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Abstract 
Despite its undeniable problems from a philosophical point of view, the concept of molecular structure, 

with attributes such as shape and symmetry, directly borrowed from the description of macroscopic 

objects, is nowadays central to most of the chemical sciences. Descriptions such as "the tetrahedral" 

carbon atom or "octahedral coordination complexes" are widely used as much in elementary textbooks as 

in the most up-to-date research articles. The definition of molecular shape is, however, not as simple as it 

might seem at first sight. Molecules don't behave as macroscopic objects do, and the arrangement of 

atoms within a molecule changes continuously due to the incessant motion of its constituent particles, 

nuclei and electrons. How are molecular shape and symmetry affected by this thermal motion? In this 

review we introduce the language of continuous symmetry measures as a new tool to quantitatively 

describe the effects of temperature on molecular shape and symmetry, enriching in this way the set of 

molecular descriptors that might be used in the establishment of new empirical structure-property 

relations, of great interest in concomitant areas such as medicinal chemistry or materials science.  
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The important thing in science is not so much to 

obtain new facts as to discover new ways of 

thinking about them.  

                                          Sir Lawrence Bragg 
 
 

1 Introduction 
Molecules depicted in modern chemistry textbooks have distinct physical sizes, shapes, and 

structures. They are composed of individual atoms linked by bonds and usually represented by 

mechanical models such as ball-and-sticks or space-filling CPK models, or in more recent times by 

computer rendered interactive 3D images of these classical models (Figure 1 left and centre). As noted 

by Ramberg[1], the construction and use of these representational models is of central importance in the 

development of chemical theories since they make visible the invisible world of atoms, providing it with a 

graphic clarity or Anschaulichkeit. Techniques for modeling molecules and atoms date at least to Dalton's 

wooden spheres, although these early models were originally not meant to visualize molecules in a 

physical sense, ignoring in some cases the representation of the atom itself as in van't Hoff's 

stereoformulae (Figure 1 right), where the arrangement of atoms around a carbon atom was represented 

by a tetrahedron, but neither the central atom itself nor the bonds between this atom and the atoms in its 

coordination sphere were explicitly shown.  

Figure 1. From left to right: ball-and-stick model, space filling model, and van’t Hoff’s stereoformula for 

ethane. Note that in van’t Hoff’s stereoformulae the ligands around two carbon atoms linked through a 

simple C-C bond were usually represented in the eclipsed rather than in the staggered conformation. 

 

It was short after the introduction of the theory of the tetrahedral atom by van't Hoff in 1874[2] that 

chemists began to consider those models as a true physical representation of the microscopic world. This 

transformation in meaning, largely completed by the turn of the twentieth century, gave birth to 

stereochemistry, a new sub-discipline of chemistry concerned with molecules as entities with shape and 

structure. The classical concept of molecular structure underlying stereochemistry has, however, been 

questioned adducing that it has no physical reality at all since it cannot be derived directly from the 

physical laws (quantum mechanics) governing the motions of the nuclei and electrons.[3] Its utility in 

reasoning about microscopic events has been, nevertheless, at the base of its undeniable success in 

chemistry.[4] Mechanical concepts such as that of the "steric hindrance" of bulky groups allow chemists to 

discuss reaction mechanisms in vivid terms and to convince us that we are actually witnessing what is 

going on in a reaction flask at the microscopic level. 
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Shape and symmetry of molecules, crystals, supramolecular aggregates or local coordination 

environments around individual atoms are the essential concepts used in stereochemical analyses, 

where these shapes and symmetries are described using the tools of classical Euclidean geometry and 

group theory. Since the beginnings of stereochemistry, polyhedra, especially high symmetry convex 

polyhedra such as the Platonic solids, have played a key role in the rationalization of stereochemical 

information[5] and nowadays concepts such as the "tetrahedral carbon atom" or "octahedral coordination 

complexes" form part of the common knowledge of every chemist.  

 

The success of these simple models in explaining the properties and reactivity of large families of 

compounds has, however, the undesired side effect that most chemists assume naturally that these ideal 

symmetrical shapes are found for the vast majority of molecules, with low-symmetry cases being 

considered as unavoidable exceptions due to the complexity of nature. A careful analysis of 

experimentally determined molecular structures, greatly facilitated by today's structural databases[6] 

shows, that the situation is exactly the opposite: the presence of ideal symmetrical shapes is an 

exception, rather than the general rule. This situation was already described by Baur in 1974[7] in a 

careful examination of over 200 well-resolved crystal structures, both of organic and inorganic 

compounds, containing the presumably tetrahedral phosphate anion. In his study Baur was unable to find 

a single case with perfect tetrahedral symmetry for the PO43− group, and what is even more striking, in 

almost 85% of the analyzed crystals, the phosphate anion did not show any symmetry at all. In just 2% of 

the structures one of the four C3 rotation axes of the tetrahedron was still present, and the highest 

symmetry, D2d, was found for a single case. 

 

This discrepancy between idealized and real molecular structures is of course inherent to the very 

nature of molecules and to the representation of their structures in terms of objects, the molecular 

models, for which the notion of shape usual in our everyday environment is valid. Molecules are, however 

made of an ensemble of particles, nuclei and electrons, dancing around each other in a continuous 

movement. This dynamic nature is very distant to that of the solid objects in our macroscopic world for 

which the mathematical notions of shape and symmetry were developed, and a rigorous stereochemical 

analysis should take this fact into account. The basic sources of departure of real molecular structures 

from their idealized shapes are basically two: many molecular structures are easily deformable by either 

the presence of other molecules in their close environment, or simply by their dynamical nature and the 

effect of temperature that results in a constantly changing structure amenable only to experimental 

scrutiny via time or space averaged structures that are often more symmetric than the instantaneous 

structures between which the molecule is constantly fluctuating. In this review we will address this later 

problem, the effect of temperature on molecular structures, showing how the combination of molecular 

simulation techniques and the description of shape and symmetry as continuous properties allows us to 

gain a deeper knowledge of the concept of molecular structure, introducing some nuances that are often 

overlooked in traditional stereochemical studies. Since a vast literature (the most relevant references are 

given in the following sections) on using this approach to reveal the effects of the crystal environment on 
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the molecular structure is already available, we will focus our attention here exclusively on the effects of 

temperature on molecular shape and symmetry. 

