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Abstract

In this work, we present a formulation of gauge theories from a mathematical perspec-
tive, through bundles and connections on them. We begin by providing the necessary
background in differential geometry, covering topics such as Lie groups, Lie algebras,
principal bundles and their connection 1−forms. Then, we examine how classical Yang-
Mills theories, a type of gauge theories, can be interpreted using the presented concepts.
In particular, we focus on the explanation of the electroweak interaction as a Yang-Mills
theory, following the Standard Model of particle physics. Finally, we study some of the
problems of this formalism and the way they can be solved via the Higgs mechanism,
based on the notion of spontaneous symmetry breaking.

Resum

En aquest treball es presenta una formulació de les teories de gauge des d’un punt de
vista matemàtic, emprant fibrats i connexions sobre aquests. En primer lloc, es pro-
porcionen els coneixements previs necessaris de geometria diferencial. Entre d’altres,
es tracten temes com grups de Lie, àlgebres de Lie, fibrats principals i les seves corre-
sponents connexions 1-formes. A continuació, s’analitza com les teories de Yang-Mills
clàssiques, un tipus especial de teories de gauge, poden ser interpretades mitjançant els
conceptes prèviament introduïts. En particular, es mostra que la interacció electrofeble
pot ser explicada com una teoria de Yang-Mills, seguint l’esquema usat en el Model
Estàndard de física de partícules. Finalment, s’estudien alguns dels problemes d’aquest
formalisme i de quina manera es poden solucionar mitjançant el mecanisme de Higgs,
basat en la idea de la ruptura espontània de la simetria.
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Introduction

The concept of gauge invariance appeared for the first time in 1929 in a paper published
by the mathematician H. Weyl [Weyl29]. At the beginning of the 20th century, a few
decades after J.C. Maxwell presented his acclaimed set of equations describing classical
electromagnetism, many attempts to unveil the symmetries hidden in these equations
were taking place.1 At that time, Weyl was in pursuit of extending general relativity and
unifying gravitation and electromagnetism within the same geometrical framework.

Even though he failed in his attempt, in the aforementioned paper he explicitly de-
fined the notion of gauge transformation within quantum electrodynamics. Further, he
showed how Maxwell’s theory as a quantum mechanical theory is invariant under such
a transformation. Weyl had discovered a new symmetry of electromagnetism, today
known as gauge symmetry. This was the first time that the terms gauge transformation
and gauge invariance appeared.

Apart from asserting the importance of gauge invariance as a symmetry principle
from which electromagnetism can be derived, in his work Weyl formally presents vir-
tually all the mathematical aspects that gave rise to non-abelian gauge theories. Gauge
theories are a certain type of field theories. Classically, in these theories some physical
quantities are represented by a function, called field, that has a value for each point in
spacetime. In particular, gauge theories describe matter using fields. Many eminent
theories in physics, apart from Maxwell’s theory, are gauge theories.

However, it was not until the early 1950s when non-abelian gauge theories were
formally introduced by C.N. Yang and R.L. Mills. At that time, experiments had yield
the discovery of several new strange particles. As many others, Yang and Mills in-
tended to develop a field theory which could describe weak and strong force interac-
tions considering all the new experimental insights within the field of particle physics.
In a renowned paper from 1954 [YM54], both physicists proposed an extended class
of classical field theories satisfying a generalized type of gauge symmetry, inspired by
electromagnetism.

In its beginnings, the physics community was reluctant to support Yang and Mills’
non-abelian field theory, since it apparently predicted the existence of massless charged
particles which seemed not to exist in nature. In the 1960s, this issue was solved, among
others, by the physicist P. Higgs who presented the nowadays called Higgs mechanism
which employed the recently introduced concept of spontaneous symmetry breaking.
This allowed to develop a model to explain electroweak theory. Afterwards, a gauge
theory to model strong interactions also emerged, which led to the Standard Model that
we know nowadays.

1Given a physical system, we define a symmetry as a feature of the system which remains unchanged
after applying some transformation.
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2 Introduction

Due to its influence, gauge theories which share essential elements with the theory
developed by Yang and Mills are currently known as Yang-Mills theories. All known
fundamental interactions can be described in terms of gauge theories and, excluding
gravitation, all the significant theories of modern physics are quantized versions of the
Yang-Mills theory. Actually, the currently prevalent theory for explaining how matter
works, namely the Standard Model of particle physics, is a Yang-Mills theory.

Simultaneously but completely unrelated to these advancements, during the first
half of the 20th century a mathematical theory called fiber-bundle theory was developed.
This theory nurtures from different disciplines, such as differential geometry, topology
or connection theory.

Both Yang-Mills theory and fiber-bundle theory were developed by physicists and
mathematicians for entirely different reasons. Nonetheless, throughout the 1970s, links
between the two points of view were revealed. It was discovered that the mathematics
of gauge theories, both abelian and non-abelian, are exactly the same as those of bundle
theory. This was shown by T.T. Wu and Yang (1975) [WY75] as well as by A. Trautman
(1980) [Tra80] and, following their works, many others started to formulate electromag-
netism and other gauge theories in terms of the mathematics of fiber bundles.

Therefore, fiber-bundle theory not only has yield new results in mathematics, but it
has been key to gaining a better understanding of the structure of gauge theories. Even
nowadays, when physicists are struggling to deal with the incompleteness of the Stan-
dard Model, modern theories still rely on the tremendous success of this mathematical
formalism.

Structure of this work

In this work we aim to develop a classical Yang-Mills theory following the mathematical
formulation of fiber bundles.

Before addressing fiber bundles, in the first chapter we introduce Lie groups, Lie
algebras, and their corresponding representations, which will be necessary to develop
the subsequent theory. In the second chapter, we examine bundle theory focusing
our attention in principal fiber bundles and geometrical concepts with an analog in
Yang-Mills theories such as connection 1-forms and curvatures. Besides, we define the
so-called gauge transformations that will allow us to determine whether a theory is
gauge invariant or not.

Finally, the last chapter is devoted to explaining how this mathematical theory is
related with some of the fundamentals behind the Standard Model of particle physics.
Firstly, we present a general Yang-Mills theory from a classical perspective and we
briefly show how classical electromagnetism can be derived from it. Then, we proceed
to develop the Higgs mechanism, used to solve the inconsistencies of the theory, and
we demonstrate how it allows us to model electroweak interactions as stated in the
Standard Model. In particular, we analyze how certain bosons and their interactions
are characterized within this theory.



Chapter 1

Lie groups and Lie algebras

This chapter is aimed to introduce Lie groups and Lie algebras and how both con-
cepts can be related. We explore some properties of these mathematical objects and
we present several functions involving the two notions, such as representations and the
exponential map. Finally, we explain in what manner Lie groups can act on certain
differential structures.

1.1 Lie groups

Hereafter, during the whole work, we consider manifolds without boundary.

Definition 1.1.1. A Lie group is a differentiable manifold G which is at the same time
a group so that the maps

G× G → G G→ G

(g, h) 7→ g · h g 7→ g−1,

called multiplication and inversion, are smooth. Here, G× G has the canonical struc-
ture of a product manifold determined by the differential structure of G.

Remark 1.1.2. It can be shown that this definition is actually redundant. Indeed, if the
multiplication is smooth, the inversion is automatically smooth (see [Bry18, Sect. 2]).
Moreover, it is in fact not necessary to ask for smoothness, since it was proven that a
topological manifold which is at the same time a group with continuous multiplication
and inversion already has the structure of a Lie group. This is the solution of Hilbert’s
5th problem.

Example 1.1.3. Let us now go through some examples that will be crucial in the follow-
ing chapters:

1. GL(n; R) = {A ∈ Mat(n × n; R) : det(A) 6= 0} ⊂ Mat(n × n; R) = Rn2
is an

open subset, since it is the preimage of an open subset by the continuous function
det : Mat(n× n; R) → R. Moreover, the multiplication map (A, B) 7→ A · B and
the inversion map A 7→ A−1 are smooth, as the matrix coefficients of A · B and

3



4 Lie groups and Lie algebras

A−1 are polynomial and rational functions on the matrix coefficients of A and B.
Hence, GL(n; R) is a Lie group.

2. The same way, we can see that GL(n; C) ⊂ Mat(n× n; C) = Cn2
= R2n2

is also a
Lie group.

There are several ways to construct Lie groups based on other Lie groups. The
following theorem provides an example of one of these procedures:

Theorem 1.1.4 (Cartan’s theorem, Closed subgroup theorem). Let G be a Lie group and let
H ⊂ G be a subgroup in the algebraic sense which is a closed subset. Then, H is a submanifold
and an embedded Lie Group.

Remark 1.1.5. We will not prove this theorem here, but there is a whole section in
[Ham17, Sect. 1.8] devoted to it.

Example 1.1.6. The previous theorem can be used to find some important Lie groups
out of the ones explained in Example 1.1.3:

1. O(n) := {A ∈ GL(n; R) : At · A = 1n}, let us check that this is indeed a Lie group:

i) 1n ∈ O(n).

ii) ∀A, B ∈ O(n), (AB)t · (AB) = Bt At · AB = Bt · B = 1n ⇒ AB ∈ O(n).

iii) ∀A ∈ O(n), At = A−1 ⇒ (A−1)t · A−1 = A · A−1 = 1n ⇒ A−1 ∈ O(n).

Hence, O(n) ⊂ GL(n; R) is a subgroup. In addition, O(n) is a closed subset, as it
is the preimage of a closed subset by the continuous map A 7→ At · A. Thus, by
Theorem 1.1.4, O(n) is a Lie group called the orthogonal group.

The same reasoning works for the following groups:

2. Special linear group: SL(n; R) := {A ∈ Mat(n× n; R) : det(A) = 1}.

3. Special orthogonal group: SO(n) := O(n) ∩ SL(n; R).

4. Unitary group: U(n) := {A ∈ Mat(n× n; C) : A† · A = 1n}, where A† = Āt.

5. Special linear group: SL(n; C) := {A ∈ Mat(n× n; C) : det(A) = 1}.

6. Special unitary group: SU(n) := U(n) ∩ SL(n; C).

Remark 1.1.7. Lie groups can also be constructed using products: let G and G′ be Lie
groups, then the product manifold G× G′ with the direct product structure as a group
is a Lie group.

Definition 1.1.8. Let G and G′ be Lie groups. A Lie group homomorphism is a smooth
group homomorphism φ : G → G′. The map φ is called a Lie group isomorphism if it
is invertible and the inverse is again a Lie group homomorphism. In this case, G and
G′ are called isomorphic.

Remark 1.1.9. Given two Lie groups G and G′, a continuous group homomorphism
φ : G → G′ is automatically smooth, i.e. is a Lie group homomorphism (see [Ham17,
Sect. 1.3]).
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1.2 Lie algebras

Definition 1.2.1. A Lie algebra is a vector space V together with a map
[·, ·] : V ×V → V such that:

i) [·, ·] is bilinear.

ii) [·, ·] is antisymmetric: [v, w] = −[w, v] ∀v, w ∈ V.

iii) [·, ·] satisfies the Jacobi identity:

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0 ∀u, v, w ∈ V.

The map [·, ·] is called the Lie bracket.

Example 1.2.2. Let us check some important examples of Lie algebras:

1. Every vector space together with the trivial Lie bracket [·, ·] ≡ 0 is a Lie algebra
(called abelian).

2. The vector space Mat(n× n; K) where K = R or C with the bracket [·, ·] defined
as the commutator of matrices [A, B] := A · B− B · A for all A, B ∈ Mat(n× n; K)

is a real or complex Lie algebra, respectively.

3. Let M be a differentiable manifold and X(M) the set of differentiable vector fields
on M, which has the structure of a real vector space. Consider the bracket that
assigns to X, Y ∈ X(M) the differentiable vector field [X, Y] defined by [X, Y] f =

X(Y f )− Y(X f ) where f ∈ F (M) = { f : M → R : f is smooth}.1 The set X(M)

together with this bracket is a real Lie algebra.

Definition 1.2.3. Let (V, [·, ·]) be a Lie algebra. A Lie subalgebra of V is a vector
subspace W ⊂ V together with the map [·, ·]|W×W such that W is closed under the
bracket, that is, [w, w′] ∈W for all w, w′ ∈W.

Definition 1.2.4. Let V and V ′ be Lie algebras. A Lie algebra homomorphism is a
linear map φ : V → V ′ verifying φ([X, Y]) = [φ(X), φ(Y)] for all X, Y ∈ V. The map φ is
called a Lie algebra isomorphism if it is bijective, and it is a Lie algebra automorphism
if it is a Lie algebra isomorphism and V ′ = V.

Let us now construct a correlation between Lie groups and Lie algebras. First of all,
we introduce some maps that will be useful throughout this process:

Definition 1.2.5. Let G be a Lie group. Fix g ∈ G and consider the following maps:

i) Left translation by g: Lg : G → G such that Lg(h) := g · h.

ii) Right translation by g: Rg : G → G such that Rg(h) := h · g.

1Here, the vector field [X, Y] is defined by its action as a derivation on F (M). Given X ∈ X(M) and
f ∈ F (M), then X( f ) : M → R is a differentiable map defined by X( f )(p) = Xp( f ) for all p ∈ M.
Actually, every X ∈ X(M) can be identified as a derivation on F (M) and vice versa (see [Cur09, Sect. 4.1]).



6 Lie groups and Lie algebras

iii) Conjugation by g: αg : G → G such that αg(h) := (Lg ◦ Rg−1)(h) = g · h · g−1.

Notice that Lg and Rg are diffeomorphisms but not group homomorphisms, while αg is
a Lie group isomorphism.

The previous maps allow us to define a subset of X(G) fulfilling some properties for
which the following relations are needed:

Definition 1.2.6. Let M and N be smooth manifolds, F : M → N a differentiable
map, and X ∈ X(M), Y ∈ X(N). Then, X and Y are F-related, denoted X 'F Y, if
dpF(Xp) = YF(p) for all p ∈ M, we also write dF(X) = Y.

Remark 1.2.7. If F : M → N is a diffeomorphism, then dF(X) defines a vector field on
N for all X ∈ X(M) and it preserves the bracket, that is, dF([X, Y]) = [dF(X), dF(Y)]
for all X, Y ∈ X(M) (see [Cur09, Sect. 4.3]).

We are interested in the case that F is a diffeomorphism and N = M so that dF(X)

defines a differentiable vector field as dF(X)(p) = dF−1(p)F(XF−1(p)) for all p ∈ M, called
the pushforward of X under F.

Definition 1.2.8. Let G be a Lie group. A vector field X ∈ X(G) is left-invariant if
dLg(X) = X for all g ∈ G, equivalently, dhLg(Xh) = Xgh for all g, h ∈ G.

Remark 1.2.9. Given two left-invariant vector fields X, Y ∈ X(G), since Lg is a dif-
feomorphism, we have that dLg([X, Y]) = [dLg(X), dLg(Y)] = [X, Y] i.e. [X, Y] is left-
invariant. Then, g := {X ∈ X(G) : X is left-invariant} is a Lie subalgebra of X(G).

Definition 1.2.10. g is called the Lie algebra of G.

There is a more intuitive way to understand the Lie algebra of a Lie group. A linear
canonical isomorphism between g and TeG can be defined as the map that assigns
X 7→ Xe where e ∈ G is the neutral element of the group. To check that this is indeed
an isomorphism consider the map

TeG → g

X0 7→ X

where Xg := deLg(X0) for all g ∈ G. This defines a differentiable vector field for each
X0 ∈ TeG. To see this, we need to compute the differential of the multiplication map
(see [Ham17, Sect. 1.5.2]). Moreover, defined this way, X verifies Xe = deLe(X0) =

deid(X0) = id(X0) = X0 and it is left-invariant, since for all g, h ∈ G we have

dhLg(Xh) = dhLg(deLh(Xe)) = de(Lg ◦ Lh)(Xe) = de(Lgh)(Xe) = Xgh.

Therefore, this provides the inverse of the map X 7→ Xe. This implies that a left-
invariant vector field on a Lie group is completely determined by its value at one point.
Furthermore, dim(g) (as a real vector space) equals dim(G) (as a smooth manifold).

Example 1.2.11. Let us now compute the Lie algebras of some matrix Lie groups:
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1. For G = GL(n; R), we get g = T1n GL(n; R) = Mat(n× n; R) = Rn2
, and the same

holds for G = GL(n; C).2

2. For G = O(n), we can express o(n) := g = T1n O(n) = { •γ(0) : γ : (−ε, ε) →
O(n) smooth, γ(0) = 1n}.3 From this we can compute a more intuitive expression
for o(n). First, let us see that o(n) ⊂ {A ∈ Mat(n× n; R) : At + A = 0}:

∀γ(s) ∈ O(n), 1n = γ(s)t · γ(s)⇒

⇒ 0 =
d
ds

∣∣∣
s=0

(γ(s)t · γ(s)) = •
γ(0)t · γ(0) + γ(0)t · •γ(0) = •

γ(0)t +
•
γ(0).

Moreover,

dim(o(n)) = dim(O(n)) =
n(n− 1)

2
= dim{A ∈ Mat(n× n; R) : At + A = 0}.

Hence, o(n) = {A ∈ Mat(n× n; R) : At + A = 0}.

The same reasoning works for the following groups:

3. For G = SL(n; R), we have sl(n; R) := g = {A ∈ Mat(n× n; R) : tr(A) = 0}.

4. For G = SO(n), we get so(n) := g = o(n) ∩ sl(n; R) = o(n), since o(n) ⊂ sl(n; R).

5. For G = U(n), we have u(n) := g = {A ∈ Mat(n× n; C) : A† = −A}.

6. For G = SL(n; C), we have sl(n; C) := g = {A ∈ Mat(n× n; C) : tr(A) = 0}.

7. For G = SU(n), we have su(n) := g = u(n) ∩ sl(n; C).

Remark 1.2.12. In all these examples of Lie algebras, the bracket corresponds to the
matrix commutator defined in Example 1.2.2.

