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Imaging genetic studies aim to test how genetic information influences brain structure and function by
combining neuroimaging-based brain features and genetic data from the same individual.
Most studies focus on individual correlation and association tests between genetic variants and a single

measurement of the brain. Despite the great success of univariate approaches, given the capacity of neu-
roimaging methods to provide a multiplicity of cerebral phenotypes, the development and application of
multivariate methods become crucial.
In this article, we review novel methods and strategies focused on the analysis of multiple phenotypes

and genetic data. We also discuss relevant aspects of multi-trait modelling in the context of neuroimag-
ing data.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Genetics plays an important role and provides valuable insights
into the etiology of common brain diseases. Genome-wide associ-
ation studies (GWAS) have identified thousands of genetic variants
associated with complex diseases [1]. However, when focusing on
brain diseases, mapping genetic associations becomes particularly
challenging. Among the possible reasons, their genetic and pheno-
typic complexity provides inconclusive results, as well as the diffi-
culty assessing clinical diagnosis due to the existence of
heterogeneity between individuals with the same diagnosis. This
raises the question of using neuroimaging brain-based features
as intermediate phenotypes, allowing a biologically more plausible
manner to assess these complex associations [2].

Neuroimaging endophenotypes are quantitative measurements
of the brain used to disentangle genetic susceptibility for complex
neurological diseases and psychiatric [3]. Neuroimaging tech-
niques can provide a wide variety of cerebral phenotypes associ-
ated with the brain’s morphology (through structural magnetic
resonance imaging (MRI), for instance), presence of lesions (e.g.
microbleeds), measurements related to brain function (through
functional MRI (fMRI) or fluorodeoxyglucose (FDG)-positron emis-
sion tomography (PET) imaging, for example) or the burden of
molecular pathology (e.g amyloid and tau PET). Several studies
have shown that brain endophenotypes generally seem to be
shaped by genetic influences, which suggests that studying genet-
ics and the brain jointly can refine our understanding of the etiol-
ogy of neurological disease [4–6].

Neuroimaging data is commonly structured as a matrix, where
each endophenotype becomes a single variable (column) for which
a number of observations are available (rows). This structure is
often maintained regardless of the source (e.g. disease studied),
modality (e.g. sMRI, fMRI, DTI), units (e.g. voxels, volumes), num-
ber or combination of endophenotypes. Genetic data presents an
analogous structure, where each variable is the genotype of a
genetic variant (e.g. SNP, structural variant), observed in the same
individuals from which neuroimaging data has been collected. In
both cases, the variables studied are not independent, due to inter-
connected brain networks and linkage disequilibrium, respectively.

Imaging genetic (IG) studies started analyzing how candidate
genes and genetic variants affected brain endophenotypes, using
correlation or linear regression models. Later, IG studies focused
on the genome-wide effects through GWAS to leverage high-
throughput genetic variant data [7,8]. In both strategies, neu-
roimaging traits were modeled as outcome variables. However,
despite the increasing availability of brain endophenotype data,
most GWAS in the field test associations between genetic variants
and a single brain phenotype at a time, that is, in a univariate fash-
ion [9,10]. Assessing every brain outcome independently ignores
the genetic correlation structure (i.e., pleiotropy) among multiple
phenotypes, and implies a strict penalization for the significance
threshold due to multiple hypothesis testing [11]. Altogether, this
translates into reduced statistical power. In addition, since neu-
roimaging techniques already provide a quantitative measurement
of the phenotype of interest across different brain subregions, mul-
tivariate approaches are particularly well suited to conduct IG
studies.

Nowadays, some studies in the IG field have begun to explore
the interplay between genetic variants and multiple phenotypes
using multivariate approaches, aiming to identify associations at
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a genome-wide, whole-brain scale [12–14]. In these studies, brain
features can be used either as outcomes or as independent vari-
ables in combination with genetic data, depending on the method-
ological approach. In contrast to univariate analysis, multivariate
methods are able to leverage phenotype correlations due to shared
genetic or environmental factors, while reducing the multiple test-
ing burden, resulting in higher statistical power to identify signif-
icant associations. In addition, multi-phenotype analysis may
reveal pleiotropic variants, providing new insights into the com-
plex genetic architecture of brain endophenotypes and, eventually,
helping to clarify their underlying biology.

Our aim with this review is to describe the methods currently
employed in IG studies for the analysis of multiple traits, as well
as those that are not widely used yet, but may be of great interest
for researchers in the field in the near future. We also discuss rel-
evant aspects of multi-trait modelling in the context of neuroimag-
ing data.

