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Down-regulation of BDNF in cell and animal models increases striatal-enriched protein 

tyrosine phosphatase 61 (STEP61) levels. 
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Abbreviations 

7,8-DHF, 7,8-dihydroxyflavone; AKAP, A-kinase anchoring protein; AMPAR, α-amino-3-

hydroxyl-5-methyl-4-isoxazole-propionate; BDNF, brain-derived neurotrophic factor; DIV, days 

in vitro; ERK, extracellular-signal regulated kinase; HRP, horseradish peroxidase; IP, 

immunoprecipitation; KO, knock out; MAPK, mitogen-activated protein kinase; NMDAR, N-

methyl-D-aspartate receptor; PAGE, polyacrylamide electrophoresis; PI3K, phosphoinositide 3-

kinase; PKC, protein kinase C; PLCγ, phospholipase Cγ; pyk2, proline-rich tyrosine kinase 2; 

RIPA buffer, radioimmunoprecipitation assay buffer; SDS, sodium dodecyl sulfate; SEM, 

standard error of the mean; siRNA, short interfering RNA; STEP61, STriatal-Enriched protein 

tyrosine Phosphatase, 61 kDa; TrkB, tropomyosin receptor kinase B; WT, wild type. 
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Abstract 

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory 

consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and 

neurodegenerative disorders. BDNF potentiates NMDAR function through activation of Fyn and 

ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of 

the same disorders as BDNF, but STEP opposes the development of synaptic strengthening. 

STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes 

internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases 

Fyn, Pyk2 and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing 

functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal 

effect on STEP levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF
+/-

 

mice and in cortical cultures after acute BDNF knockdown, and a newly identified STEP 

inhibitor reverses the biochemical and motor abnormalities in BDNF
+/-

 mice. In contrast, 

increased BDNF signaling upon treatment with a TrkB agonist results in degradation of STEP61 

and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons 

and in mouse frontal cortex. These findings indicate that BDNF-TrkB signaling leads to 

degradation of STEP61 while decreased BDNF expression results in increased STEP activity. A 

better understanding of the opposing interaction between STEP and BDNF in normal cognitive 

functions and neuropsychiatric disorders will hopefully lead to novel therapeutic strategies. 
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Introduction 

Brain-derived neurotrophic factor (BDNF) is widely expressed in many brain regions and is 

enriched in neocortex, hippocampus, striatum and amygdala, regions critical for normal learning 

and memory (Skup 1994, Kawamoto et al. 1996, Dugich-Djordjevic et al. 1995, Bekinschtein et 

al. 2008, Liu et al. 2004, Lu et al. 2008). BDNF signaling is required for neurogenesis, axonal 

and dendritic growth, neuronal survival and migration, as well as the development of synaptic 

strengthening (Buckley et al. 2007a, Hu et al. 2005, Mamounas et al. 1995, Yoshii & 

Constantine-Paton 2010, Segal 2003). The tropomyosin receptor kinase B (TrkB) receptor 

mediates the biological functions of BDNF by activating the phosphoinositide 3-kinase (PI3K), 

phospholipase C γ (PLCγ) and mitogen-activated protein kinase (MAPK) pathways (Yoshii & 

Constantine-Paton 2010, Segal 2003). BDNF signaling activates ERK1/2 and Fyn and 

potentiates N-methyl-D-aspartate receptor (NMDAR) signaling through ERK1/2 and Fyn-

dependent mechanisms (Li & Keifer 2009, Xu et al. 2006). 

STriatal-Enriched protein tyrosine Phosphatase (STEP) is a negative regulator of synaptic 

strengthening and does so through the dephosphorylation of its substrates. STEP promotes the 

internalization of surface glutamate receptors (NMDARs and AMPARs) (Snyder et al. 2005, Xu 

et al. 2009, Zhang et al. 2008, Zhang et al. 2011), inactivation of Fyn (Nguyen et al. 2002), Pyk2 

(Xu et al. 2012) and ERK1/2 kinases (Venkitaramani et al. 2009, Paul et al. 2003), or regulation 

of PTPα localization (Xu et al. 2015). Mice null for STEP have increased phosphorylation and 

activity of these kinases, increased surface expression of glutamate receptors, and enhanced 

cognitive function for hippocampal (Venkitaramani et al. 2011) and amygdalar-dependent 

memory consolidation (Olausson et al. 2012). In contrast, increased expression of STEP is found 

in several neuropsychiatric and neurodegenerative disorders, including schizophrenia (SZ) (Carty 
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et al. 2012), fragile X syndrome (FXS) (Goebel-Goody et al. 2012), Parkinson’s disease (PD) 

(Kurup et al. 2015) and Alzheimer’s disease (AD) (Kurup et al. 2010, Zhang et al. 2010). 

Importantly, genetic reduction of STEP expression in SZ and FXS mouse models (Zhang et al. 

