parameters in Table 3, but all the results will

be mentioned in the text.
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Table 3. Sensitivity Analysis: Standard vs. Hyperbolic Discounting (Infinite Time Horizon)

Benchmark π1 = 300 k1 = 0.03

New Value 500 700 900 0.04 0.05 0.06 0.07

∆u1(%)
Standard +59.23 +109.25 +152.42 +26.11 +43.19 +54.17 +70.37

Hyperbolic +58.29 +108.42 +152.36 +25.37 +42.97 +55.01 +74.34

∆u2(%)
Standard −21.15 −33.74 −42.01 −23.69 −39.58 −50.25 −67.53

Hyperbolic −19.18 −31.12 −39.21 −21.55 −36.82 −47.46 −65.32

Benchmark δ1 = 0.3 ρ1 = 0.05

New Value 0.4 0.5 0.6 0.08 0.1 0.15 0.2

∆u1(%)
Standard −0.61 −1.00 −1.27 −7.38 −11.25 −18.49 −23.53

Hyperbolic −5.21 −9.32 −12.63 −3.53 −5.69 −10.51 −14.63

∆u2(%)
Standard +0.27 +0.43 +0.55 +3.27 +5.05 +8.52 +11.03

Hyperbolic +2.08 +3.77 +5.16 +1.40 +2.28 +4.27 +6.02

additional descriptive realism. The heterogeneous discounting describes the scene where a firm
can have an increasing/decreasing valuation of the state (market share, in our case) at the end
of planning horizon with the passage of time, whereas the hyperbolic discounting depicts the
tendency to value more the payoffs that are closer to the present.

We have derived three different types of feedback Nash strategies, depending on how agents
deal with their time-varying preferences. The pre-commitment solutions are employed by firms
that are not aware of future changes or have a strong commitment power. Another option is to
make decisions at every instant of time based on the corresponding instantaneous preferences,
and only apply them at the very same moment (naive). The third action is to anticipate such
variation and to include it into the decision making (sophisticated/time-consistent). Numerical
simulations were run to illustrate some properties of different advertising paths and market
dynamics corresponding to different strategies, and clear discrepancy is found.

The results reveal that firms under heterogeneous discounting act in a different manner
compared to those with standard discounting (Sorger’s setting). In general, the advertising
strategies can be categorised in two phases. The first phase is the battle phase, in which the
firm with a larger initial market share invests little at the beginning and increases the advertising
effort in time, and the firm with a smaller initial market portion behaves the other way around.
If the planning period is sufficiently long, they can arrive near the steady state and remain in
its neighbourhood for some time. The second phase is the accommodation stage where agents
raise/cut their advertising rate according to the increasing/decreasing importance they assign to
the final states when approaching to the end of the planning horizon. Our numerical illustrations
have demonstrated that the pre-commitment solution can show contrary adjustment direction
compared with the sophisticated solution in this stage, whereas the naive solution basically
coincides with the sophisticated one.

As to the advertising policies under hyperbolic discounting, a similar battle stage is also
present. Another coincidence with heterogeneous discounting is the discrepancy between pre-
commitment strategies and time-consistent strategies, as well as the similarity between naive
and sophisticated solutions. Different from heterogeneous discounting, here strong commitment
power would lead to over investment.

Our sensitivity analysis shows that firms would increase their marketing expenditure if they
have advantages in profitability, advertising effectiveness, and/or costliness. On the contrary,
a higher instantaneous discount rate would induce a reduction in advertisement. Moreover, we
have compared the sensitivity to different parameters under different discount functions with
the same overall impatience level. The tests demonstrate that agents are more sensitive to profit
margin and advertising cost under standard than hyperbolic discounting. The advertising effec-
tiveness sensitivity is also in general enhanced by exponential discounting, unless the asymmetry
is significant.
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The model is built based on some simplifying assumptions. First of all, we have focused on
a mature market, which implies a stable market size. We have also assumed that the advertise-
ment cannot influence the purchasing decisions of consumers who are not participating in this
industry, in this sense the model could explain the alcohol and beverage industry, but might
fail in explaining those industries where outsiders can be attracted by advertisement. Besides,
we have not gone into detail on the advertising efficiency, which is described by a parameter.
However it would be of interest to consider the factors determining the advertising efficiency
apart from technical/economic ones, such as goodwill, brand loyalty and so on.

We then propose some future tasks that might be of interest. One possible extension is to
consider the general time preferences in an oligopolistic market (as in Prasad et al., 2009), and/or
under uncertainty. We could also relate heterogeneous discounting with market size properties.
For instance, an increasing valuation of final state together with an expanding market, or vice
versa. It would also be interesting to break the assumption of symmetric advertising efficiency
by combining intangible asset of the firm like goodwill. Moreover, it would be worth introducing
Lanchester dynamics into the supply chain environment, since this battle specification has been
seldom applied in vertical channel.
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