 

 

2 Molecular shape and symmetry 
Before analyzing the effects of temperature on molecular shape and symmetry we should clearly 

establish what we mean exactly by "molecular shape". In common language, the word “shape” is 

attached to a personal intuition of what each of us thinks that defines a macroscopic object in three-

dimensional (3D) space. In some cases, for instance with relatively simple human made objects such as 

a buildings, we make an abstraction and we may view the object as a distribution of points in space 

describing its shape in terms of distances and angles, that is, local geometrical measures. More often, for 

instance when we try to describe the shape of natural objects such as animals, we associate the notion of 

shape with an envelope surface. In this case, rather than a precise geometrical characterization, it may 

be sufficient to describe shape in more qualitative terms or using comparisons with well known objects, 

for instance when we say that somebody has a pear-shaped figure. Both types of "shapes", represented 

by classical ball-and-stick and space-filling models respectively (Figures 1a and 1b), are used in 

chemistry, depending on which molecular properties one chooses to emphasize. Ball-and-stick models 

are better suited to represent the spatial arrangement of atoms within a molecule, while space-filling 

models give a more accurate description of the excluded volume occupied by a molecule and are better 

suited to study questions such steric hindrance or the fitting of a substrate in an enzime's cavity. 

 

Since in this review we are mostly interested in the effect of temperature on geometrical aspects of 

molecular structure, we will use basically the first type of representation of molecular shape, a ball-and-

stick model. From a mathematical point of view our molecules will, thus, be represented by a collection of 

points in Euclidean 3D space corresponding to the fixed position of the atomic nuclei in a given molecular 

conformation. In some cases we might be interested in distinguishing the points in this set according to 

the different nuclei they represent, in other cases we might just be interested in comparing shapes 

between different molecules with related structures and we do not make distinctions between the nature 

of the atoms forming these molecules. This representation of the molecular structure is very convenient 

for the stereochemical analysis of experimental structures determined by x-ray or neutron diffraction 

techniques, which are readily accessible from databases such as the Cambridge Structural Database 

(CSD),[6a] the Protein Data Bank (PDB),[6c] or the Inorganic Crystal Structure Database (ICSD).[6b]  

 

From the point of view of theoretical chemistry it is customary to consider that a given molecular 

structure can be directly inferred from quantum chemical calculations just by obtaining the set of nuclear 

coordinates that leads to a minimum on the potential energy surface of the system, although it has been 

emphasized[3b] that physical systems are never isolated nor closed, and for this reason, as with the size of 

individual atoms, so the geometry of a molecule varies depending on their environment. Today we know 

that despite this inherent difficulty, the use of these geometries to discuss chemical problems makes 

sense if we do not forget that they are relative to the timescale of measurement. In this sense, the notion 
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of molecular structure based on “frozen” nuclear conformations is limited because from quantum 

mechanics we know that the vibration of nuclei around their minimal energy position cannot be eliminated 

even at the lowest attainable temperatures, and consequently, an accurate description of molecular 

shape should include a “smearing effect” resulting from nuclear motion. Different solutions have been 

proposed in the literature to address this question.[8] Basically two different approaches are available. 

One is to use dynamical shape descriptors, which take into account the dynamical nature of molecular 

shape due to the nuclear flexibility. Alternatively one may use static shape descriptors obtained for a 

frozen nuclear geometry and use molecular simulation techniques to generate a representative series of 

frozen nuclear geometries to study the dependence of these shape descriptors with external factors such 

as temperature in a statistical way. In this review we adopt this second point of view, by using the 

language of continuous shape and symmetry measures defined in the next section to characterize the 

shape and symmetry for a set of structures of a given molecule obtained by either Monte Carlo or 

molecular dynamics simulations at a constant temperature.[9]  

 
3 Continuous shape and symmetry measures 
We all have a notion of shape, which is already acquired in our preschool years since it is generally 

accepted that understanding color and shape is a basic tool for learning many skills in all curriculum 

areas, from math and science to language and reading. Associated with the concept of shape we also 

learn very early to recognize symmetry: the bilateral symmetry in our bodies, the rotational symmetry of 

many flowers, or the complex, but at the same time apparently simple symmetry of polyhedral shapes 

such as the cube. It should be thus no surprise that polyhedra and symmetry have entered as a basic 

ingredient in many of our conceptual models developed to explain the physical world. The extensive use 

of geometry and symmetry in modern science are a consequence of the deep influence of Greek 

philosophy in western culture, starting with Plato’s attempt to relate the properties of matter with those of 

the highly symmetrical regular solids. The modern use of shape and symmetry in scientific theories 

derives from the Erlangen program proposed by F. Klein in 1872 to use group theory, a branch of 

mathematics that relies on algebraic methods to abstract the idea of symmetry, as the most useful way of 

organizing geometrical knowledge.[10] According to this philosophy, the shape (symmetry) of an object, for 

instance a molecular structure Q formed by a set of points in Euclidean space, is best described by those 

transformations (automorphisms) of space which leave Q invariant. One can show that the set of these 

automorphisms has the structure of a mathematical group, called the object's symmetry group G. It is 

easy to convince ourselves just by playing with a model of a cube that the shape (symmetry) of the cube 

is preserved by translations, rotations, and scaling transformations. Although its appearance to our eyes 

might change, a cube is a cube independently of its position, its orientation, and its size, and we are able 

to recognize it as a cube independently of our viewpoint. More subtle transformations preserving the 

identity of a cube are reflections, but from our particular experience we all know that we are also able to 

recognize the shape of a cube just by looking at its image on a mirror. 

 

At this point it is important to note a subtle, but important, difference between shape and symmetry. 

For regular polyhedra such as the tetrahedron, shape and symmetry are univocally linked since the 
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tetrahedron is the only possible 4-vertex polyhedron in Euclidean 3D space having tetrahedral symmetry. 

This is no longer true if we consider, for example, a rectangular prism. Just by changing the relative 

lengths of the three different edges we may have many particular shapes, all with the same symmetry. In 

this respect, shape is a more restrictive concept than symmetry: not all objects with the same symmetry 

have necessarily the same shape. 

 

Let us leave for a moment the abstract mathematical description of shapes and symmetries and return 

to stereochemistry. Much of the actual stereochemical wisdom relies on old venerable hypotheses such 

as van’t Hoff's and Le Bel's postulate that the four valencies of a carbon atom are arranged in a 

tetrahedral disposition. From the point of view of a structural chemist in the 21st century, with access to 

the wealth of structural information contained in data bases, it should be, however, remarkable that such 

theories, derived for idealized symmetric molecular geometries before it was even possible to determine 

the molecular structure, can be applied without major revisions to obtain rational explanations for many 

experimental observations, even if, as noted above, we have evidence that the structures of most 

molecules are not symmetric at all.  

