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Abstract: The simultaneous use of 2-pyridyl oximes (pyridine-2 amidoxime, H2pyaox; 2-methyl pyridyl
ketoxime, Hmpko) and 1,3,5-benzenetricarboxylic acid (H3btc) provided access to five new compounds,
namely [Zn(H2btc)2(H2pyaox)2]•2H2O (1•2H2O), [Zn(Hbtc)(H2pyaox)2]n (2), [Cu(Hbtc)(H2pyaox)]n

(3), [Cu(Hbtc)(HmpKo)]n (4) and [Cu2(Hbtc)2(Hmpko)2(H2O)2]•4H2O (5•4H2O). Among them, 3 is the
first example of a metal-organic framework (MOF) containing H2pyaox. Its framework can be described
as a 3-c uninodal net of hcb topology with the layers being parallel to the (1,0,1) plane. Furthermore,
3 is the third reported MOF based on a 2-pyridyl oxime in general. 2 and 4 are new members of a
small family of coordination polymers containing an oximic ligand. 1–5 form 3D networks through
strong intermolecular interactions. Dc magnetic susceptibility studies were carried out in a crystalline
sample of 3 and revealed the presence of weak exchange interactions between the metal centres; the
experimental data were fitted to a theoretical model with the fitting parameters being J = −0.16(1) cm−1

and g = 2.085(1). The isotropic g value was also confirmed by electronic paramagnetic resonance (EPR)
spectroscopy. Reactivity studies were performed for 3 in the presence of metal ions; the reaction progress
was studied and discussed for Fe(NO3)3 by the use of several characterization techniques, including
single crystal X-ray crystallography and IR spectroscopy.

Keywords: coordination polymers; metal-organic frameworks (MOFs); carboxylates; pyridyl oximes;
zinc; copper

1. Introduction

The synthesis and characterization of metal coordination polymers and metal-organic
frameworks (MOFs) have attracted a considerable research interest worldwide over the last
decades, which stems from their technological, environmental and biomedical applications
in sensing, catalysis, imaging, drug delivery, etc. [1–10]. Such species consist of mononu-
clear or low nuclearity inorganic units, which are linked through organic linkers with the
nature of the metal ions and the organic linkers affecting their structure, having also the po-
tential to introduce additional functionalities and physical properties in to the framework,
e.g., photoluminescence, magnetism. For example, some 1D coordination polymers exhibit
single chain magnetism (SCM) behaviour, and are promising candidates for applications in
quantum computing, high-density information storage, etc. [11–24]. As the dimensionality
of the framework increases, the induced porosity is combined in a synergistic way with
its other physical properties, leading to the formation of hybrid multifunctional materials,
with enhanced performance in a variety of applications (spintronics, photonics, catalysis
and others).

Restricting further discussion to MOFs [8–10], they display a wide range of desirable
structural features, such as large surface area, high porosity, flexible structure, stability
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and the possibility of controlled and targeted introduction of functional groups into the
framework. Furthermore, some MOFs possess phenomena that affect their porosity and
stability, namely the interpenetration and the breathing effect [25–29]. The former refers
to the cases where more than one networks are catenated with each other [25–27], which
potentially results in the increase of the surface area and stability of the MOF, and in the
decrease of its pore diameter. The breathing effect is related to the change of the MOF
pore dimensions upon encapsulation of a guest molecule as a result of the change of the
intermolecular interactions [28,29]. The unique properties of MOFs and their structural
tunability make these materials especially suitable for encapsulating a plethora of different
guest molecules.

The wide range of applications of MOFs and coordination polymers constitute an
increasing need for the development of efficient synthetic approaches towards new species
with enhanced porosity and stability. The vast majority of MOFs has been synthesized
using solvothermal techniques, while other approaches have been developed in recent
years, based on post-synthetic, isoreticular, microwave-assisted, mechanochemical and
sonochemical synthesis [30–38]. Each of these synthetic approaches often leads to dif-
ferent species, whose properties are merely dictated by the organic ligands that link the
neighbouring SBUs, and by the nuclearity and type of the metal ion that is present in the
structure. The organic linkers possess suitable coordination sites for the formation of the
framework, providing the desirable flexibility and stability. The hydrogen bonding, π–π
stacking, and other intermolecular interactions also affect the architecture of the overall
framework and the MOF selectivity towards specific guest molecules. A large number
of organic linkers has now been employed in MOFs synthesis including imidazolates,
pyridine, carboxylates, etc., with the latter being one of the most commonly used, resulting
in MOFs with a wide range of pores sizes and shapes [39–49]. The combination of two
different linkers has been also employed for the synthesis of new MOFs; in this case, one of
the ligands often plays the role of the pillar that link parallel layers leading to the formation
of pillar-layered MOFs with increased dimensionality and novel topologies [50,51].