2. Methods for the analysis of multiple phenotypes

Given the high dimensionality of neuroimaging data, methods
for multi-phenotype analysis become a natural choice in IG stud-
ies. These approaches can be classified into three main groups:
methods based on linear combinations of multiple phenotypes,
multivariate regression models and Bayesian strategies [Fig. 1,
Table 1]. Overall, they can be applied regardless of the source of
the neuroimaging traits.

2.1. Linear combinations of multiple phenotypes

These methods explore the multivariate structure of the data,
aiming to select representative components and generate new
responses based on combinations of multiple phenotypes.

Principal Component Analysis (PCA) is the traditional method
used to reduce the number of phenotypes from large datasets
[15,16]. PCA uses an orthogonal transformation to derive new phe-
notypes (principal components) that are linear combinations
(lower-dimensional representations) of the original phenotypes.
The first principal component is the direction in the orthogonal
space along which the variance of the multiple phenotypes is max-
imized, and so on. Thus, PCA can be employed to decompose mul-
tiple phenotypes into components that can be used in subsequent
univariate regression analyses as dependent variables [17,18].

The Independent Component Analysis (ICA) [19,20] and its var-
ious related algorithms are an extension of PCA. In ICA, data vari-
ables are assumed to be linear or nonlinear mixtures of unknown
latent variables. The latent variables are assumed non-gaussian
and mutually independent and they are called the independent
components of the observed data. ICA is suitable to extract inde-
pendent components from multiple phenotype measurements
and it is extensively used in IG studies [21–23]. [22] performed a
large scale multivariate ICA identifying significant imaging-
genetic relationships for Alzheimer’s Disease (AD). [21] used ICA
to extract independent component values from connectivity brain
measurements to assess their association with genetic variants
related with the risk of schizophrenia. More recently, [23] used
ICA to extract features from structural brain data, and searched
for genetic variants associated with these brain-related features.
In addition, multi-modal order methods based on ICA have been
proposed to deal with the selection of the optimal number of inde-



Fig. 1. Framework of analytical strategies for multiple phenotype assessment. *Year of these publications corresponds to a literature review describing this family of methods.
Legend: BGSMTR: Bayesian group sparse multi-task regression model; CCA: Canonical Correlation Analysis; GLM: General Linear Model; ICA: Independent Component Analysis; ICA-
MFA: Independent Multiple Factor Association Analysis for Multiblock Data; L2R2: Bayesian longitudinal low-rank regression; LMM: Linear Mixed Model; MANOVA: Multivariate
Analysis of Variance; MFA; Multiple Factor Analysis; PCA: Principal Component Analysis; sRRR: sparse Reduced Rank Regression. This schematic representation was created with
Biorender (�BioRender - biorender.com).
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pendent components in neuroimaging studies. For instance, [24]
used healthy unrelated subjects from the WU-Minn Human Con-
nectome Project [25] to show the improvement in the selection
of components when the method follows a free order model. [26]
also proposed a method to capture information at multiple model
orders, showing an improvement in classifying brain patterns of
schizophrenia individuals vs healthy controls.

The use of ICA-related methods to integrate multimodal data is
becoming increasingly widespread. The main objective remains to
simultaneously maximize independence and correlation linkage
across variables by combining ICA with other methods such as
Canonical Correlation Analysis (CCA). For instance, [27] proposed
a multi-site canonical correlation analysis fusioned with ICA
(MCCAR + jICA), which takes advantage of cross-information
among multiple neuroimaging modalities to search for common
patterns in brain endophenotypes related to brain disorders. Using
this method, similar brain networks were identified in two inde-
pendent cohorts, suggesting working memory deficits in
schizophrenia individuals. More studies applying extended ICA-
based methods in IG studies are described in [28,29].

Regarding CCA, this method allows to derive the relationship
between two sets of variables measured in the same individuals
(e.g. X and Y). It finds linear combinations of X and Y which have
maximum correlation with each other. A comprehensive summary
of CCA and its variants is presented in [30]. Specifically in the IG
context, several CCA-based methods have been applied, providing
higher precision, compared to previous approaches, on assessing
the correlation patterns of multiple phenotypes [31–33]. Most of
these methods extract variables co-occurring across imaging phe-
notypes and modalities together with genomic information. For
instance, [32] and [33] combined sparse regression and CCA to
extract significant sets of fMRI units (voxels) and genetic variants,
whereas [31] combined linear regression analysis with CCA to
extract features from multiple imaging phenotypes obtained in
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schizophrenic patients through fMRI and epigenetics. MV-PLINK
is also a well known method based on CCA to simultaneously ana-
lyze multiple phenotypes. In MV-PLINK, CCA extracts the linear
combination of phenotypes that has maximum correlation with a
given genetic variant [34]. Although no studies applying MV-
PLINK to brain phenotypes were found, interesting related works
rely on this approach [35]. Alternatively, MultiPhen [36], uses ordi-
nal regression instead of CCA to test for the association between a
linear combination of phenotypes and each genetic variant. In Mul-
tiPhen, genetic data is modeled as an ordinal outcome and the mul-
tiple phenotypes are treated as the explanatory variables. An
extension of MultiPhen was also developed [37], proposing a mul-
tiple phenotype procedure based on cross-validation of the predic-
tion error (MultP-PE), which controlled well type I error rates and
performed consistently better than MultiPhen.