 

It is precisely when trying to understand this apparent contradiction that one of the major short- 

comings of the group theoretical approach to symmetry becomes evident. If one associates symmetry just 

with the group of spatial transformations that leave an object invariant, symmetry and shape become 

automatically dichotomous properties, that is, a molecule has either a certain symmetry (shape) or not. In 

this respect, even tiny atomic displacements, which might have an imperceptible influence on the physical 

properties of the molecule, are sufficient to destroy its symmetry (shape). A satisfactory solution for this 

problem can only be given if the mathematical treatment of symmetry and shape is radically changed by 

introducing a metric notion, the degree of a given symmetry or shape present in an object, that allows to 

overcome the usual 'black or white' description of symmetry in group theory by introducing a continuous 

scale containing  all infinite shades of gray between these two extremes. Although different 

approaches  to this problem are possible[11] we will use here the so-called continuous symmetry or shape 

measures (CSMs or CShMs) introduced by Avnir and coworkers in the early 1990s.[12] [13] CSMs and 

CShMs are especially well suited for its use in chemistry because, although originally devised to describe 

the geometric symmetry of molecular structures, they can be easily generalized[14] to treat the degree of 

symmetry of more complex mathematical objects commonly used in quantum chemistry[15]  such as wave 

functions,[16] orbitals,[17] [18] [19] electron densities,[20] or even quantum mechanical operators.[21] We will, 

however in this review, limit ourselves to give a brief introduction to the mathematical foundations of 

geometrical CSMs and CShMs and use them afterwards to show how they can be used to address, in a 

quantitative manner, the effects of temperature on molecular or solid state structures. The reader 

interested in a detailed application of CShMs and CSMs to stereochemical problems will find more 

information in the extensive literature included in the reference list. The main questions addressed with 

the CSMs formalism include the precise description of the coordination geometry of individual atoms in 

either molecules [22] [23] [24] [25] [26] or solids,[27] the symmetry of clusters,[28] supramolecular assemblies,[29] 

or proteins,[30] chirality in transition metal compounds,[31] [26b] aggregates,[32] or in solids,[33] and the relation 
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between symmetry and the physical properties of molecules[34] and solids.[35] CMSs have also been used 

to describe geometrical changes along reaction paths,[36] particularly for enantiomerization processes.[37] 

An interesting application of CSMs, closely related to the type of work described here is the analysis of 

environmental effects on molecular symmetry,[38] with a special emphasis on the coexistence of 

apparently contradictory symmetries in a same system.[27d, 39] 

 

Since a detailed description of the algorithms used for computing CShMs and CSMs is readily 

available,[40] we will give here only a brief overview of the main points, focusing more on the ideas behind 

the CSM formalism than on mathematical technicalities. The most intuitive approach to understand the 

mathematical formalism of CShMs is to think on how we would proceed if we were presented with an 

object, for instance a quadrangle Q as in figure 2, and we were asked about how much it resembles 

another object P0 with a given ideal shape such as a square. Given that the shape is invariant upon 

translations, rotations, and scaling, the most evident way to compare the two objects is to translate, rotate 

and scale one of them, for instance P0, until we maximize the overlap between Q and P, the image of P0 

after these transformations (Figure 2, right). Once we have determined P we can define the continuous 

shape measure of Q with respect to the ideal shape P as: 

 

         [1] 

 

where N is the number of vertices in the structures we are comparing, qi and pi are the position vectors 

of the vertices of Q and P, respectively, and q0 the geometric center of the problem structure Q. The 

minimization in eq. [1] refers to the relative position, orientation, and scaling that must be applied to P0 to 

maximize the overlap (or alternatively, to minimize the squares of distances between their respective 

vertices, which is actually the case in eq. [1]). If the matching of the two shapes is described, as in eq. [1], 

by the distance between vertices of the two objects, a further minimization with respect to all possible 

ways to label the N vertices in the reference structure P0 is also needed. While an analytical solution to 

find the best relative position, orientation and relative size of the two objects is known, the permutation 

problem must be solved by sweeping through all possible N! permutations of labels if all vertices are 

equivalent, or to restricted sets of N1! u N2! u ... u Nk!  permutations if the set of N vertices can be 

partitioned into k sets with N1, N2, ... , Nk equivalent vertices each.  
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Figure 2. Procedure used to calculate the CShM of an arbitrary quadrangle Q with respect to the 

square P0 by minimizing the squares of the distances between the vertices of the two structures with 

respect to translations, rotations, scaling and vertex labeling. 

 

From eq. [1] it follows that if Q and P0 have exactly the same shape, then SP(Q)  = 0. Since SP(Q) is 

always positive, the larger its value, the less similar is Q to the ideal shape P0. It can be shown that the 

maximum value for SP(Q) is 100, corresponding to the unphysical situation where all vertices of Q 

collapse into a single point. Although, in principle, CShM values can fall in the range between 0 and 100, 

measures for severely distorted chemical structures are never larger than 50 and as a rule of thumb we 

can consider that chemically significant distortions give shape or symmetry measures about 0.1 or higher, 

while values larger than 3 indicate important distortions. For structures with CSMs values above 5 the use 

of the ideal shape P0 to describe the shape of a given object is already strongly questionable. 

 

It is important to notice that describing the shape of a geometrical object using a CShM represents a 

very strong reduction of information, from the 3N-6 internal coordinates needed to fully specify the relative 

positions of its vertices to just a single shape descriptor. For small distortions the use of a single CShM, 

the one corresponding to the closest ideal structure, is a valid simplification, but if the structure is severely 

distorted, far from any simple highly symmetric structure, the best description for the shape needs the 

specification of several CShMs with respect to different reference shapes.  A special case appearing 

often in stereochemistry is that of a structure that falls along the interconversion path between two high 

symmetry structures.[41] Let's consider, for instance, the so-called "spread" pathway between a 

tetrahedron and a square (Figure 3a) obtained by flattening the tetrahedron while maintaining a D2d 

symmetry for the structure. Structures along this path have tetrahedral CShMs comprised between 0 and 

33.3. The shape of molecular structures with small values of STd(Q) are well described by the tetrahedral 

measure, but structures close to the square planar one with STd(Q) ≈ 33 obviously not, since this high 

value just indicates that we are far away from the tetrahedron, but not in which direction. To describe 

these structures we will better use the square planar shape measure SSq(Q) ≈ 0. For structures in the 

middle part of the path it will not be possible to use a single high symmetry reference structure and we 

will need to indicate, at least, both STd(Q) and SSq(Q). A very practical way to present this information 

visually is the use of shape maps[25b] such as the one shown in figure 3b where the value of a CShM 

SP(Q) with respect to ideal shape P is represented as a function of SR(Q), the shape measure for the 

same structure with respect to another ideal shape R. The use of shape maps and the so-called minimal 

distortion pathways between two ideal structures[41] such as the "spread" path between the tetrahedron 

and the square, have been shown to be of great utility in the rationalization of large quantities of 

stereochemical information, especially in the description of the coordination geometry around metal 

atoms in complexes and solids.[22a, 23c, 24-25, 25f, h] 
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Figure 3. a) Spread distortion for a tetrahedral ML4 structure. b) Tetrahedral-square planar shape map 

showing the location of the perfect tetrahedral and perfect square geometries and the minimal distortion 

interconversion path (the spread distortion) between them.   