1.3 Representations

Definition 1.3.1. Let G be a Lie group. A real or complex representation of G is a Lie
group homomorphism ρ : G → Aut(V) where V is a finite dimensional K-vector space
with K = R or C, respectively.

Example 1.3.2. The following are some of the most basic examples of representations
of Lie groups:

1. The trivial representation: ρ(g) := idV ∀g ∈ G.

2Here, we use that GL(n; R) is an open subset of Mat(n × n; R) = Rn2
, such that the inclusion

GL(n; R) ↪→ Rn2
leads to an isomorphism between the tangent spaces, and T0Rn2

= Rn2
.

3Here, we apply that for all Xg ∈ TgG there exists a smooth curve γ : (−ε, ε) → G with γ(0) = g such

that Xg =
•
γ(0) (see [Cur09, Sect. 4.2]).
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2. The adjoint representation: in this case V is chosen as the Lie algebra g of the
Lie group G, we write Ad: G → Aut(g). This representation is defined via the
conjugation αg considering its differential at the neutral element e:

Adg := deαg : g ∼= TeG → TeG ∼= g

where Adg = Ad(g). It is easy to see that Ad is a Lie group homomorphism,
since Adg1·g2 = Adg1 ◦Adg2 , Ade = idg, (Adg)−1 = Adg−1 , and it is smooth (for a
detailed proof see [Bär11, Sect. 1.3]).

Notice that if G is an abelian Lie group, then αg = idG for all g ∈ G. Hence,
Adg = deαg = idg for all g ∈ G.

It will be useful to compute the expression of Ad for the matrix groups of the
Examples 1.1.1 and 1.1.4. Given X ∈ g and a smooth curve γ : (−ε, ε) → G such
that γ(0) = e and

•
γ(0) = Xe, we have

Adg(X) = deαg(X) =
d
ds

∣∣∣
s=0

αg(γ(s)) =
d
ds

∣∣∣
s=0

(g · γ(s) · g−1) = g · X · g−1.

Hence, for this groups Ad is matrix conjugation.

Let us now consider some methods that allow us to obtain new representations out
of given ones, along with a mechanism to correlate different representations:

Definition 1.3.3. Let G be a Lie group, Vi finite dimensional vector spaces, and ρi : G →
Aut(Vi) representations of G for i = 1, 2. Then, we define:

i) The direct sum representation ρ1 ⊕ ρ2 : G → Aut(V1 ⊕V2) as

(ρ1 ⊕ ρ2)(g)(v1 ⊕ v2) := ρ1(g)(v1)⊕ ρ2(g)(v2).

ii) The tensor product4 representation ρ1 ⊗ ρ2 : G → Aut(V1 ⊗V2) as

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) := ρ1(g)(v1)⊗ ρ2(g)(v2).

iii) The antisymmetric tensor product5 (or wedge product) representation ρ1 ∧ ρ2 :
G → Aut(V1 ∧V2) as

(ρ1 ∧ ρ2)(g)(v1 ∧ v2) := ρ1(g)(v1) ∧ ρ2(g)(v2).

Furthermore, ρ1 and ρ2 are called equivalent if there exists an isomorphism T :
V1 → V2 so that T ◦ ρ1(g) ≡ ρ2(g) ◦ T for all g ∈ G.

4The tensor product is the unique vector space V1 ⊗ V2 together with a bilinear map b : V1 × V2 →
V1 ⊗ V2 satisfying the universal property that any bilinear map V1 × V2 → V factorizes through V1 ⊗ V2
by a unique linear map V1 ⊗V2 → V (for more details see [Con21a]).

5The antisymmetric product V1 ∧V2 is the equivalent of the tensor product for skew-symmetric bilinear
maps V1 ×V2 → V (for more details see [Con21b]).
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Let us now proceed likewise for Lie algebras:

Definition 1.3.4. Let g be a Lie algebra. A real or complex representation of g is a
Lie algebra homomorphism λ : g → End(V) where V is a finite dimensional K-vector
space with K = R or C, respectively.

Example 1.3.5. As for Lie groups, we have:

1. The trivial representation: λ(X) := 0 ∀X ∈ g.

2. The adjoint representation: as for Lie groups, V = g and we write ad : g →
End(g). It is defined as ad(X)(Y) := [X, Y] for all X, Y ∈ g. This is indeed
a Lie algebra homomorphism, since the bracket is bilinear and ad([X, Y]) =

[ad(X), ad(Y)] for all X, Y ∈ g (see [Bär11, Sect. 1.3]). Let us now compute this
representation for some special unitary groups:

Consider su(2) = {A ∈ Mat(2× 2; C) : A† = −A, tr(A) = 0} =
{( iα z
−z̄ ᾱ

)
: α ∈

R, z ∈ C
}

, notice that {iσ1,−iσ2, iσ3} is a basis of su(2), where σi are the Pauli
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then, it suffices to find the expression of the image by ad of each element of the
basis, i.e. we just need to compute [ui, uj] for each ui, uj ∈ {iσ1,−iσ2, iσ3}. We get

ad(iσ1) =

0 0 0
0 0 2
0 −2 0

 , ad(−iσ2) =

0 0 −2
0 0 0
2 0 0

 , ad(iσ3) =

 0 2 0
−2 0 0
0 0 0

 .

Consider now

su(3) =

{ iα u v
−ū −i(α + β) w
−v̄ −w̄ iβ

 : α, β ∈ R, u, v, w ∈ C

}
.

Notice that {uj = −iλj/2}j=1,...8 is a basis of su(3), where {λj}j=1,...,8 are the
Gell-Mann matrices (see [Ham17, Sect. 1.5.5]). Taking into account that [λj, λk] =

2i ∑8
l=1 f jklλl , we get

[uj, uk] =
−i
2
· −i

2
[λj, λk] =

−1
4
· 2i

8

∑
l=1

f jklλl =
−i
2

8

∑
l=1

f jkl · −2
i

ul =
8

∑
l=1

f jklul .

Hence, the image by ad of each element of the basis is an endomorphism of g that
can be expressed in a matrix form as(

ad−i
2 λj

)
kl
= f jkl

where f123 = 1, f147 = − f156 = f246 = f257 = f345 = − f367 = 1/2, f458 = f678 =√
3/2, and f jkl = 0 for any other combination of jkl.

Remark 1.3.6. Analogously as we did for Lie groups, equivalence between Lie algebra
representations can be defined.
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1.4 The exponential map

Theorem 1.4.1. Let G be a Lie group and g its Lie algebra. Consider a left-invariant vector
field X ∈ g, an interval 0 ∈ I ⊂ R, and the maximal integral curve of X through the neutral
element e ∈ G, denoted γX : I → G, with γX(0) = e. Then, the following holds:

i) γX is defined on all of R.

ii) γX : R→ G is a Lie group homomorphism.

iii) γsX(t) = γX(st) ∀s, t ∈ R.

Proof. See [Ham17, Sect. 1.7.1].

Remark 1.4.2. It can also be shown that if a smooth curve γ : R→ G with γ(0) = e is a
group homomorphism, then γ is an integral curve to some X ∈ g (see [Bär11, Sect. 1.4]).

Taking this into consideration, we can define the following map:

Definition 1.4.3. The map exp : g→ G, exp(X) := γX(1) is called the exponential map
of G.

Applying the properties of γX(t) stated in Theorem 1.4.1, we find that γX(s) =

γX(s · 1) = γsX(1) = exp(sX) for all s ∈ R. Hence, exp(tX) corresponds to the integral
curve γX of X. Moreover, exp satisfies exp((s + t)X) = exp(sX) · exp(tX), exp(0) = e,
and exp(−X) = (exp(X))−1.

Remark 1.4.4. The exponential map for the matrix Lie groups coincides with the usual
exponential map for matrices i.e. exp(A) = ∑k≥0

Ak

k! .

The exponential map and its properties allow us to prove several results, these are
two examples related with the previous sections (see [Hall15, Sect. 1.4] for proofs):

Proposition 1.4.5. Let φ : G → G′ be a Lie group homomorphism. Then, φ∗ := deφ : g→ g′

is a Lie algebra homomorphism.

Corollary 1.4.6. Let ρ : G → Aut(V) be a Lie group representation. Then, ρ∗ : g→ End(V)

is a Lie algebra representation. In particular, Ad∗ = ad.

1.5 Group actions

The concept of action of groups on sets can be considered in Lie groups:

Definition 1.5.1. Let G be a Lie group and M a smooth manifold. A right action of G
on M is a smooth map M× G → M, (x, g) 7→ x · g, such that:

i) x · (g · g′) = (x · g) · g′ ∀x ∈ M, g, g′ ∈ G.

ii) x · e = x ∀x ∈ M.
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Remark 1.5.2. Similarly, we can define a left action of G on M.

Example 1.5.3. Let us go through some basic examples of actions:

1. The trivial action: it is given by x · g := x for all g ∈ G, x ∈ M.

2. The action of G on V associated to a representation ρ : G → Aut(V): it is given by
g · v := ρ(g) · v for all g ∈ G, v ∈ V. Observe that this is a left action.

Right (or left) actions can satisfy some useful properties:

Definition 1.5.4. A right action of G on M is called:

i) Effective if for all g ∈ G we have: (∀x ∈ M, x · g = x)⇒ g = e.

ii) Free if for all g ∈ G we have: (∃x ∈ M : x · g = x)⇒ g = e.

iii) Transitive if for all x, x′ ∈ M we have: (∃g ∈ G : x · g = x′).

Remark 1.5.5. Notice that if G acts from the right on M, for a fixed g ∈ G, the map
Rg : M → M, x 7→ x · g is a diffeomorphism with inverse (Rg)−1 = Rg−1 . Moreover,
since Rg ◦ Rg′ = Rg·g′ for all g, g′ ∈ G, this results in a group homomorphism φ : G →
Diff(M) given by φ(g) = Rg for all g ∈ G.

Analogously, given an element x ∈ M, we can consider the map Lx : G → M,
g 7→ x · g. Note that its differential on the neutral element is a linear map deLx : g ∼=
TeG → Tx M. This yields a relation between the elements of the Lie algebra g and the
vectors fields of M:

Definition 1.5.6. Let M be a smooth manifold, G a Lie group with a right action on
M, and X ∈ g. The fundamental vector field associated with X is the vector field
X ∈ X(M) defined by Xx := deLx(X) for all x ∈ M.

Remark 1.5.7. It can be shown that the map that assigns to each X ∈ g its fundamental
vector field X is a Lie algebra homomorphism between g and X(M). Actually, this is the
Lie algebra homomorphism φ∗ := deφ induced by the group homomorphism φ defined
in Remark 1.5.5 (see [Ham17, Sect. 3.4]).



Chapter 2

Bundle theory

In this chapter we present fiber bundles, starting with a general notion and moving on
to principal bundles and their associated vector bundles. Then, we focus on several
geometrical objects related to these structures that will be key in the last chapter, such
as connection 1-forms and their corresponding curvature 2-forms. We end by defining
a special type of diffeomorphisms on principal bundles, namely gauge transformations.

2.1 Fiber Bundles

Definition 2.1.1. Let E and B be smooth manifolds and π : E→ B a surjective differen-
tiable map. Then:

i) The fiber of π over x, for x ∈ B, is the non-empty subset Ex := π−1({x}) ⊂
E, which we also denote as π−1(x). Given a subset U ⊂ B, we denote EU =

π−1(U) ⊂ E. Notice that in this case EU =
⋃

x∈U
Ex.

ii) A global section of π is a differentiable map s : B→ E such that π ◦ s = idB, and
a local section of π is a differentiable map s : U → E such that π ◦ s = idU where
U ⊂ B is an open subset.

Remark 2.1.2. Observe that a differentiable map s : U → E is a local section if and only
if s(x) ∈ Ex for all x ∈ U.

Definition 2.1.3. Let E, B and F be smooth manifolds and π : E → B a surjective
differentiable map. A fiber bundle with typical fiber F is a triple (E, π, B) so that
for all x ∈ B there exists an open neighborhood U ⊂ B with a diffeomorphism ψU :
π−1(U) → U × F such that pr1 ◦ψU = π|π−1(U), where pr1 : U × F → U is the usual
projection.

We say that E is the total space of the fiber bundle, B is the base, and ψU is a local
trivialization over U.

Remark 2.1.4. The fibers of a fiber bundle satisfy two remarkable properties that do not
always hold for fibers of a general map:

12
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1. All fibers Ex of a fiber bundle are diffeomorphic to the typical fiber F, as for all
x ∈ U ⊂ B the restriction of a local trivialization ψU induces a diffeomorphism
ψU |π−1(x) : π−1(x)→ {x} × F ∼= F.

2. All fibers Ex of a fiber bundle are embedded submanifolds of E by the Regular
Value Theorem, since there is a local trivialization ψU such that x ∈ U ⊂ B which
is a diffeomorphism and pr1 is a submersion, so π|EU

= pr1 ◦ψU is a submersion.

Example 2.1.5. Let B and F be smooth manifolds. A straightforward example of fiber
bundle is the trivial bundle given by the Cartesian product (B× F, pr1, B).

Remark 2.1.6. Note that for the trivial bundle (B × F, pr1, B) there exists a bijection
between global sections s : B→ B× F and smooth maps φ : B→ F.

In the following, we discuss how two fiber bundles are related when there exist
maps between the manifolds that form them. First, we consider a map between their
total spaces and then between their bases.

Definition 2.1.7. Let (E, π, B) and (E′, π′, B) be fiber bundles with typical fibers F and
F′, respectively. A bundle map (or bundle morphism) between them is a smooth map
φ : E→ E′ such that π′ ◦ φ = π. A bundle isomorphism is a bundle map which is also
a diffeomorphism, in this case the fiber bundles are called isomorphic.

Remark 2.1.8. Notice that a bundle map φ : E → E′ maps a point in the fiber Ex to a
point in E′x for all x ∈ B, since π(Ex) = x = π′(φ(Ex)) implies φ(Ex) ⊂ (π′)−1(x) = E′x.
Moreover, a bundle isomorphism yields a diffeomorphism between the fibers Ex ∼= E′x
for all x ∈ B.

This means that isomorphic bundles have diffeomorphic typical fibers, as F ∼= Ex ∼=
E′x ∼= F′ for x ∈ B. The converse is not true in general.

Definition 2.1.9. A bundle is called trivial if it is isomorphic to the trivial bundle or,
equivalently, if there exists a global trivialization ψB : E→ B× F.

Remark 2.1.10. Suppose given a fiber bundle (E, π, B) with typical fiber F and an open
subset U ⊂ B. Note that a local trivialization ψU is a bundle isomorphism between the
restricted bundle π|EU

: EU → U and the trivial bundle pr1 : U × F → U. Thus, every
fiber bundle is said to be locally trivial.

This implies that every fiber bundle has smooth local sections, as it is locally trivial
and every trivial bundle has global sections.

Let us now consider a smooth map between differentiable manifolds λ : B′ → B,
where B is the base of a fiber bundle (E, π, B) with typical fiber F. Then, we set:

i) E′ := {(b′, p) ∈ B′ × E : λ(b′) = π(p)}.

ii) π′ := pr1 |E′ : E′ → B′.

It can be seen that this defines a fiber bundle (E′, π′, B′) with typical fiber F. To find a
local trivialization for b′ ∈ B′, it suffices to consider an open neighborhood U ⊂ B of
λ(b′) ∈ U and a local trivialization ψU . Then, if we take U′ := λ−1(U) as a neighbor-
hood of b′ ∈ B′, we get (π′)−1(U′) ∼= U′ × F (for more details see [Bär11, Sect. 2.1]).
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Definition 2.1.11. The fiber bundle λ∗(E, π, B) := (E′, π′, B′) is called the pull-back of
(E, π, B) along λ.

Remark 2.1.12. It is easy to show that the projection pr2 : E′ → E yields a diffeomor-
phism E′b′ ∼= Eλ(b′) of fibers.

2.2 Vector bundles

Definition 2.2.1. A (real or complex) vector bundle of rank n is a fiber bundle (V, π, B)
with typical fiber Kn where K = R or C, respectively, such that:

i) Each fiber Vx is a K-vector space of dimension n.

ii) Each local trivialization ψU can be chosen so that ψU |π−1(x) : Vx → {x}×Kn ∼= Kn

is a linear isomorphism.

Definition 2.2.2. Let (V, π, B) be a K-vector bundle of rank n. A vector subbundle of
rank k is a subset W ⊂ V such that for every x ∈ B there exists an open neighbourhood
U ⊂ B of x together with a local trivialization ψU of V satisfying ψU(VU ∩W) = U ×
Kk ⊂ U ×Kn.

Notice that (W, πW , B) is a K-vector bundle of rank k.

Remark 2.2.3. Observe that every vector bundle (V, π, B) has global sections. It suffices
to consider the zero section s(x) := 0x ∈ Vx for all x ∈ B.

Furthermore, due to the vector space structure of each fiber, for vector bundles we
can add any two sections and multiply them with a scalar and we will obtain another
section. Hence, the set Γ(V) := {global sections s : B→ V} is a K-vector space.

Remark 2.2.4. New vector bundles can be obtained out of given ones using linear al-
gebra constructions. For instance, let V and V ′ be vector bundles with base B over
the same field K. Then, we can canonically define vector bundles such as V ⊕ V ′,
V ⊗ V ′, V∗ or

∧k V, among others, all of them with base B. Their fibers are given by
(V ⊕V ′)x = Vx ⊕V ′x, and similarly in the other cases.