2010, Goebel-Goody et al. 2012) and genetic or pharmacologic inhibition of STEP in an AD 

model enhances cognitive functions (Xu et al. 2014).  

We have recently shown that BDNF induces STEP61 degradation through the proteasome in 

cell cultures (Saavedra et al., in press) and here we extend these findings by showing that 

reduction of BDNF leads to elevated STEP61 expression both in vitro and in vivo. Importantly, 

both a novel STEP inhibitor and a TrkB agonist normalize BDNF signaling and reverse the 

biochemical deficits in vitro as well as reverse the biochemical and motor alterations in BDNF
+/-

 

mice. These findings define a mechanism by which BDNF and STEP61 interact and whose 

alteration may contribute to the pathophysiology of several neuropsychiatric and 

neurodegenerative disorders. 
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Materials and reagents 

Antibodies and reagents 

All antibodies used in this study are listed in the Table S1. The proteasome inhibitors lactacystin 

and MG-132 were obtained from Calbiochem (San Diego, CA). The tyrosine kinase inhibitor 

K252a, the TrkB agonists 7,8-dihydroxyflavone (7,8-DHF) and LM 22A4 were purchased from 

Tocris Biosciences (Ellisville, MO). TC-2153 was purified as described (Xu et al. 2014). 

 

Treatment of primary neuronal cultures  

All experimental procedures were approved by the Yale University Institutional Animal Care 

and Use Committee and in strict accordance with the NIH Guide for the Care and Use of 

Laboratory Animals. Primary cortical cultures were derived from rat Sprague-Dawley E18 

embryos (Jackson Laboratory, Bar Harbor, Maine) as described (Xu et al. 2014). Both male and 

female embryos were used in this study. Neuronal cultures were maintained in Neurobasal with 

B27 supplement (Invitrogen, San Diego, CA) for 12-14 days until treatment. Cultures were 

treated with three doses of 7,8-DHF (100, 250 and 500 nM) for 5-30 min. In some experiments, 

inhibitors (K252a: 100 nM and lactacystin: 5 µM) were pre-incubated for 30-60 min, followed 

by 7,8-DHF (500 nM, 30 min) or LM 22A4 (500 nM, 30 min) treatment. Neurons were lysed in 

1×RIPA buffer (Pierce Biotechnology, Rockford, IL) with complete phosphatase and protease 

inhibitors (Roche, Indianapolis, IN). 

 

BDNF knockdown using small interfering RNA (siRNAs) 

BDNF siRNAs and non-targeting negative control siRNA were purchased from Ambion (Austin, 

TX). Twenty nM of BDNF or control siRNAs were transfected into cortical neurons on DIV 7 
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using Lipofectamine RNAiMAX transfection reagent following manufacturer’s protocol 

(Invitrogen). Neurons were harvested 3 days post transfection and lysed in 1×RIPA buffer. In 

some experiments, transfected neurons were treated with vehicle (0.1% DMSO) or TC-2153 (1 

µM) for 1 h prior to lysis (Xu et al. 2014). 

 

Measurement of ubiquitinated STEP 

Cortical neurons were pretreated with MG-132 (10 µM) for 30 min, followed by 7,8-DHF (500 

nM, 30 min) or LM 22A4 treatment. Neurons were lysed in 1×RIPA buffer with phosphatase and 

protease inhibitors and spun at 12,000×g for 10 min. Equal amount of supernatants were 

precleared with protein A/G-agarose beads (Santa Cruz Biotechnology, Santa Cruz, CA) to 

minimize non-specific binding. A monoclonal anti-STEP antibody (clone 23E5) was used to 

pull-down STEP. Ubiquitinated STEP species were visualized by probing with anti-ubiquitin 

antibody. 

 

Drug administration for biochemical analyses  

Male C57BL/6J mice (3-4 months old) and BDNF
+/-

 mice (15-weeks old) were obtained from the 

Jackson Laboratory (Bar Harbor, Maine). Mice were injected with vehicle (2% DMSO in saline), 

TC-2153 (10 mg/kg, i.p.) or 7,8-DHF (5 mg/kg, i.p.). The effective doses of TC-2153 and 7,8-

DHF were chosen based on previous publications (Xu et al. 2014, Carty et al. 2012, Jang et al. 

2010, Andero et al. 2012). Frontal cortices were collected 1-2 h post injections and snap frozen 

in dry-ice.  

