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Abstract: Neuronal survival depends on the glia, that is, on the astroglial and microglial support.
Neurons die and microglia are activated not only in neurodegenerative diseases but also in physi-
ological aging. Activated microglia, once considered harmful, express two main phenotypes: the
pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial
activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia
must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G
protein-coupled receptors in general and adenosine receptors in particular are potential targets for in-
creasing the number of M2 cells. This article describes the mechanisms underlying microglial activation
and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned
to better react to exposure to more damaging events. Adenosine receptors are relevant due to their
participation in preconditioning. They can also be overexpressed in activated microglial cells. The
potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as
therapeutic targets to provide microglia-mediated neuroprotection is here discussed.

Keywords: neurodegeneration; aging; Parkinson’s disease; Alzheimer’s disease; neuroprotection;
neuronal survival; cannabinoids; receptor heteromers

1. Introduction

Glial cells are key players in the functionality of the central nervous system (CNS).
Astrocytes are more concerned with satisfying the energy and structural needs of neurons,
while microglia have a surveillance function that mainly consists of preserving neurons from
noxious events, but also of eliminating cell debris through phagocytosis. Astrocytes constitute
a cellular target for neuroprotection [1,2], however, the focus of this review is microglia.

Microglia are considered immune cells that reside in the central nervous system (CNS).
Microglial activation occurs in the development of the nervous system, in the healthy brain,
and in a wide variety of circumstances, from cerebral hypoxia/ischemia to regions of neuronal
death in neurodegenerative diseases. Experiments in human post-mortem samples show
markers of microglial activation in an apparently healthy brain, that is, in individuals lacking
clinical neurological symptoms. [3–5]. In ischemic stroke, the function of the activated
microglia is complemented by activated macrophages infiltrating from the blood. In the
case of, among others, epilepsy or neurodegenerative diseases, macrophages do not play
any substantial role except in cases of impaired function of the blood-brain barrier. In all
these cases, activation of the microglia/macrophages is considered neuroinflammation. Some
authors prefer to speak of microglial activation and, eventually, pseudoinflammation [6],
because the activation of the microglia is not necessarily associated with any pathology; for
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example, the developing brain is not considered inflamed. It should be noted that there is
evidence of microglial activation as a consequence of lifestyle stress [7].

One of the first papers on ischemia and microglia described, in hippocampus, how
activated microglia phagocytose degenerating neurons and express antigens of the major
histocompatibility MHC-II complex [8]. While an acute traumatic event or stroke is likely
to cause activation of microglia, activated microglia have been found in the brain or in
patients suffering from neurodegenerative diseases [9], among others, from Parkinson’s
disease (PD) [10,11], Alzheimer’s disease (AD) [12–14], and Huntington’s disease [15,16].
Addressing the exact role of microglia in these diseases is a challenge that has increased
awareness of the potential of these cells because they can present two main phenotypes,
known as M1 and M2, the first being pro-inflammatory and the second neuroprotective [2].
The gold standard in the field would be to find a way to convert M1 microglia to M2 with
the ultimate goal of slowing the progression of neurodegenerative diseases [17]. Microglial
activation was first assessed by phagocytic capacity, immunochemical studies, and by
determining the release of pro-inflammatory cytokines. In the last two decades, new tools
have been incorporated to characterize the microglial phenotype (M1, M2 and intermediate
phenotypes) at the molecular level. These new tools are mainly taking into account the
expression of proteins whose presence is abundant in one phenotype and scarce in the
other (see [18]). At present, they are known as M1 or M2 markers and a significant number
of them have been identified with commercial ad hoc antibodies already available to detect
expression even in natural sources (such as brain slices).

