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Abstract  

The urgent need of effective therapies for MRSA infective endocarditis (IE) is cause of 

concern. We aimed to ascertain the in vitro and in vivo activity of the old antibiotic fosfomycin 

combined with different beta-lactams against methicillin-resistant (MRSA) and glycopeptide-

intermediate resistant (GISA) S. aureus strains. Time-kill tests with ten isolates showed that 

fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an 

aortic valve IE model with two strains (MRSA-277H and GISA-ATCC700788), the following 

intravenous regimens were compared: fosfomycin (2g q8h) plus imipenem (1g q6h) or 

ceftriaxone (2g q12h) (FOF+CRO), vancomycin at standard dose (VAN-SD) (1g q12h) and 

high-dose (VAN-HD) (1g q6h). Whereas a significant reduction of MRSA-227H load in the 

vegetations was observed with FOF+IPM compared with VAN-SD (0 [0-1] vs. 2 [0-5.1] log 

CFU/g veg; P= 0.01), no statistical differences were found with VAN-HD. In addition, 

FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] vs. 5/16 [31%]; P=0.02). 

GISA-ATCC700788 load in the vegetations was significantly lower after FOF+IPM or 

FOF+CRO compared with VAN-SD (2 [0-2] and 0 [0-2] vs. 6.5 [2-6.9] logCFU/g veg; 

P<0.01). The number of sterilized vegetations after FOF+CRO was higher than VAN-SD or 

VAN-HD (8/15 [53%] vs. 4/20 [20%] or 4/20 [20%]; P=0.03). To assess the effect of 

FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, 

showing that FOF+IPM significantly decreased PBP1 and PBP3 synthesis. These results allow 

clinicians considering the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.  
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Introduction. 

Staphylococcus aureus is the most frequent causative pathogen in all types of infective 

endocarditis (IE) (1-3). About 30% of all S. aureus isolates causing IE are methicillin-

resistant (MRSA) (1). Vancomycin (VAN) is the antibiotic of choice for MRSA IE (4-6) 

despite its well-known limitations, including low penetration into vegetations (7) and a 

slow bactericidal effect (8, 9). In addition, S. aureus clinical isolates with intermediate 

resistance to glycopeptides (GISA) and heterorresistance (hGISA) have been observed in 

the last decades (10-15) and VAN minimum inhibitory concentration (MIC) creep has 

been matter of concern in the health-care systems around the world (16-19). As a result, 

clinical failures in the treatment of MRSA invasive infections are frequently observed (8, 

20). In order to increase its efficacy, VAN high-dose regimens have been considered in 

clinical practice, being the area under the curve/MIC (AUC/MIC)>400 a 

pharmacodynamic predictor of favourable clinical outcomes in MRSA invasive infections 

(21, 22). However, these regimens are limited by VAN dose-dependent toxicity (23). The 

addition of other antibiotics has not improved VAN efficacy in most studies (8, 24, 25).  

Daptomycin is also considered a first-line therapy for MRSA native valve IE (4). 

However, clinical failures and emergence of resistance to daptomycin have been reported 

(20, 26, 27). Other active antibiotics against MRSA such as linezolid (28-32) or 

telavancin (33) have failed to show clear superiority to VAN in the in vivo models. 

Ceftaroline has been tested in in vivo experimental studies (34) and a case-series (35) 

with promising results. However, further studies are needed to assess its efficacy in 

MRSA IE. As a result, alternative therapeutic options against MRSA IE are urgently 

needed (36).  
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Fosfomycin (FOF), an old antibiotic described in 1969 (37) has shown great bactericidal 

activity against most Gram-positive and Gram-negative bacteria (38). Despite its potent 

activity against S. aureus, it is only approved by the American Food and Drug 

Administration as an oral single-dose treatment for acute uncomplicated cystitis (38). 

FOF has a unique mechanism of action inhibiting the enzyme phosphoenolpyruvate 

synthetase, involved in the initial step of bacterial cell wall synthesis. This feature makes 

cross-resistance with other antibiotics highly unusual (39). However, emergence of 

resistance is often observed when it is administered in monotherapy, thus being 

mandatory the association of a second antibiotic for the treatment of invasive infections 

(39, 40).  

A large number of available reports of in vitro and in vivo studies showed synergistic 

activity of FOF and different beta-lactam antibiotics against MRSA infections (41-46). In 

addition, clinical studies published in the earlier eighties demonstrated the efficacy of 

FOF plus cefotaxime in the treatment of MRSA invasive infections, including 

bacteremia, meningitis and acute osteoarticular infections (47-49). This well-established 

clinical experience is the basis of the combination use in our experimental IE model in 

rabbits. 