 

Sample preparation and immunoblotting 
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Mouse brain tissues were homogenized in ice-cold TEVP buffer (10 mM Tris pH 7.4, 1 

mM EDTA, 1 mM EGTA, 1 mM Na3VO4, 5 mM NaF, 320 mM sucrose) supplemented 

with complete protease inhibitor cocktail (Roche). Homogenates were centrifuged to obtain 

synaptosomal membrane fractions (P2) as described (Xu et al. 2015). Protein 

concentrations were determined using bicinchoninic acid (BCA) kit (Pierce) and 30 µg of 

each sample were separated on 8% SDS-PAGE and transferred to nitrocellulose membrane 

(Bio-Rad, Richmond, CA). Membranes were blocked in 5% BSA in TBS + 1% Tween-20 

and incubated with primary antibodies and horseradish peroxidase (HRP)-coupled 

secondary antibodies following standard procedures. Membranes were developed using 

Chemiluminescent Substrate kit (Pierce) and visualized by a G:BOX with the GeneSnap 

software (Syngene, Cambridge, UK). All densitometric bands were quantified using the 

Genetools program (Syngene).  

 

Locomotor activity in BDNF
+/-
 mice 

Locomotor activity was measured by using a white melamine circular open field (40 cm diameter 

and 40 cm high) during the dark phase of the light cycle as described (Giralt et al. 2009). Male 

BDNF
+/-

 mice and their WT littermates (15-weeks old; B6CBA background) were administrated 

with vehicle or TC-2153 (10 mg/kg, i.p.). One hour post injection mice were tested. At the 

beginning of the session, mice were left in the periphery of the apparatus and during 1 h the total 

distance travelled was recorded and traced with an Image tracking system (SMART, Panlab SL, 

Barcelona, Spain). A second cohort of BDNF
+/-

 and WT mice (male, 15-weeks old) were 

obtained from the Jackson Laboratory. One hour prior to test, mice were administrated with 

vehicle or 7,8-DHF (5 mg/kg, i.p.), mice were then kept in the activity chamber for 1 h. Total 

Page 8 of 36Journal of Neurochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

 

distance traveled was measured with Activity Monitor version 5 software (MED Associates) and 

used as an indication of general activity.  

 

Data analyses 

All experiments were repeated at least three times. Data were expressed as means ± SEM. 

Statistical significance (p < 0.05) was determined using Student’s t-test, one-way or two-way 

ANOVA with Bonferroni’s post hoc test. 
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Results 

Hypofunction of BDNF signaling leads to elevated STEP61 levels 

Low BDNF expression was found in several neurological disorders, including AD (Caccamo 

et al. 2010) and SZ (Chen da et al. 2009, Buckley et al. 2007b). On the other hand, STEP61 

levels are elevated in these same disorders (Kurup et al. 2010, Carty et al. 2012). To 

investigate whether there is a correlation between hypomorphic BDNF signaling and 

increased STEP61 levels, we first examined whether mice with reduced BDNF expression 

(BDNF
+/-

 mice) had altered STEP61 expression. We confirmed the approximately 50% 

decrease in BDNF expression in the frontal cortex (Fig. 1a) and hippocampus (Fig. 1b) of 

BDNF
+/-

 mice. Conversely, STEP61 was elevated in synaptosomal membrane fractions in 

both regions compared to WT littermates (frontal cortex: 1.44 ± 0.15; hippocampus: 1.44 ± 

0.17, p values < 0.05, Fig. 1a, b).  

We then acutely knocked down BDNF with small interfering RNA (siRNA) in primary 

cortical cultures. We first confirmed that siRNA transfection resulted in decreased BDNF 

expression (0.58 ± 0.12 of scrambled siRNA, p < 0.05, Fig. 2a). BDNF knock down led to 

elevated STEP61 expression (1.46 ± 0.11, p < 0.05) and decreased Tyr phosphorylation of the 

STEP61 substrates GluN2B, Pyk2 and ERK1/2, compared with control siRNA treated 

cultures (pGluN2B: 0.56 ± 0.11; pPyk2: 0.72 ± 0.05; pERK1/2: 0.69 ± 0.07, p values < 0.05, 

Fig. 2a).  

We next used a recently identified STEP inhibitor TC-2153 (Xu et al. 2014) to test 

whether STEP inhibition might reverse the effects of BDNF knock down on STEP61 activity 

and Tyr phosphorylation of STEP61 substrates in cultures. TC-2153 is a pentathiepin that is a 

potent STEP inhibitor (IC50 = 25 nM) with a mechanism of action that involves covalent 
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binding to the catalytic cysteine. TC-2153 is relatively specific for STEP and does not inhibit 

homologous protein tyrosine phosphatases in neuronal cultures and mouse brains. We treated 

cortical neurons with TC-2153 (1 µM for 1 h) in the presence of normal or reduced BDNF 

signaling and examined the Tyr phosphorylation of STEP61 substrates. In agreement with 

previous findings (Xu et al. 2014), inhibition of STEP61 at baseline (scrambled siRNA 

transfected cells) resulted in significant increases in Tyr phosphorylation of STEP substrates 

(pGluN2B: 1.47 ± 0.13; pPyk2: 1.58 ± 0.10; pERK1/2: 1.51 ± 0.08, p values < 0.05) without 

changes in STEP61 or BDNF levels (Fig. 2b). BDNF siRNA knock down led to increased 

STEP61 and decreased Tyr phosphorylation of STEP substrates (BDNF siRNA Veh vs 

scrambled siRNA Veh, pGluN2B: 0.72 ± 0.05; pPyk2: 0.65 ± 0.09; pERK1/2: 0.67 ± 0.15, p 

values < 0.05), which was significantly reversed by TC-2153 (BDNF siRNA TC, pGluN2B: 

1.42 ± 0.19; pPyk2: 1.61 ± 0.12; pERK1/2: 1.39 ± 0.09, p values < 0.05 compared to BDNF 

siRNA TC, Fig. 2b).  