Controversies have arisen related to the polarization of activated microglia, which
have even led to denying the existence of M1 and M2 cells. [19]. It has been suggested that
the phenotype of activated macrophages and microglia is constituted by a repertoire of cells
with overlapping functions and markers [20]. However, the M1/M2 nomenclature has been
and is, today, fundamental in both the macrophage and the microglia research fields. It
should be noted that M2 macrophages or microglia can be further subdivided into 2a, 2b, 2c,
and 2d (see [21–26] for review). As an example, a recent report shows that transplantation
of M2-skewed microglia, produced upon interleukin-4 treatment, led to marked recovery
of motor function in a model of spinal cord injury (SCI). Authors concluded: “our results
indicated that M2 microglia obtained by IL-4 stimulation may be a promising candidate for cell
transplantation therapy for SCI” [27].

G-protein-coupled receptors (GPCRs) modulate activation events in microglia. In this
review, we have selected a subfamily of GPCRs, namely adenosine receptors (ARs) because
they are relevant players in microglial function and because there are drugs targeting ARs
that have recently been approved for the therapy of neurodegenerative diseases (see below).

2. Purinergic P1 and P2 Receptors

Purinergic nerves were discovered by late Prof. Geoffrey Burnstock, a truly inspiring
scientist [28–30]. The purine nucleotide, ATP, may be released by different cells of the
nervous system (see [31]); however, in some neurons it may be stored in vesicles and
released upon a stimulus (see historical perspective in [32]). Apart from its action as
neurotransmitter, ATP released to the extracellular medium exerts a variety of actions in
every system of the human body. These actions are mediated by the so-called P2 purinergic
receptors, which are located on the cell surface of the responding cell. There are two types
of P2 receptors, those that are ligand-gated ion channels that are formed by homotrimers or
heterotrimers of seven different subunits discovered so far (P2X1 to P2X7) [33] and GPCRs,
known as P2Y, with eight members [34]. Virtually, any cell in the human body, for instance
in the kidney [35] or in the lung [36], has one or more than one of those receptors. This paper
does not focus on P2 but on P1 (or adenosine) receptors, which are those that recognize
the nucleoside derivative, adenosine, produced after extracellular degradation of ATP. All
adenosine receptors are expressed in the human brain but at various levels depending on
the specific region (Table 1). Interestingly, the expression of mRNA transcripts for all types
of adenosine receptors is elevated in the basal ganglia.
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Table 1. Comparative expression of mRNA transcripts of adenosine receptor in different regions of human brain.

mRNA Transcript Expression Levels (Scaled Tags Per Million)
Cerebral
Cortex

Olfactory
Region

Hippocampal
Formation Amygdala Basal

Ganglia Thalamus Midbrain Pons and
Medula Cerebellum Corpus

Callosum
Spinal
Cord

Pituitary
Gland

A1R 139.6 83.6 92.2 79.4 149.2 100.7 139.3 143.9 74.2 147.8 100.7 2.7
A2AR 9.4 3.6 5.8 3.9 53.4 13.7 3.0 6.0 3.0 3.6 0.8 1.1
A2BR 14.3 8.9 14.5 12.8 15.5 4.9 0.9 11.3 13.7 3.9 7.9 1.9
A3R 27.3 9.9 31.9 33.9 47.9 47.9 61.3 50.9 6.6 32.6 98.4 7.1
Data taken from human brain protein atlas using FANTOM5 dataset and Cap Analysis of Gene Expression (CAGE). Data can be found in https://www.proteinatlas.org/search/adenosine+receptor (Accessed on
12 April 2021). For each receptor, a color scale shows higher (darker) versus lower (lighter) expression; the highest expression level for each receptor is underlined.

https://www.proteinatlas.org/search/adenosine+receptor
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Extracellular ATP is degraded by ectonucleotidases to produce AMP that is the sub-
strate of ecto-5′nucleotidase (CD73) whose reaction product is adenosine (extracellular).
Intracellular adenosine participates in many metabolic processes. Indeed, adenosine can be
released from cells to the extracellular milieu and, reciprocally, be uptaken to, eventually,
resynthesize ATP via anabolic routes. There is also the possibility to convert extracellular
adenosine into extracellular inosine by means of ecto-adenosine deaminase [37–42]. On the
one hand, adenosine acts on P1 receptors located in neurons but is not released through
synaptic vesicles; therefore, it is not considered a neurotransmitter but a neuromodulator.
On the other hand, P1 receptors are expressed in virtually all cells of the human body,
microglia included.