Multiple Factor Analysis (MFA) is another well known strategy
to integrate multiple phenotypes or datasets [38]. By applying
MFA, we can evaluate how much the combination of the vari-
ables/datasets contributes to the inertia extracted by a unique
component. Even with the potential advantages of MFA, few IG
studies to date have used this methodological approach [39,40].
In [39], a sparse MFA framework was proposed. This framework
first applied LASSO (least absolute shrinkage and selection opera-
tor) procedure to extract relevant genetic and brain features asso-
ciated with hyperactivity and inattention domains. Then, these
features were used as input for the MFA. Moreover, [40], proposed
an extension of MFA based on ICA (ICA-MFA). This method
implemented an independent component value decomposition of
multiple datasets and multiple variables allowing non-normal
and non-linear distributions. The application of this method
showed the improvement in performance compared to MFA.

All these methods are characterized by being computationally
faster than most of the approaches described below. However, sev-
eral limitations must be considered. First, the loadings of the



Table 1
Summary of methods and software for multivariate analysis of multiple phenotypes/datasets.

Method Type Reference Description Pros Cons Implementation R-function{R-package}/ Script

PCA-based
methods

Linear
Combination
Method

Pearlson

et al.

(2015)

Principal
Component
Analysis

Computationally
faster than other
methods.

High dependency of
input data. Lack of
generalizability.
Biologically
meaningless.

Matlab https://trendscenter.

org/software/fit/

MV-PLINK Linear
Combination
Method

Ferreira

and

Purcell

(2008)

Based on
Canonical
Correlation
Analysis

C++, Command-
line

https://genepi.qimr.edu.au/

staff/manuelF/multivariate/main.

html

MELODIC Linear
Combination
Method

Beckman

and Smith

(2004)

Probabilistic
Independent
Component
Analysis for
fMRI

GUI, Command-
line

https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/MELODIC#Research_

Overview

ICA-MFA Linear
Combination
Method

Vilor-

Tejedor

et al.

(2019)

Independent
Multiple
Factor
Association
Analysis for
Multiblock
Data

R/GitHub {ICA-MFA}

MFA Linear
Combination
Method

Lê, Josse

and

Husson

(2008)

Multiple
Factor
Analysis

R/CRAN MFA{FactoMineR}

MultiPhen Linear
Combination
Method

O’Reilly

et al.

(2012)

Joint Model of
Multiple
Phenotypes

R/CRAN {MultiPhen}

MultP-PE Linear
Combination
Method

Yang et al.

(2019)

Multiple
Phenotypes
based on
cross-
validation
Prediction
Error

R https://pages.mtu.edu/

~shuzhang/software/MultP-PE.R

GEMMA Regression-
based
Approach

Zhou and

Stephens

(2014)

Genome-wide
Efficient
Mixed Model
Association

Flexibility.
Efficiency.

Strong distributional
assumptions.
Permutations.
Requirement of
multivariate normality
and homoscedasticity.
Inflated type I error
rates.

C/C++ http://stephenslab.uchicago.

edu/software.html

GAMMA Regression-
based
Approach

Jo et al.

(2016)

Generalized
Analysis of
Molecular
variance for
Mixed-model
Analysis

R/C {vegan}; MEMMA{sommer}

mvLMMs Regression-
based
Approach

Furlotte

and Eskin

(2015)

Multivariate
Linear Mixed
Models

Python http://genetics.cs.ucla.edu/

mvLMM

mtSet Regression-
based
Approach

Casale

et al.

(2015)

multi-trait Set
test

Python https://github.com/limix/limix

SNPtest Bayesian
Modeling

Marchini

et al.

(2007)

Multipoint
method for
genome-wide
association
studies via
imputation of
genotypes

Interpretability.
Adaptability.

