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12 Abstract Brain-derived neurotrophic factor (BDNF) pro-
13 motes synaptic strengthening through the regulation of kinase
14 and phosphatase activity. Conversely, striatal-enriched protein
15 tyrosine phosphatase (STEP) opposes synaptic strengthening
16 through inactivation or internalization of signaling molecules.
17 Here, we investigated whether BDNF regulates STEP levels/
18 activity. BDNF induced a reduction of STEP61 levels in pri-
19 mary cortical neurons, an effect that was prevented by inhibi-
20 tion of tyrosine kinases, phospholipase C gamma, or the
21 ubiquitin-proteasome system (UPS). The levels of
22 pGluN2BTyr1472 and pERK1/2Thr202/Tyr204, two STEP sub-
23 strates, increased in BDNF-treated cultures, and blockade of
24 the UPS prevented STEP61 degradation and reduced BDNF-
25 induced GluN2B and ERK1/2 phosphorylation. Moreover,
26 brief or sustained cell depolarization reduced STEP61 levels
27 in cortical neurons by different mechanisms. BDNF also

28promoted UPS-mediated STEP61 degradation in cultured
29striatal and hippocampal neurons. In contrast, nerve growth
30factor and neurotrophin-3 had no effect on STEP61 levels. Our
31results thus indicate that STEP61 degradation is an important
32event in BDNF-mediated effects.

33Keywords PLCγ . GluN2B . ERK1/2 . NGF . NT-3 .

34Depolarization . STEP33

35Introduction

36Synaptic strengthening depends, among others, on the phos-
37phorylation of synaptic proteins controlled by a finely tuned
38balance between protein kinases and protein phosphatases [1].
39Brain-derived neurotrophic factor (BDNF) is crucial for the
40regulation of synaptic transmission, plasticity, and cognitive
41functions [2–4]. Binding of BDNF to its receptor TrkB acti-
42vates intracellular signaling cascades that depend on dynamic
43phosphorylation events. While kinases activated in response
44to BDNF are well characterized [5, 6], less is known about
45BDNF-induced regulation of phosphatases and their involve-
46ment in BDNF effects. Mitogen-activated protein (MAP) ki-
47nase phosphatase-1 is required for BDNF-dependent axonal
48branching [7], whereas BDNF-induced calpain activation pro-
49motes the degradation of the phosphatase tensin homolog de-
50leted on chromosome 10 (PTEN) contributing to stimulate
51dendritic protein synthesis [8]. The serine/threonine phospha-
52tase suprachiasmatic nucleus circadian oscillatory protein
53(SCOP) is also degraded by calpains in response to BDNF [9].
54Striatal-enriched protein tyrosine phosphatase (STEP),
55encoded by the Ptpn5 gene, is involved in the regulation of
56synaptic plasticity [10]. Its mRNA is alternatively spliced into
57several isoforms [11, 12] targeted to distinct cellular compart-
58ments [13–15]. Its major isoforms are cytosolic STEP46 and
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59 membrane-associated STEP61 [11]. Both are expressed in the
60 striatum, central nucleus of the amygdala, and optic nerve,
61 whereas neurons of the hippocampus, cortex, and lateral
62 amygdala only express STEP61 [16, 17]. STEP normally op-
63 poses synaptic strengthening by dephosphorylating neuronal
64 signaling molecules, including the N-methyl-D-aspartate
65 (NMDA) glutamate receptor subunit GluN2B [18, 19] and
66 extracellular signal-regulated kinase 1/2 (ERK1/2) [20, 21].
67 In addition, STEP mediates internalization of GluA1/GluA2-
68 containing AMPA receptors [22]. STEP also dephosphory-
69 lates p38, Fyn, and proline-rich tyrosine kinase 2, thereby
70 controlling the duration of their signal [20, 23–25].
71 Multiple posttranslational modifications regulate STEP ac-
72 tivity, including phosphorylation/dephosphorylation [21, 26,
73 27], calpain cleavage [15, 28–30], and ubiquitin-proteasome
74 degradation [15, 18, 31]. Despite the accumulated knowledge
75 about STEP function/substrates, particularly in pathological
76 circumstances [18, 32–35], data about its physiological regu-
77 lation is sparse.
78 Since STEP exerts an opposite effect to BDNF on synaptic
79 strength, we hypothesized that BDNF could regulate STEP
80 levels/activity. Our results indicate that BDNF induces
81 STEP61 degradation through the proteasome in primary corti-
82 cal, striatal, and hippocampal neurons and suggest that
83 STEP61 degradation is an important event in BDNF-induced
84 effects.