 

To define a continuous scale to gauge the degree of symmetry of an object described by a set of 

vertices we may proceed in the same way as for the definition of CShMs. The final result for the 

symmetry measure with respect to a given point symmetry group G, denoted as SG(Q), is an equation 

totally analogous to eq. [1], where Q refers again to our problem structure but where P is now the G-

symmetric structure closest to Q. The minimization process in this case refers to the relative position of 

the two structures (translation), the orientation of the symmetry elements for the reference G-symmetric 

structure P, the scale factor, and again the labeling of vertices of the symmetric structure. Note that 

although the same equation may be used both to define shape and symmetry measures, there is a 

fundamental difference between the two procedures: while in computing a shape measure we know in 

advance the ideal object P0, for instance a tetrahedron if we want to compute STd(Q), in the case of 

symmetry measures the shape of the closest G-symmetric structure is, in principle, previously unknown. 

Consider, for instance that we would like to measure the rectangular symmetry for a given general 

quadrangle. Besides optimizing to seek for the translation, rotation and scaling that leads to the optimal 

overlap of our quadrangle Q with a given rectangle, we will need to consider also which is the best 

rectangle by optimizing the ratio between the lengths of the two different edges of the rectangle. Although 

this additional optimization process may seem difficult to generalize for any given symmetry group, it has 

been shown that it is possible to do it efficiently using either the folding-unfolding algorithm[13a] or via the 

calculation of intermediate symmetry operation measures.[40a, b] As in the case of shape measures, the 

values of CSMs are also limited to the 0 ≤ SG(Q) ≤ 100 interval with SG(Q) = 0, meaning that Q is a G-

symmetric shape. In some special cases as those of the platonic solids described below, it can be shown 

that symmetry and shape measures are equivalent, a consequence of the fact that a given regular 

polyhedron is the only possible polyhedron with a given number of vertices and a given symmetry. The 

octahedron, for example, is the only possible six-vertex polyhedron with octahedral symmetry. This is, 

however, not true for most of the polyhedra, for which shape and symmetry are not univocally linked. 

 

A special mention should be made to chirality,[12c] a specific type of symmetry that has a prominent 

role in chemistry. A chiral object is usually described as an object that cannot be superposed with its 

mirror image. Technically speaking, chirality implies lack of improper rotation symmetry and its CSM can 

be based on estimating how close a chiral object is from having this symmetry. Using the CSMs defined 

above, the continuous chirality measure (CCM) can be defined as the minimal of all SG values for G = Sn 
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with n = 1,2,4.... In most cases it will be either Schir = SCs = SS1 or Schir = SCi = SS2, while in a few cases we 

will have to look for SS4 or higher-order even improper rotation axes. Since in most cases visual 

inspection of the studied structure is enough in order to guess which one could be the nearest Sn group, a 

practical solution is just to calculate this particular SSn, or in case of doubt a few SSn values and pick the 

smallest one.  

 

A chiral molecule may exist in two different structures that are one the mirror image of the other. 

These two structures, called enantiomers, have, of course, both the same chirality measure, that is, they 

are both at the same distance from the closest achiral structure and have the same shape, which means 

that they are both equidistant from a given reference shape. To distinguish both enantiomers we must 

introduce the notion of handedness, which should not be confused with chirality itself.[42] A given chiral 

structure may be labeled as right- or left-handed, independently of the degree of chirality that it 

possesses. We should however recall that labeling an object as left- or right-handed is an arbitrary 

convention. In chemistry different standard methods to assign handedness are being used for different 

cases. The most well known are the Cahn–Ingold–Prelog (CIP) priority rules,[43] the rules for chiral 

octahedral six-coordinated complexes,[44] those for tris-bidentate octahedral complexes,[45] or the rules for 

helical chirality which require the existence and identification of a C2 symmetry axis.[46] When one 

approaches the handedness-labeling of a family of objects which is not covered by existing labeling 

schemes, due to the arbitrariness of the problem, all options are open. In this review we will describe the 

effect of temperature on the local atomic environment for tetrahedral solids such as diamond. Since a 

distortion from a regular AB4 tetrahedron leads, in general, to a chiral structure, we will use the rule 

devised by Avnir and coworkers to assign a left/right handedness to AB4 chiral tetrahedra. The interested 

reader is referred to the original reference[42] for more details on this aspect. 

 
4 Effect of temperature on shape and symmetry  
We will discuss the principal effects of temperature on molecular shape and symmetry by means of a 

simple example, the highly symmetric tetrahedral P4 molecule. Optimization of the molecular structure 

using the semiempirical PM6 method[47] yields a perfectly tetrahedral geometry with a P-P distance of 

2.26Å. This geometry is confirmed to correspond to a minimum on the potential energy surface for which 

six normal modes with 938 (A1), 626 (T2), and 431 cm-1 (E) wavenumbers are found in a normal mode 

analysis. As mentioned earlier, temperature will cause local vibrational motion of the atoms and at any 

time the P4 molecule will adopt a distorted tetrahedral structure, in most cases with no symmetry at all. 

We can make an estimation of the size of the local atomic motions by using the analogy of the vibrations 

of a mass m held in place by springs.[48] The energy associated with its displacement is mZ2<u2> where u 

is its displacement from the equilibrium position and Z the angular frequency of the oscillatory motion. 

Equating this mean displacement energy with the thermal energy kBT gives: 

          [2] 
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For the P4 molecule at T =300K, if we consider the intermediate normal mode T2 with Z/2S = 18.8 THz 

we obtain a value of 0.024Å for <u2>1/2, that is, about 1% of the P-P distance in the equilibrium geometry. 

Considering a single P-P bond, its distance will oscillate between 2.21 and 2.31Å and the 60º angle 

spanned by three P atoms on a face of the tetrahedron will suffer changes of about r0.6º. Are these 

changes important for the loss of tetrahedral symmetry? As we will see below, the average tetrahedral 

symmetry measure at 300 K is about 0.06, indicating that the average distortion is small, but non 

negligible.  

 

Before analyzing in detail the evolution of the symmetry loss with temperature, let us note three 

conclusions that are readily available from this qualitative analysis. First of all, from equation [2] we can 

deduce that the average atomic displacement will be larger for light than for heavier atoms, and it will also 

be larger in structures with low energy (low frequency) vibrational modes. In this respect, for a given 

structure in general we find that twisting modes will cause larger symmetry losses than bending ones, 

while high frequency stretching modes will lead to the smallest distortions. The second noteworthy point 

is that since shape and symmetry are invariant under scaling, the important parameter to gauge the size 

of a distortion is not the absolute value of the displacement, but the relative size of this displacement with 

respect to the average size of the structure. In other words, a 0.02Å average atomic displacement in a P4 

tetrahedron with 2.26Å edges will lead to smaller symmetry losses than the same displacement in a 

tetrahedral C4 structure with 1.51Å edges. The combination of these two effects, the displacement 

dependence on mass and frequency on one hand and the size of the structure on the other hand, will be 

shown to play an important role in the unexpected behavior found for the symmetry loss in tetrahedral 