P1 or adenosine receptors belong to the superfamily of G protein-coupled receptors
(GPCRs). Four have been so far discovered: A1, A2A, A2B, and A3. A1 and A3 couple to Gi,
thus inactivating the adenylate cyclase and decreasing intracellular cAMP levels. A2A and
A2B couple to Gs, thus activating the adenylate cyclase and increasing intracellular cAMP
levels. Therefore, adenosine receptor (AR) activation regulates protein kinase A activity
(PKA). Moreover, PKC may be activated via A2B receptor-mediated intracellular calcium
mobilization [43–45], and other pathways may be also affected, e.g., the mitogen activated
protein kinase (MAPK) pathway. Finally, ion fluxes are differentially affected by adenosine
acting on ARs [46]. It should be noted that GPCRs may interact leading to heteromers
whose function is different from that of the interacting receptors [47]. There are several
examples of heteromers formed by ARs; they may interact with each other, for instance, to
form A1-A2A and [48–51] A2A-A2B complexes [52,53], or with other members of the GPCR
superfamily, for instance to form A2A-CB1 or A2A-CB2 complexes [54–56]. There is solid
evidence on the relevance of AR-containing heteromers for the modulation of microglial
activation and as therapeutic targets to combat neurodegenerative diseases [57].

Mitochondria homeostasis in neurons appears as a key factor in preventing neurode-
generation [58]. Despite GPCRs are thought to act in response to extracellular stimuli, they
can be also found in mitochondria [59–61], where they may participate in the control of
oxidative burden and mitochondrial performance. The future will tell whether GPCRs
in neuronal and / or glial mitochondria can be therapeutic targets to combat neurode-
generative diseases. Interestingly, the risk of neurodegenerative diseases is reduced after
consuming natural adenosine receptor antagonists, namely theophylline (tea) and caffeine
(coffee and cola drinks) [62–77].

3. Potential of Adenosine Receptors (AR) as Therapeutic Targets

After several inconveniences in the race to obtain new drugs that act on ARs, there is
evidence of excellent prospects for the approval of the human use of ligands of these receptors.

For many years, adenosine itself was the only drug targeting ARs that was approved
for human use. Despite the early discovery of the actions of adenosine in the cardiovas-
cular system [78], to our knowledge, there are no AR-related drugs in the line to combat
cardiovascular disease. However, adenosine has saved lives in the emergency room as
it converts paroxysmal tachycardia into sinus rhythm. The main basis for proposing this
intervention, only performed at hospitals, was the work performed in the second half of
the fifties by different laboratories. The data from Berne’s laboratory allowed patenting the
use of the nucleoside for combating tachycardia [79–81]. It is intriguing why there are no
new drugs targeting adenosine receptors able to combat heart diseases, especially after the
finding that adenosine A2A receptor (A2AR) antagonists, which are safe, are efficacious in
reverting abnormal calcium handling in cells from patients with atrial fibrillation [82–84], a
disease lacking efficacious medication.

In general, AR antagonists are safe. The most consumed (worldwide) psychoactive
compounds are AR antagonists. We refer to natural methylxanthines, e.g., caffeine in coffee,
theophylline in tea and theobromine in cocoa. Those methylxanthines are considered
as generally safe [76,85–87]. They have been approved for human use; they are present
in a variety of OTC (over-the-counter) medications and in some therapies of respiratory
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diseases. In addition, consumption of methylxanthines decreases the risk of suffering from
neurodegenerative diseases, whose main risk factor is age [67,71,72,76,86,88,89].