The aim of the current study was to evaluate: (i) FOF plus three selected beta-lactam 

antibiotics (imipenem-IPM, ceftriaxone –CRO- and amoxicillin/clavulanate-AMC) in 

vitro activity against ten MRSA strains (one of them with intermediate resistance to 

glycopeptides). (ii) the efficacy of these combinations in an experimental IE model in 

rabbits, using a human-like pharmacokinetic model and two selected strains from the in 
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vitro study; and (iii) the effect of FOF alone or in combination with imipenem on 

penicillin binding proteins (PBP) synthesis in MRSA and GISA strains.  
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Material and Methods 

Microorganisms.  

In vitro studies. Ten MRSA strains isolated from patients with bacteremia were selected; 

one of them showing decreased susceptibility to glycopeptides (a GISA strain included in 

the American Type Culture Collection; ATCC700788).  

In vivo studies. Two MRSA isolates from the in vitro studies were selected for the in vivo 

and molecular studies: MRSA-277H, an isolate from a patient with bacteremia at our 

institution, and ATCC700788, the GISA strain used in the in vitro study.  

Antibiotics. IPM powder was supplied by Merck (West Point, PA. USA), FOF by CEPA 

(Spain) and CRO by Roche (Basel, Switzerland). AMC and VAN were purchased to 

Sigma (St Louis. MO.USA). For all experiments, the purified powder of each antibiotic 

was diluted following the CLSI recommendations (50). 

Susceptibility testing. Minimal inhibitory concentrations (MICs) and minimal 

bactericidal concentrations (MBCs) were determined using the microdilution method, 

according to standard recommendations (50). FOF susceptibility testing was done in 

Mueller-Hinton broth supplemented with D-glucose 6-phosphate (Sigma, St Louis. 

MO.USA) with a final concentration of 25 mg/L. S. aureus ATCC 29213 was used as the 

test control strain in all the experiments. All the results were double-checked. 

Time-kill curves with FOF and three different beta-lactams (IPM, CRO and AMC) at 

concentrations of ¼xMIC and 1xMIC were performed, being used two different initial 

inocula of 10
5
 (initial standard inoculum ISI) and 10

7
 colony-forming units (cfu)/ml 
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(initial high inoculum, IHI). Before the inoculation, each tube of fresh CAMHB (cation-

adjusted Mueller-Hinton broth) was supplemented with D-glucose 6-phosphate. All the 

experiments were performed in duplicate as recommended (51). Bactericidal activity was 

defined as a ≥3-log10 decrease in cfu/ml of the initial inoculum at 48 h. The results at 24 

h of the combination were compared with those of the most active single drug; synergy, 

indifference, and antagonism were then defined as a ≥2-log increase in killing, a <2-log 

change (increase or decrease) in killing, and a ≥2-log decrease in killing, respectively. 

PBP studies: Bacteria were incubated at 37° C in TSB alone, in TSB supplemented with 

either FOF (0.25 x MIC) alone or IPM (0.25 x MIC) alone, or in TSB with FOF (0.25 x 

MIC) plus IPM (0.25 x MIC) until achieving an optical density of 0.7 at 600 nm. PBPs 

were determined in membrane fractions of bacterial lysates as published elsewhere (52). 

Briefly, membrane suspensions (20 µl) containing ca. 4 mg/liter of protein were labelled 

with 1 mg/liter of the fluorescent penicillin Bocillin FL (Invitrogen, Carlsbad, CA) (53) 

for 1 h at 37º C. After incubation, the proteins were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using a NuPAGE 7% Tris-acetate 

precast gel (Invitrogen). The Bocillin FL-labeled PBPs were then visualized by direct 

scanning of the gels with a Typhoon Trio+ imager (Amersham Biosciences).” 

In vivo studies. 

Animals. New Zealand White rabbits (body weight, 2.2 Kg) obtained from San Bernardo 

farm (Pamplona, Spain) were housed in the animal facilities of the Faculty of Medicine 

(University of Barcelona), which is equipped with automatic air exchange with a HEPA 

filter and a circadian light cycle. They were nourished ad libitum. This research project 
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fulfils the requirements stipulated in the Spanish Royal Decree 223/1988 on the 

protection of animals used in experiments. The Ethical Committee on Animal Research 

of the University of Barcelona approved the animal studies. 