 

TrkB activation leads to the ubiquitination and degradation of STEP61 in neuronal 

cultures 

STEP61 is normally ubiquitinated and degraded by the proteasome (Kurup et al. 2010, Xu et 

al. 2009). Moreover, we recently showed that BDNF treatment of neuronal cultures promotes 

the ubiquitination and degradation of STEP61 (Saavedra et al. in press) indicating that 

activation of BDNF signaling reduces STEP61 expression. Since we wished to carry out 

studies in vivo (see below) and BDNF is poorly transported across the blood-brain barrier, we 

characterized a selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) that has better 

bioavailability after peripheral administration (Jiang et al. 2013, Zeng et al. 2012, Jang et al. 
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2010). We first incubated cortical cultures with increasing concentrations of 7,8-DHF and 

found that 250 and 500 nM 7,8-DHF resulted in a robust reduction of STEP61 levels (250 nM: 

0.64 ± 0.09; 500 nM: 0.66 ± 0.08, p values < 0.05), which was completely blocked by the 

tyrosine kinase inhibitor K252a (1.13 ± 0.08, p > 0.05, Fig. 3a). The loss of STEP61 

expression was accompanied by the increased Tyr phosphorylation of STEP substrates (500 

nM 7,8-DHF, pGluN2B: 1.34 ± 0.16; pPyk2: 1.73 ± 0.13; pERK1/2: 1.46 ± 0.24, p values < 

0.05, Fig. 3a). Next, we examined the time course of 7,8-DHF treatment (500 nM) and found 

it led to rapid decrease of STEP61 levels at 5 min followed by a delayed increase in Tyr 

phosphorylation of STEP substrates (starting from 10 min). Thirty min incubation showed 

robust reduction STEP61 (0.58 ± 0.06, p < 0.05) and increased Tyr phosphorylation of its 

substrates (pGluN2B: 1.44 ± 0.10; pPyk2: 1.70 ± 0.10; pERK1/2: 1.51 ± 0.14, p values < 

0.05, Fig. 3b). This finding is consistent with previous work demonstrating that lowering 

STEP levels genetically (Venkitaramani et al. 2009) or lowering STEP activity with an 

inhibitor (Xu et al. 2014) results in increased phosphorylation of its substrates. 

Next we investigated whether the loss of STEP61 upon 7,8-DHF treatment was through 

the ubiquitin proteasome system. Like BDNF (Saavedra et al., in press), 7,8-DHF treatment 

increased the ubiquitination of STEP, which was blocked by K252a (Fig. 4a, b). In addition, 

another TrkB agonist LM 22A4 also led to degradation of STEP61 (Fig. S1a) via 

ubiquitination (Fig. S1b).  

 

TrkB activation leads to degradation of STEP61 and increased tyrosine phosphorylation 

of STEP substrates in vivo 
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Having established that 7,8-DHF was effective in neuronal cultures, we administered it to WT 

mice (5 mg/kg, i.p.) and collected tissue from frontal cortex. Biochemical analyses of 

synaptosomal membrane fractions showed that STEP61 was degraded after 7,8-DHF 

administration (1 h post injection: 0.58 ± 0.11 of vehicle, p < 0.05) and Tyr phosphorylation of 

the STEP substrates was significantly increased (1 h post injection, pGluN2B: 1.79 ± 0.19; 

pPyk2: 1.55 ± 0.13; pERK1/2: 1.57 ± 0.16, p values < 0.05, Fig. 4a). GluN2B levels were also 

increased in synaptosomal membranes after 7,8-DHF administration (1 h post injection: 1.53 ± 

0.12, p < 0.05, Fig. 5). Together, these data suggest that activation of TrkB signaling leads to 

ubiquitination and degradation of STEP61 both in neuronal cultures and in vivo.  