Need of specifying a
prior probability
distribution for the
alternative hypothesis.
High computational
cost.

Java, C++,
Command-line

https://mathgen.stats.ox.ac.

uk/genetics_software/snptest/

snptest

PleioGRiP Bayesian
Modeling

Hartley

and

Sebastiani

(2013)

Genetic risk
prediction
with
pleiotropy

Java http://hdl.handle.net/2144/4367

mvBIMBAM Bayesian
Modeling

Stephens

(2013)

Bayesian
approach for
genetic
association
analysis of
multiple
related
phenotypes

C/C++ {mvBIMBAM}

(continued on next page)
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Table 1 (continued)

Method Type Reference Description Pros Cons Implementation R-function{R-package}/ Script

GLRR Bayesian
Modeling

Zhu et al.

(2014)

Bayesian
Generalized
Low Rank
Regression
Models

R/GitHub {L2R2}L2R2 Bayesian
Modeling

Lu et al.

(2017)

Bayesian
longitudinal
low-rank
regression

R/GitHub {L2R2}

BGSMTR Bayesian
Modeling

Greenlaw

et al.

(2017)

Bayesian
group sparse
multi-task
regression
model for
imaging
genetics

R/CRAN {bgsmtr}

N. Vilor-Tejedor, D. Garrido-Martín, B. Rodriguez-Fernandez et al. Computational and Structural Biotechnology Journal 19 (2021) 5800–5810
extracted components depend on the input data, and so slight dif-
ferences between datasets may yield vastly different loadings. As
such, there are constraints in generalizing findings related to the
components from one dataset to another [41]. Second, these com-
ponents maximize the explained (co)variance or correlation, but
they may not properly represent the underlying biology. Thus,
interpreting the findings can be unintuitive.

2.2. Multivariate regression models

Although multivariate regression models have been less applied
to IG studies than the previous group of methods, they are proba-
bly the most versatile approaches to identify associations between
multiple phenotypes and genetic variants.

These methods generally regress a matrix of m phenotypes
measured in n individuals onto a set of covariates, including the
genotype at the variant(s) of interest. They include variations from
the general linear model, such as multivariate analysis of variance
(MANOVA) or multivariate linear mixed models (mvLMMs), as well
as multivariate generalized linear models (mvGLMs) and general-
ized estimating equations (GEEs). Regularized and nonparametric
alternatives are also available.

Analogously to its univariate counterpart, MANOVA (equiva-
lently, MANCOVA, when additional covariates need to be
accounted for) decomposes the total covariance of the response
variables, comparing the covariance explained by the genotype
with the residual covariance. MANOVA can be performed using dif-
ferent test statistics (e.g. Wilks’ lambda, Pillai’s trace, etc.). Inter-
estingly, MANOVA (Wilks’ lambda) is equivalent to CCA when
the latter is applied using a single variant at time, as in MV-
PLINK [42]. This illustrates the close relationship between
approaches leveraging multiple phenotypes, even if grouped here
in different categories. MANOVA can be considered the direct mul-
tivariate equivalent of the univariate GWAS approach, and it has
been recently compared with the latter in the context of neu-
roimaging studies [43].

A nonparametric alternative to MANOVA is PERMANOVA (per-
mutational multivariate analysis of variance, also referred to as
multivariate regression analysis of distance matrices) [44,45]. PER-
MANOVA computes the similarity (or distance) between pairs of
individual samples and performs a covariance decomposition anal-
ogous to MANOVA. In contrast to MANOVA, it does not assume
errors to follow multivariate normal (MVN) distributions. How-
ever, it relies on permutations for significance assessment. This
results in a large p-value lower bound (the smallest p-value that
can be achieved is approximately 1/(P + 1), where P is the number
of permutations) and in running times increasing dramatically
with the number of individuals and permutations, hindering its
usage in large-scale GWAS studies.

In the context of GWAS studies, population stratification (large-
scale, systematic differences in ancestry) and relatedness (either
family structure or cryptic relatedness among individuals with
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no known family relationships) are well known to result in inflated
type I errors [46]. Although methods such as MANOVA can account
for population stratification by including the top genotype princi-
pal components as covariates in the model, they are sensitive to
relatedness. In this regard, mvLMMs have become very popular
in recent years, given that they can naturally incorporate related-
ness as a random effect in the model. However, fitting mvLMMs
(often involving restricted maximum likelihood estimation, REML)
is computationally intensive and may be slow in large datasets
with a large number of individuals and phenotypes, despite contin-
uous implementation enhancements [47–49]. A widely used
mvLMM implementation is available in GEMMA [48]. In GEMMA,
the running time per genetic variant increases quadratically with
the number of individuals, which makes computationally tractable
the analysis of datasets of moderate size (n < 50,000, approxi-
mately). Analogously, only a modest number of phenotypes can
be studied (e.g., m � 2–10). As a general rule, available mvLMMs
implementations scale better with respect to n than with respect
to m. An exception is GAMMA [50], which scales linearly with
the number of phenotypes, and cubically with the number of indi-
viduals. GAMMA combines the LMM and PERMANOVA frame-
works. Hence, it requires permutations for significance
assessment and presents the limitations pointed out above.