solids such as carbon, silicon and germanium. The third important point that should not be overlooked is 

that we are discussing about the average shape (symmetry) loss that a structure will suffer due to thermal 

motion. This magnitude behaves, however in a radically different way from the shape (symmetry) of the 

average structure. Considering these two magnitudes leads to a striking contradiction often found in 

crystallography: raising the temperature, and hence, enlarging the displacement of individual atoms from 

their equilibrium positions, leads, in general, to more symmetric structures. This situation is nicely 

illustrated by comparing the crystal structures at different temperatures for alkali-metal cyanides or 

alkaline-earth carbides such as NaCN[49] or CaC2.[50] While these compounds have low temperature 

orthorhombic, tetragonal, or monoclinic structures where the diatomic CN- or C22- dumbbells are all 

aligned in the same direction, raising of the temperature allows a rotation of these units and the observed 

high temperature structures become cubic salt-rock type structures where each diatomic anion occupies 

a single position in the crystal corresponding to the anion's mass center. Thermal motion leads in this 

case to a more symmetric average structure, the instantaneous symmetry of the structure at any given 

time is however lower. In this respect, the symmetry enhancement produced by temperature is a 

consequence of the limitations of our observation tool, x-ray analysis, which allows us to explore the 

structure of a crystal in a time scale that is too slow to appreciate the instantaneous symmetry breaking 

taking place at the microscopic scale. In our simulations we also found that despite having an average 

tetrahedral symmetry measure of 0.06 at 300K, the average structure for the P4 molecule is perfectly 

tetrahedral within numerical error. In fact this result is a confirmation of the goodness of the harmonic 
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approximation that is used to describe atomic motion within a molecule in terms of normal vibration 

modes. If all atoms are subject to perfectly harmonic motions around their equilibrium positions, the 

average structure will, per force, maintain the shape, symmetry, and even the size of the equilibrium 

structure. In our simulations we find that while the shape and the symmetry of the average structure are 

maintained as the temperature is raised, its size increases slightly due to anharmonicity. 

 

Let us now analyze in more detail how the perfect tetrahedral symmetry of the P4 molecule is lost as 

we consider the motion of each P atom around its equilibrium position.[51] Figures 4a and 4b show the 

distribution of total energies and tetrahedral CSM for the set of 30.000 P4 structures at a temperature of 

300 K, respectively. As it has been described earlier by Tuvi-Arad and coworkers,[36f, 52] a fit of the 

histogram to an analytic function leads to a log-normal distribution, eq. [3], both for the energy and the 

CSM, 

 

         [3] 

 

where P and V are two parameters related to both the position of the peak and the width of the 

distribution. 
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Figure 4. a) Distribution of the tetrahedral CSM for the set of 30.000 P4 structures obtained in a 

simulation at T =300 K. b) Distribution of the total energy for the same set. c) Evolution for the distribution 

of the tetrahedral CSM with the temperature. d) Average tetrahedral CSM as a function of the 

temperature. 

 

The evolution of the distribution of the CSM values with the temperature is shown in figure 4c, where it 

is evident that both the position of the maximum as well as the spread of the distribution increase with the 

temperature. An analogous behavior is found for the energy. Considering that the average value for a 

variable following a normal distribution is 

 

              [4] 

 

we can easily evaluate the changes in average CMS and energy to find that both the average CSM 

(Figure 4d) and the average energy (not shown in the figure) increase linearly with temperature in this 

temperature range. From this we can conclude that there is also a linear dependence of the average 

CSM on the average energy. In order to better understand this result it is illustrative to plot the CSM 

versus the energy values for all structures in a simulation (Figure 5a).  

 

 

Figure 5. a) Tetrahedral CSM versus energy (red dots) for the set of 30.000 P4  structures obtained in 

a simulation at T = 400K. The black lines show the variation of the CSM with the energy along the normal 

modes of vibration.  b) Variation of the energy along the different normal modes for a single P4 molecule. 

d) Variation of S(Td) along the different normal modes for a single P4 molecule. 

 

In this figure we see that the dots are distributed in a triangular region with one vertex at the origin, 

indicating that low energy structures (the minimal energy corresponds to 0) show only small deviations 

from tetrahedral symmetry S(Td) ≈ 0. Although it is not highly probable, it is possible to find perfectly 

tetrahedral molecules, S(Td) = 0, with a high energy. To obtain these, we just need to distort the molecule 

along the totally symmetric A1-type mode. As shown in figures 5b and 5c, a distortion along the A1-type 
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mode implies an energy increase, but no change in the molecular symmetry contents. The more 

interesting feature is the upper limiting border found for the distribution of points in figure 5a. In this region 

of the plot is not possible (it is not the case that there are just few points with a low probability as in the 

lower part of the graph) to find points above a given threshold, meaning that given a certain amount of 

energy it is only possible to destroy the original tetrahedral symmetry up to a maximum degree. A look to 

figure 5a reveals that this upper border coincides, at least at low energies, with the distortion along the 

softest E-type normal mode. An a priori unexpected result is shown in figure 5c: except for the totally 

symmetric mode, the symmetry loss is exactly the same along any normal mode. It is possible to show 

mathematically that this result is valid for any structure with equivalent vertices,[53] leading to an 

interesting corollary: for a given energy, the maximum symmetry loss will be given by a deformation along 

the softest normal mode. As shown in figure 5a, distortions along the intermediate energy mode T2 lead 

to lower symmetry losses for a same energy. A note of caution should, however, be given at this point. 

This general result is based on the harmonic approximation for the energy, which is only valid for small 

displacements around the energy minimum. In reality the variation of the energy along a given mode is 

not strictly parabolic, as it is assumed in the harmonic approximation, and the energetic cost is slightly 

different when moving along the mode in the positive or in the negative directions. This is, however, not 

true for the change in symmetry since in this case it can be shown that the symmetry loss is perfectly 

parabolic. As a consequence of this, the linear relation between symmetry loss and energy is not exactly 

the same when moving back or forward along a given normal mode. This effect is clearly visible in figure 

5a for the E mode, the most anharmonic of the three modes, for which two slightly different lines can be 

observed for the change in S(Td) as a function of the energy. For small displacements, where the 

anharmonic effects may be neglected, the two lines coincide, marking the upper limit for the symmetry 

loss at a given temperature. Anharmonicity effects are smaller for the T2 mode and the two lines are 

practically coincident for the displacement range shown in the figure. Evidently, for the totally symmetric 

mode there is no symmetry loss in any of the two directions, independently of its anharmonicity. 

 

P4 is an example of a molecule with a well-defined shape, a tetrahedron, robust against atomic 

displacements associated with temperature. The minimum on the potential energy surface corresponding 

to a tetrahedral geometry is well separated by high-energy barriers from those corresponding to 

alternative shapes such as, for instance the square. A different situation is found for flexible molecules, 

where various alternative shapes become accessible when the temperature increases moderately. In 

these cases we find low energy modes, usually corresponding to internal rotations around a single bond, 

which allow the switching between different conformations, which may have totally different shapes. The 

simplest example for this case is given by the ethane molecule, where internal rotation around the central 

C-C bond allows the exchange between different staggered (D3d) conformations with a low barrier, aprox. 