Although the impact of the ligand properties on the MOF topology and porosity has
been well investigated, this is not the case for the nuclearity and properties of the SBU
itself. To this end, we recently decided to introduce for the first time into the field of MOFs
the 2-pyridyl oximes (Scheme 1), a family of ligands with high bridging capability, that
have the potential to lead to high nuclearity species with unprecedented metal topologies.
2-pyridyl oximes have been extensively investigated in metal cluster chemistry and led to a
plethora of metal clusters with interesting magnetic properties, including single-molecule
and single-chain magnetism behaviour [52–65].
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Scheme 1. Schematic representation of the 2-pyridyl oximes (left) and the ligand H3btc (right)
discussed in this work.

The initial combination of 2-pyridyl oximes with a variety of di-, tri- and tetra- car-
boxylic acids led to the first 2-pyridyl oxime- based MOFs, and other coordination polymers
as well [66,67]. It is worth to mention that among the MOFs that we isolated with these
ligands, [Cu4(OH)2(pma)(mpko)2]n, where pma4- is the tetra-anion of 1,2,4,5-benzene
tetracarboxylic acid (pyromellitic acid) and mpko- is the anionic form of 2-methyl pyridyl
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ketoxime, is based on a tetranuclear, butterfly-shaped SBU and possesses a novel 3,4,5,8-c
net topology [66]. It also exhibits selectivity for Fe3+ adsorption with its magnetic properties
being strongly related to the amount of metal ion present into the MOF pores [66].

The promising preliminary results of the employment of 2-pyridyl oximes in the field
of MOFs prompted us to explore further this synthetic approach and we, herein, report
the synthesis and characterization of five new compounds, by the use of a 2-pyridyl oxime
(pyridine-2 amidoxime, H2pyaox and 2-methyl pyridyl ketoxime, Hmpko) in combination
with 1,3,5-benzenetricarboxylic acid, H3btc (Scheme 1). Amongst the reported compounds,
[Cu(Hbtc)(H2pyaox)]n (3) is the first MOF bearing H2pyaox. [Zn(Hbtc)(H2pyaox)2]n (2)
and [Cu(Hbtc)(HmpKo)]n (4) are rare examples of coordination polymers containing a
2-pyridyl oxime either in its neutral or anionic form. Note that H3btc has been employed
in the field of MOFs and has led to the synthesis and characterization of many such species,
including the MOFs HKUST, MIL-100, etc., [39,43,68–77], however its combination with an
oximic ligand is essentially unexplored.

2. Results and Discussion
2.1. Synthetic Discussion

Our group has developed an intense interest over the last years in the synthesis of
coordination polymers and MOFs by the use of 2-pyridyl oximes and a polycarboxylic
ligand, such as 1,4-benzenedicarboxylic, 1,2,4,5-benzene tetracarboxylic acid, etc. [66,67].
These research efforts have resulted in new species, some of which display new framework
topologies and promising sensing properties. It is worth to mention that the initial em-
ployment of 1,3,5-benzenetricarboxylic acid (H3btc) in NiII chemistry in the presence of an
oximic ligand has led to the isolation of a 1D coordination polymer [67]. This prompted us
to further study this reaction system by the use of different metal ions and investigate its
potential to favour the formation of higher dimensionality coordination polymers and/or
MOFs. A wide range of experiments was carried out in order to study the impact of
the different synthetic parameters (presence/absence or kind of base, metal ratio of the
reactants, metal sources, etc.) on the identity and crystallinity of the isolated product.

The reaction mixture of Zn(ClO4)2•6H2O/H2pyaox/H3btc (1:2:1) in H2O at 100 ◦C
gave a colourless solution from which crystals of [Zn(H2btc)2(H2pyaox)2]•2H2O (1•2H2O)
were subsequently isolated. Following a similar reaction but using a different ZnII source
(Zn(O2CMe)2•6H2O instead of Zn(ClO4)2•6H2O) and in the presence of NEt3, the 1D coor-
dination polymer [Zn(Hbtc)(H2pyaox)2]n (2) was isolated in good yield. The stoichiometric
equation of the reactions that lead to the formation of 1 and 2 is represented in Equations (1)
and (2). Note that the kind of base does not have any impact on the identity of the isolated
compound, but it affects its crystallinity.