Example 2.2.5. Let B be a smooth manifold. Then, (TB, pr1, B) where TB =
⋃

x∈B{x} ×
TxB is a vector bundle called the tangent bundle of B. It is easy to construct local
trivializations for this fiber bundle using charts (U, φU) of B (see [Ham17, Sect. 4.5.1]).

For this vector bundle and linear algebraic constructions of it, we can identify the
set of its sections with different objects from geometry. For example, Γ(TB) = X(B) i.e.
the sections of TB are the same as the vector fields on B (see [Bär11, Sect. 2.1]).

2.3 Principal bundles

Definition 2.3.1. A G-principal bundle is a fiber bundle (P, π, B) with typical fiber a
Lie group G together with a right action of G on P such that:

i) The group action is free.
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ii) The group action preserves the fibers of the bundle and is transitive on each of
them.

iii) The local trivializations ψU : π−1(U)→ U × G can be chosen such that

ψU(p · g) = ψU(p) · g

for all p ∈ π−1(U), g ∈ G, where the action of G on (p, g) ∈ U × G is defined by
(p, g) · g′ = (p, g · g′) for all g′ ∈ G. In this case, ψU is called G-equivariant.

We say that G is the structure group of the principal bundle.

Remark 2.3.2. Note that ii) implies that for all p ∈ P we have p ·G = Pπ(p). In addition,
if for p ∈ P we consider the map Lp : G → Pπ(p) that sends g 7→ p · g, it is injective
by i) and surjective by ii), hence it is a bijection. Moreover, it can be shown that Lp is
actually a diffeomorphism (see [Bär11, Sect. 2.2]).

Remark 2.3.3. Although each fiber of a G-principal bundle is diffeomorphic to G and a
local trivialization yields a group structure on the fiber, this structure is not canonical,
as it depends on the choice of a point on the fiber. We cannot canonically assign a group
structure to the fibers.

Remark 2.3.4. Observe that given a vector space Kn that is also a Lie group, such as Rn,
the conditions for vector and principal bundles with typical fiber Kn look quite similar.
However, the definitions are not equivalent. Firstly, we have seen that for vector bundles
there always exists a global section, but we will later see that a principal bundle has
global sections if and only if it is trivial. Moreover, for a Kn-principal bundle (P, π, B)
an action of Kn on the whole total space P transitive on the fibers is needed, which we
cannot define in general for vector bundles.

Example 2.3.5. Let us now go through several examples of principal bundles involving
some of the Lie groups studied in Chapter 1:

1. Suppose (V, π, B) is a K-vector bundle of rank n. Since for any b ∈ B the fiber Vb

is an n-dimensional K-vector space, we can consider the set Pb := {(ordered) basis
(b1, . . . , bn) of Vb}. An action of GL(n; K) on Pb can be defined as

(b1, . . . , bn) · A =

(
n

∑
i=1

ai1bi, . . . ,
n

∑
i=1

ainbi

)
∈ Pb

where A = (aij)i,j=1,...,n. It is easy to see that this action is free and transitive.

Set P :=
⊔

b∈B Pb and π′ : P→ B defined such that π′|Pb ≡ b. Observe that for any
local trivialization ψU of the vector bundle (V, π, B), a local trivialization ψ′U for
(P, π′, B) can be constructed as

(π′)−1(U)→ U ×GL(n; K)

p = (p1, . . . , pn) 7→ (π′(p), (ψU(p1) . . . ψU(pn))).

Since ψU is a linear isomorphism, we have ψ′U(p · A) = ψ′U(p) · A for all p ∈ P
and A ∈ GL(n; K). Therefore, (P, π′, B) is a GL(n; K)-principal bundle.
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2. The same way, considering vectors bundles with different structures we can con-
struct principal bundles for several matrix Lie groups. For instance, an O(n)- or
U(n)-principal bundle can be obtained starting with a K-vector bundle of rank
n with a Riemannian or Hermitian metric and taking its orthonormal bases (see
[Bär11, Sect. 2.2]).

Definition 2.3.6. Let B be a smooth manifold and V = TB, so that (V, π, B) is the
tangent bundle of B. The frame bundle of B is the GL(n; K)-principal bundle (P, π′, B)
constructed as in the previous example.

Remark 2.3.7. Let (P, π, B) be a G-principal bundle and λ : B′ → B a smooth map
between differentiable manifolds. The pull-back λ∗(P, π, B) together with the right
action of G on λ∗P defined by (b′, p) · g = (b′, p · g) is a G-principal bundle too.

The same way as we did for the total space and the base of a fiber bundle in Section
2.1, let us now consider a map between Lie groups ϕ : G → H, where G is the structure
group of a principal bundle (P, π, B).

Suppose that ϕ is a Lie group homomorphism. Then, it can be shown that P′ :=
(P×H)/G is a smooth manifold, where two elements (p, h), (p′, h′) ∈ P×H are related
if and only if (p′, h′) = (p · g, ϕ(g−1) · h) for some g ∈ G. Furthermore, it is possible to
define a right action of H on P′ as [p, h] · h′ = [p, h · h′] for all [p, h] ∈ P′, h′ ∈ H. It is
easy to see that this action is free using that the action of G on P is free.

Now, set π′ : P′ → B given by π′([p, h]) = π(p). This map is well-defined as the
image of a class does not depend on the choice of p, since the first component of two
related elements satisfy p′ = p · g for some g ∈ G and G acts transitively along the
fibers of π. Moreover, the action of H on P′ is transitive over the fibers of π′.

Finally, given any local trivialization ψU of P such that ψU(p) = (π(p), αU(p)) ∈
U×G, where αU : π−1(U)→ G is a smooth map, we can construct a local trivialization
of P′ as the following diffeomorphism:

ψ′U : (π′)−1(U)→ U × H

[p, h] 7→ (π(p), ϕ(αU(p)) · h).

Note that ψ′U is H-equivariant. Hence, (P′, π′, B) is an H-principal bundle (for more
details of this construction see [Bär11, Sect. 2.2]).

Definition 2.3.8. (P′, π′, B) is called the H-principal bundle associated to (P, π, B) with
respect to ϕ.

Remark 2.3.9. We also write P′ as P×ϕ H.

Definition 2.3.10. An associated vector bundle of a G-principal bundle (P, π, B) is a
vector bundle (P×ρ V, π′, B) where ρ : G → Aut(V) is a representation of G and the
action of G on P×V is given by (p, v) · g = (p · g, ρ(g−1)(v)).

Remark 2.3.11. For an associated vector bundle (P ×ρ V, π′, B) we can build a local
trivialization ψ′U out of any local trivialization ψU of (P, π, B) proceeding analogously



2.3 Principal bundles 17

as in the construction of an associated principal bundle. If ψU(p) = (π(p), αU(p)) for
all p ∈ π−1(U), we set ψ′U as

(π′)−1(U)→ U ×V

[p, v] 7→ (π(p), ρ(αU(p))(v)).

Remark 2.3.12. Note that for every G-principal bundle (P, π, B) and every vector space
V, the vector bundle associated to the trivial representation, ρ(g) ≡ idV for all g ∈ G, is
a trivial vector bundle.

Now, we explain how principal bundles can be described via local sections.

Theorem 2.3.13. Let P and B be differentiable manifolds, π : P→ B a smooth surjective map,
and G a Lie group with a smooth right action on P. Then, (P, π, B) is a G-principal bundle if
and only if the following holds:

i) The fibers of π are invariant under the action of G on P and the induced action on them
is free and transitive.

ii) There exists an open covering {Ui}i∈I of B with local sections si : Ui → P of π.

Proof. Here, we only show a sketch of the proof, for a detailed proof see [Ham17,
Sect. 4.2].

First, suppose that (P, π, B) is a G-principal bundle. By definition, i) holds and for
each x ∈ B there exists an open neighborhood U ⊂ B with a local trivialization ψU . For
each ψU , a local section of π can be constructed as the following smooth map:

sU : U → P

x 7→ ψ−1
U (x, e)

where e ∈ G is the neutral element. Thus, (P, π, B) satisfies ii).
Conversely, assume that (P, π, B) verifies i) and ii). Then, given a local section

si : Ui → P, since the group action is free and transitive on the fibers, for each p ∈ PUi

there exists a unique g(p) ∈ G such that p = si(π(p)) · g(p). Then, we set

ψi : π−1(Ui)→ Ui × G

p 7→ (π(p), g(p)).

It is easy to see that ψi is a G-equivariant local trivialization of (P, π, B). Hence, (P, π, B)
is a G-principal bundle.

Remark 2.3.14. We have proven above that for a principal bundle there is a bijection
between local trivializations and local sections. In particular, a principal bundle has
global sections if and only if it is trivial.

Let us now consider the case of associated vector bundles.
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Proposition 2.3.15. Let (P, π, B) be a G-principal bundle, (P′, π′, B) an associated vector
bundle where P′ := P ×ρ V, and s : U → P a local section of π. Then, there exists a
bijection between local sections s′ : U → P′ of π′ and smooth maps f : U → V given by
s′(x) = [s(x), f (x)] for all x ∈ U.

Proof. First, assume that s′ : U → P′ is a local section of π′. Then, if we take s(x) ∈
P as the first component of s′(x), there exists a unique f (x) ∈ V such that s′(x) =

[s(x), f (x)]. Indeed, suppose [p, v1] = [p, v2] ∈ P′, since the action of G is free, the
only g ∈ G that can relate (p, v1) and (p, v2) is the neutral element g = e. Then,
v1 = ρ(e)(v2) = idV(v2) = v2. This means that, once we fix the first component of an
element of P′, the second component is uniquely determined.

It is easy to see that this yields a smooth map f : U → V using the local trivialization
of the principal bundle ψU : π−1(U) → U × G defined in Theorem 2.3.13 and the one
of the associated vector bundle ψ′U : (π′)−1(U) → U × V given in Remark 2.3.11 (see
[Ham17, Sect. 4.7.1]).

Conversely, consider a smooth map f : U → V. Then, the map s′ : U → P′ defined
by s′(x) = [s(x), f (x)] for all x ∈ U is smooth . Moreover, it satisfies π′(s′(x)) =

π′([s(x), f (x)]) = π(s(x)) = x for all x ∈ U. Therefore, s′ is a local section of π′.

Finally, we introduce the concept of transition functions.
Suppose a G-principal bundle (P, π, B) and an open covering {Ui}i∈I of B such that

PUi is trivial and there exist local sections si : Ui → P for all i ∈ I. Consider the
intersection Uij := Ui ∩Uj for i, j ∈ I. Then, for all x ∈ Uij there exists a unique gij(x) ∈
G such that sj(x) = si(x) · gij(x). From this we obtain smooth maps gij : Uij → G
verifying the following conditions:

i) gii = e.

ii) gij = g−1
ji .

iii) gijgjkgki = e.

Definition 2.3.16. The maps {gij}i,j∈I are called transition functions of the principal
bundle and we say that the conditions i), ii) and iii) are the cocycle conditions.

Let s̃i : Ui → P be a second set of local sections with corresponding transition
functions g̃ij : Uij → G. Then, for all x ∈ Ui there exists a unique hi(x) ∈ G such
that s̃i(x) = si(x) · hi(x). This yields smooth maps hi : Ui → G which relate gij and g̃ij

satisfying the so-called coboundary condition: gij = hi g̃ijh−1
j .

Remark 2.3.17. It can be shown that given an open covering {Ui}i∈I of a smooth mani-
fold B and smooth maps gij : Uij → G verifying the cocycle conditions, we can construct
a G-principal bundle with gij as transition functions (see [Nab11, Sect. 4.3]).

Moreover given two sets {gij}i,j∈I and {g̃ij}i,j∈I of transition functions and smooth
maps {hi}i∈I satisfying the coboundary conditions, the corresponding G-principal bun-
dles P and P̃ are isomorphic (see [Bär11, Sect. 2.2]).
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2.4 Connections

For introducing the next concepts, some notions from differential geometry will be
required.

Definition 2.4.1. Let M be a differentiable manifold. A differential 1-form on M is
a smooth section of the vector bundle (T∗M, pr1, M) where T∗M =

⋃
x∈M{x} × T∗x M.

This bundle is called the cotangent bundle.
We denote Ω1(M) = {differential 1-forms on M} = Γ(T∗M), this is an F (M)-

module. Note that an element ω ∈ Ω1(M) is a smooth map ω : M→ T∗M, x 7→ (x, ωx)

such that ωx ∈ T∗x M for all x ∈ M.

Remark 2.4.2. Observe that, given a smooth map between differentiable manifolds F :
M→ N, the dual of its differential on each point d∗xF : T∗F(x)N → T∗x M results in a map
between the 1-forms on each manifold. Indeed, if ω ∈ Ω1(N), we define F∗ω ∈ Ω1(M)

as the 1-form that at each point is given by F∗ω(x) = d∗xF(ωF(x)) ∈ T∗x M. Notice that,
for X ∈ Tx M, we get F∗ω(x)(X) = ωF(x)(dxF(X)) ∈ R.

Therefore, we have constructed a map F∗ : Ω1(N) → Ω1(M), which is called pull-
back of 1-forms.

Remark 2.4.3. It can be seen that there is a bijection between 1-forms Ω1(M) and the set
of F (M)-linear maps between X(M) and F (M), which we denote as HomF (M)(X(M),
F (M)) (see [Cur09, Sect. 5.3]).

Definition 2.4.4. Let M be a differentiable manifold and take the vector bundle (ΛkT∗M,
pr1, M) for some k ∈N, where ΛkT∗M =

⋃
x∈M{x} ×ΛkT∗x M. A differentiable k-form

on M is an element of Ωk(M) := Γ(ΛkT∗M). We have Ωk(M) = ΛkΩ1(M). Given
ω ∈ Ωk(M), we get a map ωx : ΛkTx M→ R for all x ∈ M.

Moreover, for every finite-dimensional real vector space V, we can also consider
the set of differentiable k-forms with values in V which corresponds to Ωk(M, V) :=
Γ(ΛkT∗M⊗R V). Note that each ω ∈ Ωk(M, V) defines a map ωx : ΛkTx M → V for all
x ∈ M.

Finally, given a vector bundle (V, π, B), the set of differentiable k-forms with values
in V can be defined as Ωk(B, V) := Γ(ΛkT∗B⊗ V). Then, for ω ∈ Ωk(B, V), we have
ωx : ΛkTxB→ Vx for all x ∈ B.

Remark 2.4.5. As for Ω1(M), there is a bijection between Ωk(M) and the set of
alternating1 F (M)-multilinear maps X(M)× k. . . ×X(M) → F (M), which can be
written as HomF (M)(ΛkX(M),F (M)). The same way, Ωk(M, V) is isomorphic to
HomF (M)(ΛkX(M), F (M, V)), where F (M, V) = {smooth maps M → V}. Thus, in
the following, we will indistinctly apply forms on points of the manifold or on its vec-
tor fields, as in some cases one of the two choices considerably reduces the difficulty of
the calculations.

1A multilinear map is alternating if it vanishes whenever two of its arguments are equal.
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2.4.1 Connection 1-forms

There exists a special type of 1-forms on principal bundles that presents several useful
properties:

Definition 2.4.6. Let (P, π, B) be a G-principal bundle. A connection 1-form is a 1-form
ω ∈ Ω1(P, g) that fulfills the following conditions:

i) R∗gω = Adg−1 ◦ω ∀g ∈ G.

ii) ωp(Xp) = X for all X ∈ g, p ∈ P, where Xp = deLp(X) is the fundamental vector
field associated with X (as defined in Section 1.5).

We denote C(P) the set of connection 1-forms on P.

The following theorem states that connection 1-forms are preserved by pull-back:

Theorem 2.4.7. Let (P, π, B) and (P′, π′, B′) be G-principal bundles, F : P → P′ a G-
equivariant smooth map together with a smooth map F : B → B′ so that π′ ◦ F = F ◦ π, and
ω ∈ Ω1(P′, g) a connection 1-form on P′. Then, F∗ω ∈ Ω1(P, g) is a connection 1-form on P.

Proof. We need to see that F∗ω verifies the two conditions of a connection 1-form. We
denote Rg and Lp the actions on P, and R′g and L′F(p) the actions on P′. Then, by the
properties of ω, we get:

i) R∗g(F∗ωF(p)g) = F∗(R′∗gωF(p)g) = F∗(Adg−1 ◦ωF(p)) = Adg−1 ◦ (F∗ωF(p)) ∀g ∈ G.

ii) (F∗ωF(p))(Xp) = ωF(p)(dpF ◦ deLp(X)) = ωF(p)(deL′F(p)(X)) = X ∀X ∈ g.

Here, we have applied that F ◦ Rg = R′g ◦ F and F ◦ Lp = L′F(p) for all g ∈ G, p ∈ P, since
F is G-equivariant. See [Son15, Sect. 10.2] for more details.

Let us now introduce the notion of covariant derivative for vector bundles:

Definition 2.4.8. Let (V, π, B) be a vector bundle. A connection on V is a map

∇ : X(B)× Γ(V)→ Γ(V)

(X, s) 7→ ∇Xs

such that ∇ is F (B)-linear on X and ∇X( f · s) = X( f ) · s + f · ∇Xs for all f ∈ F (B),
s ∈ Γ(V).

For a given X ∈ X(B), the map ∇X : Γ(V) → Γ(V), s 7→ ∇Xs is called a covariant
derivative.

Connection 1-forms allow us to define a covariant derivative on associated vector
bundles. To do so, suppose that (P, π, B) is a G-principal bundle with ω a connection
1-form, ρ : G → Aut(V) a representation of G, and (P′, π′, B) is the corresponding
associated vector bundle with P′ := P ×ρ V. Given a section s ∈ Γ(P′) defined by
s(x) = [p(x), v(x)] for smooth maps p : B→ P and v : B→ V, we set

∇ω
X [p(x), v(x)] := [p(x), dxv(X) + deρ(p∗ω(X))(v(x))] ∀X ∈ TxB.