 

STEP inhibition rescues behavioral and biochemical alterations in BDNF
+/-
 mice 

BDNF
+/-

 mice display behavioral alterations that include hyperactivity (Kernie et al. 2000, Autry 

& Monteggia 2012, Chan et al. 2006). We therefore tested whether inhibition of STEP61 by TC-

2153, which leads to decreased STEP61 activity, or 7,8-DHF, which leads to decreased STEP61 

expression, could attenuate the increase in locomotion in BDNF
+/-

 mice. We first administered 

vehicle or TC-2153 to WT and BDNF
+/-

 mice 1 prior to behavioral assessment in an open-field 

chamber, and the distance traveled over the next hour was determined. A two-way ANOVA 

analysis revealed significant effects of TC-2153 treatment (F(1,37) = 9.554, p < 0.01), genotype 

(F(1,37) = 6.440, p < 0.05) and treatment × genotype interaction (F(1,37) = 20.93, p < 0.001) on 

locomotion. Bonferroni’s post hoc test showed that BDNF
+/-

 mice were hyperactive when 

compared with WT mice (p < 0.05), in consistence with previous findings (Kernie et al. 2000, 

Chan et al. 2006). TC-2153 significantly attenuated the increased locomotor behavior in these 

mice (BDNF
+/-

 TC vs BDNF
+/-

 Veh, p < 0.01, two-way ANOVA with Bonferroni’s post hoc test), 
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but did not alter locomotion in WT mice (Fig. 6a). These data indicate that inhibition of STEP 

was sufficient to reverse the hyperlocomotion present in BDNF
+/-

 mice. 

Activation of the TrkB signaling by 7,8-DHF has been shown to be effective in reversing 

behavioral and cognitive deficits in several mouse models of neurological diseases (Jang et al. 

2010, Yang et al. 2014, Castello et al. 2014, Zhang et al. 2014, Tsai et al. 2013, Jiang et al. 2013, 

Zeng et al. 2012, Andero et al. 2012). Having showed that inhibition of STEP by TC-2153 

rescued hyperlocomotion in the BDNF
+/-

 mice, we examined whether 7,8-DHF-induced 

degradation of STEP61 might also achieve similar efficacy. A second cohort of male WT and 

BDNF
+/-

 mice was administered vehicle or 7,8-DHF (5 mg/kg, i.p.) 1 h prior to behavioral 

assessment in an open-field chamber for an additional hour. A two-way ANOVA analysis 

revealed a significant genotype (WT or BDNF
+/-

) and treatment (Veh or DHF) interaction 

(F(1,34) = 5.971, p < 0.05) in the locomotor activity. BDNF
+/-

 mice displayed hyperactivity at 

baseline when compared with WT mice (p < 0.05, Bonferroni’s post hoc test). Similar to TC-

2153, 7,8-DHF also showed a main effect (F(1,34) = 4.796, p < 0.05) in attenuating the increased 

locomotor activity in BDNF
+/-

 mice (p < 0.05, Bonferroni’s post hoc test), without alteration of 

locomotion in WT mice (Fig. 6b). 
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Discussion 

BDNF is essential for neurodevelopment and normal brain function (Poo 2001). Dysfunction 

of the BDNF/TrkB signaling is implicated in a number of disorders with prominent cognitive 

deficits, including AD, PD, Huntington's chorea, SZ, depression, and the cognitive decline that 

occurs with aging (reviewed in (Autry & Monteggia 2012, Nagahara & Tuszynski 2011)). An 

increase of STEP61 expression is found in many of the same neurodegenerative and 

neuropsychiatric disorders, resulting in decreased Tyr phosphorylation of its substrates (Carty et 

al. 2012, Kurup et al. 2010, Goebel-Goody et al. 2012, Gladding et al. 2014, Gladding et al. 

2012, Saavedra et al. 2011). We propose that insufficient BDNF signaling results in increased 

STEP61 activity, with the concomitant removal of glutamate receptors from synaptic membranes 

and inactivation of key signaling kinases.  

In agreement with this model, STEP61 levels are elevated in BDNF
+/- 

mice as well as in 

cortical neurons after acute knockdown of BDNF expression. We demonstrated that a novel 

STEP inhibitor (TC-2153) was sufficient to enhance the Tyr phosphorylation of STEP substrates 

when BDNF signaling was reduced in these two models. Administration of TC-2153 was also 

sufficient to reverse the hyperlocomotion in BDNF
+/-

 mice. 

Considering its role in regulating cognitive function, BDNF treatment reverses cognitive 

deficits in rodent models of disorders. However, due to the poor pharmacokinetic profile of 

recombinant BDNF, such as its short half-life, poor diffusion, and difficulty in crossing the 

blood-brain barrier, clinical trials have not been successful (Ochs et al. 2000, Beck et al. 2005). 

Small molecule TrkB agonists (BDNF mimetics) are emerging as new therapeutic agents 

because of their superior pharmacokinetic properties. Indeed, 7,8-DHF and its analogs confer 

neuroprotection and improve cognitive functions in variety of rodent models of neuropsychiatric 
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and neurodegenerative disorders (Jang et al. 2010, Yang et al. 2014, Castello et al. 2014, Zhang 

et al. 2014, Tsai et al. 2013, Jiang et al. 2013, Zeng et al. 2012, Andero et al. 2012). We 

demonstrated that activation of the TrkB receptor by 7,8-DHF resulted in degradation of STEP61, 

increased Tyr phosphorylation of STEP substrates and attenuated hyperactivity in BDNF
+/-

 mice. 