Zn(ClO4)2·6H2O + 2 H2 pyaox + 2 H3btc
H2O
−−→

[Zn(H2btc)2(H2 pyaox)2]·2H2O + 4 H2O + 2 HClO4 (1)

1·2H2O

Zn(O2CMe)2·6H2O + 2 H2 pyaox + H3btc + 2 NEt3
H2O
−−→

[Zn(Hbtc)(H2 pyaox)2]n + 4 H2O + 2HNEt3
+ + 2 MeCO2

− (2)

2

As a next step, we decided to investigate the impact of the metal ion on the identity of
the isolated product; thus, by the use of Cu(ClO4)2•6H2O and following a similar synthetic
approach to the one that provided access to 1, green crystals of the 2D coordination polymer
[Cu(Hbtc)(H2pyaox)]n (3) were isolated in good yield. It is noteworthy that the electronic
properties of the oximic ligand influence the dimensionality of the reaction product. In
particular, by the employment of Hmpko instead of H2pyaox and by following the same
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reaction that yielded 3, blue crystals of the 1D coordination polymer [Cu(Hbtc)(HmpKo)]n
(4) were formed, whereas the use of a different CuII source (Cu(NO3)2•2.5H2O instead of
Cu(ClO4)2•6H2O) provided access to the compound [Cu2(Hbtc)2(Hmpko)2(H2O)2] 4H2O
(5•4H2O), according to the stoichiometric Equations (3)–(5):

Cu(ClO4)2·6H2O + H2 pyaox + H3btc
H2O
−−→

[Cu(Hbtc)(H2 pyaox)]n + 6 H2O + 2 HClO4 (3)

3

Cu(ClO4)2·6H2O + Hmpko + H3btc
H2O
−−→

[Cu(Hbtc)(Hmpko)]n + 6 H2O + 2 HClO4 (4)

4

2 Cu(NO3)2·2.5H2O + 2Hmpko + 2H3btc + H2O
H2O
−−→

[Cu2(Hbtc)2(Hmpko)2(H2O)2]·4H2O + 4 HNO3 (5)

5·4H2O

2.2. Description of Structures

Representations of the molecular structures of 1–5 are shown in Figures 1–5, Figures S1
and S2 (Supplementary Information). Selected interatomic distances and angles are listed
in Tables S1–S5.

Compound 1 crystallizes in the triclinic space group Pı̄. Its structure (Figure 1) consists
of the mononuclear complex [Zn(H2btc)2(H2pyaox)2] and two lattice H2O molecules.
The coordination sphere of the metal ion is completed by two neutral N,N’-bidentate
chelating H2pyaox ligands and two monodentate single deprotonated H2btc- ions. ZnII is
six coordinated displaying a slightly distorted octahedral geometry due to the relatively
small bite angle of the chelating ligand (N1-Zn1-N2 = 75.1(2)◦ and N4-Zn1-N5 = 76.0(2)◦).
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There are strong intermolecular hydrogen bonding interactions in 1 that stabilize its
structure and result in the formation of a three-dimensional network (Figure 1, right).
In particular, there are three different types of hydrogen bonds in 1, which involve:
(1) the oxygen atoms of the oximic groups (O1 and O2), which are the donors, and
the carboxylate groups of the H2btc−1 ligands (O4, O10), which act as the acceptors
(O2···O4 = 2.623 Å, H2A···O4 = 1.857 Å, O2-H2A···O4 = 154.81◦; O1···O10 = 2.606 Å,
H1···O10 = 1.791 Å, O1-H1···O10 = 172.25◦); (2) the oxygen atoms of the neutral carboxylic
groups of the H2btc−1 ligand (O11, O7; donors) and the deprotonated carboxylate groups
(O5, O12; acceptors) of neighbouring species (O11···O5 = 2.645 Å, H11···O5 = 1.86 Å,
O11-H11···O5 = 160.15◦; O7···O12 = 2.705 Å, H7···O12 = 1.942 Å, O7-H7···O12 = 154.42◦)
and (3) the amino group of the oximic ligand (N3; donor) and the carboxylate (O8; ac-
ceptor) group from a neighbouring complex (N3···O8 = 3.022 Å, H3B···O8 = 2.433 Å,
N3-H3B···O8 = 126.27◦). Furthermore, the lattice H2O molecules (O15, O16) form hy-
drogen bonds with the carboxylic (O3, O6, O13 and O4) and the oximic (O1) groups;
the non-location of the lattice H2O hydrogen atoms precludes a detailed description of
the latter.