It is easy to check that ∇ω
X is well-defined and a covariant derivative. Moreover, this

yields a map ∇ω : Γ(P′)→ Ω1(B, P′) such that ∇ωs(x)(X) = ∇ω
Xs(x) for all s ∈ Γ(P′).
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Remark 2.4.9. Notice that, even though a covariant derivative is defined for elements
of X(B), here an element of TxB is taken instead. This is correct since for every X ∈ TxB
there exists a vector field X̃ ∈ X(B) such that X̃x = X, and the value of ∇X̃ on a given
point x ∈ B only depends on X̃x.

Considering sections on a principal bundle, a local description of connection 1-forms
can be constructed as follows.

Let (P, π, B) be a G-principal bundle and {Ui}i∈I an open covering of B with local
sections si : Ui → P and transition functions gij : Uij → G for all i, j ∈ I. Given
a connection 1-form ω ∈ Ω1(P, g), we define local connection forms ωi := s∗i ω ∈
Ω1(Ui, g). These 1-forms verify the following relation (see [Bär11, Sect. 2.3]):

ωj |u
= Adg−1

ij (u) ◦ωi |u + du(g−1
ij (u) · gij) ∀i, j ∈ I, u ∈ Uij.

Remark 2.4.10. It can be seen that the connection 1-form ω is completely determined
by the set of local connection forms {ωi}i∈I . It is sufficient to take a partition of unity2

{ϕi}i∈I subordinate to the open cover {Ui}i∈I , i.e. satisfying supp(ϕi) ⊂ Ui for all
i ∈ I, and express ω = ∑i∈I ϕiωi. Then, we can check that this combination defines
an element of Ω1(P, g) using that there exists a bijection between connection 1-forms
Ω1(PUi , g) and the local connections {ωi}i∈I ⊂ Ω1(Ui, g) (see [Dup03, Chapt. 6])

Since a subordinate partition of unity always exists (see [Cur09, Sect. 1.3.2]), it can
be seen that every principal bundle has a connection 1-form (see [Wen08, Sect. 3.4.2]).

Now, we show that the set of connection 1-forms C(P) can also be seen as an affine
space over the 1-forms of an associated vector bundle. To do so, let us state some
properties about k-forms.

Definition 2.4.11. Let (P, π, B) be a G-principal bundle and ρ : G → Aut(V) a repre-
sentation of G. A differentiable k-form ω ∈ Ωk(P, V) is called:

i) Horizontal if ωp(X1, . . . , Xk) = 0 for all p ∈ P whenever at least one Xi ∈ TpP
satisfies Xi ∈ TpPπ(p), which means that Xi belongs to the tangent space of the
fiber Pπ(p).3

ii) Of type ρ if R∗gω = ρ(g−1) ◦ω for all g ∈ G.

We denote the set of k-forms fulfilling both conditions by Ωk
hor(P, V)(G,ρ).

Theorem 2.4.12. There exists an isomorphism Ωk
hor(P, V)(G,ρ) ∼= Ωk(B, P′), where P′ = P×ρ

V.

Proof. First of all, consider ω ∈ Ωk
hor(P, V)(G,ρ). We define ω ∈ Ωk(B, P′) as the family

{ωx}x∈B given by

ωx(X1, . . . , Xk) := [p, ωp(Y1, . . . , Yk)] ∀x ∈ B, Xi ∈ TxB

2A partition of unity of B is a set of smooth maps {ϕi : B → [0, 1]}i∈I such that the set {supp(ϕi)}i∈I ,
where supp(ϕi) = Cl{x ∈ B : ϕi(x) 6= 0}, is locally finite and ∑i∈I ϕi(x) = 1 for all x ∈ B.

3Note that this tangent space TpPπ(p) is well-defined since the fibers are embedded submanifolds of P.
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where p ∈ Px and Yi ∈ TpP is such that dpπ(Yi) = Xi for all i = 1, . . . , k. We denote
ω = ωB.

This ω is well-defined. Indeed, it does not depend on the choice of p ∈ Px, as G is
transitive on the fibers. Besides, it is independent of the vectors Yi ∈ TpP, which can be
proven considering the fact that dpπ(Yi −Y′i ) = 0 for every Y′i ∈ TpP.

On the other hand, if we take ω ∈ Ωk(B, P′), we define ω ∈ Ωk
hor(P, V)(G,ρ) as:

ωp(Y1, . . . , Yk) := [p]−1(ωπ(p)(dpπ(Y1), . . . , dpπ(Yk))) ∀p ∈ P, Yi ∈ TpP

where [p] : V → P′x is the smooth map defined as [p](v) = [p, v] for all v ∈ V, p ∈ Px.
See [Ham17, Sect. 5.13] for more details.

From the defining properties of connection 1-forms, it follows that for all ω, ω′ ∈
C(P) we have ω−ω′ ∈ Ω1

hor(P, g)(G,Ad), where Ad : G → Aut(g) is the adjoint represen-
tation. Moreover, all ω ∈ Ω1(P, g) and ω ∈ Ω1

hor(P, g)(G,Ad) satisfy ω + ω ∈ Ω1(P, g).
Hence, even though C(P) is not a vector space as 0 /∈ C(P), by Theorem 2.4.12, it is

an affine space over the vector space of 1-forms Ω1(B, P×Ad g).

Remark 2.4.13. Observe that, given two connection 1-forms ω, ω′ ∈ Ω1(P, g) and local
sections si : Ui → P, we can define the form (ω − ω′)B ∈ Ω1(B, P ×Ad g) using the
corresponding local connections ωi = s∗i ω and ω′i = s∗i ω′ as

(ω−ω′)B |x(X) = [si(x), (ωi −ω′i)|x(X)] ∀x ∈ Ui, X ∈ TxB.

2.4.2 Ehresmann connections

In the following, an alternative and equivalent description of connections on a principal
bundle is presented. With this aim, it is necessary to introduce some new concepts
related to fiber bundles.

Definition 2.4.14. Let M be a smooth manifold. A distribution on M is a vector sub-
bundle of the tangent bundle TM.

Definition 2.4.15. Let (P, π, B) be a G-principal bundle, x ∈ B a point, and p ∈ Px an
element of the fiber. The vertical tangent space Vp of P in p is the tangent space of the
fiber TpPx, which is a subspace of the tangent space TpP.

Proposition 2.4.16. Let (P, π, B) be a G-principal bundle. Given p ∈ P, its vertical tangent
space satisfies the following properties:

i) Vp = ker(dpπ).

ii) The following map is a vector space isomorphism:

deLp : g→ Vp

X 7→ Xp.
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iii) The set V =
⋃

p∈P
{p} × Vp is a distribution on P with rank k = dim(G) and a global

trivialization with inverse given by

ψ−1 : P× g→ V

(p, X) 7→ Xp.

V is called the vertical tangent bundle.

iv) Vp is right-invariant: dpRg(Vp) = Vpg ∀g ∈ G.

Proof. Let us go through each property:

i) For every X ∈ Vp there exists a curve γ : I → Pπ(p) such that γ(0) = p,
•
γ(0) = X.

Then, π(γ(t)) = π(p) = ct for all t ∈ I, which implies dpπ(X) = dpπ(
•
γ(0)) =

•

(π ◦ γ)(0) = 0. Thus, Vp ⊂ ker(dpπ).

Moreover, by the Regular Value Theorem, we have dim(ker(dpπ)) = dim P −
dim B = dim Pπ(p) = dim Vp. Therefore, Vp = ker(dpπ).

ii) First, observe that deLp(g) ⊂ ker(dpπ) = Vp. We can see this using the same
argument than in condition i) taking a curve γ : I → G satisfying γ(0) = e,
•
γ(0) = X so that Lp(γ(t)) = p · γ(t) ∈ Pπ(p) for all t ∈ I, since G is transitive on
the fibers. This way, we get π(Lp(γ(t))) = π(p) = ct for all t ∈ I.

Furthermore, since the action of G is free, deLp : g → Vp is injective (see [Ham17,
Sect. 3.4]). Finally, we have dim g = dim G = dim Vp. Hence, the map described
in property ii) is an isomorphism.

iii) Consider p ∈ P and a local trivialization of the tangent bundle over U ⊂ P
such that TPU ∼= U ×Rdim(P). By property ii), we have V ∩ TPU =

⋃
p∈U{p} ×

Vp ∼=
⋃

p∈U{p} × g ∼= U ×Rdim G. Hence, V is a vector subbundle of TP of rank
k = dim G. In addition, it follows from condition ii) that ψ−1, as given in the
proposition, yields a global trivialization of this vector subbundle.

iv) By property ii), it is sufficient to see that dpRg(Xp) = dpRg(deLp(X)) = de(Rg ◦
Lp)(X) = deLgp(X) = Xpg for all X ∈ g.

Remark 2.4.17. Notice that condition ii) implies that the vectors tangent to the fibers
Pπ(p) of a G-principal bundle are of the form Xp for some X ∈ g.

Now, we consider complements of Vp in TpP for p ∈ P. This notion yields new
distributions for principal bundles that allow us to connect the space tangent to the
total space TpP with the space tangent to the base of the bundle Tπ(p)B.

Definition 2.4.18. Let (P, π, B) be a G-principal bundle and a point p ∈ P. A horizontal
tangent space Hp in p is a subspace of TpP complementary to the vertical tangent space
in p, so that TpP = Vp ⊕ Hp.
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Proposition 2.4.19. Let (P, π, B) be a G-principal bundle and Hp a horizontal tangent space
in p ∈ P. Then, the map dpπ : Hp → Tπ(p)B is an isomorphism.

Proof. It suffices to observe that the map is injective, as Hp ∩ ker(dpπ) = Hp ∩Vp = {0},
and that dim Hp = dim TpP− dim TpPπ(p) = dim P− dim Pπ(p) = dim B.

Definition 2.4.20. An Ehresmann connection H on P is a distribution on P consisting
of horizontal tangent spaces that is right-invariant i.e. such that the horizontal spaces
verify dpRg(Hp) = Hpg for all p ∈ P, g ∈ G.

H is also called the horizontal tangent bundle given by the connection.

Remark 2.4.21. As they are right-invariant, the horizontal spaces Hp that form an Ehres-
mann connection H can be determined along a fiber Pπ(p) just by fixing an Hp0 for some
p0 ∈ Pπ(p), since G is transitive on the fibers.

Remark 2.4.22. Notice that horizontal tangent spaces are not uniquely determined.
Thus, Ehresmann connections are not unique either. However, it can be proven that
every principal bundle has at least one Ehresmann connection (see [Ham17, Sect. 5.1.2]).

As mentioned before, connection 1-forms are completely equivalent to Ehresmann
connections on a principal bundle:

Theorem 2.4.23. Let (P, π, B) be a G-principal bundle. Then, there exists a bijection between
connections 1-forms and Ehresmann connections on P:

i) Given a connection 1-form ω ∈ Ω1(P, g), the elements Hp = ker(ωp) for p ∈ P define
an Ehresmann connection H on P.

ii) Given an Ehresmann connection H on P, the map ωp(Xp + Yp) = X for p ∈ P, X ∈ g,
and Yp ∈ Hp, yields a connection 1-form on P.

Proof. See [Ham17, Sect. 5.2.1].

Example 2.4.24. Let us go through some trivial examples of connections:

1. Consider the trivial G-principal bundle (P× G, pr1, P). In this case we can write
V(p,g) = T(p,g)({p} × G) ∼= TgG for all (p, g) ∈ P × G. Then, the collection of
horizontal spaces H(p,g) = T(p,g)(P × {g}) ∼= TpP is an Ehresmann connection
called the canonical flat connection.

2. Suppose a G-principal bundle (P, π, B) where G = {e} is the trivial Lie group.
This means g = {0} and B = P. Then, Vp = {0} and, as a consequence, Hp = TpP
for all p ∈ P. Hence, there exists a unique connection 1-form for this bundle, since
there is a unique map ωp : TpP→ {0} for each p ∈ P.

3. Consider a G-principal bundle (P, π, B) with a trivial base space B = {x}, which
implies P = G. Thus, we have Vp = ker(dpπ) = TpG, since TxB = {0} for all
x ∈ B, and Hp = {0} for all p ∈ P. In this case, the map ωg = dgLg−1 determines
a connection 1-form of the bundle. Actually, it can be seen that this is the only
possible connection 1-form of this bundle (see [Son15, Sect. 10.3]).
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2.5 Curvature

In the following, we see how to construct a curvature 2-form on a principal bundle
out of a connection 1-form. To do so, some new concepts regarding vector fields and
differential forms are necessary:

Definition 2.5.1. Let M be a smooth manifold and X ∈ X(M) a vector field on M. The
Lie derivative LX is the map LX : F (M)→ F (M) given by

(LX f )(p) = (dp f )(Xp) ∀ f ∈ F (M), p ∈ M.

Remark 2.5.2. It can be shown that this map is a derivation (see [Ham17, Sect. A.1.10]).

The Lie derivative can also be defined over a 1-form, as follows:

Definition 2.5.3. Let ω ∈ Ω1(M) be a 1-form and X ∈ X(M) a differential vector
field. Then, LXω is the unique 1-form that satisfies (LXω)(Y) = X(ω(Y))− ω([X, Y])
for every smooth vector field Y ∈ X(M). This is a differentiable 1-form (see [Cur09,
Sect. 5.3] for more properties).

Let us now consider a map that connects forms of different orders and state some
of its properties (see [Ham17, Sect. A.2.7] for proofs):

Theorem 2.5.4. Let M be a smooth manifold. For every k ≥ 0 there exists a unique map
dk : Ωk(M)→ Ωk+1(M) that fulfills the following conditions:

i) dk is R-linear.

ii) ∀ f ∈ F (M), X ∈ X(M): d0 f (X) = LX f .

iii) d2
k = dk ◦ dk ≡ 0.

iv) ∀ω ∈ Ωk(M), η ∈ Ωl(M): dk+l(ω ∧ η) = dkω ∧ η + (−1)kω ∧ dlη.

If k is clear from the context, we write d instead of dk. This map is called the differential or
exterior derivative.

Proposition 2.5.5. Let M be a smooth manifold. Then:

1. Given a 1-form ω ∈ Ω1(M), the differential satisfies dω(X, Y) = LX(ω(Y))− LY(ω(X))−
ω([X, Y]) for all X, Y ∈ X(M).

2. Given a 2-form ω̃ ∈ Ω2(M), the differential satisfies dω̃(X, Y, Z) = LX(ω̃(Y, Z)) +
LY(ω̃(Z, X))+ LZ(ω̃(X, Y))− ω̃([X, Y], Z)− ω̃([Y, Z], X)− ω̃([Z, X], Y) for all X, Y,
Z ∈ X(M).

Proposition 2.5.6. Let f : N → M be a smooth function between differentiable manifolds and
ω ∈ Ωk(M) a k-form. Then, f ∗(dω) = d( f ∗ω).



26 Bundle theory

Remark 2.5.7. There exist analogous theorem and propositions for the k-forms Ωk(M, V)

for any vector space V.

As mentioned before, the differential and the Lie derivative allow us to define a
2-form related with connection 1-forms. Suppose that (P, π, B) is a G-principal bundle,
ω ∈ Ω1(P, g) a connection 1-form, H the associated horizontal tangent bundle such that
TpP = TpPπ(p) ⊕ Hp for all p ∈ P, and prH : TpP→ Hp the horizontal projection. Then:

Definition 2.5.8. The curvature 2-form of ω is the 2-form Ω ∈ Ω2(P, g) defined as
Ωp(X, Y) := dωp(prH(X), prH(Y)) for all X, Y ∈ TpP, p ∈ P.

This curvature Ω can also be written as Ωω to emphasize the dependence on the
connection 1-form ω.

Now, we provide an alternative expression for the curvature 2-form. With this aim,
given two forms η, ϕ ∈ Ω1(P, g), we consider the differential form [η, ϕ] ∈ Ω2(P, g)
given by [ηp, ϕp](X, Y) := [ηp(X), ϕp(Y)]− [ηp(Y), ϕp(X)] for all X, Y ∈ TpP, p ∈ P.4

Notice that [ωp, ωp](X, Y) = 2[ωp(X), ωp(Y)] for all ω ∈ Ω1(P, g).

Lemma 2.5.9. Let (P, π, B) be a G-principal bundle with ω a connection 1-form, X a funda-
mental vector field for X ∈ g, and Y a horizontal vector field. Then, [X, Y] is horizontal.

Proof. See [Bär11, Sect. 2.4].

Proposition 2.5.10 (Structure equation). Let (P, π, B) be a G-principal bundle with connec-
tion 1-form ω. Then, the curvature 2-form of ω satisfies

Ω = dω +
1
2
[ω, ω].

Proof. Recall that given p ∈ P every element of TpP can be uniquely written as Xp + Yp

where X ∈ g and Yp ∈ Hp. Then, since Ω is linear, it suffices to check the equality for
vector fields that are either fundamental vector fields or elements of horizontal tangent
spaces. We distinguish the following cases:

i) First, assume that X and Y are fundamental vector fields, so X = X′ and Y = Y′

where X′, Y′ ∈ g. Then, prH(X) = prH(Y) = 0, which implies Ω(X, Y) = 0.
Moreover, using part 1 of Proposition 2.5.5, we have

dω(X, Y) = LX(ω(Y))− LY(ω(X))−ω([X, Y])

= LX(Y′)− LY(X′)−ω([X′, Y′])

= −[X′, Y′] = −[ω(X), ω(Y)] = −1
2
[ω, ω](X, Y) ⇒

⇒ (dω +
1
2
[ω, ω])(X, Y) = −1

2
[ω, ω](X, Y) +

1
2
[ω, ω](X, Y) = 0,

where in the third equality we use that X′ and Y′ are constant maps from P to g

and that the map that assigns X 7→ X, where X ∈ g, is a Lie algebra homomor-
phism, i.e. [X, Y] = [X, Y] for all X, Y ∈ g.