85 Materials and Methods

86 Cell Cultures and Treatments

87 Primary cortical, striatal, and hippocampal cultures were ob-
88 tained from wild-type 18-day-old B6CBA mouse embryos
89 following the National Institutes of Health guide for the care
90 and use of laboratory animals, and the procedures approved
91 by the local animal care committee of Universitat de Barcelo-
92 na (99/01) and Generalitat de Catalunya (99/1094), in accor-
93 dance with the European (2010/63/UE) and Spanish (RD 53/
94 2013) regulations for the care and use of laboratory animals.
95 Primary rat cortical cultures were prepared from embryos at
96 E18 (Charles River Laboratories, MA) according to proce-
97 dures approved by Yale University Institutional Animal Care
98 and Use Committee. Cells were plated at a density of 800,000
99 cells onto 60-mm culture dishes and 100,000 cells onto 24-
100 well plates with coverslips for biochemical and immunocyto-
101 chemical analysis, respectively. Culture dishes and coverslips
102 were precoated with 0.1 mg/ml poly-D-lysine (Sigma Chem-
103 ical Co., St. Louis, MO), and neurons were cultured in
104 neurobasal medium supplemented with B27 and glutamaxTM

105 (all Gibco-BRL, Renfrewshire, Scotland, UK). Cultures were
106 maintained at 37 °C in a humidified atmosphere containing
107 5 % CO2. The cultures were treated with BDNF (10 ng/ml;

108Peprotech, Inc., Rocky Hill, NJ) at day in vitro (DIV) 8. In
109different sets of experiments, cultures were treated for differ-
110ent time periods with BDNF or during 60 min with the tyro-
111sine kinase inhibitor K252a (200 nM; Sigma-Aldrich), the
112MAPK inhibitor PD98059 (25 μM; Calbiochem; San Diego,
113CA), the PI-3 K inhibitor wortmannin (50 nM; Calbiochem),
114the PLC inhibitor U73122 (5 μM; Calbiochem), the protea-
115some inhibitor MG-132 (carbobenzoxy-l-leucyl-l-leucyl-l-
116leucinal; 10 μM; Calbiochem) and then incubated in the pres-
117ence or absence of BDNF for additional 15 or 60min. Cortical
118neurons were incubated for 60 min with or without 100 μM
119ANA-12 (Sigma-Aldrich) or 10 μM MG-132 and then
120depolarized by treatment with 50 mM KCl for additional
1215 min. Nerve growth factor (NGF) and neurotrophin-3 (NT-
1223) (10 ng/ml; Peprotech, Inc.) were added to cultures for
12315 min. After treatments, cultures were rinsed with
124phosphate-buffered saline (PBS) and processed for Western
125blot analysis or immunofluorescence as detailed below.

126Western Blot Analysis

127Cell cultures were homogenized in lysis buffer [50 mM Tris–
128HCl (pH 7.5), 150 mM NaCl, 10 % glycerol, 1 % Triton
129X-100, 100 mM NaF, 5 μM ZnCl2, and 10 mM EGTA] plus
130protease inhibitors [phenylmethylsulphonyl fluoride (2 mM),
131aprotinin (1 μg/ml), leupeptin (1 μg/ml), and sodium
132orthovanadate (1 mM)]. The lysates were centrifuged at 16,
133100×g for 20 min; supernatants were collected, and protein
134concentration measured using the Dc protein assay kit (Bio-
135Rad, Hercules, CA). Western blot analysis was performed as
136prev ious ly desc r ibed [34] . For the ana lys i s o f
137pGluN2BTyr1472, samples were denatured in 170 mM phos-
138phate buffer, pH 7.0, with 2.5 % (w/v) SDS, 10 % glycerol,
1393.2 mM dithiothreitol, and 0.1 % (w/v) bromophenol blue, and
140membranes were blocked with 5 % bovine serum albumin
141(BSA) in Tris-buffered saline containing 0.1 % Tween 20
142(TBS-T) for 1 h at room temperature. The primary antibodies
143used were (1:1000, unless stated otherwise) anti-STEP (Santa
144Cruz Biotechnology), anti-pERK1/2Thr202/Tyr204, anti-
145pAktSer473, anti-pPLCγTyr783, anti-pPKAcThr197, anti-
146pGluN2BTyr1472, anti-GluN2B (Cell Signaling, Beverly,
147MA), anti-spectrin (Chemicon International, Temecula, CA),
148anti-TrkB (BD Transduction Laboratories, San Jose, CA), an-
149ti-pTrkBTyr816, anti-TrkA (1:2000; Abcam, Cambridge, UK),
150and anti-TrkC (1:300; Millipore, Temecula, CA). Loading
151control was performed by reprobing the membranes with an
152anti-α-tubulin antibody (1:50,000; Sigma-Aldrich) for 10–
15315 min at room temperature. Then, membranes were washed
154with TBS-T, incubated for 1 h (10–15 min for α-tubulin) at
155room temperature with the corresponding horseradish
156peroxidase-conjugated antibody (1:2000; Promega, Madison,
157WI), and washed again with TBS-T. Immunoreactive bands
158were visualized using the Western Blotting Luminol Reagent
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159 (Santa Cruz Biotechnology) and quantified by a computer-
160 assisted densitometer (Gel-Pro Analyzer, version 4, Media
161 Cybernetics).