Pharmacokinetics studies. The antibiotics were administered using a computer-

controlled infusion pump system designed to reproduce human serum pharmacokinetics 

in rabbits to mimic the following intravenous antibiotic regimens: FOF 2 g q8h, IPM 1g 

q6h, CRO 2g q12h and VAN 1g q12h or 1g q6h. The procedure had three steps: (i) 

estimation of antibiotic parameters in the rabbit; (ii) application of a mathematical model 

to determine the infusion rate required for reproducing human pharmacokinetics in the 

animals; and (iii) in vivo experimental pharmacokinetics studies performed to simulate in 

rabbits the antibiotic pharmacokinetic profiles in humans (54). 

(i) The antibiotic pharmacokinetic parameters in rabbits were estimated after the 

administration in bolus (50 mg/Kg IPM, 100 mg/Kg FOF and 30 mg/Kg CRO) in five 

healthy rabbits for each antibiotic. To determine the antibiotic concentrations in serum 

samples, blood was removed from a carotid catheter at different times (minimum of 10 

points for each antibiotic). Blood samples were placed into tubes and centrifuged at 

13,000 rpm for 20 min. The serum was removed and stored at -80º C. IPM, CRO and 

FOF concentrations in serum were determined by the disk-plate bioassay method (55), 

being Micrococcus luteus ATCC 9341 the bioassay microorganism and Mueller-Hinton 

agar (Difco Laboratories) the growth medium. Standard curves were determined with 

solutions of the different antibiotics in pooled rabbit serum and the concentrations in 

serum samples were inferred. Serum samples from rabbits were diluted with pooled 

rabbit serum (Sigma [St. Louis. MO.USA]), to assure that the antibiotic concentrations 
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were within the range of the standard curve. Standard and serum samples were assayed in 

triplicate. The results were expressed in µg/mL of blood. The linearity of the standard 

curves was 0.99 in all the assays. The sensitivity for FOF, IPM and CRO was 4 µg/mL, 

0.5 µg/mL and 1 µg/mL, respectively. The day variation for replicates coefficients were 

less than 5% in all cases. (ii) The mathematical models were applied to obtain the 

required infusion doses to simulate human kinetics of FOF and IPM as an open one-

compartment model (56), while CRO as a drug with an open two-compartment model 

(57). (iii) Simulation of the human profiles was done in healthy rabbits as reported 

previously (58). The study of human-like pharmacokinetics profile for VAN was already 

done and published previously (58).   

In vivo efficacy studies. Experimental aortic valve IE was induced according to the 

method described by Garrison and Freedman (59). A catheter was inserted through the 

right carotid artery into the left ventricle while antibiotics were administered into the 

inferior vena cava through a jugular vein catheter, as previously described (58). 

Rabbit aortic valve endocarditis model. Twenty-four hours after placement of the 

intracardiac catheter, all animals were infected via the marginal ear vein with 1 mL of 

saline solution containing 7-8 × 10
5 
cfu/ml of microorganisms. Eighteen hours after the 

inoculation, antibiotic treatments were initiated. The infected rabbits were randomised to 

receive intravenously: no therapy (control); VAN-SD (simulating 1g q12h), VAN-HD 

(simulating 1g q6h), FOF (simulating 2g q6h), IPM (simulating 1g q6h); CRO 

(simulating 2g q24h) and FOF plus IPM (FOF+IPM) or CRO (FOF+CRO) at the same 

dosage regimens mentioned above. At that time, control animals were sacrificed and 

vegetations quantified for bacterial cfu. Antibiotics were administered via the computer-
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controlled infusion pump system for 48 hours. After finishing the 48-hour treatment, 

animals were sacrificed after an additional 6 half-lives had elapsed, thus allowing residual 

viable bacteria in the endocardial vegetations growth. 

Analysis of endocardial vegetations. After antibiotic treatment, rabbits were killed and 

aortic valve vegetations were removed and processed as previously described (58). Only 

those animals with proper placement of the catheter, macroscopic evidence of vegetations 

at the time of death, and S. aureus in cultures of blood obtained before the start of 

antimicrobial therapy were included in the study. The results were expressed as the 

number of log10 cfu/gr. of vegetation. If no growth was observed on the quantitative 

plates but contrary it was observed in the qualitative culture (the rest of the homogenate 

in tryptic soy broth), a value of 2 log10 cfu/gr. of vegetation was assigned. If no growth 

was observed from the initial quantitative culture and from the homogenates cultured for 

a week, a value of zero log10 cfu/gr. of vegetation was assigned, thus being considered the 

vegetation sterile. The recovered bacteria antibiotic susceptibility was retested and 

compared to that from the pretreatment isolates. 