4The form [η, ϕ] ∈ Ωk+l(P, g) can be defined in general for any two arbitrary forms η ∈ Ωk(P, g) and
ϕ ∈ Ωl(P, g) (see [Ham17, Sect. 5.5.2]).
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ii) Suppose now that both X and Y are horizontal. Then, prH(X) = X and prH(Y) =
Y, which implies Ω(X, Y) = dω(X, Y). On the other hand, [ω, ω](X, Y) = 2[ω(X),
ω(Y)] = 0. Hence, (dω + 1

2 [ω, ω])(X, Y) = dω(X, Y).

iii) Finally, if X = X′ is a fundamental vector for X′ ∈ g and Y is horizontal, we
have that Ω(X, Y) = dω(0, Y) = 0. Besides, applying part 1 of Proposition 2.5.5
again and Lemma 2.5.9, we get dω[X, Y] = −ω([X, Y]) = 0 and [ω, ω](X, Y) =

2[ω(X), 0] = 0.

Analogously as for connection 1-forms, the curvature 2-form satisfies the following
equality:

Proposition 2.5.11. If Ω is a curvature 2-form, then R∗gΩ = Adg−1 ◦Ω for all g ∈ G.

Proof. To check this formula, we use condition ii) of Definition 2.4.6 of a connection 1-
form and Proposition 2.5.6. It is also necessary to take into account that dpRg(Hp) = Hpg

and dpRg(Vp) = Vpg, which means prH ◦ dpRg = dpRg ◦ prH for all g ∈ G, p ∈ P, since
dpRg is linear.

See [Bär11, Sect. 2.4] for a detailed proof.

Remark 2.5.12. Observe that the definition of curvature 2-form together with Propo-
sition 2.5.11 imply that every Ω ∈ Ω2(P, g) is an element of Ω2

hor(P, g)(G,Ad). Then,
according to Theorem 2.4.12, there exists a corresponding 2-form ΩB ∈ Ω2(B, P×Ad g).

Proposition 2.5.13 (Bianchi identity). Let (P, π, B) be a G-principal bundle with connection
1-form ω and denote Ω its curvature 2-form. Then, dΩ vanishes on H × H × H.

Proof. Using the structure equation and condition (iii) of Theorem 2.5.4, we get dΩ =

ddω + 1
2 d[ω, ω] = 1

2 d[ω, ω]. Thus, it suffices to prove that d[ω, ω] vanishes on H × H ×
H.

We denote ω̃ := [ω, ω] ∈ Ω2(P, g). Then, applying part 2 of Proposition 2.5.5 and
using that ω̃(X, Y) = 0 if X or Y are horizontal, we get dω̃(Y1, Y2, Y3) = 0 for horizontal
vectors Y1, Y2, Y3.

Remark 2.5.14. Notice that if G is abelian, then g is abelian too, that is, [·, ·] ≡ 0, so we
get Ω = dω. In this case, dΩ ≡ 0.

Similarly as we did in Section 2.4 for connection 1-forms, local curvature 2-forms
can be defined on the base of a G-principal bundle (P, π, B).

Consider an open covering {Ui}i∈I of B such that there exist local sections si : Ui →
P and transition functions gij : Uij → G for all i, j ∈ I. Let ω be a connection 1-form
of the bundle and {ωi}i∈I its local 1-forms given by ωi = s∗i ω, we set Ωi := s∗i Ω ∈
Ω2(Ui, g). It is easy to see that for these local curvatures an equation analogous to the
structure equation holds:

Ωi = dωi +
1
2
[ωi, ωi].
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Proceeding the same way as for connection 1-forms, the following relation between
different local curvature 2-forms can be proven:

Ωj = Adg−1
ij (u) ◦Ωi ∀u ∈ Uij, i, j ∈ I.

Remark 2.5.15. If G is abelian, the previous relation reads Ωi = Ωj for all i, j ∈ I, which
implies that Ωi is independent of the choice of a local section. Therefore, each Ωi is a
restriction of a globally defined 2-form Ω̃ ∈ Ω2(B, g) given by Ω̃|Ui

= Ωi for all i ∈ I.

Remark 2.5.16. Notice that, as explained in Remark 2.4.13 for connection 1-forms, we
can write ΩB ∈ Ω2(B, P×Ad g) in terms of the local 2-forms Ωi on B as

ΩB |x(X, Y) = [si(x), Ωi |x(X, Y)] ∀x ∈ Ui, X, Y ∈ TxB

where si : Ui → P is a local section.

2.6 Gauge transformations

Definition 2.6.1. Let (P, π, B) be a G-principal bundle. An automorphism of P is a
diffeomorphism f : P→ P that is G-equivariant, i.e.

f (p · g) = f (p) · g ∀g ∈ G, p ∈ P.

We denote Aut(P) := {automorphisms of P} and call this set the automorphism group
of P.

Remark 2.6.2. Note that Aut(P) ⊂ Diff(P) is a subgroup. Moreover, as a group it acts
from the right on the group of connection 1-forms C(P) with a right action given by f ∗ω
for all ω ∈ C(P), f ∈ Aut(P). Indeed, this defines a right action since ( f ◦ g)∗ = g∗ ◦ f ∗

for all f , g ∈ Aut(P). Besides, f ∗ω is a connection 1-form for all ω ∈ C(P), this is a
particular case of Theorem 2.4.7 for P′ = P, F = f and F = f̄ , which will be defined in
the following remark.

Remark 2.6.3. For each f ∈ Aut(P), we now construct a map f̄ on the base of the
bundle. In order to define it, observe that we have f (Pπ(p)) = Pπ( f (p)) for all p ∈ P,
since G acts transitively on the fibers. This implies that there exists a unique smooth
map f̄ : B → B satisfying f̄ ◦ π = π ◦ f , which can be defined as f̄ (x) = π( f (Px)) for
all x ∈ B.

Furthermore, the map Aut(P) → Diff(B) that assigns f 7→ f̄ is a group homomor-
phism, since ( f ′ ◦ f )(x) = π( f ′( f (Px))) = π( f ′(Pf̄ (x))) = f̄ ′( f̄ (x)) for all x ∈ B.

Definition 2.6.4. A gauge transformation of P is an automorphism f ∈ Aut(P) so that
f̄ = idB. We denote G(P) := {gauge transformations on P}, which is called the gauge
group of P.

A local gauge transformation is a gauge transformation of the G-principal bundle
(PU , πPU , U) for some open subset U ⊂ B.
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Remark 2.6.5. To show that G(P) is indeed a group, it suffices to observe that G(P) =
ker( f 7→ f̄ ) ⊂ Aut(P). Moreover, as a subgroup of Aut(P), there exists a right action of
G(P) on C(P).

For gauge transformations, it is also possible to define an action on an associated
vector bundle as follows:

Theorem 2.6.6. Let (P′, π′, B) be an associated vector bundle where P′ := P×ρ V for some
representation ρ : G → Aut(V). Then, the gauge group of P acts from the left on P′ through
the following morphism:

G(P)× P′ → P′

( f , [p, v]) 7→ f · [p, v] = [ f (p), v].

Proof. In order to check that the map is well-defined, assume that [p, v] = [p′, v′]. Then,
by definition, [p′, v′] = [p · g, ρ(g)−1(v)] for some g ∈ G. Thus, we have [ f (p′), v′] =
[ f (p · g), ρ(g)−1(v)] = [ f (p) · g, ρ(g)−1(v)] = [ f (p), v], which implies that the action is
well-defined.

Note that gauge transformations preserve fibers, as f̄ (x) = π( f (Px)) = x implies
f (Px) = Px for all x ∈ B. Therefore, for each p ∈ P there exists a unique g(p) ∈ G such
that f (p) = p · g(p). This yields a smooth function g : P→ G.

Conversely, if G is abelian, every smooth map g : P → G defines a gauge transfor-
mation of the form f (p) := p · g(p) for all p ∈ P.

Definition 2.6.7. A physical gauge transformation is a smooth map τ : B→ G. A local
physical gauge transformation is a smooth map τ : U → G over an open subset U ⊂ B.

Remark 2.6.8. Given a map g : P→ G associated to f ∈ G(P) such that f (p) = p · g(p)
for all p ∈ P, the map τf := g ◦ s is a physical gauge transformation for any section
s : B→ P.

Analogously, we can assign a local physical gauge transformation τf : U → G to
a local gauge transformation f ∈ G(PU) using a local section s : U → P. Moreover,
it can be seen that if we fix a local section s : U → P, this determines a bijection
between f ∈ G(PU) and local physical gauge transformations τ : U → G (see [Ham17,
Sect. 5.3.2]).

The action of gauge transformations on an associated vector bundle (P′, π′, B),
where P′ = P×ρ V, can be described in terms of these physical gauge transformations.
The following theorem is an example:

Theorem 2.6.9. Let Φ : U → P′ be a local section of P′ given by Φ(x) = [s(x), φ(x)] where
s : U → P is a local section of P and φ : U → V is a smooth map. If we take a local gauge
transformation f ∈ G(PU) with associated physical gauge transformation τf : U → G, we have

( f ·Φ)(x) = [s(x), ρ(τf (x))(φ(x))] ∀x ∈ U.

Proof. Using the map g : PU → G associated to f , Theorem 2.6.6, and the definition
of τf , it is easy to check the equality: ( f · Φ)(x) = f · [s(x), φ(x)] = [ f (s(x)), φ(x)] =
[s(x) · g(s(x)), φ(x)] = [s(x) · τf (x), φ(x)] = [s(x), ρ(τf (x))(φ(x))].



Chapter 3

Applications to Physics

In the following we apply the mathematical concepts presented in the previous chapters
to understand how the Standard Model of particle physics explains one of the funda-
mental forces of nature, that is, the electroweak interaction. Our aim is to develop the
classical gauge theory presented by Yang and Mills and describe how its inconsistencies
with the experimental observations are solved through the so-called Higgs mechanism.

We begin by defining some operators regarding k-forms that will be necessary in
the subsequent sections.

3.1 Scalar products on forms

Hereafter in this section, we always assume (M, g) is an oriented pseudo-Riemannian
manifold, meaning that the metric tensor is everywhere non-degenerate, symmetric,
and smooth, but not necessarily positive definite. Besides, we assume that (M, g) is
n-dimensional and g has signature (s, t).1

Moreover, throughout this section and the following ones, we employ Einstein sum-
mation convention.

Given ω ∈ Ωk(M), we can express this k-form in terms of smooth functions consid-
ering a smooth atlas {(Ui, φi)}i∈I of M. For some Ui with local coordinates {x1, . . . , xn},
we can write locally

ω = ∑
1≤i1<···<ik≤n

ωi1 ...ik dxi1 ∧ · · · ∧ dxik

where ωi1 ...ik ∈ F (M). Note that ωi1...ik = ω(∂i1 , . . . , ∂ik) with ∂i = ∂/∂xi.

Definition 3.1.1. The scalar product of k-forms is defined as the map:

〈·, ·〉 : Ωk(M)×Ωk(M)→ F (M)

(ω, η) 7→ 1
k!

ωi1 ...ik ηi1 ...ik

Remark 3.1.2. This scalar product is well-defined independently of the choice of local
chart and, given two charts, it coincides on the intersection.

1The same applies for (B, g) when considering a vector bundle (V, π, B).

30
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Definition 3.1.3. Let {e1, . . . , en} be a positively oriented orthonormal basis of Tx M
for some x ∈ M. The canonical volume form on M is the element dvolg ∈ ΛnT∗x M
determined by dvolg(e1, . . . , en) = +1.

Remark 3.1.4. This form dvolg does not depend on the choice of orthonormal basis
{e1, . . . , en} up to sign, and the sign is determined by the orientation. Moreover, it can
actually be defined on any n-dimensional real vector space (see [Bär11, Sect. 3.1]).

Lemma 3.1.5. Let (U, φ) be an oriented chart on M with local coordinates {x1, . . . , xn}. Then,
dvolg =

√
|g|dx1 ∧ · · · ∧ dxn, where |g| = |det(gij)| being det(gij) = det(g(∂i, ∂j)) the

determinant of the metric tensor.

Proof. See [Ham17, Sect. 7.2.1].

The volume form allows us to define the following operator on k-forms:

Definition 3.1.6. The Hodge star operator is the linear map ∗ : Ωk(M) → Ωn−k(M)

characterized by 〈ω, η〉dvolg = ω ∧ ∗η for all ω, η ∈ Ωk(M).

Proposition 3.1.7. The Hodge star operator is given by

∗(e∗i1 ∧ · · · ∧ e∗ik
) = gi1i1 · · · · · gikik · εi1 ...in · e∗ik+1

∧ · · · ∧ e∗in
,

where {i1, . . . , ik} and {ik+1, . . . , in} are complementary sets, gii = g(ei, ei), {e∗1 , . . . , e∗n} is the
basis of T∗x M dual to {e1, . . . , en}, and ε is totally antisymmetric with ε1...n = 1.

Proof. See [Bär11, Sect. 3.1].

Remark 3.1.8. Given a metric and a choice of an orientation, it can be seen that ∗ is
uniquely defined. For more properties of this operator see [Ham17, Sect. 7.2.1].

Definition 3.1.9. The codifferential is defined as the map d∗ : Ωk+1(M) → Ωk(M)

given by d∗ = (−1)t+nk+1 ∗ d∗, where d is the differential defined in Theorem 2.5.4.

In what follows, we introduce the notion of integration of forms, beginning on Rk

and generalizing to smooth manifolds.

Definition 3.1.10. Let U ⊂ Rk be an open subset with standard coordinates {x1, . . . , xk}
and ω = f (x)dx1 ∧ · · · ∧ dxk ∈ Ωk(U) a differentiable k-form for some smooth function
f : U → R. The integral of ω over a subset A ⊂ U is the Riemann integral of f (x) (if
it exists): ∫

A
ω :=

∫
A

f (x)dx1 . . . dxk.

In order to give a generalization for the integral of a k-form ω over a manifold M,
we need several conditions:

i) The manifold M has to be oriented.

ii) If the dimension of M is n, only n-forms can be integrated.



32 Applications to Physics

iii) The n-form ω must belong to Ωn
c (M) := {ω ∈ Ωn(M) : supp(ω) is compact}.2

Definition 3.1.11. Let M be a n-dimensional oriented manifold, {(Ui, φi)}i∈I an oriented
atlas, and ω ∈ Ωn

c (Ui) a n-form with compact support for some i ∈ I. Note that
(φ−1

i )∗ω ∈ Ωn
c (φ(Ui)), since φi : Ui → φi(Ui) is a diffeomorphism. The integral of ω

over Ui is given by: ∫
Ui

ω :=
∫

φi(Ui)
(φ−1

i )∗ω.

Remark 3.1.12. The definition of this integral over Ui is independent of the choice of
coordinates on Ui and it is linear on ω ∈ Ωn

c (Ui) (see [Tu11, Sect. 23.4]).

These two properties allow us to define the integral of a form ω ∈ Ωn
c (M) over the

whole manifold. To do so, we consider a partition of unity {ϕi}i∈I subordinate to the
open cover {Ui}i∈I , that is, supp(ϕi) ⊂ Ui for all i ∈ I. As mentioned in Section 2.4.1, a
partition of unity verifying this condition always exists. Then, as the partition of unity
has locally finite supports, we can express ω as a finite sum ω = ∑i∈I ϕiω. Moreover, it
can be shown that the support of ϕiω is compact for all i ∈ I, thus the integrals

∫
Ui

ϕiω

are well-defined. This yields the following definition:

Definition 3.1.13. Let ω ∈ Ωn
c (M) be a smooth n-form with compact support. The

integral of ω over M is defined as:∫
M

ω := ∑
i∈I

∫
Ui

ϕiω.

Remark 3.1.14. The integral
∫

M ω is independent of the choice of oriented atlas and
partition of unity. Besides, we have that

∫
−M ω = −

∫
M ω, where −M corresponds to

the same manifold with opposite orientation (see [Tu11, Sect. 23.4]).

With the presented concept of integration of forms, it is possible to define a new
type of scalar product for forms with compact support.

Definition 3.1.15. The L2-scalar product of k-forms is the map:

〈·, ·〉L2 : Ωk
c(M)×Ωk

c(M)→ R

(ω, η) 7→
∫

M
〈ω, η〉dvolg.

The scalar products presented above, as well as the codifferential, can be extended
to k-forms with values in vector bundles.

Let (V, π, B) be a vector bundle of rank r where V carries a Riemannian metric 〈·, ·〉.
This induces a map 〈·, ·〉V : V ×B V → B×R that assigns (v1, v2) 7→ (π(v1), 〈v1, v2〉),
where V ×B V = {(v1, v2) ∈ V ×V : π(v1) = π(v2)}. We call 〈·, ·〉V a bundle metric.

Now, consider an open cover {Ui}i∈I of B. For each i ∈ I, we can take locally
defined smooth maps vj : Ui → V for j = 1, . . . , r, such that for all x ∈ Ui the set
{v1(x), . . . , vr(x)} is a basis of Vx. Then, any k-form ω ∈ Ωk(B, V) can be written
locally as ω = ∑r

j=1 ωj ⊗ vj, with ωj ∈ Ωk(Ui) for all j = 1, . . . , r.

2The support of an n-form ω ∈ Ωn(M) is defined as supp(ω) = Cl{x ∈ M : ωx 6≡ 0} (see [Tu11,
Sect. 18]).
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Definition 3.1.16. The scalar product of k-forms with values in V is the map:

〈·, ·〉V : Ωk(B, V)×Ωk(B, V)→ F (B)

(ω, η) 7→
r

∑
i,j=1
〈ωi, ηj〉〈vi, vj〉V .