2 crystallizes in the chiral orthorhombic space group P212121; its structure contains a
one-dimensional chain based on the repeating unit [Zn(Hbtc)(H2pyaox)2]. The metal centre
is linked to two neutral N,N’-bidentate chelating H2pyaox ligands, and two terminally
ligated carboxylate groups coming from two different Hbtc2− ions; the latter bridges two
neighbouring repeating units adopting an η1:η1:µ coordination mode. ZnII is six-coordinate
adopting an octahedral geometry. The repeating unit in 2 is similar to compound 1, with
the only difference being the protonation level and, hence, the bridging capability of the
carboxylate ligand (1, single deprotonated; 2, double deprotonated carboxylate). The 1D
chains in 2 interact strongly through hydrogen bonds, which result in the formation of a 3D
network (Figure 2, right). The hydrogen bonds involve the oximic, amino and carboxylic
groups as donors and the deprotonated carboxylate groups of the Hbtc2- ligands as acceptors.
The metric parameters of the crystallographically established, independent hydrogen bonds
are listed in Table S6 in the Supplementary Material.

Compound 3 crystallizes in the monoclinic space group P21/n. Its structure consists
of a two-dimensional network based on the dinuclear centrosymmetric repeating unit
[Cu2(Hbtc)2(H2pyaox)2] (Figure 3). The two metal ions within the repeating unit are held
together through the two bridging H2pyaox ligands, and their distance was 4.397 Å. The
coordination sphere of CuII was completed by two Hbtc2− ions, which also linked the
neighbouring SBUs resulting in the formation of a 2D framework. The metal ions were
penta-coordinated and adopted a square pyramidal geometry (τ = 0.05) with O7 from the
oximic group occupying the apical position [78].
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Intrachain hydrogen bonds stabilized the crystal structure of 3; these were formed
between: (1) the oximic group (O7), which is the donor, and the carboxylic group of the
Hbtc2− ion (O2), which acts as the acceptor (O7···O2 = 2.525 Å, H1(O7)···O2 = 1.664 Å,
O7-H1(O7)···O2 = 173.62◦), and (2) the amino group (N2), which is the donor, and the
carboxylic group of the Hbtc2− ion (O6), which acts as the acceptor (N2···O6 = 2.958 Å,
H2(N2)···O6 = 2.202 Å, N2-H2(O6)···O6 = 147.30◦). Furthermore, interchain hydrogen
bonds are formed between the oxygen atoms of neighbouring carboxylic groups of the
Hbtc2− ions; (O4) acts as a donor and (O6) acts as an acceptor (O4···O6 = 2.64 Å, H1(O4)···O6
= 1.81 Å, O4-H1(O4)···O6 = 159.27◦), forming a three dimensional network (Figure S1).

The framework in 3 forms a 3-c uninodal net [79–81] of hcb topology (Figure 4,
left) with the layers being parallel to the (1,0,1) plane [82–84]. Taking also into account
the intermolecular interactions between the Hbtc2− ligands, the resulted 3D framework
exhibited a utp topological type (Figure 4, right) [85–87]. Thermal stability studies in 3
revealed that it remains stable until 320 ◦C (Figure S2). In particular, there is a small mass
loss (<5%) between room temperature and 320 ◦C; a sharp mass loss (ca. 60%) is then
observed, and the decomposition of the compound continued at a steady rate with a further
mass decrease of 12% between 320 and 600 ◦C.

4 crystallized in the orthorhombic space group Pna21; it is a zig-zag chain (Figure 5,
left), formed by the connection of the [Cu(Hbtc)(Hmpko)] repeating units through the η1:
η1:µ Hbtc2− ligands. The coordination sphere of CuII was completed by one neutral N,N’-
bidentate chelating Hmpko ligand. CuII was the tetra-coordinate with a square planar
geometry (N1-Cu1-O2 = 173.56◦). A strong intramolecular hydrogen bonding interaction was
formed between the neutral oximic group (O1, donor) and a carboxylate group (O3, acceptor)
from the Hbtc2− ligand (O1···O3 = 2.516 Å, H1O1···O3 = 1.7 Å, O1-H1O1···O3 = 173.11◦).

Compound 5•4H2O crystallized in the triclinic space group Pı̄. Its structure consisted
of centrosymmetric dinuclear [Cu2(Hbtc)2(Hmpko)2(H2O)2] species (Figure 5, right) and
H2O lattice molecules. The two metal centres were held together through the η1:η1:µ Hbtc2−

ions. The coordination sphere of each CuII was completed by an N,N’-bidentate chelating
Hmpko ligand and one terminal H2O molecule. Each cation was penta-coordinated adopting
a distorted square pyramidal geometry (τ = 0.30) with the O2 from the terminally ligated H2O
to occupy the axial position [78]. There was a strong network of hydrogen bonding interactions
that stabilized the structure of 5•4H2O and result in the formation of a three-dimensional
framework (Figure S3). These involve the lattice H2O molecules (O9 and O10), which act as
both donors and acceptors, the oximic group (O1, donor), the terminally ligated H2O (O2,
donor), the neutral carboxylic group (O8, donor) and the carboxylate groups from the Hbtc2−

ligands (O4, O5) that act as acceptors. The metric parameters of the crystallographically
established, independent hydrogen bonds are listed in Table S7 in the Supplementary Material.
The aromatic rings of the oximic and carboxylic ligands of neighbouring dimers in 5•4H2O
interact further through strong π–π stacking interactions, with the distance between the
centroids being 3.8 Å (Figure S4).