A2AR antagonists have been developed in parallel in different pharmaceutical com-
panies. They were designed to enter the brain and be effective for Parkinson’s disease
(PD), a neurodegenerative disease that involves the degeneration of dopamine-producing
neurons in the substantia nigra. Due to the opposite dopamine-adenosine functionality
in the striatum, it was hypothesized that the action of dopamine in PD patients could be
enhanced if the A2AR was blocked [90–96]. Furthermore, experiments in animal models
suggested that blockade of the A2AR affords neuroprotection, thus raising the possibility
that AR antagonists delay the progression of this neurodegenerative disease [74,75,97–107].
Highly selective A2AR antagonists were developed and few years ago the first-in-class drug
was approved for coadjuvant therapy in PD. It was KW-6002, also known as istradefylline
(PD) [108,109] that was first approved in Japan (NouriastTM) and years later, in the USA
(NourianzTM). Such decisions by regulatory bodies in two different and populated coun-
tries pave the way for approval of AR ligands for a variety of diseases. Even in cancer, there
is great hope because AR antagonists improve the efficacy of immunotherapies [110–114].

4. Neuron vs. Glia in Neurodegeneration

A fundamental question to address in the field of neuroprotection is whether to target
neurons or glia. In our opinion, neurons have been at the center of the stage to explore and
test neuroprotective interventions to slow the progression of neurodegenerative diseases.
However, a direct action on neurons is challenged by the poor survival prospects of neurons
that are having problems and will, sooner or later, die. In fact, blocking a presumed death
mechanism in neurons may not be effective for senescent or dysfunctional neurons [115].
Cell therapy may overcome such problem as neuroprotection consisting in increasing the
number of cells without necessarily affecting the fate of existing neurons. On the contrary,
it is doubtful that gene therapy with viral vectors, aimed at infecting suffering neurons,
can prevent neurodegeneration: it may help reduce symptoms, but there is no reason to
believe that gene therapy can increase the lifespan of an infected neuron.

Neurons require glia to survive and maintain proper functionality. Glial cells can
certainly help accelerate cell death, but they are effective in preventing or delaying neuronal
death [115]. It is well known that astroglia exchange regulatory molecules with neurons
to which they also provide molecules necessary for energy production. Neuron-microglia
interaction is less evident under homeostatic conditions. However, these interactions play
an important role in cerebral hypoxia/ischemia and neurological diseases associated with
inflammation. In addition, the functionality of the microglia is essential in physiological
neuronal death, which occurs both in the development of the nervous system and later
in human life. Neuron-microglia interactions have two sides, one related to the removal
of neuronal components after death and the other aimed at both starting and stopping
inflammation. In summary, the glia seems a better target than neurons to provide neuro-
protection. In keeping with the title of the special issue in which this article is included, we
will address the potential of microglia to protect neurons and/or provide neuroprotection
through proper manipulation of the M1/M2 phenotypic balance (see below).

5. Microglia

Microglia are considered as part of the immune system located in the CNS. Their
role is similar to that of blood macrophages, which are characterized by two functions,
phagocytic and inflammatory. Microglial cells were identified by Pio del Rio Hortega, a
contemporary of Santiago Ramón y Cajal [116–118]. Activation of microglia was, for several
years, considered detrimental; activated cells were described as reactive microglia (see [119]
for review). It is now known that these cells are important for neuroprotection and the
reason is that there are different phenotypes resulting from microglial activation [11].

Macrophages are key in the fight against a variety of infections of parasitic, fungal,
bacterial and viral origin. From a resting state, they undergo activation to display a M1,
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or proinflammatory phenotype, or follow an alternative activation route leading to the
so-called M2 phenotype, which participates in resolution of inflammation and cleanup.
The properties of the two populations in the context of a bacterial infection were concisely
described in [120]:

“Based on limited numbers of markers, activated macrophages can be classified as clas-
sically activated (M1) macrophages that support microbicidal activity or alternatively
activated (M2) macrophages that are not competent to eliminate pathogens”.

Ontogenesis and anatomical studies led to i) recognize microglia as resident cells in
the CNS, ii) recognize that these resident cells may activate, and iii) major lesions may lead
to the entrance and activation of macrophages from blood [121,122].