Definition 3.1.17. The Hodge star operator on k-forms with values in V is given by the
map ∗ : Ωk(B, V)→ Ωn−k(B, V) defined by ∗ω = ∑r

j=1(∗ωj)⊗ vj for all ω ∈ Ωk(B, V).

Definition 3.1.18. Let∇ be a covariant derivative on the vector bundle V. The covariant
differential or exterior covariant derivative is the following map:

d∇ : Ωk(B, V)→ Ωk+1(B, V)

ω 7→
r

∑
j=1

[dωj ⊗ vj + (−1)kωj ∧∇vj].

Given an associated vector bundle (P×ρ V, π′, B) and a connection 1-form ω ∈ C(P), if
we take its associated covariant derivative ∇ω, we denote dω := d∇ω .

Remark 3.1.19. The scalar product of k-forms 〈·, ·〉V and the covariant differential d∇
are independent of the choice of the local maps {vj}j=1,...,r (see [Ham17, Sect. 5.12]).

Definition 3.1.20. The covariant codifferential is the map d∗∇ : Ωk+1(B, V)→ Ωk(B, V)

defined by d∗∇ = (−1)t+nk+1 ∗ d∇∗. If ∇ = ∇ω, we write d∗ω := d∗∇ω .

Definition 3.1.21. The L2-scalar product of k-forms with values in V is the map:

〈·, ·〉V,L2 : Ωk
c(B, V)×Ωk

c(B, V)→ R

(ω, η) 7→
∫

B
〈ω, η〉Vdvolg.

Theorem 3.1.22. The equality 〈d∇ω, η〉V,L2 = 〈ω, d∗∇η〉V,L2 holds for all ω ∈ Ωk
c(B, V),

η ∈ Ωk+1
c (B, V).

Proof. See [Ham17, Sect. 7.2.2].

3.2 Yang-Mills theory

From a physical standpoint, we postulate that a physical system is determined by a
function called Lagrangian and that the evolution of the system is modelled by the
equations that minimize its corresponding action.

The aim of this section is to introduce the Yang-Mills Lagrangian and the associated
Yang-Mills equation that can be derived from it.

Let (P, π, B) be a G-principal bundle with (B, g) an n-dimensional oriented pseudo-
Riemannian manifold and G an r-dimensional compact Lie group. Consider a connec-
tion 1-form ω ∈ C(P) and its curvature 2-form Ωω ∈ Ω2(P, g).
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Since G is compact, there exists an Ad-invariant positive definite scalar product
〈·, ·〉g on its Lie algebra g (see [Ham17, Sect. 2.2]). This scalar product yields a bundle
metric 〈·, ·〉Ad(P) on the associated vector bundle (Ad(P), π′, B), where Ad(P) := P×Ad

g, satisfying 〈[p1, g1], [p2, g2]〉Ad(P) = 〈g1, g2〉g for all [p1, g1], [p2, g2] ∈ Ad(P) such that
π′(p1) = π′(p2). We also take an orthonormal basis {T1, . . . , Tr} of g.

Remark 3.2.1. With the scalar product 〈·, ·〉g, we can define a new scalar product on
local 2-forms Ω2(U, g) for any local chart (U, φ) of B. To do so, if suffices to write the
elements Θ ∈ Ω2(U, g) as Θ = ∑r

a=1 Θa ⊗ Ta where Θa ∈ Ω2(U) for all a ∈ {1, . . . , r}.
Then, in local coordinates {x1, . . . , xn}, we set Θij = Θ(∂i, ∂j) = Θa(∂i, ∂j) · Ta = Θa

ij · Ta

for i, j ∈ {1, . . . , n}. With this, we define

〈·, ·〉g : Ω2(U, g)×Ω2(U, g)→ F (U)

(Θ, Ξ) 7→ 1/2 ·Θa
ijΞ

ij
a .

In this framework, we can define the following Lagrangian using that, as pointed
up in Remark 2.5.12, the curvature Ωω ∈ Ω2

hor(P, g)(G,Ad) has an associated form Ωω
B ∈

Ω2(B, Ad(P)) defined as in Theorem 2.4.12.

Definition 3.2.2. The Yang-Mills Lagrangian is defined as the following map:

LYM : C(P)→ F (B)

ω 7→ −1
2
〈Ωω

B , Ωω
B 〉Ad(P).

Theorem 3.2.3. The Yang-Mills Lagrangian is gauge invariant, meaning that LYM( f ∗ω) =

LYM(ω) for all f ∈ G(P), ω ∈ C(P).

Proof. Observe that, by Proposition 2.5.6 and the structure equation, we have Ω f ∗ω =

d( f ∗ω) + 1/2[ f ∗w, f ∗w] = f ∗(dω) + 1/2 f ∗([ω, ω]) = f ∗Ωω. Besides, we can write
Ω f ∗ω

B = [si, Ω f ∗ω
i ] as shown in Remark 2.5.16 for some local section si : Ui → P and

Ω f ∗ω
i ∈ Ω2(Ui, g). Then, for x ∈ Ui and X, Y ∈ TxB, we have:

Ω f ∗ω
B (X, Y)|x = [si(x), Ω f ∗ω

i |x(X, Y)]

= [si(x), s∗i Ω f ∗ω|x(X, Y)]

= [si(x), s∗i ( f ∗Ωω)|x(X, Y)]

= [si(x), ( f ◦ si)
∗Ωω|x(X, Y)]

= [(s′i)(x), Ad(g−1◦s′i)(x)(s
′
i)
∗Ωω|x(X, Y)]

where s′i = f ◦ si is a local section and g : P→ G is the smooth map satisfying f (p) = p ·
g(p) for all p ∈ P. Note that in the last equality we have used that si(x) = f−1(s′i(x)) =
s′i(x) · g−1(s′i(x)) for all x ∈ Ui.

Now, using the obtained equality and the fact that 〈·, ·〉g is Ad-invariant, we get
〈Ω f ∗ω

B , Ω f ∗ω
B 〉Ad(P) = 〈Ad(g−1◦s′i)(x)(s′i)

∗Ωω, Ad(g−1◦s′i)(x)(s′i)
∗Ωω〉g = 〈(s′i)∗Ωω, (s′i)

∗Ωω〉g =
〈Ωω

B , Ωω
B 〉Ad(P) by definition of 〈·, ·〉Ad(P).

Therefore, the equality LYM( f ∗ω) = LYM(ω) is fulfilled by all ω ∈ C(P). See [Bär11,
Sect. 3.3] for more details.



3.2 Yang-Mills theory 35

Remark 3.2.4. A theory of this type such that the Lagrangian is locally gauge invariant
is called a gauge theory, where locally means that a possibly different transformation is
applied at each point of the manifold i.e. f ∈ G(P) may not induce the same transfor-
mation on all fibers.

Taking local sections of the principal bundle P, a local formula for the Lagrangian
LYM can be written as follows:

Let s : U → P be a local section. As mentioned in Remark 2.5.16, we can write
locally Ωω

B = [s, s∗Ωω]. Thus, we have 〈Ωω
B , Ωω

B 〉Ad(P) = 〈[s, s∗Ωω], [s, s∗Ωω]〉Ad(P) =

〈s∗Ωω, s∗Ωω〉g by definition of 〈·, ·〉Ad(P).
Using the scalar product on Ω2(U, g) defined in Remark 3.2.1, for s∗Ωω ∈ Ω2(U, g),

we write (s∗Ωω)ij = (s∗Ωω)a
ij · Ta where a ∈ {1, . . . , r} and i, j ∈ {1, . . . , n}. Then,

locally:

LYM(ω) = −1
2
〈s∗Ωω, s∗Ωω〉g = −

1
4
· (s∗Ωω)a

ij(s
∗Ωω)

ij
a .

Remark 3.2.5. It is also possible to relate the components (s∗Ωω)ij with the local con-
nections ωs = s∗ω and rewrite the Lagrangian LYM(ω) in terms of these elements ωs

(see [Ham17, Sect. 7.3.1]).

In the following, we assume that B is also closed, i.e. compact and without bound-
ary, so that the integral of n-forms is well-defined.

Definition 3.2.6. The Yang-Mills action is defined as the map SYM : C(P) → R given
by

SYM(ω) = −1
2
〈Ωω

B , Ωω
B 〉Ad(P),L2 = −1

2

∫
B
〈Ωω

B , Ωω
B 〉Ad(P)dvolg =

∫
B
LYM(ω)dvolg.

Definition 3.2.7. A critical point of the Yang-Mills action is a connection 1-form ω ∈
C(P) that satisfies

d
dt

∣∣∣∣
t=0
SYM(ω + tη) = 0 ∀η ∈ Ω1

hor(P, g)(G,Ad) ∼= Ω1(B, Ad(P)).

Theorem 3.2.8. A connection 1-form ω ∈ C(P) is a critical point of the Yang-Mills action if
and only if its curvature 2-form verifies the following equality:

d∗ωΩω
B = 0,

called the Yang-Mills equation.

In order to prove this theorem, we need the following proposition:

Proposition 3.2.9. Let (P, π, B) be a G-principal bundle, ρ : G → Aut(V) a representation of
G, ω ∈ C(P) a connection 1-form, and η ∈ Ωk

hor(P, V)(G,ρ) a horizontal form of type ρ. Then,
the following equation holds:

dωη = dη + ρ∗(ω) ∧ η, (3.1)

where (ρ∗(ω) ∧ η)p(X0, . . . , Xk) := ∑k
i=0(−1)iρ∗(ωp(Xi))(ηp(X0, . . . ,

∧
Xi, . . . , Xk)) for all

p ∈ P and X0, . . . , Xk ∈ TpP.
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Proof. The equality is shown distinguishing different cases depending on whether the
vector fields Xi are vertical or horizontal (see [RS17, Sect. 1.4]).

Remark 3.2.10. In our case, Equation 3.1 simplifies as dωη = dη + [ω, η]. To check this,
notice that if ρ is the adjoint representation, applying the definition of ad : g→ End(g),
we obtain:

(Ad∗(ω) ∧ η)p(X0, X1) = (ad(ω) ∧ η)p(X0, X1)

= ad(ωp(X0))(ηp(X1))− ad(ωp(X1))(ηp(X0))

= [ωp(X0), ηp(X1)]− [ωp(X1), ηp(X0)]

= [ω, η]p(X0, X1)

for all p ∈ P and X0, X1 ∈ TpP. Hence, Ad∗(ω) ∧ η = [ω, η].

Proof (of Theorem 3.2.8). We need to compute

d
dt

∣∣∣∣
t=0
SYM(ω + tη) =

d
dt

∣∣∣∣
t=0

(
− 1

2
〈Ωω+tη

B , Ωω+tη
B 〉Ad(P),L2

)
.

With this aim, we first find an expression for the 2-form Ωω+tη
B . By the structure equa-

tion, we have:

Ωω+tη = d(ω + tη) +
1
2
[ω + tη, ω + tη] = Ωω + t(dη + [ω, η]) +

1
2

t2[η, η].

Then, using Equation 3.1, written as in Remark 3.2.10, the 2-form on B can be ex-
pressed as Ωω+tη

B = Ωω
B + t(dωηB) + 1/2 · t2[ηB, ηB]. Hence, the derivative reads

d
dt

∣∣∣∣
t=0

(
〈Ωω+tη

B , Ωω+tη
B 〉Ad(P),L2

)
=

d
dt

∣∣∣∣
t=0

(
〈Ωω

B , Ωω
B 〉Ad(P),L2

+ 2t〈dωηB, Ωω
B 〉Ad(P),L2 +O(t2)

)
= 2〈dωηB, Ωω

B 〉Ad(P),L2

= 2〈ηB, d∗ωΩω
B 〉Ad(P),L2 ,

where in the last equality we applied Theorem 3.1.22.
Therefore, for ω ∈ C(P) to be a critical point of SYM, the 2-form Ωω

B has to satisfy
〈ηB, d∗ωΩω

B 〉Ad(P),L2 = 0 for all ηB ∈ Ω1(B, Ad(P)). Since the scalar product is non-
degenerate, this happens if and only if d∗ωΩω

B = 0.

Remark 3.2.11. Notice that the Yang-Mills equation depends on the chosen metric g on
B through the Hodge star operator. Thus, even if the equation is fulfilled for one metric,
it does not necessarily hold for a different metric.

Definition 3.2.12. A Yang-Mills connection is a connection 1-form ω ∈ C(P) that is a
critical point of the Yang-Mills action.

Remark 3.2.13. Since the Yang-Mills equation does not depend on the choice of local
sections s : U → P, the action of the gauge group G(P) preserves the Yang-Mills
connections. This means that if ω ∈ C(P) is critical, then f ∗ω is also critical for all
f ∈ G(P), since we can consider s∗( f ∗ω) as (s′)∗ω for s′ = f ◦ s.
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3.2.1 Electromagnetism

Let (P, π, B) be a U(1)-principal bundle, (B, g) a 4-dimensional oriented pseudo-Rie-
mannian manifold, ω ∈ C(P) a connection 1-form, and Ωω ∈ Ω2(P, u(1)) its curvature
2-form.

It is easy to see that U(1) = S1 and u(1) = iR. Since U(1) is abelian, we have that
dΩω = 0 and the curvature defines a global 2-form Ω̃ω ∈ Ω2(B, u(1)) = Ω2(B, iR) as
in Remark 2.5.15. Moreover, it can be shown that in this case the Yang-Mills equation
reduces to d(∗Ω̃ω) = 0.

In the following, we derive Maxwell’s equations considering a 2-form defined in
terms of the electromagnetic fields and we see how these relate to the Yang-Mills equa-
tion in this scenario.

For the whole section, we write the equations in Gaussian units, with c denoting the
speed of light.

Let us now take the manifold R4 = R×R3 with the Minkowski metric3. We con-
sider an open set U ⊂ R3 and choose local coordinates {ct, x, y, z} on R × U. With
respect to these coordinates, we define the following 2-form Ω̃ ∈ Ω2(R×U):

Ω̃ := (Exdx + Eydy + Ezdz) ∧ cdt + Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy

where ~E := (Ex, Ey, Ez) : R×U → R3 and ~B := (Bx, By, Bz) : R×U → R3 are time
dependent vector fields corresponding to the electric and magnetic fields of classical
electromagnetism, respectively.

Then, applying the definition of the differential, we get:

dΩ̃ =
(
− ∂Ex

∂y
+

∂Ey

∂x
+

1
c

∂Bz

∂t

)
· cdt ∧ dx ∧ dy +

(
−

∂Ey

∂z
+

∂Ez

∂y
+

1
c

∂Bx

∂t

)
· cdt ∧ dy ∧ dz

+
(
− ∂Ez

∂x
+

∂Ex

∂z
+

1
c

∂By

∂t

)
· cdt ∧ dz ∧ dx +

(∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
· dx ∧ dy ∧ dz.

Therefore, the identity dΩ̃ = 0 is equivalent to the following two equations:{
div(~B) = 0
1
c ·

∂~B
∂t + rot(~E) = 0,

which correspond to Gauss’ and Faraday’s laws, respectively, i.e. two of the classical
Maxwell’s equations.

Remark 3.2.14. Observe that the definition of the vector fields ~E and ~B depends on the
choice of local coordinates.

The chosen metric on R4 determines a Hodge star operator ∗. In the local coordi-
nates {ct, x, y, z} we have, by Proposition 3.1.7:

∗(cdt ∧ dx) = dy ∧ dz, ∗(dx ∧ dy) = −cdt ∧ dz

∗(cdt ∧ dy) = dz ∧ dx, ∗(dz ∧ dx) = −cdt ∧ dy

∗(cdt ∧ dz) = dx ∧ dy, ∗(dy ∧ dz) = −cdt ∧ dx.

3The Minkowski metric is a tensor g defined by a diagonal matrix with diagonal (−1,+1,+1,+1).
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Thus, using that ∗ is linear, we obtain (see [Bär11, Sect. 3.2] for more details):

d(∗Ω̃) =(−div~E) · dx ∧ dy ∧ dz +
(

rot~B− 1
c

∂~E
∂t

)
x
· cdt ∧ dy ∧ dz

+
(

rot~B− 1
c

∂~E
∂t

)
y
· cdt ∧ dz ∧ dx +

(
rot~B− 1

c
∂~E
∂t

)
z
· cdt ∧ dx ∧ dy.

We now introduce a 3-form Jρ ∈ Ω3(R×U) defined as

Jρ := ρ · dx ∧ dy ∧ dz− Jx · dt ∧ dy ∧ dz− Jy · dt ∧ dz ∧ dx− Jz · dt ∧ dx ∧ dy,

where ρ : R×U → R and ~J := (Jx, Jy, Jz) : R×U → R3 correspond in classical electro-
dynamics to the electric charge density and the electric current density, respectively.

Then, it is straightforward that the equality d(∗Ω̃) + 4π Jρ = 0 is equivalent to the
remaining two Maxwell’s equations:{

div(~E) = 4πρ

rot(~B)− 1
c ·

∂~E
∂t = 4π

c
~J,

corresponding to Coulomb’s and Ampère’s laws, respectively.
Hence, Maxwell’s equations can be rewritten as follows:{

dΩ̃ = 0

d(∗Ω̃) + 4π Jρ = 0.

Now, if we choose a contractible set U ⊂ R3 and the initial U(1)-principal bundle
(P, π, B) as a trivial bundle with B = R×U and P = B×U(1), we can see the defined
2-form Ω̃ as an element of Ω2(B).

Since it is defined on an abelian set, the 2-form verifies dΩ̃ = 0. This, together
with the fact the U is contractible implies, by the Poincaré lemma, that there exists
ω̃ ∈ Ω1(B, iR) = Ω1(B, u(1)) satisfying dω̃ = iΩ̃ (see [RS13, Sect. 4.3]).