 Statistical analysis. The results were expressed as the median and the interquartile range 

(IQR) of log10 cfu per gram of vegetation. The Mann-Whitney rank-sum test was used to 

compare the log10 cfu/g values between the different treatment groups. The Fisher exact 

test was used to compare the vegetations sterilization rate and to assess differences 

between treatment groups. 
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Results 

In vitro studies:  

Susceptibility testing. The ten strains MICs and MBCs to the antibiotics used in the 

study are shown in Table 1. Of note, only one strain was resistant to FOF (4E, MIC=64 

µg/mL), while the other nine strains were susceptible, being the MBC of two susceptible 

strains 32 µg/mL. Four isolates had IPM MIC≥32µg/mL and all ten isolates were 

resistant to CRO. Regarding the two strains selected for the in vivo study, MRSA-277H 

was susceptible to VAN and FOF (MIC/MBC, 2/2 µg/ml and 4/4 µg/ml, respectively) 

and resistant to IPM and CRO (MIC/MBC, 64/64 µg/ml and >512/>512 µg/ml). GISA-

ATCC700788 was susceptible to FOF and IPM (MIC/MBC 16/16 µg/ml and 1/2µg/ml, 

respectively), had intermediate resistance to VAN (MIC/MBC 8/128 µg/ml) and was 

resistant to ceftriaxone (MIC/MBC 128/256 µg/ml). 

In vitro time-kill studies. In Table 2 are shown the results of the time-kill studies against 

initial standard inocula (ISI, 10
5
 cfu/mL, Table 2a) and initial high inocula (IHI, 10

7
 

cfu/mL, Table 2b). After 24h of incubation with FOF+IPM, synergistic and bactericidal 

effect was observed in nine of the ten experiments with ISI (Table 2a), and in eight of ten 

experiments with IHI (Table 2b). The combination FOF+CRO showed synergistic effect 

against ISI of all the studied strains but bactericidal effect was detected in seven of ten. 

Against IHI, synergy was observed in seven of ten strains and bactericidal effect in five. 

Meanwhile, FOF+AMC was the less active combination, being synergy observed against 

six of ten strains at both ISI and IHI, while bactericidal effect was observed in five strains 

at ISI and four at IHI. And the comparison among the combinations of FOF+IPM or 
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FOF+CRO vs. FOF+AMC was statistically significant (P=0.05). The experiments with 

MRSA-277 and GISA-ATCC700788 are represented in Figures 1a and 1b.  

PBPs studies: After incubation of both MRSA-277 and GISA-ATCC 700788 with FOF, 

the production of PBP1 and PBP2 (but not PBP2a) was drastically reduced. The addition 

of IPM enhanced the effect of FOF, particularly on PBP2 production. In addition, the 

generation of PBP3 also decreased with the addition of IPM (Figure 2). No apparent 

changes were observed on PBP4 production (not shown in the Figure).     

Pharmacokinetic studies 

The pharmacokinetic data in rabbit used in the mathematical model are summarized in 

Table 3 and Figure 3.  

Treatment of established endocarditis (Table 4). Comparisons between treatment 

groups revealed that FOF+IPM and FOF+CRO were more effective than VAN-SD 

sterilizing the vegetations caused by MRSA 277 (P=0.02 and P=0.08, respectively) and 

reducing the density of bacteria in vegetations (P=0.01 and P=0.06, respectively). VAN-

HD sterilized a higher percentage of vegetations than VAN-SD (50% [8/16] vs. 31% 

[5/16]), but a lower percentage compared with FOF+IPM and FOF+CRO (73% [11/15], 

62% [10/16]). However, differences did not reach statistical significance. 

Both VAN–SD and VAN-HD sterilized 20% vegetations caused by GISA-ATCC700788, 

while FOF+IPM and FOF+CRO sterilized a higher percentage (35%, P=0.24 and 53%, 

P=0.03, respectively). FOF+IPM and FOF+CRO reduced the median number of GISA 

cfu in the vegetations to a greater extent than VAN-HD (P=0.04 and P<0.01 

respectively). 
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The rate of isolates recovered in the vegetations showing emergence of resistance to FOF 

when it was administered in monotherapy was 42% (5/12 isolates) of MRSA-277 and 

61% (8/13 isolates) of GISA-ATCC700788. No emergence of resistance was observed in 

the combination arms. 
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Discussion 

MRSA IE is a difficult-to-treat infection even when using the currently recommended 

antibiotics (2, 5). In addition, most patients have associated comorbidities that preclude 

valvular surgical treatment, which otherwise would be advisable in many cases. 