162 Immunofluorescence

163 Primary cortical cultures were fixed in 4 % paraformal-
164 dehyde (Electron Microscopy Sciences, Hatfield, PA) for
165 10 min. The cells were then washed with PBS, incubat-
166 ed with PBS containing 0.2 M glycine for 15 min, and
167 washed. To permeabilize cells, coverslips were treated
168 with 0.1 % saponin in PBS for 10 min. After washing
169 with PBS, cells were incubated with 15 % normal horse
170 serum in 0.1 M PBS for 30 min at room temperature.
171 The cells were then incubated overnight at 4 °C with
172 anti-STEP (Santa Cruz Biotechnology) and anti-MAP2
173 (Abcam) antibodies, prepared at 1:500 in 0.1 M PBS
174 with 5 % normal horse serum. After washing three
175 times with PBS, cells were incubated for 2 h at room
176 temperature with Alexa Fluor 488-conjugated AffiniPure
177 donkey anti-mouse and Cy3-conjugated AffiniPure don-
178 key anti-rabbit (both 1:100; Jackson Immunoresearch
179 Laboratories, Inc.). Coverslips were then washed three
180 times with PBS and finally with water before mounting
181 with Mowiol. Immunofluorescence was analyzed by
182 confocal microscopy using a TCS SL laser scanning
183 confocal spectral microscope (Leica Microsystems Hei-
184 delberg, Mannheim, Germany). Images were taken using
185 63× numerical aperture objective.

186 Pulldown of Ubiquitinated Proteins

187 Primary cortical neurons were incubated with or without
188 BDNF (10 ng/ml, 15 min) in the presence of MG-132
189 (10 μM; 1 h preincubation), and ubiquitinated proteins
190 were isolated using Agarose-TUBE2 (Tandem Ubiquitin
191 Binding Entities, Lifesensors, Malvern, PA) affinity
192 pulldown as described previously [32]. Briefly, cultured
193 neurons were resuspended in lysis buffer containing
194 50 mM Tris-HCl, pH 7.5, 1 % NP-40, 1 mM EDTA,
195 150 mM NaCl, 10 % glycerol supplemented with
196 10 mMN-ethylmaleimide and complete protease inhibi-
197 tor cocktail (Roche, Indianapolis, IN), followed by cen-
198 trifugation at 12,000×g for 10 min at 4 °C. Two hun-
199 dred micrograms from the supernatants was precleared
200 with control agarose (Lifesensors, Malvern, PA) for 1 h
201 at 4 °C and incubated overnight with 20 μl Agarose-
202 TUBE2 beads at 4 °C. Then, the beads were washed
203 four times (10-min intervals each) in the wash buffer
204 (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1 %
205 Tween-20), and bound proteins were eluted with 50 μl
206 2× SDS sample buffer and then subjected to SDS-
207 PAGE. To aid the transfer of higher molecular weight

208proteins, the gels were incubated with gel soaking buff-
209er (63 mM Tris-HCl, pH 6.8, 2.3 % SDS, 5.0 % β-
210mercaptoethanol) for 30 min. After transfer, the mem-
211branes were probed with anti-STEP antibody (1:2000),
212to visualize high molecular weight STEP-ubiquitin con-
213jugates and with an anti-ubiquitin antibody (1:5000; Af-
214finity Bioreagents, Golden, CO) as control.

215Statistical Analysis

216All data are expressed as mean±SEM. Statistical analysis
217were performed by using the unpaired Student’s t test (95 %
218confidence) or the one-way ANOVA with Dunnett’s or
219Bonferroni’s post hoc test, as appropriate and indicated in
220the figure legends. Values of p<0.05 were considered as sta-
221tistically significant.

222Results

223BDNF Reduces STEP61 Levels in Primary Cortical
224Neurons

225To investigate whether BDNF regulates STEP levels, we
226used mouse primary cortical cultures at DIV 8. First, we
227analyzed whether TrkB, the high affinity receptor for
228BDNF, was expressed in cortical neurons in culture.
229As we found TrkB expression in 8-day-old primary cor-
230tical neurons (Fig. 1a), cultures were then treated with
23110 ng/ml BDNF for 24 h and STEP levels were ana-
232lyzed by Western blot. As in cortical tissue, cultured
233cortical neurons only express the STEP61 isoform
234(Fig. S1). We found that STEP61 levels were significant-
235ly reduced in BDNF-treated cultures compared with cul-
236tures incubated in the absence of BDNF (Fig. 1b; Ctr:
237100.00±6.94 % and BDNF: 49.83±14.37 %; n=3; p=
2380.0347, Student’s t test). To further characterize this
239effect, we examined STEP61 levels at different time
240points after BDNF treatment. We observed a significant
241reduction of STEP61 as early as 5 min after BDNF
242addition, and this effect was sustained for up to 6 h
243(Fig. 1c).
244Next, we analyzed whether BDNF-induced reduction
245of STEP61 levels was dependent on activation of the
246BDNF receptor TrkB. Treatment with the tyrosine ki-
247nase inhibitor K252a (200 nM) blocked BDNF-induced
248TrkB phosphorylation and reduction of STEP61 levels,
249whereas it had no effect on STEP61 basal levels
250(Fig. 1d). cAMP-dependent protein kinase (PKA) phos-
251phorylates STEP61 at Ser221 within the kinase
252interacting domain thereby inactivating it [26]. Since
253BDNF transiently activates PKA in neurons [36, 37],
254we investigated whether BDNF also leads to STEP61
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255 inactivation by PKA-mediated phosphorylation in corti-
256 cal neurons. To analyze whether PKA was activated by
257 BDNF, we examined the phosphorylation of Thr197 in
258 the activation loop of the catalytic subunit of PKA
259 (PKAc), an essential step for its proper function [38].
260 pPKAcThr197 levels were not altered after 15-min