Remark 3.2.15. This 1-form ω̃ plays the role of the four-potential of classical electromag-
netism, which is defined as a vector A = (φ,−~A) where φ is an electric scalar potential
and ~A is a magnetic vector potential satisfying ~E = −~∇φ− ∂~A

c∂t and ~B = ~∇× ~A. Note
that under a transformation Ai 7→ Ai + ∂iΛ for i ∈ {ct, x, y, z} where Λ is a scalar func-
tion, the electromagnetic fields remain unchanged. The same way, the 1-form ω̃ is not
uniquely determined.

Moreover, the 2-form Ω̃ can be seen as the Faraday tensor F which describes the
electromagnetic field in spacetime (see [Nie07]).

It can be shown that given a trivial bundle (B × G, pr1, B) for some Lie group
G, there exists a bijection between the connection 1-forms C(B × G) and the 1-forms
Ω1(B, g) (see [Dup03, Chapt. 6]). In our case, this means that there exists a con-
nection 1-form ω ∈ C(P) = C(B × U(1)) equivalent to ω̃ ∈ Ω1(B, u(1)) such that
Ω̃ω = iΩ̃ ∈ Ω2(B, u(1)).
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Therefore, Ω̃ corresponds to the curvature on B related to a connection 1-form ω

on the U(1)-principal bundle P. Moreover, if we consider a source-free electromagnetic
field such that ρ = 0 and ~J = 0, Maxwell’s equations read:{

dΩ̃ = 0

d(∗Ω̃) = 0,

where the second equation is equal to the Yang-Mills equation for this principal bundle.

Remark 3.2.16. With this formalism, it is possible to recover other formulas from clas-
sical electromagnetism in terms of the 2-form Ω̃, such as the continuity equation or the
Lorentz force law (see [Bär11, Sect. 3.2]).

3.2.2 Massive gauge bosons

We have seen that the Yang-Mills theory successfully describes classical electromag-
netism. However, if we try to apply this theory to model other fundamental forces, as
it is done in the Standard Model, we face a problem when trying to characterize certain
types of particles.

When describing the elementary particles using gauge theories, it is postulated that
bosons are associated to connection 1-forms on a principal bundle (also called gauge
fields), except for Higgs bosons.4 In addition, physically, it can be shown that massive
gauge bosons with mass m appear in the corresponding Lagrangian as terms of the
form:

1
2

m2(s∗ω)a
ij(s
∗ω)

ij
a

where, as for the curvature 2-form, we set locally (s∗ω)(∂i, ∂j) = (s∗ω)ij = (s∗ω)a
ij · Ta

with T1, . . . , Tr a basis of the Lie algebra g.
It is easy to check, with the local expression LYM(ω) = − 1

4 · (s∗Ωω)a
ij(s
∗Ωω)

ij
a , that

the Yang-Mills Lagrangian does not present any terms of this form. Furthermore, there
is no easy way to add an equivalent term while maintaining the gauge invariance (see
[Ham17, Sect. 7.3.3]). Hence, just by means of the Yang-Mills Lagrangian, it is not
possible to describe the massive bosons found experimentally, namely W± and Z.

In the sections that follow, we explain how this issue is addressed within the Stan-
dard Model in order to describe the electroweak interaction as a gauge theory.

3.3 The Higgs Lagrangian

All the assumptions made throughout this section hold for the following sections.
Let (P, π, B) be a G-principal bundle where (B, g) is an m-dimensional oriented

pseudo-Riemannian manifold and G is an r-dimensional compact Lie group. Also, let

4Bosons associated to connection 1-forms, also called gauge bosons, are a type of elementary particles
which mediate the fundamental interactions of nature. On the other hand, Higgs bosons are responsible
for the non-zero mass of some gauge bosons, as we will later see.
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(P′, π′, B) be an associated complex vector bundle where P′ := P×ρ W for a complex
representation ρ : G → Aut(W).

Consider a G-invariant Hermitian5 scalar product 〈·, ·〉W on W with an action of
G given by the representation ρ, we write g · w := ρ(g)(w) for all g ∈ G, w ∈ W.
This yields a bundle metric 〈·, ·〉P′ on P′. Furthermore, we choose a basis of W so we
can assume that W = Cn with the standard Hermitian product defined by 〈w, w′〉W =

w† · w′ for all w, w′ ∈W, where w† = wt.

Remark 3.3.1. Observe that, with the considered scalar product, the representation ρ

is unitary. Indeed, if we take ρ(g) = A ∈ GL(W) for some g ∈ G, we have w† · w′ =
〈w, w′〉W = 〈ρ(g)(w), ρ(g)(w′)〉W = 〈Aw, Aw′〉W = w† A† · Aw′ for all w, w′ ∈ W since
the product is G-invariant. Therefore, ρ(g)† · ρ(g) = A† · A = 1n for all g ∈ G, which
means ρ(G) ⊂ U(W).

Definition 3.3.2. A potential is a smooth map V : R→ R.

Given a potential V, we have an action over the sections of the associated vector
bundle P′ defined as V(Φ) = V(〈Φ, Φ〉P′) for all Φ ∈ Γ(P′). We assume V to be gauge
invariant, that is, V( f Φ) = V(Φ) for all f ∈ G(P), Φ ∈ Γ(P′).

From now on, we use the following notation: the Higgs vector space is the complex
vector space W, the Higgs bundle is the associated vector bundle P′, the Higgs field is
a section Φ ∈ Γ(P′), and the Higgs potential is the potential V.

Remark 3.3.3. From a physics perspective, the sections Φ ∈ Γ(P′) are interpreted as
matter fields, which describe certain types of particles. Moreover, this fields can interact
(couple) with a gauge field ω ∈ G(P), which represents bosons.

Definition 3.3.4. The Higgs Lagrangian is given by the following map:6

LH : Γ(P′)× C(P)→ F (B)

(Φ, ω) 7→ 〈dωΦ, dωΦ〉P′ −V(Φ).

Theorem 3.3.5. The Higgs Lagrangian is gauge invariant, meaning that LH( f−1Φ, f ∗ω) =

LH(Φ, ω) for all f ∈ G(P), ω ∈ C(P), and Φ ∈ Γ(P′).

Proof. Since the potential V(Φ) is chosen gauge invariant, we just need to check the
term 〈dωΦ, dωΦ〉P′ .

First, we have to prove the equality d f ∗ω( f−1Φ) = f−1dωΦ. To do so, we express
Φ = [s, φ] where s : B → P is a smooth section of P and φ : B → W is a smooth map.
Observe that over Γ(P′) = Ω0(B, P′) we have dω|Γ(P′) = ∇ω (see [Ham17, Sect. 5.12]).
Then, we can write:

d f ∗ω( f−1Φ) = ∇ f ∗ω([ f−1s, φ]) = ∇ f ∗ω[s, τ−1
f · φ] = [s,∇ f ∗ωτ−1

f · φ]

5An Hermitian scalar product on a complex vector space W is a map 〈·, ·〉 : W ×W → C that is linear
in the first argument, antilinear in the second argument, conjugate symmetric, and positive definite.

6Note that Γ(P′) = Ω0(B, P′), so we can apply the exterior covariant derivative dω defined as in Section
3.1 to sections of the associated vector bundle.
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where τf : B→ G is the physical gauge transformation associated with f ∈ G(P).
Now, using the definition of covariant derivative on an associated vector bundle

given in Section 2.4.1, we get:7

∇ f ∗ω(τ−1
f · φ) = d(τ−1

f · φ) + s∗( f ∗ω)(τ−1
f · φ)

= τ−1
f · dφ + dτ−1

f · φ + (( f ◦ s)∗ω)(τ−1
f · φ)

= τ−1
f · dφ + dτ−1

f · φ + ((s · τf )
∗ω)(τ−1

f · φ)

= τ−1
f

[
d + τf · dτ−1

f + τf · ((s · τf )
∗ω) · τ−1

f

]
(φ)

= τ−1
f (d + s∗ω)(φ)

= τ−1
f ∇

ωφ,

where we use that connection 1-forms satisfy s∗ω = Adḡ ◦((s · ḡ)∗ω) + ḡ · dḡ−1 for
all ḡ : B → G. Since [s, τ−1

f ∇ωφ] = f−1[s,∇ωφ] = f−1∇ω([s, φ]) = f−1dωΦ, this proves
the equality d f ∗ω( f−1Φ) = f−1dωΦ.

Finally, as the scalar product 〈·, ·〉W is G-invariant, we have:

〈d f ∗ω( f−1Φ), d f ∗ω( f−1Φ)〉P′ = 〈 f−1dωΦ, f−1dωΦ〉P′ = 〈dωΦ, dωΦ〉P′

for all f ∈ G(P), ω ∈ C(P), and Φ ∈ Γ(P′). Thus, LH is gauge invariant.

Definition 3.3.6. The Yang-Mills-Higgs Lagrangian is the combined Lagrangian that
describes the dynamics of a Higgs field Φ with the Higgs potential V coupled to a
gauge field ω. It can be expressed as

LYMH(Φ, ω) = LH(Φ, ω) + LYM(ω) = 〈dωΦ, dωΦ〉P′ −V(Φ)− 1
2
〈Ωω

B , Ωω
B 〉Ad(P).

Remark 3.3.7. Note that a theory governed by this Lagrangian is a gauge theory.

From now on, we consider the Yang-Mills-Higgs Lagrangian to describe the elec-
troweak interactions as it is done in the Standard Model.

3.4 Spontaneous symmetry breaking

For the following definitions, we keep the same assumptions as in the previous section.

Definition 3.4.1. A vacuum configuration or vacuum for the Yang-Mills-Higgs La-
grangian is a pair (Φ0, ω0) ∈ Γ(P′)× C(P) verifying the following conditions:

i) The connection 1-form ω0 is flat: Ωω0 ≡ 0.

ii) The Higgs field Φ0 is covariantly constant: dω0 Φ0 = ∇ω0 Φ0 ≡ 0.

iii) The element Φ0(x) is a minimum of the potential V for all x ∈ B.
7For simplicity, we denote the action of g on W as X · w := ρ∗(X)(w) for X ∈ g, w ∈W.
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Definition 3.4.2. A vacuum vector is an element w0 ∈ W which is a minimum of the
map V : W → R, w 7→ V(〈w, w〉W). The space of vacua for V is the set of vacuum
vectors in the Higgs vector space W.

Proposition 3.4.3. Let (P, π, B) be a trivial principal bundle such that B is connected and
simply connected. Then, given a vacuum configuration (Φ0, ω0), there exists a global section
s0 : B→ P satisfying

i) s∗0ω0 ≡ 0,

ii) Φ0 = [s0, w0] where w0 ∈W is a constant vacuum vector.

The section s0 is called the vacuum gauge. Conversely, for an arbitrary fixed global section
s0 ∈ Γ(P), each vacuum vector w0 ∈ W yields a unique vacuum configuration (Φ0, ω0)

verifying conditions (i) and (ii).

Proof. See [Ham17, Sect. 8.1.2].

Since our aim is to develop the theory within the Standard Model, in the following
we can assume that B is connected and simply connected. In this case, it can be seen
that if there exists a flat connection 1-form ω ∈ Ω(P, g), the principal bundle has to
be trivial (see [Ham17, Sect. 5.15]). Hence, we also assume that (P, π, B) is a trivial
G-principal bundle.

Remark 3.4.4. Even though P is trivial, there is no preferred trivialization. In order
to fix a trivialization, we have to choose a global section s ∈ Γ(P) that determines an
isomorphism B× G ∼= P given by (x, g) 7→ s(x) · g.

We also suppose that there exists a vacuum vector w0 ∈ W and we fix it together
with a global vacuum gauge s0 ∈ Γ(P). Besides, we take (Φ0, ω0) as their associated
vacuum configuration.

Definition 3.4.5. The unbroken subgroup of the vacuum configuration is the isotropy
group of the vacuum vector: H = Gw0 = {g ∈ G : ρ(g)(w0) = w0} ⊂ G.

A gauge theory is spontaneously broken if the unbroken subgroup H is a proper
subgroup of G, that is, H  G.

Remark 3.4.6. The isotropy group H is a Lie subgroup of G (see [Ham17, Sect. 3.2]). Its
explicit embedding in G depends on the choice of the vacuum vector w0.

In the Standard Model we assume that a spontaneous symmetry breaking process
occurred because the potential V does not have a minimum at w = 0 but at w0 6= 0
instead, so that H = Gw0  G0 = G. We will see that this spontaneous process is the
reason why some elementary particles have non-zero mass.

Definition 3.4.7. The Higgs condensate is the nowhere vanishing field Φ0 = [s0, w0] for
the vacuum vector w0 6= 0.



3.4 Spontaneous symmetry breaking 43

Remark 3.4.8. Observe that in a spontaneously broken gauge theory the Lagrangian
and, as a consequence, the laws of physics, are still invariant under all physical gauge
transformations τ : B → G. However, in this case, the Higgs condensate Φ0 is only
invariant under transformations τ : B→ H with values in the smaller group H  G.

In general, a spontaneous symmetry breaking implies that a problem presents a
symmetry which is not held by its solutions.

Let Φ = [s0, φ] be a Higgs field defined by the previously fixed vacuum gauge
s0 ∈ Γ(P) and a smooth map φ : B→ W. In the following, we derive an approximation
of the Higgs potential V as a Taylor series around the vacuum vector w0. To do so, we
consider a shifted Higgs field ∆φ = φ− w0, which takes small values.

Let Ow0 be the orbit of G through the vacuum vector w0, that is, Ow0 = G · w0 =

{g · w0 : g ∈ G}. Since G is compact, we have Ow0
∼= G/H (see [Ham17, Sect. 3.8.3]).

We denote d = dim(Ow0) = dim(G)− dim(H).

Remark 3.4.9. Note that, if G acts transitively on the space of vacua, the space of vacua
is equal to the orbit Ow0 .

We can rewrite the Higgs vector space W as W = Tw0W = Tw0Ow0 ⊕ (Tw0Ow0)
⊥,

where the orthogonality is with respect to the associated scalar product 〈〈·, ·〉〉W :=
Re(〈·, ·〉W). With this splitting, the following holds:

Proposition 3.4.10. There exists a real orthonormal basis u1, . . . , ud, v1, . . . , v2n−d of Tw0W
consisting of eigenvectors of the Hessian Hess(V)w0 such that:

i) u1, . . . , ud is a basis of Tw0Ow0 with common eigenvalue λ = 0.

ii) v1, . . . , v2n−d is a basis of (Tw0Ow0)
⊥ with non-negative eigenvalues, since w0 is a local

minimum, which we denote as λvj = 2m2
vj

where mvj ≥ 0.

Proof. We can see the Hessian of V at a certain point w ∈W as the linear map Hess(V)w :
TwW → TwW given in standard coordinates {x1, . . . , x2n} on W = TwW by the symmet-
ric matrix of second partial derivatives (∂i∂jV(w))i,j. This map satisfies 〈〈Hess(V)w(X),
Y〉〉W = 〈〈X, Hess(V)w(Y)〉〉W for all X, Y ∈ TwW.

Since V is G-invariant, all the elements of the orbit Ow0 = G · w0 are minima of V.
Thus, the Hessian verifies Hess(V)w0(X) = 0 for all X ∈ Tw0Ow0 . This implies that the
Hessian Hess(V)w0 preserves the orthogonal splitting Tw0W = Tw0Ow0 ⊕ (Tw0Ow0)

⊥. It
suffices to observe that:

〈〈Hess(V)w0(X), Y〉〉W = 〈〈X, Hess(V)w0(Y)〉〉W = 〈〈X, 0〉〉W = 0

for all X ∈ (Tw0Ow0)
⊥, Y ∈ Tw0Ow0 . Hence, Hess(V)w0(Tw0Ow0)

⊥ ⊂ (Tw0Ow0)
⊥.

Therefore, there exists a diagonalization of Hess(V)w0 adapted to the splitting of
W = Tw0W as stated in the proposition. See [Ham17, Sect. 8.1.3] for more details.
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Using the previous splitting of Tw0W, we can express the map ∆φ : B→W ∼= Tw0W
as

∆φ =
1√
2

d

∑
i=1

aiui +
1√
2

2n−d

∑
j=1

bjvj

where ai, bj : B→ R are real scalar fields for i = 1, . . . , d, j = 1, . . . , 2n− d.

Definition 3.4.11. The maps {ai}i=1,...,d are called the Nambu-Goldstone bosons and
the maps {bj}j=1,...,2n−d are the Higgs bosons.

Now, we can write the Higgs potential as a Taylor series around w0 using these
scalar maps:

Theorem 3.4.12. Up to second order in ∆φ, we have:

V(φ) ≈ V(w0) +
1
2

2n−d

∑
j=1

m2
vj

b2
j .

Proof. By definition of the Taylor series up to second order, we get:

V(φ) = V(w0 + ∆φ) ≈ V(w0) + 〈〈∆φ, grad(V)(w0)〉〉W +
1
2
〈〈∆φ, Hess(V)w0 ∆φ〉〉W

≈ V(w0) + 〈〈∆φ, 0〉〉W +
1
2
〈〈∆φ,

1√
2

2n−d

∑
j=1

bj · 2m2
vj
· vj〉〉W

≈ V(w0) +
1
2

2n−d

∑
j=1

m2
vj

b2
j .

Remark 3.4.13. From a physical standpoint, according to Theorem 3.4.12, we associate
a zero mass to the Nambu-Goldstone bosons ai and a non-negative mass mvj ≥ 0 to the
Higgs bosons bj.