1 kcal mol-1 at the PM6 level, corresponding to an eclipsed (D3h) conformation (Figure 6a). As far as the 

shape is concerned, the most stable staggered configuration may be seen to correspond to an 

octahedron elongated in the direction of one of its C3 symmetry axes that would coincide with the 

direction of the C-C bond. Changing the H-C-C-H dihedral angle I from the 60º value corresponding to 

the staggered geometry to 0º or 120º corresponding to the eclipsed one, can be interpreted as a Bailar-
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type distortion,[23c]  where one triangular face of the octahedron is rotated around the C3 symmetry axis 

perpendicular to it while the opposite face remains in its original position. The result after a 60º rotation is 

a triangular prismatic geometry, which is precisely the geometry found for the six hydrogen atoms in the 

eclipsed conformation of ethane.  

 

Figure 6. a) Potential energy curve for the internal rotation in ethane. b) SSt, SEc and SCi as a function 

of the dihedral angle c) Distribution of CShMs for ethane plotted in an alternate/staggered shape map. 

For each temperature a sequence of 60.000 structures have been generated using a Monte Carlo 

algorithm in which the Cartesian coordinates for all 8 atoms in the molecule are allowed to change, with 

the energy being evaluated at the PM6 level. 

 

The question on how the temperature affects molecular shape is here trickier, since we have two 

alternative choices to describe it. We could choose to take the octahedron and the trigonal prism as 

reference polyhedra, but a more accurate description for this case is to take as arbitrary reference shapes 

those obtained for the molecule optimizing the geometry at a fixed �I = 60º or 0º value, that we will 

designate as staggered (St) and eclipsed (Ec) shape, respectively. An alternative way of characterizing 

the molecular shape in this case is to use the inversion symmetry measure. Since Ci is a subgroup of D3d, 

the symmetry group for the staggered conformation, but not of D3h, the group corresponding to the 

eclipsed one, we can use the inversion measure as a single parameter to characterize the changes in 

shape/symmetry of the ethane molecule as a function of the temperature. For this purpose it is useful to 

look at how the Ci CSM changes along the minimum energy path joining the staggered and the eclipsed 

conformations (figure 6b). 

 

As a first approximation we can consider that only the lowest energy mode, corresponding to the 

internal rotation, is active and the only accessible distortions are coincide with those molecular 

geometries corresponding to the relaxed energy versus dihedral angle curve shown in figure 6a. For very 

low temperatures we expect the internal rotation to behave as an oscillation around the minimum energy 

configuration with�I = 60º and the best description for the molecular shape will be given by the staggered 

shape with <SSt> ≈ 0, <SEc> ≈ 10, and <SCi> ≈ 0, the values corresponding to the staggered geometry 

(Figure 6b). If we plot the SSt and SEc measures in a shape map (Figure 6c) we find that at low 

temperatures the whole population is concentrated in the surroundings of the position of the staggered 

shape at the point (0,10). When the temperature is raised, the population spreads along the minimum 
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distortion path between the two ideal shapes, reaching eventually the region corresponding to the 

eclipsed structure (point (10,0) on the shape map) if the temperature is sufficient to allow the system to 

jump over the barrier. Since in our simulations we allow al 8 atoms in the molecule to move freely, the 

structures generated along the Monte Carlo simulation are not constrained to lie exactly along the 

minimum distortion path, although the spread away from this path is not very large, indicating that the 

model considering only distortions along the minimum energy path is quite appropriate at the 

temperatures considered in the simulations. 

 

Considering the behavior described previously for P4 we expect <SSt> and <SCi> to increase linearly 

as the temperature rises and this is indeed what is found in the simulations for very low temperatures, just 

below 50K. The average CShM for the eclipsed geometry, <SEc> is expected to decrease consequently. 

The linear behavior is, however lost above 50K, where <SSt> and <SCi> have a more pronounced 

increase with the temperature, an increase that is being progressively moderated at even higher 

temperatures. Extrapolating the curves at very high temperatures, around 4000K, where any value for the 

dihedral angle would have practically the same probability, we would finally reach  <SSt> ≈ 3.7, <SEc> ≈ 

3.4, and <SCi> ≈ 6.6, the average values corresponding to a uniform distribution of dihedral angles. This 

situation is, however, never reached since besides the fact that the molecule would probably dissociate at 

such high temperatures, at intermediate temperatures the assumption that the only source of distortion is 

due to the internal rotation mode does not hold anymore and we would observe additional shape and 

symmetry losses in the simulations due to the presence of molecular geometries that are no longer 

restricted to those on the potential energy curve shown in figure 6a. For C2H6 the normal mode 

corresponding to the internal rotation calculated at the PM6 level appears at�Q = 180 cm-1, while the next 

lowest mode is a degenerate mode with �Q = 883 cm-1. The characteristic vibrational temperatures,�4vib = 

Q/kB, for these two modes are 260 and 1270 K, respectively, indicating that in the temperature range 

included in the figure the only mode with a significant contribution to geometrical distortion in ethane will 

be that corresponding to rotation around the single C-C bond. 

 

Once we have introduced the basic notions to understand how to use the language of continuous 

shape and symmetry measures to analyze the effects of temperature on molecular structure we will give 

a brief overview of some illustrative examples that show that in many cases we might find counterintuitive 

results which at a first sight might seem to be in contradiction with some well accepted notions on 

molecular structure. 

 

 

5 Polyhedral molecules 
Let us consider as a first example the set of highly symmetric C4H4, B6H62-, C8H8, B12H122-, and C20H20 

molecules (Figures 7a-e) with a fairly rigid core formed by main-group atoms adopting the shape of the 

five platonic solids, the tetrahedron, octahedron, cube, icosahedron, and dodecahedron, respectively, in 

their minimum energy configurations. In this case we will center our attention first at the symmetry loss 

experienced by the central core of these molecules when the temperature is raised. Pertinent questions 
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to answer are: a) will the central core of the molecule loose its shape (symmetry) at the same rate as a 

simple cluster with the same shape such as the tetrahedral P4 molecule discussed above, or is there any 

noticeable effect of the surrounding H atoms? b) is the number of symmetry operations in the symmetry 

group (24 for Td, 48 for Oh, and 120 for Ih) a relevant parameter to describe the average symmetry loss? 

or in other words, is it easier to loose symmetry for a structure belonging to a high symmetry group than 

to a lower symmetry one? and, in general, c) which are the molecular features that are important to 

describe the rate of symmetry loss for this family of compounds? 