To date, most mvLMM implementations include a single vari-
ance component (i.e. relatedness). However, recent advancements
have allowed to efficiently incorporate additional variance compo-
nents. This is the case of mSet [51], which models the sum of the
contribution from the variants in the genetic region to be tested
(‘‘set component”) as a random factor, in addition to relatedness.
mSet scales similarly to GEMMA with respect to n and m, although
it does not assess significance of individual genetic variants, but
rather of genomic regions of custom size.

MANOVA and mvLMMs assume that the model errors are MVN-
distributed. Although they are relatively robust to violations of this
assumption, both methods can lead to inflated type I errors in the
presence of strong outliers, especially in the case of low minor
allele freqüències (MAFs) [36]. As a result, normalization proce-
dures such as rank-based inverse quantile transformation of the
phenotypes (a methodology that replaces the sample quantiles
by quantiles from the standard normal distribution) are commonly
applied. Nevertheless, it is unclear whether these transformations
always result in higher power and controlled type I errors com-
pared to modeling the untransformed data [52].

Hence, MANOVA and mvLMMs are sometimes replaced by the
more flexible framework provided by multivariate generalized lin-
ear models (mvGLMs), which allow error distributions from the
exponential family, and therefore discrete outcomes. For instance,
for multivariate count data (e.g. microbleed counts across brain
subregions), a common choice is the multinomial-logit GLM. Per-
vasive overdispersion (variance of the phenotypes higher than
expected) and complex correlation structures have led to the
development of alternative models (boosted by the advent of
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RNA-seq technologies in the field of transcriptomics), such as
Dirichlet-multinomial or negative-multinomial GLMs [53,54].
Analogously to mvLMMs, mvGLMs can be extended to incorporate
random factors. However, mvGL(M)Ms require one to correctly
specify the model, including the correlation structure among the
multiple phenotypes, which is often difficult, and fitting them is
computationally demanding. As a result, they are not routinely
used in multivariate GWAS studies. Some of these difficulties
may be overcome by generalized estimation equations (GEE), a
semi-parametric approach which just assumes marginal pheno-
type distributions to follow univariate generalized linear error
models [55]. GEE require defining the link function and a ‘‘work-
ing” covariance matrix, being relatively robust to misspecification
of the latter [56]. They have been often employed in GWAS, includ-
ing in the field of IG, although they may not offer a good control of
type I error in some scenarios [57].

The multivariate linear regression framework can be also
employed to model the joint effect of many genetic variants in
multiple phenotypes. However, in this scenario, the number of
independent variables of interest could be larger than the number
of observations. In addition, due to linkage disequilibrium (LD),
multicollinearity may arise. To address these issues, regularized
models, such as sparse reduced rank regression (sRRR), have been
proposed [58]. For instance, sRRR was employed to identify genetic
variants associated with voxel-wise longitudinal changes in the
brain of AD patients [59]. Nevertheless, while these approaches
allow to select a set of relevant genetic variants, they often lack
an appropriate multivariate hypothesis testing setting to assess
the significance of each variant’s effect on the multiple phenotypes.

Multivariate regression strategies provide highly flexible and
relatively efficient tools to study the genetic architecture of brain
imaging endophenotypes. However, they are not exempt from lim-
itations. Overall, they tend to make strong distributional assump-
tions on the error distributions, which often do not hold.
Although nonparametric alternatives are available, they generally
rely on permutations for significance assessment, and are thus
impractical for large GWAS. In addition to multivariate normality,
multivariate homoscedasticity (i.e. homogeneity of covariance
matrices) is often required, and the violation of this assumption
leads to markedly inflated type I errors, particularly in the case of
low minor allele frequencies. Albeit the impact of heteroscedastic-
ity may be reduced in mvGLMs or mixed models, as stated above,
these require either defining a priori the variance structure (which
can be difficult in large and complex biological datasets), or infer-
ring it from the data (which is slow).