1–5 belong to a new family of oximic metal compounds, coordination polymers and MOFs
with 3 being the first MOF based on 2-pyridyl amidoxime and 1,3,5-benzenetricarboxylic acid;
furthermore, it is only the third example of a MOF based on a 2-pyridyl oxime, in general [66].
2 and 4 join a small family of coordination polymers containing an oximic ligand [66,67].
The structures of all the reported compounds are stabilized through strong intermolecular
interaction, forming three dimensional networks. The purity and stability of 1–5 has been
verified by pxrd studies (Figures S5 and S6).

2.3. Magnetism Studies

Dc magnetic susceptibility measurements were carried out on a powdered and pressed
sample of 3 in the 2–300 K temperature range and under a field of 0.03 T and plotted as
χMT vs. T plot. (Figure 6). The χMT for 3 was almost constant with a room tempera-
ture value of 0.8 cm3·Kmol−1 in good agreement with two non-interacting Cu(II) cations
(0.375 cm3·Kmol−1) with an overall g greater than 2.00.
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The fitting of the experimental data was performed by using the spin-only Hamiltonian
H = −2J(Ŝ1·Ŝ2) and PHI software [88] and resulted in almost non-interacting Cu(II) ions
with a J = −0.16(1) cm−1 and a global g value of 2.085(1).

This almost irrelevant value of the superexchange coupling J is expected due to the
relative arrangement of the Cu(II) cations, which determines the overlap along the long
bond distance involving the non-magnetic dz2 orbital and also due the position of the
oximes ligands, where the Cu(II)-O-N-Cu(II) torsion angle was 86.8◦ close to orthogonality.
The almost isotropic value of g was confirmed by electronic paramagnetic resonance (EPR)
spectroscopy at X-band frequency, which provides the low temperature g|| and g⊥ values
of 2.16 and 2.08 (Figure 6, inset), being in total agreement with the dc measurements.

2.4. Reactivity Studies

The existence of free (non-coordinated) NH2- groups in the crystal structure of 3
prompted us to study the ability of this MOF to adsorb or react with metal ions in the
aqueous environment. The reactivity studies were carried out by soaking crystals of 3
into solutions of 0.10–0.30 mmol of metal salts (Fe(NO3)3, Ni(NO3)2, Co(NO3)2 and CrCl3)
in H2O (10 mL). The MOF crystals were activated prior to the metal ion encapsulation
to remove the amount of solvent present; this was carried out by stirring the crystals in
DMF for several hours and then exchanging this solvent with acetone, which is easily
removed at 80 ◦C. The metal encapsulation was initially investigated by batch studies
using UV–vis spectroscopy (Figures S7 and S8). The UV-vis studies for Fe(NO3)3 revealed a
substantial decrease of the concentration of the metal ion in the solution over the first 4 min,
which was then followed by the appearance of an additional peak at 290 nm (Figure S5);
the latter can be potentially attributed to Cu2+ ions in the solution [89], which indicates
that a chemical change takes place in the structure of 3 upon reaction with other metal
ions. The progress of the reaction was investigated in the case of Fe(NO3)3 by means of
FTIR and single-crystal X-ray crystallography. During the reaction, the green crystals of 3
had been replaced by a brown precipitate (Figure S9) and the initial yellow colour of the
solution had turned to pale green. The solution was then filtered and left in a closed vial
at room temperature for one day, after which a few green-cyan crystals were formed; the
latter were characterized with IR spectroscopy and single crystal X-ray diffraction (unit cell
comparison) and were found to be the mononuclear complex [Cu(H2pyca)2(H2O)]·(NO3)2,
where H2pyca = pyridine-2-carboxamide [90]. H2pyca is the product of the hydrolysis of
H2pyaox, which is a reaction often encountered in oximes [52,91]. Concerning the brown
precipitate, this was amorphous, which prevented from its further; it is worth to mention,
though, that the IR spectrum (Figure S10) of the brown precipitate indicates that this could
correspond to the previously reported 1D coordination polymer [Fe3(H2O)12(btc)2]n [76].
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The absence of bands in the range 1730–1690 cm−1 reveals the complete deprotonation of
the organic ligand in the product of the reaction.

3. Materials and Methods
3.1. Materials, Physical and Spectroscopic Measurements

All the manipulations were performed under aerobic conditions using materials
(reagent grade) and solvents as received. Hmpko and H2pyaox were prepared as described
elsewhere [92,93]. Warning: Perchlorate salts are potentially explosive; such compounds
should be used in small quantities and treated with utmost care at all times.