Under homeostatic conditions, the microglia are at rest (M0). Any damaging condition
results in cell activation that, analogously to macrophages, may lead to different microglial
phenotypes. As reviewed elsewhere, the main activation phenotypes are M1 and M2,
although the M2, depending on the specific function and the markers that are expressed,
may be subdivided into 2a, 2b, 2c, and 2d [18].

GPCRs are involved in the regulation of microglial polarization. Actually, important
clues related to microglial polarization come from detailed studies on how neuropeptides
inhibit classical microglial activation thus suggesting that they may induce M2 polarization.
The actions of the vasoactive intestinal peptide (VIP) on reducing microglial production of
pro-inflammatory cytokines are due to activation of vasoactive intestinal peptide receptors
1 and 2 (VPAC1 and VPAC2) [123,124]. Neuroprotection by VIP acting on microglial recep-
tors may be due to IL-4 production and protection of hippocampal neural stem/progenitor
cells [125]. Pathways engaged upon GPCR activation can regulate microglial activation and
polarization. Gs coupling and PKA pathway activation impacts on NFKB transcriptional
activity thus inhibiting chemokine gene expression. Expression of complexes formed by
CREB binding protein (CBP) and NFKB may be regulated via GPCRs (Delgado, 2002).
Accordingly, GPCRs via Gs/Gi, i.e., via modification of cAMP levels, modulate microglial
activation by balancing the action of these transcription factors (Figure 1) [126,127]. Neu-
ropeptides acting via Gs/cAMP/PKA inhibit MAPK4, impact on the JNK pathway and
on the composition of cJun/cFos and cJunB complexes, thus reducing the expression of
IFN-gamma, CD40, CXCL10 and iNOS [126,128]. However, not all Gs-coupled receptors
in microglia mediate neuroprotection, adenosine A2A receptor activation increases the
expression of nitric oxide in microglia [129] while cannabinoid receptors mediate neuropro-
tection despite they are coupled to Gi. This means that there are different pathways that
impact on the final output in terms of production of pro-inflammatory or anti-inflammatory
mediators (Figure 2A). It would be very interesting to study the time course variations
in the activation program of different pathways. Consistent with differences in protein
expression / functionality in microglia throughout the course of inflammation, there are
GPCRs expressed at low levels in resting microglia but overexpressed upon activation. A2A
receptors are one example, they are barely expressed in resting microglia, but are markedly
upregulated in surrounding microglial plaques found in AD patients [130]. Interestingly,
the adenosine A1 receptor is also up-regulated in neurodegenerative structures in AD and
its activation modulates both phosphorylation and translocation of tau and processing of
the amyloid precursor protein [130].
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(C). Blockade of the A2AR is anti-inflammatory in activated microglia but, also, it reverts the negative cross-talk within
the A2A-CB2 receptor heteromers. Accordingly, A2AR antagonists are not only anti-inflammatory but potentiate the
anti-inflammatory/neuroprotective action of endocannabinoids acting on microglial CB2Rs.

There is a kind of controversy surrounding the term “neuroinflammation” because
it is doubtful that CNS becomes inflamed. Moreover, the function of activated microglia
in CNS development is not considered to result in neuroinflammation. Therefore, it is
suggested that neuroinflammation should be substituted by microglial activation or CNS
pseudoinflammation [6]. In fact, microglia become activated in physiological/healthy
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CNS development. If neuronal death occurs (i) occasionally throughout human life and
(ii) progressively in healthy-aged individuals, microglia are likely to be activated. In
various pathological conditions, including neurodegenerative diseases, the microglia are
activated. When should microglial activation be considered inflammation? What if some
type of microglial activation is needed for neuronal survival in both health and disease?
Moreover, neuronal death requires the removal of that debris by the phagocytic activity
of activated microglia. Undoubtedly, the overproduction of pro-inflammatory cytokines
when there is an imbalance in the M1/M2 ratio can lead to further neuronal death. In
summary, microglial activation is a physiological mechanism that can become dangerous
and potentiate certain neuropathology if the skewing towards the M2 phenotype does not
occur in the appropriate period of time.