Therefore, it is necessary to optimize antibiotic therapy to rapidly achieve the control of 

bacteremia and the vegetations sterilization.  

Recent studies encouraged the use of combined therapy for the treatment of serious 

MRSA infections (24, 25). In this regards, fosfomycin combined with beta-lactam 

antibiotics had encouraging results (38, 40). 

This study shows the efficacy of some beta-lactams (CRO and IPM) plus FOF 

combinations in the treatment of MRSA and GISA experimental IE animal model, in 

agreement with previous studies (41, 42, 44, 45). Ours and previous results showed the 

significant synergism between these antibiotics, especially with carbapenems and 

cephalosporins. As we observed, it correlates well with our in vivo results. Against the 

MRSA strain, FOF+IPM was more effective than VAN at standard guideline-

recommended doses of 1g/12h i.v., while significant differences with VAN at higher 

doses were not found. However, from a clinical perspective, the risk of renal toxicity at 

higher doses of VAN, is a limitation that in most cases precludes these regimens (23). In 

the setting of IE caused by a GISA strain, our results showed an increased efficacy of 

FOF+CRO to sterilize vegetations. The combination achieved similar percentages of 

GISA sterile vegetations to those published previously by our group with daptomycin 

(54). Notably, the combined regimens against both MRSA and GISA IE avoided the 
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development of resistance to FOF in contrast to the 42% of resistant isolates recovered 

from the FOF monotherapy arm.  

The in vivo synergism between FOF and beta-lactams was also supported by the few 

available old studies in experimental models of meningitis (43), mouse infection (44) or 

foreign body infection (60). A recent study involving a foreign-body infection model 

obtained better activity with FOF when combined with daptomycin than with IPM (61), 

stressing the significance of the type of infection on antibiotic activity. These results are 

in accordance with the predominance of growths of planktonic or stationary, non-growing 

bacteria in each setting (62).  

FOF plus beta-lactams efficacy against MRSA is also supported by some clinical studies; 

the combination with CRO was used in 22 cases with invasive staphylococcal infections 

with excellent results (47), while FOF plus cefotaxime was used in 16 cases of 

methicillin-resistant and aminoglycoside-resistant staphylococcal infections obtaining 

100% of cure with no relapses (48). As secondary effects, three cases of neutropenia, one 

of serum ALAT levels increase due to the high doses of cefotaxime used and one case of 

Candida spp. infection was observed. The same group also reported excellent results with 

this combination in the treatment of staphylococcal and enterobacteriaceae meningitis 

(49). More recently, our group reported (based on the experimental data presented herein) 

the experience with FOF+IPM as rescue therapy for 16 patients with IE and complicated 

bacteremia. In all cases, blood cultures were negative 72 hours after the first dose of the 

combination and the success rate was 69%, not being observed breakthrough bacteremia 

or relapse (63).  
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The mechanism of synergy between FOF and beta-lactams is not well known. However 

the modification in the different PBP production, leading to re-sensitization of MRSA 

against beta-lactams, has been proposed (44). Apparently, the mechanism of action might 

not be related to the strain susceptibility to VAN, being therefore expected similar results 

in MRSA and GISA strains. Our findings in this study suggest that the synergy FOM and 

IPM against MRSA and GISA is not due to decreased synthesis of PBP2a, but is due to 

the reduction of PBP1, PBP2 and PBP3 synthesis, which may impair PBP2a function, 

thus increasing IPM effect on MRSA and GISA strains. These results highlight the need 

for further studies addressing the mechanism of action of the combination. 

In summary, according to our experimental results and the available clinical data, the 

combination of FOF+IPM and FOF+CRO significantly overcame the efficacy of VAN in 

the treatment of MRSA or GISA experimental IE. These combined regimens might be a 

good alternative to cure these difficult-to-treat infections, allowing the rapid control of 

bacteremia and achieving better outcomes. There is enough evidence to justify further 

clinical studies with this combined therapy for MRSA or GISA IE, such as the 

randomized clinical trial leaded by our group comparing FOF+IPM with VAN for IE 

caused by MRSA isolates with VAN MIC <2 µg/mL (ClinicalTrials.gov Identifier: 

NCT00871104). 
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Figures’ legends:  

Figure 1a. Results of time-kill experiments for MRSA strain (MRSA-277) incubated 

with fosfomycin and imipenem or ceftriaxone at the MIC, alone or in combination. 

fosfomycin (4 µg/mL),imipenem (16 µg/mL) and ceftriaxone (64 µg/mL). 