Elemental analysis (C, H and N) was performed by the in-house facilities of Na-
tional University of Ireland Galway, School of Chemistry. IR spectra (4000–400 cm−1)
were recorded on a Perkin-Elmer Spectrum 400 FT-IR spectrometer. Powder X-ray diffrac-
tion data (pxrd) were collected using an Inex Equinoz 6000 diffractometer. Solid TGA
experiments were performed on a STA625 thermal analyser from Rheometric Scientific
(Piscataway, NJ, USA). The heating rate was kept constant at 10 ◦C/min, and all runs were
carried out between 20 and 600 ◦C. The measurements were made in open aluminium
crucibles, nitrogen was purged in ambient mode and calibration was performed using
an indium standard. Solid-state, variable-temperature and variable-field magnetic data
were collected on powdered samples using an MPMS5 Quantum Design magnetometer
operating at 0.03 T in the 300–2.0 K range for the magnetic susceptibility and at 2.0 K in the
0–5 T range for the magnetization measurements. Diamagnetic corrections were applied to
the observed susceptibilities using Pascal’s constants. EPR spectrum was collected using a
Bruker 300 spectrometer with an X-band frequency measured at room temperature.

3.2. Compound Synthesis
3.2.1. Synthesis of [Zn(H2btc)2(H2pyaox)2] 2H2O (1•2H2O)

Zn(ClO4)2•6H2O (0.037 g, 0.10 mmol) and H2pyaox (0.027g, 0.20 mmol) were dis-
solved in H2O (10 mL). The resultant solution was put in the oven and heated at 100 ◦C
for 1 h. Then, H3btc (0.021 g, 0.1 mmol) was added and the vial was placed into the oven
for 24 h, after which X-ray quality colourless crystal needles of 1•2H2O were formed. The
crystals were collected by filtration, washed with cold MeCN (2 mL) and Et2O (2 × 5 mL)
and dried in air. Yield 55 %. Anal. Calc. for 1•2H2O: C, 45.38; H, 3.55; N, 10.58. Found: C,
45.87; H, 3.71; N, 10.09 %. IR data: ν (cm−1) = 3484 m, 3406 m, 3310 m, 2982 m, 2757 m,
2564 m, 2364 w, 1943 w, 1724 m, 1698 m, 1670 m, 1598 s, 1574 m, 1543 s, 1497 m, 1406 m,
1369 m, 1281 m, 1247 m, 1224 s, 1177 s, 1153 m, 1096 m, 1022 s, 907 m, 844 m, 790 s, 745 s,
691 s, 665 m.

3.2.2. Synthesis of [Zn(Hbtc)(H2pyaox)2]n (2)

Zn(O2CMe)2•6H2O (0.022 g, 0.10 mmol), H2pyaox (0.027 g, 0.20 mmol) and Et3N
(56 µL, 0.4 mmol) were dissolved in H2O (10 mL). The resultant solution was put in the
oven and heated at 100 ◦C for 1h. H3btc (0.021 g, 0.10 mmol) was added and the vial
was placed into the oven for 24 h, after which X-ray quality colourless needless of 2 were
formed. The crystals were collected by filtration, washed with cold MeCN (2 mL) and Et2O
(2 × 5 mL), and dried in air. Yield 70%. Anal. Calc. for 2: C, 46.05; H, 3.31; N, 15.34. Found:
C, 45.55; H, 3.63; N, 15.18%. IR data: ν (cm−1) = 3474 m, 3357 m, 3307 m, 3187 m, 2982 m,
1722 s, 1678 s, 1604 s, 1575 m, 1528 s, 1434 m, 1406 m, 1368 s, 1302 m, 1229 m, 1169 s, 1097 m,
1020 s, 1007 m, 1020 s, 937 m, 896 m, 855 m, 811 m, 790 s, 756 m, 714 s, 687 m, 668 s.

3.2.3. Synthesis of [Cu(Hbtc)(H2pyaox)]n (3)

Cu(ClO4)2•6H2O (0.037 g, 0.10 mmol) and H2pyaox (0.027 g, 0.20 mmol) were dis-
solved in H2O (10 mL). The resultant solution was put in the oven and heated at 100 ◦C for
1 h. The colour of the solution turned cyan and H3btc (0.021 g, 0.1 mmol) was then added;
the vial was placed into the oven for 24 h, after which X-ray quality green crystals of 3 were
formed. The crystals were collected by filtration, washed with cold MeCN (2 mL) and Et2O



Molecules 2021, 26, 491 10 of 16

(2 × 5 mL), and dried in air. Yield 85%. Anal. Calc. for 3: C, 44.07; H, 2.71; N, 10.28. Found:
C, 44.32; H, 3.07; N, 10.21 %. IR data: ν (cm−1) = 3443 w, 3314 w, 1726 m, 1682 m, 1612 s,
1579 w, 1544 s, 1492 w, 1437 w, 1421 w, 1364 m, 1296 w, 1274 w, 1242m, 1238 m, 1179 m,
1157 w, 1095 m, 1036 s, 951 m, 928 w, 895 w, 836 m, 805 w, 786 s, 743 s, 720 s, 689 w, 669 m.