Although the expression of ARs depends on the state of the microglia (resting or
activated) and the specific phenotype, all ARs, except the A2B, have been reported to be
expressed in resting cells. [131,132]. Expression may vary depending on microglial location
in the brain. It is likely that the A2B receptor is expressed in M1 and/or M2 skewed cells.
In fact the A2BR is present in primary microglia from rat forebrain and its activation (in
resting cells) engages the p38 MAPK pathway to induce interleukin(IL)-6 release [133].

After an excitotoxic insult in cortex or striatum, A2AR antagonists differentially
modulate astrogliosis and microglia activation. In microglia activated upon quisqualic
acid-induced excitotoxicity A2AR antagonists inhibit the expression of cyclooxygenase-2
(COX-2) [134]. On the other hand, excitotoxicity by glutamate activates glutamate N-
Methyl-D-Aspartate (NMDA) receptors expressed in microglia and leads to the release of
pro-inflammatory cytokines [135]. A vicious circle sustaining M1 microglia and neuronal
cell death may be established unless any physiological action restoring homeostasis or
any pharmacological intervention. For instance, targeting adenosine receptors leads to
M2 skewing. NMDA receptor function in microglia is increased by direct interactions
with A2ARs, increasing the possibility that A2AR antagonists may be neuroprotective by
reducing the excitotoxic load associated with neurodegenerative diseases [136].

It is well known that the development of the nervous system requires the programmed
death of a significant number of neurons [137]. Less well known is that neuronal death is a
lifelong physiological process. Indeed, individuals with epileptic seizures do loss neurons
in each episode [138,139]. But, also, healthy individuals seemingly lose neurons upon
aging. Fortunately, loss of neurons per se does not lead to disease, either because of the
redundancy in neural circuits or because neuronal death is not focused on a specific region.
Redundancy is also observed in the motor control circuits of the basal ganglia, since it is
estimated that clinical symptoms in parkinsonian patients appear when the number of
nigral cells lost is 70%.

Age is the main risk factor in the most prevalent CNS neurodegenerative diseases,
Parkinson’s and Alzheimer’s. Accordingly, the progressive loss of neurons in the CNS
of the aged human does not lead to disease in physiological aging but may lead to neu-
rodegenerative diseases for which no cure exists. In fact, there are few and non-optimal
therapies to combat Alzheimer’s or Huntington’s diseases. In the case of parkinsonism, the
work and wisdom of Hornykiewicz and colleagues allowed detection of a loss of dopamine
in certain brain areas of the patients. They noticed the poor brain penetrance of dopamine
and suggested a treatment with the precursor of the neurotransmitter, levodopa (L-DOPA).
L-DOPA is able to cross the blood–brain barrier and is readily processed to dopamine in
the CNS [140–144]. L-DOPA is still used today to treat PD symptoms but, unfortunately, it
does not delay disease progression. The issue is, therefore, how to afford neuroprotection
in neurodegenerative diseases and, eventually, in long-lived healthy individuals. Here
we will discuss how microglia may have a neuroprotective role in both physiological
and pathological aging. The difficulties in demonstrating the efficacy of neuroprotection
interventions in humans (see [75]) is a hot topic whose discussion is out of the scope of the
present paper.
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6. Ischemic Preconditioning after Brain Ischemia

Preconditioning is a mechanism by which exposure to an insult prepares the whole
system to better respond to a second similar insult. To our knowledge it was first discovered
in the cardiovascular system. Upon survival a heart infarction the cardiovascular system is
better suited to respond to a second one. This preconditioning is mechanistically complex
but adenosine receptors (AR) are key players. This is probably due to the fact that in glucose
and/or oxygen deprivation, ATP is readily converted into adenosine, whose concentration
increases in the blood and in any (local) extracellular environment. The first results linking
AR to preconditioning in the ischemic (rabbit) heart appeared in the nineties [145]. The A1
type was presented as the most important receptor in preconditioning [146] but this was
probably due to neglecting for decades the relevant role of other AR types in heart function.
In a model of ischemia-reperfusion the synergistic action of A1R and A2AR agonists on
cardioprotection was reported in 2010 [147].