Figure 1b. Results of time-kill experiments for GISA-ATCC700788) incubated with 

fosfomycin and imipenem or ceftriaxone at the MIC, alone or in combination. fosfomycin 

(16 µg/mL),imipenem (1 µg/mL) and ceftriaxone (128 µg/mL). 

Figure 2.  PBP profiles by polyacrylamide gel electrophoresis (SDS-PAGE) of MRSA 

and GISA strains incubated with FOM and IPM alone or in combination . 

Figure 3.  Results of the antibiotic pharmacokinetic profiles on rabbits using a human-

like pharmacokinetic model for fosfomycin (A), imipenem (B) and ceftriaxone (C). 
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Table 1. Antibiotic activity (MIC/MBC) of the antimicrobial agents (µg/mL) tested 

against 10 MRSA clinical isolates and one GISA collection strain. 
 

Strains Fosfomycin Imipenem Ceftriaxone Amoxicillin/Clavulanate 

4E 64/64 32/64 512/>512 16/8-64/32 

7E 4/8 0.03/0.03 16/16 0.5/0.25-0.5/0.25 

10E 2/4 0.25/0.5 16/64 8/4-16/8 

9M 4/8 2/8 256/512 8/4-16/8 

14H 8/16 0.12/0.5 32/32 32/16-32/16 

45H 4/8 64/128 512/>512 32/16-32/16 

3T 16/32 0.25/1 16/64 8/4-16/8 

107V 16/32 64/64 >512/>512 32/16-64/32 

277H 4/4 64/64 >512/>512 16/8-32/16 

GISA  sTCC700 

 

16/16 1/2 128/256 32/16-64/32 



 

Table 2a. Results of time-kill curves with fosfomycin plus imipenem, ceftriaxone or amoxicillin/clavulanate against 10 MRSA strains 1 

(ISI, inoculum equal to 10
5
 CFU/mL). 2 

Strains 4E 7E 10 E 9M 14H 45H 3T 107V 277H GISA ATCC 

Time-kill 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 

Curves                     

FOF+IPM                     

Control +1.5 +3.3 +1.4 +3 +1.9 +2.7 +1.3 +3.4 +1.9 +3.2 +1.9 +3.1 +2.1 +2.8 +1.4 +3.5 +1.8 +3 +0.8 +2.7 

FOF -1.2 +3.4 -0.3 +1.5 +1.2 0 0 +1 -0.5 +2 -0.9 +1.5 -0.2 -1 -0.2 +0.3 -1.5 +3.2 +0.1 +1.3 

IPM -1.3 +2.6 -1.7 +1.4 -1.5 -1 -1.3 +2.3 -1 +0.5 -1.1 +1.3 -0.8 +2.3 0 +2.1 -0.4 +2.6 -0.8 +1.5 

FOF+IPM -1.6 -3.5 -1.7 -3.9 -1.9 -3.5 -1.3 -3.5 -1.2 -1.5 -0.8 -3.7 -0.6 -3.1 -0.3 -3.7 -1.4 -3.4 -1.2 -3 

FOF+CRO                     

Control +1.6 +3.4 +1.7 +2.9 +1.4 +3.2 +1.6 +3.1 +1.8 +3 +1.9 +3.6 +1.7 +2.9 +1.7 +3.2 +1.6 +2.9 +1.3 +3.4 

FOF -0.7 +2.5 -0.5 -1.4 +0.1 +1.1 -0.9 +1.6 -0.3 +2.4 -0.2 +2.3 -0.1 +1.7 -0.1 +2.4 -0.9 +0.9 +0.8 +1.4 

CRO +0.5 +3.2 -1.2 -1.4 -0.5 +1.2 -1 +2.8 -0.5 -0.3 +0.5 +3.4 -0.3 +0.7 +1 +3 -0.8 +1.2 -0.1 +2.3 

FOF+CRO -1.3 -3.4 -2 -4 -0.9 -2.2 -1.2 -1.1 -0.9 -3 -0.1 -3.2 -0.5 -3.1 -0.2 -1 -2 -3.9 0 -3.3 

FOF+AMC                     



 2 

Control +1.1 +3.4 +1.9 +3.1 +1.7 +3.4 +1.3 +3.5 +1.7 +3.2 +0.5 +3.1 +1.9 +3.2 +1.3 +3.7 +1.5 +3.3 +1.3 +3.1 