261incubation with 10 ng/ml BDNF (Fig. S2), indicating
262that PKA was not activated.
263Finally, we stimulated cortical neurons with BDNF for
26415 min and performed immunocytochemistry against STEP.
265As shown in Fig. 1e, STEP61 expression was detected in cell
266body and neurites, and after BDNF treatment, STEP

Fig. 1 Effect of BDNF on
STEP61 levels in primary cortical
neurons. a The expression of
TrkB was analyzed by Western
blot of protein extracts obtained
from mouse primary cortical
cultures. Mouse adult tissue
served as positive control.
Primary cortical cultures were
incubated with 10 ng/ml BDNF b
for 24 h or c during different time
periods up to 6 h, and STEP61
levels were examined by Western
blot. d STEP61 and pTrkB

Tyr816

levels were analyzed in cortical
cultures treated for 60 min with or
without the tyrosine kinase
inhibitor K252a (200 nM; K) and
then incubated in the presence or
absence of BDNF (10 ng/ml; B)
for additional 15 min.
Representative immunoblots are
shown. Values obtained by
densitometric analysis of Western
blot data are expressed as
percentage of control (Ctr)
cultures incubated in the absence
of BDNF and are shown as mean
±SEM of three to seven
experiments performed in
duplicate in independent cultures.
Data were analyzed by Student’s t
test (b), one-way ANOVAwith
Dunnett’s (c), and one-way
ANOVAwith Bonferroni’s (d)
post hoc test. *p<0.05,
**p<0.01, and ***p<0.001
compared with Ctr cultures;
###p<0.001 compared with
cultures incubated with BDNF
alone. e STEP and MAP2 were
analyzed by
immunocytochemistry in
untreated (Ctr) and BDNF-treated
(10 ng/ml, 15 min) cortical
cultures. High magnification
insets are shown. Arrows denote
loss of STEP immunoreactivity in
a dendrite
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267 immunoreactivity was mainly decreased in neurites. Taken
268 together, the data indicate that BDNF-TrkB signaling induces
269 STEP61 reduction in cortical neurons.

270 BDNF Reduces STEP61 Levels in Primary Cortical
271 Cultures Through the PLCγ Pathway

272 BDNF can activate calpains [9, 39], and calpains cleave
273 STEP61, generating a 33-kDa fragment [15, 28–30].
274 Thus, we first analyzed whether BDNF activated
275 calpains in our model by looking at spectrin breakdown
276 products (SBDPs) at 145–150 kDa, which are generated
277 specifically by calpain-dependent cleavage. We detected
278 higher levels of SBDPs in BDNF-treated cultures than
279 in controls, indicating that there was activation of
280 calpains in response to BDNF (Fig. S3a). Next, we
281 evaluated whether reduced STEP61 levels in BDNF-
282 treated cultures correlated with an accumulation of the
283 STEP33 fragment. As shown in Fig. S3b, STEP33 was
284 barely detected both in control and in cultures incubated
285 for 15 min with 10 ng/ml BDNF. Thus, although BDNF
286 activates calpains, a different mechanism is responsible
287 for the reduction of STEP61 levels in BDNF-treated cor-
288 tical neurons.
289 To identify the intracellular pathways responsible for
290 BDNF-mediated reduction of STEP61 levels in primary
291 cortical cultures, we inhibited three downstream effec-
292 tors of BDNF [6]: the MAPK pathway (PD98059), the
293 phospho inos i t i d e -3 k ina se (P I -3 K) pa thway
294 (wortmannin), and the phospholipase Cγ (PLCγ) path-
295 way (U73122). Treatment with PD98059 (25 μM) or
296 wortmannin (50 nM) reduced both basal and BDNF-

297induced ERK1/2 and Akt phosphorylation, respectively,
298but did not affect STEP61 levels at baseline and did not
299block the reduction of STEP61 after BDNF treatment
300(Fig. 2a, b). Similarly, incubation with U73122
301(5 μM) alone did not modify STEP61 levels in basal
302conditions, but it blocked the reduction of STEP61
303levels in BDNF-treated cultures (Fig. 2c). Thus,
304BDNF-TrkB signaling induces a reduction of STEP61
305levels in cortical neurons through the activation of
306PLCγ.

307STEP61 is Ubiquitinated and Degraded by the Proteasome
308in Response to BDNF Stimulation

309STEP61 can be degraded through the ubiquitin-
310proteasome system (UPS) [18, 31]. Since BDNF pro-
311motes the ubiquitination of several synaptic proteins
312[40], we next investigated the effect of proteasome in-
313hibition on STEP61 levels in BDNF-treated cultures. The
314proteasome inhibitor MG-132 (10 μM) alone had no
315effect on basal STEP61 levels in cortical neurons, but
316it prevented the reduction of STEP61 in response to
317BDNF (Fig. 3a). To confirm these findings, we analyzed
318STEP61 ubiquitination in control and in BDNF-treated
319cultures. To detect STEP61 ubiquitination, BDNF stimu-
320lations were performed in the presence of MG-132
321(10 μM) and polyubiquitinated proteins were enriched
322using ubiquitin affinity beads and probed with an anti-
323STEP antibody. Consistent with the effect of proteasome
324inhibition on STEP61 levels (Fig. 3a), polyubiquitinated
325STEP61 was detected in BDNF-treated cultures, while
326the total level of polyubiquitined proteins was not

Fig. 2 PLCγ mediates the degradation of STEP61 by BDNF in primary
cortical cultures. Mouse primary cortical cultures were treated for 60 min
with or without a the MAPK inhibitor PD98059 (25 μM; PD), b the PI-
3 K inhibitor wortmannin (50 nM; W), or c the PLC inhibitor U73122
(5 μM; U) and then incubated in the presence or absence of BDNF
(10 ng/ml; B) for additional 15 min. STEP61 and a pERK1/2Thr202/
Tyr204, b pAktSer473, or c pPLCγTyr783 were examined by Western blot.