Example 3.4.14. Let us now apply this approach to explain the electroweak interactions
as in the Standard Model, considering the Yang-Mills-Higgs Lagrangian. To do so, we
take the base manifold (B, g) as a 4-dimensional flat spacetime with the Minkowski
metric and W = C2. We also set G = SU(2)×U(1). It is easy to check that SU(2) ∼= S3

and U(1) ∼= S1. Besides, we consider the following unitary representation where n ∈
N \ {0}:

ρ : (SU(2)×U(1))×W →W

((A, eiα), (w1, w2)) 7→ A ·
(

einα 0
0 einα

)
·
(

w1

w2

)
In this case, due to several restrictions including that it has to be G-invariant, the

Higgs potential has to be of the form8

V(w) = −µ · ||w||2 + λ · ||w||4

8The physical restrictions imposed on the potential are beyond the scope of this work. For the specific
conditions that V has to fulfill, see [Ham17, Sect. 8.1.2].
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for all w ∈ W where µ, λ > 0 are constant parameters, the exact values of which are
determined experimentally. It is easy to see that this potential V reaches a minimum
value at vectors w 6= 0, which means that the theory is spontaneously broken. In

particular, the vacuum vectors are the elements w0 ∈ W such that ||w0|| =
√

µ
2λ . Thus,

the space of vacua is a 3-sphere centered at the origin with radius ||w0||.
For all the vacuum vectors, the unbroken subgroup is H ∼= U(1). In order to define

an embedding of this subgroup in G, we need to choose a specific vacuum vector. For
convenience, we fix

w0 =

(
0√

µ
2λ

)
∈ C2, then H =

{((
eiδ/2 0
0 e−iδ/2

)
, eiδ/2n

)
: δ ∈ R

}
⊂ G.

As we will later see, this choice allows us to find a so-called unitary gauge for this
theory.

Remark 3.4.15. Notice that all the elements in the space of vacua are equivalent via the
action of G, even though they are invariant only under the action of H.

Let us now consider how many bosons are obtained within this framework. Since
dim(G) = 4 and dim(H) = 1, we get d = 4− 1 = 3. Besides, 2n = dim(W) = 4. Hence,
with the chosen manifolds and Higgs potential, there appear d = 3 Nambu-Goldstone
bosons {a1, a2, a3} and 2n− d = 1 Higgs boson {b}.

Moreover, computing the Hessian for the chosen vacuum vector Hess(V)w0 in stan-
dard coordinates for C2, we get a diagonal matrix with null eigenvalues for the Nambu-
Goldstone bosons, as expected, and eigenvalue 2m2

v = 4µ for the Higgs boson (see
[Ham17, Sect. 8.1.4]). This implies that the Higgs boson b has as associated mass
mv =

√
2µ.

Remark 3.4.16. With the presented approach, we have been able to obtain massive
bosons, contrarily to what we found for the Yang-Mills Lagrangian. However, these
results are not yet consistent with the experimental observations for the electroweak
interaction. Experimentally, three massive bosons are found, apart from the Higgs
boson, and there is no evidence of the existence of non-massive Nambu-Goldstone
bosons.

In the following section, we see how this problem is addressed within the Standard
Model exploiting the gauge symmetry of the theory.

3.5 Unitary gauge

Let f ∈ G(P) be a gauge transformation. With respect to the fixed vacuum gauge
s0 ∈ Γ(P), there exists an associated physical gauge transformation τf : B → G. Recall
that in Section 2.6 we defined an action of the maps τf over the Higgs fields Φ =

[s0, φ] ∈ Γ(P′) given by (τf · Φ)(x) = [s0(x), τf (x) · φ(x)] for all x ∈ B, where we set
τf (x) · φ(x) := ρ(τf (x))(φ(x)).
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Since the theory that we are considering is gauge invariant, meaning that gauge
transformations map solutions to solutions, we may be able to find different expressions
for the Higgs field Φ with different scalar fields {ai}i=1,...,d, {bj}j=1,...,2n−d. Our aim is
to check if the inconsistencies found with respect to the experimental results are a
consequence of our choice of gauge. To do so, we use another gauge, the so-called
unitary gauge.

Definition 3.5.1. Let Φ ∈ Γ(P′) be a Higgs field and w0 ∈ W a vacuum vector. A
unitary gauge with respect to w0 is a physical gauge transformation τ : B → G such
that all the Nambu-Goldstone bosons of the transformed field τ ·Φ with respect to w0

vanish identically, that is, ai ≡ 0 for all i = 1, · · · , d. In this case, the Higgs field τ ·Φ is
said to be in unitary gauge with respect to w0.

The existence of unitary gauge is non-trivial in general (see [Ham20, Sect. 6]). Here,
we only provide an equivalent condition for the case that we are considering.

Proposition 3.5.2. Let Φ = [s0, φ] ∈ Γ(P′) be a Higgs field and w0 ∈ W a vacuum vector.
Assume that the action of G is defined by a unitary representation. Then, a gauge transformation
τ : B→ G is a unitary gauge for Φ with respect to w0 if and only if 〈〈τ(x) · φ(x), X ·w0〉〉W =

0 for all x ∈ B, X ∈ g or, equivalently, the image of τ · φ is orthogonal to the tangent space of
the orbit Ow0 , which is Tw0Ow0 = {X · w0 : X ∈ g}.

Proof. First, observe that the action of g on W is defined by skew-Hermitian matrices,
since the action of G on W is unitary and the Lie algebra of U(n) is u(n) = {A ∈
Mat(n × n; C) : A† = −A}. Then, 〈X · w, w′〉W = −〈w, X · w′〉W for all w, w′ ∈ W,
X ∈ g.

Moreover, as 〈〈·, ·〉〉W = Re(〈·, ·〉W) is symmetric, we get 〈〈w0, X · w0〉〉W = −〈〈X ·
w0, w0〉〉W = −〈〈w0, X · w0〉〉W , which implies 〈〈w0, X · w0〉〉W = 0 for all X ∈ g.

Then, if we write φ = w0 + ∆φ around w0 and express ∆φ in terms of the basis
u1, . . . , ud, v1, . . . , v2n−d of Tw0W, we find:

〈〈φ(x), X · w0〉〉W = 〈〈w0, X · w0〉〉W + 〈〈∆φ(x), X · w0〉〉W

= 0 + 〈〈 1√
2

d

∑
i=1

ai(x)ui +
1√
2

2n−d

∑
j=1

bj(x)vj, X · w0〉〉W

=
1√
2

d

∑
i=1
〈〈ai(x)ui, X · w0〉〉W

for all x ∈ B, X ∈ g. In the last equality we use that the elements bj(x)vj are orthogonal
to Tw0Ow0 for all j = 1, . . . , 2n− d.

Therefore, given a certain physical gauge transformation τ, the equality 〈〈τ(x) ·
φ(x), X · w0〉〉W = 0 holds for all x ∈ B, X ∈ g if and only if ai ≡ 0 for all i =

1, . . . , d, since ai(x)ui ∈ Tw0Ow0 . By the definition of unitary gauge, this proves the
proposition.

Example 3.5.3. In the case of the electroweak theory, for the chosen vacuum vector

w0 =
(

0√
µ

2λ

)
, we get (Tw0Ow0)

⊥ =<
(

0
1

)
>. Thus, in order to be orthogonal to Tw0Ow0 ,
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a unitary gauge τ must satisfy (τ · φ)(x) =
( 0

ψ(x)
)

for some smooth function ψ : B→ R.
It can be shown that such a gauge transformation exists (see [Ham17, Sect. 8.1.5]).

Therefore, by means of a unitary gauge, we are able to find a Lagrangian which
does not predict the existence of Nambu-Goldstone bosons. Hence, this solves one of
the discrepancies between the theory and the experimental results.

3.6 The Higgs mechanism

Throughout this section we explore how, by writing the Yang-Mills-Higgs Lagrangian
in terms of a Higgs field in unitary gauge, we can predict the existence of the massive
bosons found experimentally without adding any extra ones.

In the same framework than in the previous sections, let 〈·, ·〉g be an Ad-invariant
positive definite scalar product on the Lie algebra g, which exists because G is compact,
as mentioned in Section 3.2.

Definition 3.6.1. The mass form is the positive semi-definite bilinear symmetric form
given by:

m : g× g→ R

(X, Y) 7→ 〈〈X · w0, Y · w0〉〉W .

Consider the Lie algebra of the unbroken subgroup H = Gw0 , which we denote h ⊂
g, and its 〈·, ·〉g-orthogonal complement h⊥ ⊂ g, which verifies dim(h⊥) = dim(g) −
dim(h) = dim(G)− dim(H) = d.

Proposition 3.6.2. There exists a 〈·, ·〉g-orthonormal basis α1, . . . , αr of g on which the matrix
of the mass form is diagonal with m(αa, αa) =

1
2 M2

a , and satisfying that:

i) α1, . . . , αd is a basis of h⊥ with Ma > 0 (these αa are called broken generators).

ii) αd+1 . . . , αr is a basis of h with Ma = 0 (these αa are called unbroken generators).

The elements Ma are called the masses of the gauge bosons.

Proof. It suffices to observe that X · w0 = 0 for all X ∈ h, since the action of H on w0

is the identity. Hence, we have that m|h×g = m|g×h ≡ 0. Moreover, it can be seen that
Y · w0 6= 0 for all Y ∈ h⊥ \ {0} (see [Ham17, Sect. 3.2]). Thus, the restriction m|h⊥×h⊥ is
positive definite, by definition of the scalar product 〈〈·, ·〉〉W .

Now, we aim to write the Yang-Mills-Higgs Lagrangian in terms of these elements.
In particular, we are interested in the expression of the Lagrangian when we have a
unitary gauge.

First of all, we need to introduce some notation in order to express the Lagrangian
in local coordinates. To do so, we consider a local section s : U → B for some open
subset U ⊂ B with local coordinates {x1, . . . , xm} and we denote ∂µ = ∂/∂xµ. Then:
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i) Given a connection 1-form ω ∈ Ω1(P, g), we write ωµ := (s∗ω)(∂µ). These ele-
ments ωµ : U → g are also called gauge fields.

Moreover, with the basis α1, . . . , αr of g of Proposition 3.6.2, we can decompose
ωµ = ∑r

a=1 ωa
µ · αa. The elements ωa

µ : U → R are called broken and unbroken
gauge bosons, for a ∈ {1, . . . , d} and a ∈ {d + 1, . . . , r}, respectively.

ii) Let Φ = [s, φ] be a local section of the associated vector bundle P′. With the
local elements ωµ, we can express the local covariant derivative given by ω as
∇ω

µ Φ = [s,∇ω
µ φ] = [s, (∂µ + ωµ)φ], by definition of the covariant derivative on

associated vector bundles.

iii) Given the curvature 2-form Ωω ∈ Ω2(P, g) of ω, we set Ωµν := (s∗Ωω)(∂µ, ∂ν). By
the structure equation, it can be shown that locally we have Ωµν = ∂µων− ∂νωµ +

[ωµ, ων].

Besides, using the previous basis of g, we get Ωµν = ∑r
a=1 Ωa

µν · αa.

With these definitions, we can prove the following theorem:

Theorem 3.6.3. Let Φ = [s0, φ] be a Higgs field in unitary gauge with respect to w0 after
spontaneous symmetry breaking. Then, up to terms of second order in ∆φ and ωµ, we can
express the Lagrangian LYMH as:

LYMH(Φ, ω) ≈ 1
2

2n−d

∑
j=1

(∂µbj)(∂µbj)−
1
2

2n−d

∑
j=1

m2
vj

b2
j

+
1
2

d

∑
a=1

M2
aω

µ
a ωa

µ −
1
4

d

∑
a=1

(∂µων
a − ∂νω

µ
a )(∂µωa

ν − ∂νωa
µ)

− 1
4

r

∑
a=d+1

(∂µων
a − ∂νω

µ
a )(∂µωa

ν − ∂νωa
µ).

Proof. To begin with, by definition of LYMH and of the aforementioned local elements
we can write:

LYMH(Φ, ω) = 〈dωΦ, dωΦ〉P′ −V(Φ)− 1
2
〈Ωω

B , Ωω
B 〉Ad(P)

= 〈∇ωµφ,∇ω
µ φ〉W −V(φ)− 1

2
〈Ωµν, Ωµν〉g

= (∇ωµφ)† · (∇ω
µ φ)−V(φ)− 1

4
Ωµν

a Ωa
µν.

Now, we consider the shifted Higgs field with φ = w0 + ∆φ around the vacuum
vector w0 ∈W. Then, using the definition ∇ω

µ = ∂µ + ωµ, up to second order in ∆φ and
ωµ we get:

LYMH(Φ, ω) ≈ (∂µ∆φ)†(∂µ∆φ) + 2 · Re[(∂µ∆φ)†(ωµ · w0)] + (ωµ · w0)
†(ωµ · w0)

−V(φ)− 1
4
(∂µων

a − ∂νω
µ
a )(∂µωa

ν − ∂νωa
µ).
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Note that we have not yet used a unitary gauge. If we assume that Φ is in unitary
gauge with respect to w0 so that the Nambu-Goldstone bosons are identically 0, the
following is satisfied:

i) We can write ∆φ = 1√
2 ∑2n−d

j=1 bjvj where bj are the Higgs bosons. Hence,

(∂µ∆φ)†(∂µ∆φ) = 1
2 ∑2n−d

j=1 (∂µbj)(∂µbj).

ii) By definition of the basis v1, . . . , v2n−d, we have ∆φ(x) ∈ (Tw0Ow0)
⊥ for all x ∈ B.

Thus, Re[(∂µ∆φ)†(ωµ · w0)] ≡ 0, since (ωµ · w0)(x) ∈ g · w0 = Tw0Ow0 .

Moreover, by definition of the mass form, we can express:

(ωµ · w0)
†(ωµ · w0) = m(ωµ, ωµ) = m

(
r

∑
a=1

ω
µ
a αa,

r

∑
b=1

ωb
µαb

)
=

1
2

d

∑
a=1

M2
aω

µ
a ωa

µ.

Applying the previous equalities together with the expression of the Higgs potential
given in Theorem 3.4.12, we obtain the desired Lagrangian.

See [Ham17, Sect. 8.2] for a more detailed proof.

From the presented expression of the Lagrangian LYMH, we observe the following:

i) The d Nambu-Goldstone bosons ai have disappeared, while there are still 2n− d
Higgs bosons bj with associated mass mvj .

ii) There appear d massive broken gauge bosons ω1
µ, . . . , ωd

µ of mass Ma and r − d
massless unbroken gauge bosons ωd+1

µ , . . . , ωr
µ.

Remark 3.6.4. From a physics perspective, the term 〈dωΦ, dωΦ〉P′ describes an inter-
action (or coupling) between the Higgs field Φ and the gauge bosons wa

µ. This is in-
terpreted as an interaction between the particles of the matter field mediated by gauge
bosons. Furthermore, the appearance of massive gauge bosons is a consequence of this
coupling and the choice of a non-zero value of the vacuum vector w0, obtained after
spontaneous symmetry breaking.

In addition, the terms of order higher than two, which we have not considered
in here, are also interpreted as a direct interaction between Higgs bosons and gauge
bosons, also self-interactions.

Definition 3.6.5. The presented method of creating masses for gauge bosons without
changing the invariance under gauge transformations is called the Brout-Englert-Higgs
mechanism.

Example 3.6.6. Let us now consider again the case of the electroweak interactions. Re-
call that with our choice of principal bundle and Lie group we had 2n = dim(W) = 4,
r = dim(G) = 4, and d = dim(G) − dim(H) = 3. Then, the theory predicts d = 3
massive gauge bosons (which correspond to W+, W−, and Z), r− d = 1 massless gauge
boson (corresponding to the photon), and 2n− d = 1 Higgs boson (see [Ham20, Sect. 8]
for a detailed derivation of the bosons). Thus, the theory is finally consistent with the
experimental results.



Summary and conclusions

Throughout the last century, gauge theories turned out to be the cornerstone of the
development of modern physical theories that aim to encompass all the known interac-
tions of the physical universe, even though there is still a long way to go to achieve this
goal. In particular, the Standard Model has repeatedly proven its undeniable success
with the extreme accuracy shown in many of its experimental predictions.

In this work, we tried to offer a glimpse of some of the intricacies of this theory. Step
by step, we provided a brief but thorough mathematical overview of bundle theory.
The constructions presented constitute the fundamental objects of interest in gauge
theories. Then, beginning with the exposition of a general, classical Yang-Mills theory,
we saw how Maxwell’s equations of classical electromagnetism can be obtained within
this formalism. After stating some of its shortcomings, we examined the methods that
have been developed to explain electroweak interactions as a Yang-Mills theory, in a
way compatible with real-world observations. With this aim, we introduced the Higgs
mechanism and analyzed its usage of spontaneous symmetry breaking and unitary
gauges.

However, in order to present an exhaustive explanation of these interactions, as
done in the Standard Model, there is still a long list of topics that need to be covered.
Starting with the particles complementary to bosons, namely fermions, which require
concepts such as the Dirac Lagrangian or Yukawa couplings to be added to the theory
(see [Ham20]). Moreover, only a quantized version of these theories is applicable to
the real world. But the process of quantization involves techniques, as the process of
renormalization, which are far beyond the scope of this work.

In addition, the Standard Model itself remains an incomplete theory, mainly because
it has not still integrated gravity with the other fundamental interactions and there are
still some inconsistencies with the experimental results, such as the mass of certain
particles (an overview of these subjects can be found in [Ham17, Chapt. 9]).

On the other hand, from a purely mathematical point of view, there are also some
interesting questions that still need to be addressed. For instance, the existence of
unitary gauges in more general theories.

Even though I would have very much liked to continue exploring these topics and
they can serve as ideas for subsequent work, the subjects that I have delved into ap-
peared to be equally interesting and indispensable.

To conclude, this work has given me an insight into one fraction of the profound
connection between mathematics and physics, and has allowed me to approach the
world of particle physics from a totally unknown perspective, which has captivated
me. I can just hope that I have been able to depict in a comprehensible manner what
represents the germ of an extremely complex formalism.
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