The data suggest that the beneficial effects of TrkB agonists involve the degradation of STEP61 

that normally opposes the development of synaptic strengthening. 

Mechanistically, the findings suggest TrkB agonists, like BDNF (Saavedra et al. in press), 

induce STEP61 degradation through the ubiquitin proteasome system. Dysfunction of this 

pathway in AD patients and animal models results in the accumulation of STEP61 (Kurup et al. 

2010, Zhang et al. 2010). Recent studies have shown that disruptions of the ubiquitin proteasome 

pathway likely contribute to the accumulation of STEP61 in SZ (Carty et al. 2012) and PD 

patients (Kurup et al. 2015). Consistent with our findings, BDNF/TrkB signaling promotes the 

ubiquitination and degradation of several synaptic proteins, including the catalytic subunit of 

PKA, A-kinase anchoring protein (AKAP) 79/150, and spinophilin (Jia et al. 2008).  

In summary, our data support a mechanism by which a disruption in BDNF signaling leads to 

high levels of STEP61 that likely contributes to the pathophysiology of a number of disorders 

through reduced tyrosine phosphorylation and inactivation of key signaling kinases and/or 

endocytosis of glutamate receptors from the synaptic membrane. 
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Figure legends 

Figure 1. STEP61 is elevated in BDNF
+/- 

mice. (a, b) Frontal cortices (a) or hippocampi (b) from 

male WT and BDNF
+/-

 mice (15-weeks old) were collected for biochemical analyses. Tissues 

were processed to obtain synaptosomal membrane fractions (P2). Samples were subjected to 

western blotting and blots were probed with anti-BDNF or anti-STEP antibodies. β-actin was 

used as a loading control. All data were expressed as mean ± SEM and statistical significance 

determined using Student’s t-test (*p < 0.05, **p < 0.01, n = 6 per group). 

 

Figure 2. Knock down of BDNF increases STEP61 in neuronal cultures. (a) Rat cortical neurons 

(DIV 7) were transfected with scrambled siRNA (Scr siRNA) or BDNF siRNA and lysed 3 days 

post transfection. Samples were subjected to western blotting and probed with phospho-specific 

and pan-antibodies. Data were expressed as mean ± SEM (*p < 0.05, Student’s t-test, n = 6). (b) 

Primary cortical neurons (DIV 7) were transfected with scrambled siRNA (Scr siRNA) or BDNF 

siRNA. Three days post transfection cultures were treated with control (0.1% DMSO) or TC-

2153 (1 µM) for 1 h and lysed in RIPA buffer. Quantification of phospho-protein levels was 

normalized to total protein levels and then to β-actin as a loading control. All data were 

expressed as mean ± SEM and statistical significance determined using two-way ANOVA with 

Bonferroni’s post hoc test (*p < 0.05, n = 4 per group). 

 

Figure 3. Concentration-response and time-course analyses of 7,8-DHF effect on STEP61 levels. 

(a) Primary rat cortical neurons (DIV12-14) were treated with various doses (100, 250 or 500 nM) 

of a TrkB agonist (7,8-dihydroxyflavone, DHF) in the absence or presence of the tyrosine kinase 

inhibitor, K252a (100 nM) for 30 min. (b) Cultures were treated with DHF (500 nM) for 5-30 
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min in the absence or presence of K252a (100 nM). Equal amounts of lysates were used for 

western blotting with phospho-specific and pan-antibodies as indicated in the figure. 

Quantification of phospho-protein levels was normalized to total protein levels and then to β-

actin as a loading control. Data were expressed as mean ± SEM (*p < 0.05, **p < 0.01, one-way 

ANOVA with Bonferroni’s post hoc test, n = 4 separate cultures). 

 

Figure 4. The TrkB agonist 7,8-DHF induces ubiquitination and degradation of STEP61 in 

cortical neurons. (a) Primary rat cortical neurons (DIV12-14) were treated with 7,8-DHF (500 

nM) in the absence or presence of the tyrosine kinase inhibitor (K252a, 100 nM) or a proteasome 

inhibitor (lactacystin, 5 µM) for 30 min. STEP61 and tyrosine phosphorylation levels of STEP 

substrates were analyzed by western blotting. (b) Cultures were pretreated with another 

structurally different proteasome inhibitor (MG-132, 10 µM), followed by 7,8-DHF treatment 

(500 nM, 30 min). All STEP species were immunoprecipitated with anti-STEP (23E5) antibody 

and probed with anti-ubiquitin or anti-STEP antibodies. Quantification of phospho-protein levels 

was normalized to total protein levels and then to β-actin as a loading control. All data were 

expressed as mean ± SEM (*p < 0.05, one-way ANOVA with Bonferroni’s post hoc test, n = 4). 