Representative immunoblots are shown. Values obtained by
densitometric analysis of Western blot data are expressed as percentage
of control (Ctr) cultures and are shown as mean±SEM of three
experiments performed in duplicate in independent cultures. Data were
analyzed by one-way ANOVAwith Bonferroni’s post hoc test. *p<0.05
and **p<0.01 compared with Ctr cultures; ##p<0.01 compared with
cultures incubated with BDNF alone
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327 altered by BDNF treatment (Fig. 3b). Altogether, these
328 results indicate that STEP61 is ubiquitinated in response

329to BDNF and degraded by the UPS through a PLCγ-
330mediated pathway.

Fig. 4 Effect of BDNF-induced STEP61 degradation on GluN2BTyr1472

and ERK1/2Thr202/Tyr204 phosphorylation levels in primary cortical
cultures. a STEP61, b pGluN2BTyr1472, and c pERK1/2Thr202/Tyr204

levels were analyzed by Western blot of protein extracts obtained from
mouse primary cortical cultures treated for 60 min in the presence or
absence of the proteasome inhibitor MG-132 (10 μM; MG) and then
incubated with or without 10 ng/ml BDNF (B) for additional 60 min.

Representative immunoblots are shown. Values obtained by
densitometric analysis of Western blot data are expressed as percentage
of control (Ctr) cultures and shown as mean±SEM of four to eight
experiments performed in duplicate in independent cultures. Data were
analyzed by one-way ANOVAwith Bonferroni’s post hoc test. *p<0.05,
**p<0.01, and ***p<0.001 compared with Ctr cultures; ##p<0.01 and
###p<0.001 compared with cultures incubated with BDNF alone

Fig. 3 BDNF promotes STEP61 ubiquitination and degradation through
the proteasome. a STEP61 levels were analyzed byWestern blot of protein
extracts obtained from mouse primary cortical cultures treated for 60 min
with or without the proteasome inhibitor MG-132 (10 μM;MG) and then
incubated in the presence or absence of BDNF (10 ng/ml; B) for
additional 15 min. b The levels of STEP61-ubiquitin conjugates were
determined in protein extracts from control cultures and cultures
exposed for 15 min to BDNF (10 ng/ml) in the presence of MG-132
(10 μM) and subjected to ubiquitin (Ub) pulldown using Agarose-

TUBE2 and immunoblotted (IB) with anti-STEP and anti-ubiquitin
antibodies. Representative immunoblots are shown. Values obtained by
densitometric analysis ofWestern blot data are expressed as percentage of
control (Ctr) cultures and are shown as mean±SEM of four to seven
experiments performed in duplicate in independent cultures. Data were
analyzed by one-way ANOVAwith Bonferroni’s post hoc test. **p<0.01
and ***p<0.001 compared with Ctr cultures; ##p<0.01 and ###p<0.001
compared with cultures incubated with BDNF alone
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331 BDNF-Induced STEP61 Degradation Contributes
332 to Sustain High Levels of pGluN2B and pERK1/2

333 BDNF induces GluN2B [41, 42]and ERK1/2 [43–45] phos-
334 phorylation in cortical neurons, and both phospho-proteins are
335 STEP substrates [19, 21, 46]. Thus, to address the functional
336 relevance of BDNF-induced STEP61 degradation, we ana-
337 lyzed the phosphorylation level of GluN2B and ERK1/2 in
338 cultures exposed to BDNF in the presence or absence of the
339 proteasome inhibitor MG-132. In an attempt to avoid the ini-
340 tial BDNF-induced kinase-dependent effect on the phosphor-
341 ylation status of GluN2B and ERK1/2, we analyzed their
342 phosphorylation levels at 1 h. BDNF-induced STEP61 degra-
343 dation was prevented by MG-132, and in agreement with
344 STEP61 being degraded by the proteasome, incubation for
345 120 min with MG-132 alone (but not for 75 min, Fig. 3a)
346 significantly increased STEP61 levels compared to control cul-
347 tures (Fig. 4a). Both pGluN2BTyr1472 (Fig. 4b) and pERK1/
348 2Thr202/Tyr204 (Fig. 4c) levels were significantly increased in
349 cultures exposed to BDNF for 1 h. In contrast, in cultures
350 incubated with BDNF plus MG-132, the phosphorylation
351 levels of GluN2B (Fig. 4b) and ERK1/2 (Fig. 4c) were signif-
352 icantly reduced compared to cultures incubated with BDNF
353 alone. Taken together, these results indicate that STEP61 deg-
354 radation through the proteasome is necessary for full phos-
355 phorylation of GluN2B and ERK1/2 in response to BDNF.