2.3. Bayesian approaches

Bayesian inference approaches have been implemented in the
context of multivariate analyses in several genetic software, such
as the widely used SNPtest [60], the multivariate version of BIM-
BAM [61] and, PleioGRiP [62]. All these software calculate a ratio
between the probability distribution of the data under twomodels:
the null hypothesis of no association and the alternative hypothe-
sis. This ratio, called Bayes Factor (BF), represents an alternative to
the classical use of p-value in frequentist approaches [63]. BFs are
specially beneficial in the context of multivariate settings since
they can be easily combined into a weighted average measure
across different genetic variants, as implemented in SNPtest, or
across several models at a given genetic variant, as implemented
in mvBIMBAM. Further, mvBIMBAM introduced the idea of divid-
ing the potentially associated genetic variants in two groups: those
directly and those indirectly associated with one or more pheno-
types. This division increases the interpretability of the multivari-
ate analysis, although it is made according to statistical
relationships rather than based on biology [61]. Lately, PleioGRiP
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introduced the use of Naive Bayesian classifiers to find pleiotropic
associations between genetic variants and multiple phenotypes
[64].

In the context of IG studies, several Bayesian methods have
been also applied to the multivariate analysis of MRI data. [65] pro-
posed a Bayesian generalized low rank regression model (GLRR),
able to handle the high-dimensionality of the data which charac-
terizes IG analysis. GLRR also integrates an efficient Markov chain
Monte Carlo algorithm for posterior computation. The application
of GLRR has led to the description of novel associations between
relevant genetic variants associated with AD [66] and brain
endophenotypes from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [67]. [68] developed a Bayesian longitudinal low-
rank regression (L2R2) model as an adaptation of GLRR for longitu-
dinal designs. L2R2 is characterized by approximating the low-
rank matrix including penalized splines that account for overall
time effect, and a sparse factor analysis model coupled with ran-
dom effects to cover the within-subject spatio-temporal correla-
tions of longitudinal imaging endophenotypes. Finally, [69]
proposed a novel Bayesian group sparse multi-task regression
model (BGSMTR) focused on integrating multiple structural brain
endophenotypes with genetic information. This approach adapted
a sparse regularization method primarily defined to group genetic
variants by genes or LD blocs [70] into a method able to group
genetic variants by brain imaging endophenotypes. BGSMTR was
applied on the multivariate association analysis of relevant genetic
variants for AD. However, the computational complexity of this
method makes its application to IG studies infeasible without a
previous selection of relevant genetic variants..

Bayesian methods provide interesting advantages compared to
frequentist approaches. For instance, in terms of interpretability
of the results. They also overcome limitations that are intrinsic to
the use of p-values in assessing true associations between genetic
variants and multiple phenotypes [71,72]. Moreover, they provide
a setting that can be adapted to a wide range of scenarios (e.g. hier-
archical models) and are able to deal with missing data problems.
However, some considerations associated with Bayesian models
include the need of specifying a prior probability distribution for
the alternative hypothesis. The prior distributions will determine
the genetic models that will be finally tested by the BF. Thus, they
should be cautiously selected according to the scientific question.
Additionally, Bayesian analysis often comes with a very high com-
putational cost, especially for models involving a large number of
variables [73].
3. Discussion and future perspective

The analysis of neuroimaging and genetic data is highly relevant
in elucidating the etiology of neurological diseases. However,
despite the intrinsically multivariate nature of neuroimage-
derived phenotypes, they are still typically analyzed using univari-
ate strategies. In addition to the increased statistical power offered
by multivariate methods, the joint analysis of multiple imaging
phenotypes and genetic data can help us to gain new insights on
phenomena, such as pleiotropic effects, that are difficult to capture
through standard univariate analyses.

In this review, we discussed methods commonly applied -or
that can be potentially applied- in IG studies for the analysis of
múltiple quantitative phenotypes, as well as examples of their
application [Table 2]. Although we have grouped them into three
broad categories (i.e. linear combinations of multiple phenotypes
and/or datasets, multivariate regression models, and Bayesian
approaches), we want to emphasize that the different methods
are often related, and in some cases could even be considered com-
plementary views of the same approach. Note also that we focused



Table 2
Summary of studies applying multiple phenotype strategies in Imaging genetic studies.