 

Figure 5. 7,8-DHF induces degradation of STEP61 and elevation of phosphorylation of STEP 

substrates in vivo. Three-months old male C57BL/6 mice were given vehicle (Veh) or 7,8-DHF 

(DHF, 5 mg/kg, i.p.) and sacrificed 1 h and 2 h post injections. Crude synaptic membranes 

fractions (P2) of frontal cortices were used for biochemical analyses. Quantification of phospho-

protein levels was normalized to total protein levels and then to β-actin as a loading control. Data 
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were expressed as mean ± SEM (*p < 0.05, one-way ANOVA with Bonferroni’s post hoc test, n 

= 4 per group). 

 

Figure 6. TC-2153 or 7,8-DHF inhibition of STEP61 reverses hyperlocomotor activity in 

BDNF
+/-

 mice. (a) Fifteen-weeks old male WT and BDNF
+/-

 mice were administrated with 

vehicle or TC-2153 (10 mg/kg, i.p.). One hour post injection mice were tested in activity 

chambers for 1 h. Differences in total distance traveled were analyzed using two-way ANOVA 

with Bonferroni’s post hoc test (*p < 0.05, **p < 0.01, n = 10-11 per group) (b) A second cohort 

of WT and BDNF
+/-

 (15-weeks old) male mice were administrated with vehicle or 7,8-DHF (5 

mg/kg, i.p.). One hour post injection mice were tested in activity chambers for 1 h. Differences 

in total distance traveled was analyzed using two-way ANOVA with Bonferroni’s post hoc test 

(*p < 0.05, n = 9-10 per group).  
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Figure 1. STEP61 is elevated in BDNF+/- mice. (a, b) Frontal cortices (a) or hippocampi (b) from male WT 
and BDNF+/- mice (15-weeks old) were collected for biochemical analyses. Tissues were processed to obtain 
synaptosomal membrane fractions (P2). Samples were subjected to western blotting and blots were probed 

with anti-BDNF or anti-STEP antibodies. β-actin was used as a loading control. All data were expressed as 
mean ± SEM and statistical significance determined using Student’s t-test (*p < 0.05, **p < 0.01, n = 6 

per group).  
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Figure 2. Knock down of BDNF increases STEP61 in neuronal cultures. (a) Rat cortical neurons (DIV 7) were 
transfected with scrambled siRNA (Scr siRNA) or BDNF siRNA and lysed 3 days post transfection. Samples 

were subjected to western blotting and probed with phospho-specific and pan-antibodies. Data were 
expressed as mean ± SEM (*p < 0.05, Student’s t-test, n = 6). (b) Primary cortical neurons (DIV 7) were 
transfected with scrambled siRNA (Scr siRNA) or BDNF siRNA. Three days post transfection cultures were 
treated with control (0.1% DMSO) or TC-2153 (1 µM) for 1 h and lysed in RIPA buffer. Quantification of 
phospho-protein levels was normalized to total protein levels and then to β-actin as a loading control. All 
data were expressed as mean ± SEM and statistical significance determined using two-way ANOVA with 

Bonferroni’s post hoc test (*p < 0.05, n = 4 per group).  
167x158mm (300 x 300 DPI)  
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Figure 3. Concentration-response and time-course analyses of 7,8-DHF effect on STEP61 levels. (a) Primary 
rat cortical neurons (DIV12-14) were treated with various doses (100, 250 or 500 nM) of a TrkB agonist 

(7,8-dihydroxyflavone, DHF) in the absence or presence of the tyrosine kinase inhibitor, K252a (100 nM) for 

30 min. (b) Cultures were treated with DHF (500 nM) for 5-30 min in the absence or presence of K252a 
(100 nM). Equal amounts of lysates were used for western blotting with phospho-specific and pan-antibodies 
as indicated in the figure. Quantification of phospho-protein levels was normalized to total protein levels and 
then to β-actin as a loading control. Data were expressed as mean ± SEM (*p < 0.05, **p < 0.01, one-way 

ANOVA with Bonferroni’s post hoc test, n = 4 separate cultures).  
118x148mm (300 x 300 DPI)  
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Figure 4. The TrkB agonist 7,8-DHF induces ubiquitination and degradation of STEP61 in cortical neurons. 
(a) Primary rat cortical neurons (DIV12-14) were treated with 7,8-DHF (500 nM) in the absence or presence 

of the tyrosine kinase inhibitor (K252a, 100 nM) or a proteasome inhibitor (lactacystin, 5 µM) for 30 min. 