FOF -0.3 +1.8 -0.3 +1.1 -0.6 +1.4 0 +1.8 -0.1 +1.1 +0.1 +2.2 -0.4 +1.1 -0.4 +0.2 -0.4 +3 +0.1 +2.7 

AMC -0.3 +3.4 +0.9 +3.1 +0.2 +2.5 0 +3.2 -1.7 -1.3 -0.2 +2.1 -0.8 +2.8 +0.3 +3.2 +0.1 +3.2 +1.1 +1.4 

FOF+AMC -1 -3.3 -1.9 -2.1 -0.4 -3.4 -1 -2.9 -1.8 -3.4 0 -2.5 -1.5 -3.7 -0.4 -1.7 -0.7 +1.4 -0.4 -3.4 

FOF fosfomycin; CRO ceftriaxone, AMC amoxicillin-clavulanate, IPM imipenem1 



 

Table 2b. Results of time-kill curves with fosfomycin plus imipenem, ceftriaxone or amoxicillin/clavulanate against 10 MRSA strains 1 

(IHI, inoculum equal to 10
7
 CFU/mL). 2 

Strains 4E 7E 10 E 9M 14H 45H 3T 107V 277H GISA ATCC 

Time-kill 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 

Curves                     

FOF+IPM                     

Control +0.8 +1.5 +0.9 +1.2 +0.7 +1.1 +0.9 +1.8 +1 +1.2 +1 +1.8 +0.6 +1.4 +0.9 +1.8 +0.6 +1.6 -0.8 +1.1 

FOF -0.2 +1 -0.1 -0.7   0 -1.3 -0.1 +0.4 +0.2 -1.2 -0.4 +0.8   0 -0.8   0 +0.1 -0.2 -1.8 -1.5 -0.3 

IPM -0.1 -0.7 -1 -2.2 +0.7 +0.9   0 +1.6 +0.8 +1.1 +0.3 +1.7 +0.2 +0.9 +0.4 +1.8 +0.1 +1.4 -2.4 -0.1 

FOF+IPM -0.7 -2.4 -1.8 -4.4 +0.1 -3.4 -1 -4.5   0 -3.5 -0.4 -3 -0.6 -3.6 -0.2 -1.5 -0.9 -4.6 -2.8 -3.6 

FOF+CRO                     

Control +0.9 +1.8 +0.7 +1.4 +0.6 +1.4 +0.7 +1.6 +0.7 +1.5 +0.6 +1.5 +0.6 +1.2 +0.9 +1.6 +0.4 +1.4 +0.5 +1.4 

FOF -0.4 +1.1 -0.2 +0.4 -0.3 -2 -0.1   0 -0.3 -0.4 -0.3 -0.4 -0.1 -1.3 -0.3 -1.2 -0.6 +0.3 -0.1 -0.3 

CRO +0.6 +1.4 -0.9 +1.2 -0.5 -1 +0.4 +1.4 -0.2 +0.8 +0.3 +1.3  0 +0.4 +0.3 +1.3 -0.9 +1.2 +0.5 +0.7 

FOF+CRO -0.7 -2.4 -1.3 -3.1 -1.1 -4.4 -0.2 -3.9 -0.9 -2.9   0 -1.5 -0.3 -3.3 -0.1 -1.9 -1.2 -4.8 -0.5 -2.5 

FOF+AMC                     
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Control +0.5 +1.3 +0.8 +0.4 +0.5 +1.4 +1 +1.7 +0.8 +1.5 +0.5 +1.4 +0.5 +1.3 +1 +1.8 +0.4 +1.7 +1 +2.2 

FOF -0.4 +0.6 +0.6 -1.3 -0.1 -0.7 -0.2 +0.6 -0.3   0 -0.1 +0.6 -0.5 -1.6 -0.3 -1.4 -0.3 +0.3 -0.2 +1.4 

AMC +0.4 +0.8 +0.7 +1.2   0 +0.7 +0.1 +1.4 -0.7 -1.5 -0.1 +0.9 -0.5 -0.1 +0.2 +1.1 +0.2 +1.3 +0.4 -1.5 

FOF+AMC -0.8 -2.6 -0.4 -0.7 -0.7 -4.3 -0.5 -3.5 -0.8 -2.7  0 -3.5 -0.7 -2.3 -0.4 -2.3 -0.2 -2.3 -0.7 -3.4 

FOF fosfomycin; CRO ceftriaxone, AMC amoxicillin-clavulanate, IPM imipenem1 



 

Table 3. Pharmacokinetic and pharmacodynamic parameters  1 

 Fosfomycin Imipenem Ceftriaxone 

Previously Reported 

Human Values 

(Single Dose) 