Author Project/Consortium Neuroimaging
modality

Omics data Statistical Modelling

Meda et al., (2012) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs ICA
Vounou et al., (2012) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs sRRR
Wang et al., (2012) Alzheimer’s Disease Neuroimaging Initiative sMRI, FDG-PET SNPs sparse multimodal MTL
Mounce et al., (2014) Mind Clinical Imaging Consortium DTI SNPs ICA
Nazeri et al., (2014) Alzheimer’s Disease Neuroimaging Initiative TBM, sMRI Proteomics PICA
Zhang et al., (2014) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs GEE
Zhu et al., (2014) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs L2R2
Du et al., (2015) Alzheimer’s Disease Neuroimaging Initiative fMRI SNPs CCA
Peng et al., (2016) Alzheimer’s Disease Neuroimaging Initiative MRI, PET SNPs Structured Sparse Kernel Learning
Greenlaw et al., (2017) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs BGSMTR
Liu et al., (2017) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs, Gene

expression
SCCA

Lu et al., (2017) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs L2R2
Singanamalli et al., (2017) Alzheimer’s Disease Neuroimaging Initiative sMRI, FDG-PET Proteomics CaMCCo
Yan et al., (2017) Alzheimer’s Disease Neuroimaging Initiative sMRI Proteomics SCCA
Kircher et al., (2018) FOR2107 Consortium sMRI, fMRI Multi-Omics Multiple methods applied: data reduction;

mixed models; machine learning
Ning et al., (2018) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs Neural network
Vilor-Tejedor et al., (2018) BRain dEvelopment and Air polluTion ultrafine

particles in scHool childrEn
sMRI SNPs LASSO + MFA

Wachinger et al., (2018) Alzheimer’s Disease Neuroimaging Initiative sMRI SNPs Mixed model
Zille et al., (2018) Philadelphia Neurodevelopmental Cohort fMRI SNPs CCA
Bai et al., (2019) Mind Clinical Imaging Consortium fMRI Epigenetics CCA
Vilor-Tejedor et al., (2019) Rotterdam study sMRI SNPs ICA-MFA
Soheili-Nezhad et al., (2020) Alzheimer’s Disease Neuroimaging Initiative TBM, sMRI SNPs ICA
Vilor-Tejedor et al., (2020) Rotterdam Study sMRI SNPs Mixed model
Wu et al., (2020) UK Biobank sMRI SNPs Adaptive multi-trait association test

Legend: BGSMTR: Bayesian group sparse multi-task regression model; CaMCCo: Cascaded Multi-view Canonical Correlation; CCA: Canonical Correlation Analysis; CT:
Computed tomography; DTI: Diffusion Tensor Imaging; FDG: fluorodeoxyglucose; fMRI: functional Magnetic Resonance Imaging; GEE: Generalized Estimation Equations;
ICA: Independent Component Analysis; ICA-MFA: Independent Multiple Factor Association Analysis for Multiblock Data; ISGC: International Stroke Genetics Consortium;
L2R2: Bayesian longitudinal low-rank regression; LASSO: Least Absolute Shrinkage and Selection Operator; MANOVA: Multivariate Analysis of Variance; MFA; Multiple Factor
Analysis; MTL: Multi-Task Learning; PET: Positron Emission Tomography; PICA: Parallel Independent Component Analysis; SCCA: Sparse Canonical Correlation Analysis;
sMRI: structural Magnetic Resonance Imaging; SNPs: Single Nucleotide Polymorphisms; sRRR: sparse Reduced Rank Regression;TBM: Tensor-Based Morphometry.
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on quantitative endophenotypes, and that most methods described
here may not be suited for the analysis of categorical data. Finally,
further considerations that should be taken into account in current
and future IG studies are discussed below.

3.1. Statistical power

Although the analysis of multiple phenotypes reduces the num-
ber of statistical comparisons, large samples are still required to
increase statistical power. Statistical power can be boosted
through the use of larger sample sizes, particularly by joining glo-
bal consortia collaborations [74,75] or by using publicly available
data from biobanks and other resources [76]. Nevertheless, it can
also be improved by reducing the measurement error in both
fields. Moreover, advances in DNA sequencing and reductions in
costs associated with its acquisition, will ease the way for obtain-
ing whole genome sequences. For neuroimaging modalities, such
as PET data, the problem is to acquire sufficiently large datasets,
given the use of ionizing radiation (and associated costs). In addi-
tion, improvements on the quality control of neuroimaging data,
specifically on increasingly large datasets, could also help to obtain
precise MRI-derived quantifications [77]. Finally, we can increase
statistical power by using smarter data analysis, and developing
more powerful statistical techniques. For instance, the combina-
tion of different multivariate approaches has also been proposed
as an alternative for increasing significantly association findings
[61].