356 BDNFAlso Induces STEP61 Degradation
357 Through the Proteasome in Striatal and Hippocampal
358 Neurons

359 Next, we investigated whether BDNF-induced STEP61 degra-
360 dation was a general mechanism that occurs in distinct neuro-
361 nal types. We first analyzed TrkB expression by Western blot
362 of mouse primary striatal and hippocampal neuronal extracts.
363 Both striatal (Fig. 5a) and hippocampal (Fig. 5b) neurons
364 expressed TrkB at DIV 8. In agreement with the postnatal
365 ontogeny of STEP46 [47], we did not detect expression of this
366 STEP isoform in 8-day-old primary striatal neurons (Fig. 5b).
367 Moreover, like hippocampal tissue, cultured hippocampal
368 neurons only express the STEP61 isoform (Fig. 5b). Addition
369 of 10 ng/ml BDNF for 15 min activated PLCγ and reduced
370 STEP61 protein levels in striatal (Fig. 5c) and hippocampal
371 (Fig. 5d) cultured neurons, an effect that was prevented by
372 the addition of the proteasome inhibitor MG-132. Thus,
373 BDNF-induced STEP61 degradation through the proteasome
374 is a mechanism common to cortical, striatal, and hippocampal
375 neurons.

376 NGF and NT-3 do not Induce STEP61 Degradation

377 We next examined whether STEP61 degradation was exclu-
378 sively induced by BDNF or could also be promoted by other

379neurotrophin family members. To this end, we first checked in
380mouse primary neurons the expression of TrkA, the high af-
381finity receptor for nerve growth factor (NGF), and TrkC, the
382high affinity receptor for NT-3. As shown in Fig. 6a, TrkA and
383TrkC were expressed in mouse primary cortical, striatal, and

Fig. 5 BDNF induces STEP61 degradation in primary striatal and
hippocampal cultures through the proteasome. a The expression of
TrkB was analyzed by Western blot of protein extracts obtained from
mouse primary striatal and hippocampal cultures at DIV 8. Mouse adult
striatal and hippocampal tissue served as positive control. b The
expression of STEP was analyzed by Western blot of protein extracts
obtained from mouse striatal and hippocampal adult tissue and cultured
neurons at DIV 8. Representative immunoblots are shown. STEP61 levels
were analyzed by Western blot of protein extracts obtained from primary
c striatal and d hippocampal cultures treated for 60 min with or without
the proteasome inhibitorMG-132 (10μM;MG) and then incubated in the
presence or absence of BDNF (10 ng/ml; B) for additional 15 min.
Representative immunoblots are shown. Values obtained by
densitometric analysis of Western blot data are expressed as percentage
of control (Ctr) cultures and are shown as mean±SEM of three to six
experiments performed in duplicate in independent cultures. Data were
analyzed by one-way ANOVA with Bonferroni’s post hoc test.
***p<0.001 compared with Ctr cultures; #p<0.05 and ###p<0.001
compared with cultures incubated with BDNF alone
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385 of 10 ng/ml NGF or NT-3 for 15 min did not alter STEP61
386 levels in cortical, striatal, or hippocampal primary neurons
387 (Fig. 6b). Of note, neither NGF nor NT-3 induced PLCγ,
388 Akt, or ERK1/2 phosphorylation in these conditions
389 (Fig. 6b). NT-3 [48–50], but not NGF [49, 51], stimulates
390 Trk phosphorylation and downstream signaling in rat primary
391 cortical neurons. As Trk receptors were detected in 8-day-old
392 rat primary cortical neurons (Fig. 6c), we analyzed the effect
393 of the distinct neurotrophins on STEP61 levels and intracellu-
394 lar signaling. We found that a 15-min exposure to 10 ng/ml
395 NT-3 or BDNF, but not NGF, increased the phosphorylation
396 level of PLCγ, Akt, and ERK1/2 (Fig. 6d). Importantly, de-
397 spite PLCγ activation in both NT-3- and BDNF-treated cul-
398 tures, only BDNF induced STEP61 degradation in rat cortical
399 neurons (Fig. 6d). Therefore, the effect of BDNF on STEP61
400 levels is specific as other neurotrophin family members are
401 unable to induce STEP61 degradation.

402 STEP61 Levels are Reduced Upon Cell Depolarization

403 Neuronal depolarization induced by high extracellular KCl
404 levels is commonly used as an in vitro model to study
405 activity-dependent processes, and it induces BDNF release
406 [52–55]. We therefore determined whether depolarization
407 could promote STEP61 degradation. To address this, we ana-
408 lyzed STEP61 levels after depolarization of primary cortical
409 neurons with 50 mM KCl for 5 min, in the presence and
410 absence of ANA-12, a TrkB antagonist [56], and the protea-
411 some inhibitor MG-132. We found that, like BDNF (Fig. 2c),
412 depolarization significantly increased the levels of
413 pPLCγTyr783 (Ctr: 100.01±0.04 % and KCl: 141.84±
414 19.07 %; n=3–4; p=0.0470, Student’s t test) with a concom-
415 itant reduction of STEP61 levels, which was prevented in cul-
416 tures where TrkB signaling or the proteasome were inhibited
417 (Fig. 7a). After a prolonged incubation (60 min) with 50 mM
418 KCl to mimic neuronal stimulation in pathological conditions,
419 STEP61 levels were also reduced, but in this case, there was an
420 increase in STEP33 levels (Fig. 7b), indicating cleavage of

421STEP61 by calpains [15]. Consistent with this, we de-
422tected calpain activation in cultures incubated with KCl
423for 60 min as assessed by the increase in SBDPs at
424145–150 kDa (Fig. 7b). Hence, neuronal depolarization
425promotes a reduction in STEP61 levels by a mechanism
426that is dependent on whether it is physiological or
427pathological.