3.2.4. Synthesis of [Cu(Hbtc)(HmpKo)]n (4)

Cu(ClO4)2•6H2O (0.037 g, 0.10 mmol) and HmpKo (0.014 g, 0.10 mmol) were dissolved
in H2O (5 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h.
H3btc (0.021 g, 0.1 mmol) was then added and the vial was placed into the oven for 24 h,
after which X-ray quality blue crystals of 5 were formed. The crystals were collected by
filtration, washed with cold MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 73%.
Anal. Calc. for 4: C, 47.12; H, 2.97; N, 6.87. Found: C, 46.81; H, 3.14; N, 7.01 %. IR data:
ν (cm−1) = 2247 w, 2167 w, 1813 m, 1720 m, 1606 m, 1549 s, 1482 w, 1424 m, 1360 s, 1299 w,
1266 w, 1244 s, 1177 s, 1160 s, 1149 w, 1100 w, 1085 m, 1053 w, 1027 w, 978 w, 957 m, 923 m,
803 w, 770 m, 749 s, 718 s, 690 m, 673 s.

3.2.5. Synthesis of [Cu2(Hbtc)2(Hmpko)2(H2O)2] 4H2O (5•4H2O)

Cu(NO3)2•2.5H2O (0.093 g, 0.40 mmol) and Hmpko (0.014 g, 0.10 mmol) were dis-
solved in in H2O (10 mL). The resultant solution was put in the oven and heated at 100 ◦C
for 1 h. Then, H3btc (0.021 g, 0.1 mmol) was added and the vial was placed into the oven
for 24 h, after which X-ray quality cyan crystals of 5•4H2O were formed. The crystals were
collected by filtration, washed with cold MeCN (2ml) and Et2O (2 × 5 mL), and dried in
air. Yield 40%. Anal. Calc. for 5•4H2O: C, 41.61; H, 3.93; N, 6.07. Found: C, 41.29; H, 4.09;
N, 6.34 %. IR data: ν (cm−1) = 3393 w, 3032 w, 1714 m, 1606 s, 1548 s, 1435 s, 1363 s, 1335 w,
1249 m, 1235 m, 1189 m, 1144 m, 1103 m, 1074 m, 1028 w, 930 m, 855 w, 803 w, 778 s, 744 s,
714 s, 677 s.

3.3. Single-Crystal X-ray Crystallography

Single crystal diffraction data for 1–5 were collected in an Oxford Diffraction Xcalibur
CCD diffractometer using graphite-monochromatic Mo Ka radiation (λ = 0.71073 Å) at room
temperature. The structures were solved using SHELXT [94], embedded in the OSCAIL
software [95]. The non-H atoms were treated anisotropically, whereas the hydrogen atoms
were placed in calculated, ideal positions and refined as riding on their respective carbon
atoms. The hydrogen atoms on water molecules cannot be calculated accurately and are
best located in difference maps and then refined. In the case of compound 1•2H2O, it was
not possible to locate the water H atoms in difference maps. Molecular graphics were
produced with DIAMOND [96].

Unit cell data and structure refinement details are listed in Table 1. CIF files can be
obtained free of charge at www.ccdc.camac.uk/retrieving.html or from the Cambridge
Crystallographic Data Centre, Cambridge, UK with the REF codes 2,054,509–2,054,513
for 1–5.
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Table 1. Crystallographic data for complexes 1–5.