 

Simulations for these five polyhedral molecules show again that the distributions of energy and 

polyhedral shape for the central cluster are again following a log-normal distribution. As shown in figures 

7f and 7g, the increase in average energy or in average polyhedral shape with temperature follow both a 

nice linear behavior.[54] It is however evident that while the effect of temperature on the average energy 

follows a simple trend, that is, the larger the molecule, the more increases the average energy as the 

temperature is raised, this is not longer true for the effect of the temperature on the average shape loss. 

In this case, the least affected molecule is dodecahedrane, the largest one, although the trend is not 

trivial and octahedral B6H62- is the structure most affected by temperature 

 

Figure 7. Molecular structures for (a) C4H4, (b) B6H62-, (c) C8H8, (d) B12H122-, and (e) C20H20 with 

tetrahedral, octahedral, cubic, icosahedral, and dodecahedral main group atom cages. Average energy (f) 

and average CSM (g) as a function of temperature for the series of C4H4, B6H62-, C8H8, B12H122-, and 

C20H20 molecules. (h) Slope of the average CSM vs T curves as a function of the relative atomic 

displacement at room temperature. 
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The behavior observed for the variation of the average energy with temperature (Figure 7f) can be 

easily rationalized if we take the equipartition theorem into account.  According to this principle we should 

expect: 

           [5] 

where N is the total number of atoms (including the H ones) in the molecule, a trend that is in great 

measure the behavior found in our simulations. As it was expected, the average energy for each atom to 

move away from its equilibrium position is thus similar for all five molecules and the trends found for the 

symmetry loss must be due to some other reasons. 

 

A simple explanation for the behavior shown in figure 7g can be found by considering eq. [2]. As it was 

mentioned above, the loss of shape is not directly related to the average displacement of the atoms from 

their equilibrium positions, but to the magnitude of this average displacement with respect to the total size 

of the structure. The main variables involved in eq. [2] are the masses of the atoms and the rigidity of the 

structure, described by the frequency of the vibration. In our case the difference in masses between B 

and C is not so much relevant, but the rigidity of the different molecules is quite different. If we consider 

the frequency of the totally symmetric breathing mode for the inner cluster as an average measure for the 

rigidity of the structure (Z ≈ 51, 39, 38, 30, and 27 THz for C4H4, B6H62-, C8H8, B12H122-, and C20H20, 

respectively) we will find that the average displacement will be lowest for the most rigid tetrahedrane 

molecule and largest for dodecahedrane. It is also noticeable that, in general, hydrocarbons are more 

rigid than the boranes, for instance the smaller B6H62- has practically the same frequency for the 

breathing mode than C8H8. If we consider also the radii of the clusters (r = 0.92, 1.20, 1.36, 1.66. and 

2.17Å for C4H4, B6H62-, C8H8, B12H122-, and C20H20, respectively) as a measure of their size, the ratio 

between the size of the average displacement calculated using eq. [2] and the radius of the cluster gives 

us the clue to understand the trends found for the symmetry loss as the temperature is raised. In figure 

7h it can be appreciated that the larger the ratio between the average displacement and the radius, the 

larger the slope of the <S> vs. T curve, showing that it is the combination of rigidity and size of the cluster 

that are making the B6H62- molecule the most susceptible of all five against temperature induced 

symmetry loss. This reasoning explains also why boranes are more prone to loose symmetry with 

temperature than hydrocarbons since they are, in comparison with similar sized hydrocarbons, less rigid. 

For the three hydrocarbons we find that temperature is affecting much more the symmetry in tetrahedrane 

than in cubane and dodecahedrane. Note that the trends in the magnitude of the average symmetry loss 

are not related to the number of operations in the symmetry group, so that the intuitive idea that it should 

be easier to loose symmetry in a structure with a higher symmetry does, in principle, not hold. 

 

By comparing the behavior of C4H4 with that of P4 described previously we find that the presence of 

the outer hydrogen atoms has no significant effect on the evolution of the shape or symmetry of the inner 

core with temperature and that the shape of the carbon core in tetrahedrane is much more affected by 

temperature than in the P4 molecule, an effect that can be adequately rationalized using again eq. [2] and 
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taking into account that the C4 core in tetrahedrane is smaller and the C atoms lighter than the P ones, 

although in compensation the C4 is somewhat more rigid than the P4 one. 

 

A last interesting question for these polyhedral AnHn molecules with an external Hn polyhedron that 

has the same shape as the inner one, is to explore if temperature is affecting the shape of the two 

polyhedra in the same amount or not. Since the Hn polyhedron has a larger radius, we expect that for a 

similar average displacement of the atoms, the effect should be smaller. On the other hand, the H atoms 

are lighter than either the B or C atoms and the totally symmetric C-H or B-H stretching mode has a much 

higher frequency, so that to a good approximation we could consider that H atoms will "follow" the 

movement of the B or C atoms in the inner framework. For this reasons it is difficult to make a qualitative 

prediction of which factor will dominate and which symmetry loss will be larger or smaller, that of the inner 

polyhedron or that of the outer H one. The answer is that according to the CSM's, although the symmetry 

loss increases linearly for both polyhedra as the temperature is raised, the effect on the outer H shell is 

larger than for the core main-atom polyhedron. For tetrahedrane, for instance, at 400K the average 

symmetry loss for the C4 tetrahedron is about 0.15 while that for the outer H4 tetrahedron is 0.29, almost 

two times larger.  An interesting question is if the symmetry loss in the two polyhedra is related or not, a 

possibility that is suggested by the fact that due to the high frequency C-H vibrations one might consider 

that the position of the H atom could be in some way dependent on the movement of the underlying C 

atom. The answer to this question is, however, that for the samples obtained in the simulation, the two 

symmetry losses do not show any correlation and, at least for the range of temperatures explored, the 

atomic motions in the inner and the outer shells seem to be practically independent.     

 

6 Intrinsic versus extrinsic symmetry loss 
Up to now, we have discussed the effect of temperature on for molecules with a highly symmetric 

equilibrium configuration. An interesting question, raised by Tuvi-Arad and coworkers,[52] is if it is possible 

to distinguish the extrinsic symmetry loss due to atomic motion that appears on raising the temperature 

from an intrinsic lack of symmetry present already in the equilibrium geometry. A nice example to 

illustrate this problem can be found for some unsaturated cyclic hydrocarbons, which are known to adopt 

regular polygonal structures when their electronic structure satisfies Hückel's 4n+2 aromaticity rule. 

Benzene, for instance, in its ground state has a perfect D6h symmetry with the inner C6 ring having the 

shape of a regular hexagon. If we consider the effects of temperature on benzene's shape, a picture very 

similar to that described above for polyhedral molecules emerges. At a given temperature, the CSM for 

the regular hexagon shows a log-normal distribution with the average D6h CMS increasing linearly with 

temperature. 