�Fig. 6 NGF and NT-3 have no effect on STEP61 levels in primary
neurons. a The expression of TrkA and TrkC was analyzed by Western
blot of protein extracts obtained frommouse primary cortical, striatal, and
hippocampal cultures. Mouse adult tissue served as positive control. b
Mouse primary cortical, striatal, and hippocampal cultures were
incubated in the presence or absence of NGF, NT-3, or BDNF
(10 ng/ml) for 15 min and the levels of STEP61, pPLCγ

Ser783,
pAktSer473, and pERK1/2Thr202/Tyr204 were examined by Western blot. c
The expression of TrkA, TrkB, and TrkCwas analyzed byWestern blot of
protein extracts obtained from rat primary cortical cultures. Mouse adult
cortical tissue served as positive control. d Rat primary cortical neurons
were incubated in the presence or absence of NGF, NT-3, or BDNF
(10 ng/ml) for 15 min and the levels of STEP61, pPLCγ

Ser783,
pAktSer473, and pERK1/2Thr202/Tyr204 were examined by Western blot.
Representative immunoblots are shown
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428 Discussion

429 In the present study, we show that BDNF induces STEP61
430 degradation in primary cortical neurons through a PLCγ-
431 UPS pathway (Fig. S4). BDNF-induced STEP61 degradation
432 contributes to the sustained high levels of pGluN2B and
433 pERK1/2. This effect is reproduced in cultured striatal and
434 hippocampal neurons and is specific for BDNF since the
435 neurotrophins NGF and NT-3 do not induce degradation of
436 STEP61. In addition, a brief depolarization of cortical neurons
437 with KCl also promotes TrkB-mediated and UPS-dependent
438 STEP61 degradation, whereas a sustained depolarization in-
439 duces proteolytic cleavage of STEP61 by calpains. Taken to-
440 gether, our results indicate that BDNF promotes the rapid
441 degradation of STEP61 and elucidate a novel mechanism that
442 likely participates in regulating neuronal function and synaptic
443 strengthening.
444 Our results show a reduction of STEP61 levels in BDNF-
445 treated cortical cultures, an effect that was abrogated when the
446 proteasome was inhibited, indicating that BDNF-TrkB signal-
447 ing modulates STEP61 protein levels through the UPS. In
448 accordance with these results, previous studies have shown
449 that STEP61 is degraded by the proteasome [15, 18, 31] and
450 that BDNF promotes the ubiquitination of synaptic proteins

451[40] and induces UPS-dependent degradation of proteins that
452inhibit neurite outgrowth [57–59]. Importantly, active STEP is
453more prone to degradation through the proteasome than inac-
454tive STEP [31] suggesting that BDNF-induced STEP61 deg-
455radation constitutes a rapid way to attenuate its phosphatase
456activity.
457In addition to its effect on UPS-dependent protein degra-
458dation, BDNF can also promote calpain activation in cultured
459neurons and hippocampal slices [8, 9, 39]. BDNF-induced
460activation of calpains stimulates the proteolysis of phospha-
461tases such as PTEN [8] and SCOP [9]. Calpains are known to
462cleave STEP61 to generate a STEP33 fragment [15, 28, 30].
463However, the levels of this fragment were not increased in
464BDNF-treated cultures, strongly suggesting that proteolysis
465by calpains was not implicated in the effect of BDNF on
466STEP61. In this sense, both BDNF and neuronal activity in-
467duced by a brief incubation with KCl promoted PLCγ activa-
468tion and STEP61 degradation through the proteasome. In
469agreement with this, depolarization induces BDNF release
470from primary cortical neurons [60], and KCl-induced STEP61
471degradation was prevented by antagonizing TrkB signaling
472with ANA-12. In contrast, prolonged KCl-induced depolari-
473zation promoted calpain cleavage of STEP61. Importantly, the
47433 kDa fragment neither interacts with nor dephosphorylates

Fig. 7 STEP61 levels after cell depolarization. a STEP61 and
pPLCγSer783 levels were analyzed by Western blot of protein extracts
obtained from mouse primary cortical cultures incubated with or
without ANA-12 (100 μM; ANA) or MG-132 (10 μM; MG) for 60 min
and then stimulated with 50mMKCl for 5 min. b The levels of STEP and
spectrin breakdown products (SBDPs) at 145–150 kDa were analyzed by
Western blot of protein extracts obtained from mouse primary cortical
cultures incubated with 50 mM KCl for 60 min. Representative