Ischemic preconditioning in the cardiovascular system prompted scientist to focus
on the occurrence of a similar mechanism in the ischemic brain. The protection of hip-
pocampal cell death afforded by sub-lethal ischemia is among the earlier finding in this
issue [148]. Soon afterwards, it was reported that ARs were involved in the preconditioning
mechanisms [149–152].

The question relevant for the present article is whether microglial ARs play a role in
preconditioning. First of all it was soon known that both microglia and astroglia play a
significant role in ischemic preconditioning [153,154]. Despite the relevant role of AR in
modulating microglial function, studies aimed at answering the question of involvement of
microglial AR in preconditioning after brain hypoxia are scarce [131,155]. Either microglial
ARs are not important for brain ischemic preconditioning or work related to the ischemic brain
has focused on neurons, as the focus in the ischemic heart was placed on cardiomyocytes.
In brain ischemia-reperfusion injury, the neuroprotective role of targeting ARs has been
demonstrated, although activation of the A1R receptor is neuroprotective, drugs that activate
these receptors have cardiovascular side effects; thus the alternative consists of blocking the
effect induced by A2AR through the use of antagonists that, in general, are very safe [156].
In addition, the expression of ARs may be modified after an ischemic insult [105,157–162].
In summary, it is likely that ARs are relevant for the functionality and fate of microglia
that become activated in ischemia [97,163–167]. Abbracchio and Cattabeni, already in 1999,
suggested that antagonists of the A2AR could be useful in neuroprotection by both reducing
the neuronal release of glutamate, an excitatory neurotransmitter, and to regulate the activation
of microglial cells [105].

7. Microglia in Aging and in Neurodegenerative Diseases, Friend or Foe?

Microglia are instrumental in the events causing neuronal death during the develop-
ment of the nervous system and, also, in the clean-up after such neuronal death. It would
be naïve to think that, in the absence of any event resulting in clinical symptoms, i.e., in a
lifelong physiological/healthy brain, microglia remain static.

Although the data are scarce, neuronal death occurs throughout the individual’s
life, although at a much slower rate than during the development of the nervous sys-
tem. A seminal review in 2007 [168] highlights that the cross-talk between microglia
and neurons in developmental stages encompass, among other, Purkinje cell death via
microglia-induced respiratory burst, release by microglia of factors that lead to neuronal
apoptosis and microglia-induced synaptogenesis and synaptic properties. The role of
microglia on maintaining CNS homeostasis in a healthy brain is less know. In words of
Graeber, it refers to microglia as: “analogous to electricians, they are capable of removing defunct
axon terminals, thereby helping neuronal connections to stay intact” [169]. Apart from the role
in removing cells that are targeted to die along development, the hypothesis is that, in
adult stages, microglia help removing cells that are targeted to die, e.g., those that are not
very active and die, to reinforce the synaptic connections of the surviving cells and firm up
those neural circuits that seem more necessary.
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The evaluation of neuronal death is usually aimed at detecting an underlying pathol-
ogy. In our opinion, this should be questioned, as neuronal death cannot be ruled out in an
apparently healthy brain. It is tempting to speculate that physiological aging correlates
with neuronal loss but strengthening the synaptic connections that the individual most
needs in their daily life. A few years ago it was noted that neurons can die in several
ways: “intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis,
autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial
permeability transition” [115]. It is likely that some of those may be operating in the brain
of a healthy aged individual, i.e., not only in patients suffering from neurodegenerative
diseases or in patients suffering from a stroke. Despite the difficulties in assessing neuronal
death and neuron-microglia cross-talk in the adult brain, future work is required to confirm
the bidirectional interactions and to decipher the underlying mechanisms.