STEP61 and tyrosine phosphorylation levels of STEP substrates were analyzed by western blotting. (b) 
Cultures were pretreated with another structurally different proteasome inhibitor (MG-132, 10 µM), followed 
by 7,8-DHF treatment (500 nM, 30 min). All STEP species were immunoprecipitated with anti-STEP (23E5) 
antibody and probed with anti-ubiquitin or anti-STEP antibodies. Quantification of phospho-protein levels 
was normalized to total protein levels and then to β-actin as a loading control. All data were expressed as 

mean ± SEM (*p < 0.05, one-way ANOVA with Bonferroni’s post hoc test, n = 4).  
180x102mm (300 x 300 DPI)  

 

 

Page 31 of 36 Journal of Neurochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 5. 7,8-DHF induces degradation of STEP61 and elevation of phosphorylation of STEP substrates in 
vivo. Three-months old male C57BL/6 mice were given vehicle (Veh) or 7,8-DHF (DHF, 5 mg/kg, i.p.) and 

sacrificed 1 h and 2 h post injections. Crude synaptic membranes fractions (P2) of frontal cortices were used 
for biochemical analyses. Quantification of phospho-protein levels was normalized to total protein levels and 
then to β-actin as a loading control. Data were expressed as mean ± SEM (*p < 0.05, one-way ANOVA with 

Bonferroni’s post hoc test, n = 4 per group).  
110x67mm (300 x 300 DPI)  
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Figure 6. TC-2153 or 7,8-DHF inhibition of STEP61 reverses hyperlocomotor activity in BDNF+/- mice. (a) 
Fifteen-weeks old male WT and BDNF+/- mice were administrated with vehicle or TC-2153 (10 mg/kg, i.p.). 
One hour post injection mice were tested in activity chambers for 1 h. Differences in total distance traveled 
were analyzed using two-way ANOVA with Bonferroni’s post hoc test (*p < 0.05, **p < 0.01, n = 10-11 per 
group) (b) A second cohort of WT and BDNF+/- (15-weeks old) male mice were administrated with vehicle or 
7,8-DHF (5 mg/kg, i.p.). One hour post injection mice were tested in activity chambers for 1 h. Differences 
in total distance traveled was analyzed using two-way ANOVA with Bonferroni’s post hoc test (*p < 0.05, n 

= 9-10 per group).  
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Figure S1. The TrkB agonist LM 22A4 induces ubiquitination and degradation of STEP61. (a) 

Primary rat cortical neurons (DIV12-14) were treated with LM 22A4 (500 nM) in the 

absence or presence of the tyrosine kinase inhibitor (K252a, 100 nM) or a proteasome 

inhibitor (lactacystin, 5 µM) for 30 min. STEP61 and tyrosine phosphorylation levels of STEP 

substrates were analyzed by western blotting. Quantification of phospho-protein levels was 

normalized to total protein levels and then to β-actin as a loading control. All data were 

expressed as mean ± SEM (*p < 0.05, one-way ANOVA with Bonferroni’s post hoc test, n = 

4). (b) Cultures were pretreated with another structurally different proteasome inhibitor (MG-

132, 10 µM), followed by LM 22A4 treatment (500 nM, 30 min) in the absence or presence 

of the tyrosine kinase inhibitor (K252a, 100 nM). All STEP species were immunoprecipitated 

with anti-STEP (23E5) antibody and probed with anti-ubiquitin or anti-STEP antibodies.  
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Table S1. Antibodies used in this study. 

Antibody Immunogen Host Dilution Source 

anti-STEP 

(23E5) 

N-terminal of rat STEP46 Mouse 1:1000 Santa Cruz 

Biotechnology, Santa 

Cruz, CA 

anti-BDNF An internal region of human 

BDNF 

rabbit 1:500 Santa Cruz Biotechnology 

anti-phopsho-

GluN2B 

Synthetic phosphopeptide around 

Tyr1472 of rat GluN2B 

rabbit 1:1000 Millipore, Billerica, MA 

anti-GluN2B C-terminus (aa 1463-1482) of 

mouse GluN2B 

rabbit 1:1000 Millipore 

anti-phospho-

Pyk2  

Synthetic phosphopeptide around 

Tyr402 of human Pyk2 

rabbit 1:1000 Cell Signaling 

Technologies, Danvers, 

MA 

anti-Pyk2 C-terminus of human Pyk2 mouse 1:1000 Cell Signaling 

Technologies 

anti-pERK1/2 Synthetic phosphopeptide around 

Tyr204 of human ERK 

mouse 1:1000 Santa Cruz Biotechnology 

anti-ERK2 C-terminus of rat ERK2 rabbit 1:5000 Santa Cruz Biotechnology 

anti-ubiquitin Ubiquitin purified from bovine 

red blood cells 

rabbit 1:5000 Thermo Scientific, 

Fremont, CA 

anti-β-actin  Gizzard actin of avian origin mouse 1:5000 Santa Cruz Biotechnology  

anti-rabbit IgG Rabbit IgG (H+L), Peroxidase 

Conjugated 

goat 1:5000 Thermo Scientific 

anti-mouse IgG Mouse IgG (H+L), Peroxidase 

Conjugated 

goat 1:5000 Thermo Scientific  
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