immunoblots are shown. Values obtained by densitometric analysis of
Western blot data are expressed as percentage of control (Ctr) cultures
and shown as mean±SEM of three to five experiments performed in
duplicate in independent cultures. Data were analyzed by one-way
ANOVA with Bonferroni’s post hoc test (a) and Student’s t test (b).
***p<0.001 compared with Ctr cultures; #p<0.05 compared with
cultures incubated with KCl alone
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475 STEP substrates [15, 28]. Therefore, STEP61 levels/activity
476 are dynamically regulated in very specific manners. Reinforc-
477 ing our observation of a signal-dependent mechanism of
478 STEP61 degradation, synaptic stimulation of NMDA receptors
479 promotes STEP61 degradation through the UPS, while
480 extrasynaptic stimulation induces calpain-mediated STEP61
481 proteolysis, leading to a differential regulation of ERK and
482 p38 [15].
483 Here, we dissect the intracellular pathway leading to UPS-
484 dependent STEP61 degradation in response to BDNF, and our
485 findings demonstrate that BDNF promotes STEP61 degrada-
486 tion through PLCγ. Importantly, the PLCγ pathway is neces-
487 sary for BDNF-induced hippocampal plasticity [5]. As
488 BDNF-induced PLCγ activation leads to STEP61 degradation
489 by the proteasome, we propose that the effects of BDNF on
490 synaptic plasticity might be mediated, at least in part, by a
491 reduction of STEP61 levels.
492 Interestingly, BDNF-induced STEP61 degradation through
493 the proteasome was not neuronal type-dependent, as it oc-
494 curred in cortical, striatal, and hippocampal neurons. BDNF
495 plays an important role in the cellular mechanisms underlying
496 neuronal plasticity in these neuronal types [4, 61]. Thus, the
497 present results improve our understanding of the mechanisms
498 underlying BDNF regulation of neuronal function and suggest
499 that STEP61 degradation could play an important role in this
500 process. In agreement, STEP levels/activity are altered in neu-
501 rodegenerative diseases in which cortical, striatal, and/or hip-
502 pocampal function is impaired, including Alzheimer’s dis-
503 ease, Huntington’s chorea, Parkinson’s disease, schizophre-
504 nia, and fragile X syndrome [18, 32–35, 62]. Since BDNF
505 also regulates survival, maturation, and differentiation of these
506 neurons [63–68], future studies are needed to address the con-
507 tribution of BDNF-induced STEP61 degradation to these
508 phenomena.
509 Additionally, here, we show that STEP61 degradation is
510 specifically induced by BDNF since we did not observe de-
511 creased levels of STEP61 after treatment with NGF or NT-3,
512 two related neurotrophin family members. Remarkably, al-
513 though we detected TrkA protein in mouse primary cortical,
514 striatal, and hippocampal, as well as rat primary cortical neu-
515 rons, addition of NGF did not activate PLCγ, PI-3 K, or
516 MAPK pathways in any condition analyzed. Actually, data
517 regarding the expression of TrkA and its activation by NGF
518 in primary neuronal cultures are inconsistent [48, 51, 69–72].
519 These discrepancies could be due to different species, culture
520 conditions, concentration of NGF used, or duration of the
521 treatment. Here, we did not detect NGF-induced intracellular
522 signaling in culture conditions in which BDNF promoted a
523 strong activation of PLCγ, PI-3 K, and MAPK, suggesting
524 that these neurotrophins could elicit different biological re-
525 sponses depending on neuronal type and/or maturation. On
526 the other hand, we did not detect NT-3-induced signaling in
527 mouse primary neurons but, consistent with other reports

528[48–50], NT-3 induced intracellular signaling in rat primary
529cortical neurons. Nevertheless, despite activation of PLCγ,
530STEP61 levels were not altered after NT-3 exposure
531supporting a specific effect of BDNF on STEP61 levels.
532Changes in STEP activity modulate the phosphorylation
533levels of several proteins like GluN2B and ERK1/2 [19–21].
534Consistent with this, we observed decreased levels of
535pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 when BDNF-
536induced STEP61 degradation was prevented by treatment with
537a proteasome inhibitor. These results indicate that in normal
538conditions, sustained high levels of pGluN2BTyr1472 and
539pERK1/2Thr202/Tyr204 after BDNF treatment are due, in part,
540to a reduction in STEP61 levels. Notably, GluN2B

Tyr1472 phos-
541phorylation is critical for memory formation and modulates
542NMDA receptor function [73, 74], while its blockade prevents
543BDNF-induced enhancement of synaptic transmission [75,
54476]. Moreover, ERK1/2 is an essential component of the sig-
545nal transduction mechanisms underlying learning and memo-
546ry [77–79]. In view of the functional importance of pGluN2B
547and pERK in the regulation of synaptic plasticity and memory,
548alterations in BDNF-induced STEP61 degradation may have
549deleterious effects in these processes. In line with our propos-
550al, in conditions where STEP61 activity is increased, like in
551Alzheimer’s disease and schizophrenia, there is a dysregula-
552tion of NMDA receptors and reduced cognitive function [18,
55332, 35]. In contrast, STEP knockout mice have higher
554pGluN2B and pERK1/2 levels, enhanced hippocampal long-
555term potentiation, and improved performance in hippocampal-
556dependent learning and memory tasks [35, 80].
557In conclusion, we demonstrate for the first time that BDNF
558induces STEP61 degradation in primary cortical, striatal, and
559hippocampal neurons through a PLCγ-UPS pathway. Since
560BDNF-induced STEP61 degradation leads to higher phosphor-
561ylation levels of GluN2B and ERK1/2, our results unravel a
562novel mechanism that likely contributes to BDNF-induced
563effects.
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