8. Skewing the M1/M2 Balance towards the Neuroprotective M2 Phenotype

The real state of microglia in the aged brain is not fully elucidated. However, it is
suggested that senescent microglia may contribute to age-related neurological diseases.
The reduction of phagocytosis in senescent microglia probably prevents the adequate
elimination of debris and the predisposition to be activated through the M1 pathway,
while the difficulty to develop an M2 phenotype may impede the physiological function of
protecting neurons from death [170–172]. In any case, avoiding the senescence in microglia
appears as a good strategy to decrease the risk of neurodegenerative diseases. In other
words, reduced microglia senescence may underlie a physiological aging. It should be
noted that a portion of microglial cells are activated in physiological aging. In fact, using
a marker of activated microglia, (R)-[11C]PK11195, positron emission tomography (PET)
brain scans of healthy subjects aged 19 to 79 showed an increased activation upon aging.
Authors conclude that “activated microglia appear in several cortical and subcortical areas during
healthy aging, suggesting widespread neuronal loss” [173].

Working on the expression and function of cannabinoid receptors in resting and
activated microglia we found that expression of cannabinoid CB1 and CB2 receptors in
microglia (resting) from a transgenic rodent model of AD was similar to that observed
upon activation of microglia from wild type mice. As the cognition deficits in AD animal
models are only evident upon aging, it was tempting to speculate that a certain degree of
chronic activation was neuroprotective. It is assumed that such activation is constituted by
cells skewed to the M2 phenotype [174].

GPCR function is modulated by interaction with other members of the superfamily. We
have found interesting results with cannabinoid receptors. There are two types of cannabinoid
receptors, CB1 and CB2, and both are capable to interact with AR. In microglia, the A2AR
may directly interact with the CB2R and the structure of the resulting complex is such that
the blockade of the A2AR by a selective antagonist increases signaling through CB2R [54].
A2AR antagonists, appear, once more, as beneficial; in this case by increasing the action of
a receptor that, expressed in glial cells, is considered to be neuroprotective [175–177]. In
fact, cannabinoid receptors are now considered promising therapeutic targets for fighting
neurodegenerative diseases [178–180]. A review on the role of A2AR-containing heteromers
in neurodegenerative events and in microglia activation is provided in [57].

The A2AR regulates several functions derived from microglial activation. First of all,
A2AR activation modulates microglial motility [181]. Furthermore, in mixed glial cultures
(astrocytes/microglia) we found that activation of the A2AR results in potentiating the
release of nitric oxide by activated microglia. The effect was dependent on the presence of
astroglia although both A2AR expression and NO synthase-II immunoreactivity were only
observed in microglia. These actions, which were not detected in cocultures obtained from
A2AR KO animals, suggest that the neuroprotection provided by A2AR blockade comes,
at least in part, from effects mediated by receptors expressed in activated microglia [129].
Another action of A2AR antagonists results from negative crosstalk when A2A and CB2
receptors are expressed as heteromers [54,182]. By interprotomer interactions within the
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heteromer, activation of A2AR partially blocks CB2R-mediated signaling, which in microglia
leads to the production of neuroprotective factors. Therefore, blocking A2AR would reduce
the expression of pro-inflammatory mediators (via the A2AR) and release the brake for CB2R
activation, leading to the production of neuroprotective molecules (Figure 2B). Studies
in the hippocampus also identified A2AR as modulating the recruitment and activation
of microglia [102]. In experiments performed in a microglial cell line A2AR antagonists
decrease proliferation of activated microglia and the release by these cells of brain-derived
neurotrophic factor (BDNF) [182]. A review on the potential of targeting microglial A2AR
to combat neurodegenerative diseases is found in [183]. Other AR types may participate in
adjusting the activation of microglia related to neurodegenerative diseases but they seem
of less relevance than the A2AR. Whereas the A3R is expressed in microglial cells [184], a
recent paper shows the action of A2AR antagonists and A1R agonists on the production of
pro-inflammatory cytokines [185]. What is now necessary is to address the expression of
AR types in resting, and in activated M1 and M2 microglia and to address the mechanisms
of skewing to the M2 phenotype targeting AR and AR-containing heteromers.
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