3.2. Multivariate vs meta-analysis (summary-statistic-based)
approaches

The multivariate methods described above require individual-
level data on phenotypes and genotypes, and estimate the pheno-
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type variances and covariances directly from the observed mea-
surements. Although not discussed here, several methods have
been proposed to leverage univariate summary-statistics (esti-
mated effect sizes and standard errors, Z-statistics or association
p-values) from published GWAS in a meta-analysis-like approach.
Some examples include SHom/SHet [78], metaCCA [79], MTAG [80]
or MTAR [81]. They often rely on the assumption that, under the
null hypothesis, summary Z-statistics from univariate tests per-
formed on individual phenotypes have an asymptotic multivariate
normal distribution with correlation equal to the phenotype corre-
lation matrix. In recent years, this strategy has become very popu-
lar, being employed for the analysis of multiple phenotypes in a
wide variety of scenarios, including IG studies [82–84]. The main
advantage of these approaches is their ability to carry out fast
GWAS analyses across many phenotypes and with very large sam-
ple sizes, without requiring complex and time-consuming access to
individual-level data. Nevertheless, they are limited by the nature
of the univariate analyses upon which they are based (sample size,
power, assumptions, data transformations, etc.). In addition, esti-
mating the phenotype correlation matrix from summary statistics
is not trivial, and can be affected, among others, by LD or the phe-
notype heritability, which if not accounted properly may lead to
biased estimates [81,85].

3.3. Longitudinal designs

Much of the existing work in the field, as we previously
described, analyzes neuroimaging data cross-sectionally, which
does not provide information about changes in the structure and
functionality of the brain over time. A better understanding of
the longitudinal trajectories of brain endophenotypes would
improve our knowledge of the underlying biological characterisa-
tion of complex neurological diseases [86–88]. For example, appli-
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cation of mixed-effect models to longitudinal brain imaging data
has helped to identify a large number of significant genetic-
multiphenotype associations [89,90]. Overall, this is an important
topic that needs to be further investigated.

3.4. Integration of different types of Omics and Imaging modalities

A critical challenge in IG studies is to model an even greater
complexity of genetic effects on the brain. Most neuroimaging
studies have examined only two sources of biological data at a time
(e.g., genetic variants and structural MRI). However, combining
multiple omics would provide a better understanding of the under-
lying biological mechanisms of neurological diseases [91,92]. In
addition, integrating multiple sources of neuroimaging -beyond
than just two modalities- with omics data becomes relevant to
amplify the synergistic value of IG studies (e.g., genomics, tran-
scriptomics, proteomics, metabolomics, morphological MRI, DTI,
or functional MRI) [93–95]. In that regard, the implementation of
integrated data platforms such as the Brain Imaging Data Structure
(BIDS) [96] and the BIDS genetics extension [97] facilitates data
search and analytical procedures by aggregating genetic and neu-
roimaging features across studies.

Some studies have demonstrated the integration of gene
expression data and genetic markers to facilitate the detection of
markers that are both associated with brain endophenotypes and
highly expressed in the brain [98]. Moreover, the integration of
genetic neuroimaging methods with epigenetics, known as imag-
ing epigenetics, promises to provide deeper insights into the causa-
tive pathways through which genes and environment interact
during life and impact human brain development [99,100]. Other
studies have also started to analyse proteomics and
neuroimaging-based features as potential biomarkers of the basis
for computing essential cell functions to identify the best pro-
teomic model for the diagnosis, monitoring, and prediction of com-
plex neurological disorders [101,102].

3.5. Imaging gene-environment interaction models

Research focused on multivariate modeling of gene-
environment interactions has recently emerged, revealing signifi-
cant interaction effects between candidate genetic variants and
multiple environmental factors [103–106]. These methods may
represent the starting point of designs focused on the integration
of multivariate imaging gene-environment interactions open up
new sources of analysis by means of which to gain an understand-
ing of the conditional mechanisms through which genes, environ-
ment, and brain features interact to predict brain diseases and
neurological conditions [107,108]. Such designs represent an
opportunity, not only to integrate different omics and imaging fea-
tures, but also to incorporate target environmental exposures rele-
vant to the structure and function of the brain.

3.6. Complex prediction models

Machine learning and deep learning strategies represent a pow-
erful alternative, allowing for heterogeneous data integration, and
in turn, improving disease classification and prediction in IG stud-
ies [109]. However, this family of methods are also computation-
ally expensive and interpretation is not straightforward.
Moreover, there is not much literature reported or evidence of
their performance yet. Some examples of application of these
methods include predicting AD diagnosis and disease conversion
[110–113]. However, more work is still required to use genetics
and neuroimaging information to predict complex neurological
outcomes and treatment response, as has been accomplished in
other areas of psychiatric research [4,114].
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