   

Dose 2 g i.v.
a
 1 g i.v.

b
 2 g i.v.

c
 

Cmax (µg/ml) 

Cmin (µg/ml) 

90 

4.6 

52 

0.7 

256 

14 

Kel (h
-1
) 0.34 0.74 0.1 

t½ β (h) 2 0.93 6.8 

AUC (µg⋅h/ml)  264.7 69.8 1538 

Animal Values  

(n = 5) 

   

Kel (h
-1
 ± SD) 0.82 ± 0.06 2.1 ± 0.08 0.43 ± 0.1 

t½ β (h ± SD) 0.85 ± 0.08 0.33 ± 0.01 1.6 ± 0.08 

AUC (µg⋅h/ml ± SD)  109.7 ± 15 49.1 ± 9.7 222.9 ± 15 

Human-like Values 

(n = 5) 

   

Cmax (µg/ml) 

Cmin (µg/ml) 

89.7 ± 1.4 

5± 0.2 

51± 1 

0.3± 0.01 

290 ± 17 

21 ± 3 

Kel (h
-1 ± SD) 0.43 ± 0.05 0.91 ± 0.16 0.096 ± 0.003 

t½ β (h ± SD) 1.63 ± 0.2 0.8 ± 0.14 7.2 ± 0.19 

AUC (µg⋅h/ml ± SD) 209.3 ± 14 62.7 ± 11 1819 ± 82.7 

a
(64); 

b
(65);

 c
(66); AUC: Area under the curve; Kel: elimination rate constant; NA: not available; t½: 2 

half life. 3 
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Table 4. Treatment of experimental endocarditis caused by MRSA-277H and GISA-1 

ATCC700788 strains.  2 

Treatment group 

Survival, no./ 

Total, no. (%) 

Sterile vegetation, no./ 

Total, no. (%) 

Median (IQR) 

(log10 cfu/g of veg) 

MRSA (# 277)    

Control –/–  0/15 (0) 9.1 (8.3-9.3) 

FOF 12/12 (100) 0/12 (0) 8.5 (8-9.1) 

CRO 11/11 (100) 0/11 (0) 8.3 (7-8.9) 

IPM 14/16 (88) 1/14 (7) 5.1 (4-7.5) 

VAN-SD 16/16 (100) 5/16 (31)
a,b
 2 (0-5.1)

c,d
 

VAN-HD 16/16 (100) 8/16 (50) 1 (0-2.2) 

FOF+IPM 14/16 (88) 11/15 (73)a 0 (0-1)c 

FOF+CRO 16/17 (94) 10/16 (62)
b
 0 (0-2.2)

d
 

GISA-ATCC 700788    

Control –/–  0/15 (0) 9.5 (9.1-9.9) 

FOF 
13/13 (100) 

0/13 (0) 9.4 (9.1-9.9) 

CRO 15/16 (94) 0/15 (0) 8.6 (7.7-9.4) 

IPM 16/18 (94) 1/16 (6) 4.6 (2-5.9) 

VAN-SD 20/23 (87) 4/20 (20)
e,f
 6.5 (2-6.9)

g,h
 

VAN-HD 20/21 (95) 4/20 (20)
 e,f
 2.4 (2-4)

 g,i,j
 

FOF+IPM 17/17 (100) 6/17 (35)
e
 2 (0-2)

i
 

FOF+CRO 15/15 (100) 8/15 (53)
f
 0 (0-2)

h,j
 

 3 



 3 

a
P = 0.02; 

b
P = 0.08;

 c
P = 0.01;

 d
P = 0.06; 

e
P = 0.24; 

f
P = 0.03;

 g
P < 0.01; 

h
P  < 0.01 ;

 i
P = 0.04 ;

 j
P 1 

<0.01. 2 

cfu= colony-forming unit; GISA = glycopeptide-intermediate-resistant S. aureus; IQR= 3 

interquartile range; MRSA= methicillin-resistant S. aureus; veg = vegetations. FOF fosfomycin; 4 

CRO ceftriaxone, AMC amoxicillin-clavulanate, IPM imipenem, VAN-SD vancomycin, standard 5 

dose, VAN-HD vancomycin, high dose.  6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 



 4 

Figure 1a.  1 
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Figure 1b.  1 
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  Figure 2.  1 
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Figure 3.   1 

 2 

A) Fosfomycin human-like pharmacokinetics profile. 3 
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B) Imipenem human-like pharmacokinetics profile. 1 
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C) Ceftriaxone human-like pharmacokinetics profile. 11 
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