Complex 1.2H2O 2 3

Empirical formula C30H23N6O16Zn C21H18N6O8Zn C15H11CuN3O7
Formula weight 788.91 547.78 408.81
Crystal system Triclinic Orthorhombic Monoclinic

Space group Pı̄ P212121 P21/n
a (Å) 10.4432(8) 8.9165(2) 13.6020(5)
b (Å) 11.0391(10) 14.3950(4) 7.8643(3)
c (Å) 16.1331(10) 18.0662(4) 14.5936(6)
α (o) 70.263(7) 90 90
β (o) 71.936(6) 90 106.629(4)
γ (o) 74.980(7) 90 90

V (Å3) 1639.4(2) 2318.85(10) 1495.79(10)
Z 2 4 4

ρcalc (g cm−3) 1.598 1.569 1.815
µ (mm−1) 0.837 1.120 1.510

Measured/independent
reflections (Rint)

12,784/7550
(0.0634)

19,382/ 5593
(0.0303)

10,552/3386
(0.0279)

Parameters refined 484 350 251
GoF (on F2) 0.972 1.043 1.069

R1
a (I > 2σ(I)) 0.0948 0.0340 0.0379

wR2
b (I > 2σ(I)) 0.2333 0.0763 0.1025

(∆ρ)max/(∆ρ)min
(e Å−3) 2.739/−0.619 0.879/−0.338 0.539/−0.683

Complex 4 5•4H2O
Empirical formula C21H11CuN2O7 C16H18CuN2O10

Formula weight 466.86 461.86
Crystal system Orthorhombic Triclinic

Space group Pna21 Pı̄
a (Å) 14.4904(8) 8.5820(6)
b (Å) 14.2054(6) 10.7135(8)
c (Å) 7.4068(5) 11.0721(8)
a (o) 90 64.108(7)
β (o) 90 86.688(6)
γ (

◦
) 90 83.015(6)

V (Å3) 2.034 909.01(12)
Z 4 2

ρcalc (g cm−3) 2.034 1.687
µ (mm−1) 1.494 1.263

Measured/independent
reflections (Rint)

12,706/3688
(0.0784)

8056/4204
(0.0377)

Parameters refined 237 286
GoF (on F2) 0.974 0.963

R1
a (I > 2σ(I)) 0.0544 0.0417

wR2
b (I > 2σ(I)) 0.0869 0.0935

(∆ρ)max/(∆ρ)min
(e Å−3) 0.420/−0.405 0.496/−0.489

aR1 = Σ(|Fo|−|Fc|)/Σ(|Fo|); b wR2 = {Σ[w(Fo
2−Fc

2)2]/Σ[w(Fo
2)2]}1/2

4. Conclusions

The employment of 2-pyridyl oximes (pyridine−2 amidoxime, H2pyaox; 2-methyl
pyridyl ketoxime and Hmpko) in combination with 1,3,5-benzenetricarboxylic acid (H3btc)
provided access to five new compounds, including discrete clusters, coordination polymers
and MOFs. Among them, [Cu(Hbtc)(H2pyaox)]n (3) was based on a 3-c uninodal net
of hcb topology being the first reported MOF bearing H2pyaox; it was also the third
MOF example based on a 2-pyridyl oxime in general. [Zn(Hbtc)(H2pyaox)2]n (2) and
[Cu(Hbtc)(HmpKo)]n (4) joined a small family of coordination polymers containing an
oximic ligand. 1–5 formed a 3D supramolecular network through strong hydrogen bonding
interactions.
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The exchange interactions between the metal centres in 3 were investigated through dc
magnetic susceptibility measurements and were found to be very weak antiferromagnetic
(J = −0.16(1) cm−1). Finally, reactivity studies were performed for 3 in the presence of
metal ions; in the case of Fe(NO3)3, the reaction products were [Cu(H2pyca)2(H2O)]·(NO3)2,
(H2pyca = pyridine-2-carboxamide, coming from the hydrolysis of the oximic ligand) and
[Fe3(H2O)12(btc)2]n. The reaction products were characterized by single crystal X-ray
crystallography and IR spectroscopic techniques.

Supplementary Materials: The following are available online, Figure S1: Representation of the
3D network formed through hydrogen bonding interactions in 3, Figure S2: Representation of the
3D network formed through hydrogen bonding interactions in 5•4H2O, Figure S3: Comparison
of the pxrd patterns for 3 (theoretical, red; experimental: green; CH2Cl2, navy blue; EtOH, grey;
H2O, magenta; Me2CO, cyan; MeOH, pink, Figure S4: Comparison of the pxrd patterns for 5•4H2O
(theoretical, red; experimental, blue), Figure S5: UV-vis plot for the adsorption of iron(III) nitrate
nonahydrate by 3 in H2O, Figure S6: Photo of crystals of 3 (left) before the reaction and the formed
brown compound (right), Figure S7: The infrared spectra of the isolated brown precipitated, Table S1:
Selected interatomic distances (Å) and angles for 1•2H2O, Table S2: Selected interatomic distances
(Å) and angles for 2, Table S3: Selected interatomic distances (Å) and angles for 3, Table S4: Selected
interatomic distances (Å) and angles for 4, Table S5: Selected interatomic distances (Å) and angles for
5•4H2O, Table S6: Hydrogen bonding details for 2, Table S7: Hydrogen bonding details for 5•4H2O.
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