A more interesting case is that of cyclopentadiene, C5H5. The neutral molecule is one�S electron short 

to fulfill Hückel's rule and, accordingly, it is susceptible to a Jahn-Teller distortion that lowers its ground-

state symmetry from D5h to C2v (Figure 8a). Adding an extra electron as in the cyclopentadienyl anion 

restores the pentagonal symmetry for the ground state. It is quite instructive to compare the distributions 

for the D5h (pentagonal) symmetry measures for these two structures and look at how these evolve as the 

temperature is raised (Figures 8b and 8c).    
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Figure 8. a) Minimum energy structures for the D5h cyclopentadienyl anion (above) and neutral C2v 

cyclopentadiene (below). b) D5h CSM distributions at 50K for neutral and anionic cyclopentadiene. c) D5h 

CSM distributions at 300K for neutral and anionic cyclopentadiene. The dashed line in figures 8b and 8c 

indicates the S(D5h) value for the C2v minimum energy structure found for the neutral cyclopentadienyl 

molecule. 

 

For the cyclopentadienyl anion, with a perfectly D5h symmetric ground-state structure, we find a 

behavior totally analogous to that described in the section above. The distribution for the pentagonal 

shape measure has a log-normal behavior (blue curves in figures 8b and 8c), with a sharp increase at low 

CSM values, and after reaching a maximum, a more gentle descent towards zero. This peculiar 

asymmetric shape of the log-normal distribution is a consequence of the fact that CSMs are always 

positive. Any distortion from the initially pentagonal structure will lead to a positive value for S(D5h). At low 

temperatures we have the sharp peak close to zero, while increasing the temperature results in a 

displacement of the peak towards higher CSMs values and a broadening of the peak that leads to a less 

asymmetric curve. The effects of the temperature on the distribution may be described by the changes in 

the two parameters, P and V, describing the log-normal probability distribution function (eq. [3]), or 

alternatively by giving the mode (position of the maximum) and the skewness of the distribution, which for 

the log-normal distribution are related to P and V as: 

 

        [6] 

 
For the cyclopentadienyl anion, with a regular pentagonal shape for the inner C5 ring, the mode of the 

distribution shifts from 0.01 at 50 K to 0.05 at 300K, while the skewness is reduced from 1.17 at 50K to 

0.55 at room temperature. 

Let's compare this behavior with that for the non-aromatic neutral C5H5 molecule. Geometrical 

optimization with the PM6 method leads to a C2v symmetry with two short, two intermediate and a long C-

C bond (figure 8a). Departure from the pentagonal symmetry, S(D5h) = 0.071, is not large, but chemically 

significant and of the same order as temperature induced symmetry losses for the symmetrical 

cyclopentadienyl anion. If we look at the evolution of the distribution of shape measures as a function of 
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the temperature (red curves in Figures 7b and 7c) we find some striking differences with those found for 

the cyclopentadienyl anion. Since now the lowest energy structure is not the most symmetrical one, as 

the temperature rises, the displacement of atoms may lead to less symmetric structures, but also to more 

symmetric ones, so that at a finite temperature the distribution function for the shape measure may 

extend both to the right and to the left of the CMS value corresponding to the equilibrium structure 

(indicated by a dashed line in Figures 8b and 8c). The effect of the possibility of symmetrizing distortions 

translates into a much less skewed distribution, as it is clearly evident at 50 K (Figure 8b). Note, however, 

that the mode of the distribution, that is the most probable CMS value is 0.083, slightly larger than the 

CMS corresponding to the equilibrium structure, 0.071. The exact position of the maximum of the 

distribution with respect to the symmetry measure is difficult to predict since it depends on the details of 

the potential energy surface and the relative strength of the normal mode leading from the pentagonal to 

the C2v structure. The effect of increasing the temperature is again to shift the peak of the distribution to 

higher values, from 0.083 to 0.142 in this case when we go from 50 to 300K, increasing the average 

symmetry loss as in the case of symmetrical molecules. What is interesting to note is, that since 

temperature shifts the average symmetry measure to higher values and at the same times results in a 

broadening of the distribution, in this case the effect on the asymmetry of the log-normal distribution is 

exactly the opposite to that found for the symmetric molecule: the distribution's skewness now increases, 

from 0.55 at 50K to 1.02 at 300K. The changes in the average symmetry measure show also a linear 

increase with the temperature. The slope for this variation is very similar to that found for the symmetric 

anion, although slightly larger. If one plots the evolution of the average CSM for both cases in the same 

plot, one finds two practically parallel lines, the one for the symmetric cyclopentadienyl anion with a CSM 

value of 0 at 0K (if the symmetry loss due to zero point vibrational movement is neglected) and that for 

the neutral compound starting at a 0.071 value at 0K, the pentagonal CSM corresponding to the 

equilibrium C2v structure. 

A similar situation can be found for cyclobutadiene: for the C4H42- dianion satisfying Hückel's rule we 

find a behavior totally analogous to that described for the cyclopentadienyl anion or for benzene, with the 

minimum energy geometry corresponding to a perfect C4 square. For the neutral compound with two 

electrons in a doubly degenerate molecular orbital set we have now two different options. If we consider a 

triplet ground state as predicted by Hund's rule, we find a also square minimum energy geometry, leading 

to distributions of square CSM values very similar to those found for the dianion. If we consider, however 

a singlet ground state, energy minimization leads to a Jahn-Teller distorted rectangular structure with an 

alternation of short and long C-C bonds. The distributions of square CSM values behave in this case in 

the same way as those for the neutral cyclopentadiene molecule, with the skewness of the distribution 

increasing as temperature is raised. 

 

7 Effects of temperature on structural chirality 
The two examples discussed above correspond to molecules with fairly rigid polyhedral or polygonal 

frameworks. We have seen in the introduction that in flexible molecules, with vibrational modes 

corresponding to internal rotations such as in ethane, the situation is more complex and the effects of 

temperature on symmetry or shape depend largely on the details of the potential energy surface. Let us 
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consider as an example for this case by examining how temperature affects the chirality of the biphenyl 

molecule (C12H10). The PM6 minimum energy geometry for the biphenyl molecule is found for a M = 58º 

dihedral angle between the two phenyl rings (Figure 9a). This minimum energy configuration is separated 

from its mirror image at M = 122º by a low energy barrier (0.2 kcal/mol at the PM6 level) at M = 90º when 

the two phenyl rings are perpendicular to each other. A larger barrier (1.8 kcal/mol) at M = 0º and 180º, 

when the two phenyl rings are on the same plane, separates the low energy region around M = 90º with 

its equivalent centered around M = 270º. As shown in figure 9b, except for the configurations with 

perpendicular (M = 90, 270º) or coplanar phenyl (M = 0, 180º) rings all other structures are chiral (CCM  ≠ 

0), with enantiomeric pairs, called in this case atropoisomers, at each side of the barriers. If we consider a 

rigid torsion around the central C-C bond, that is, if the geometry of the rings is kept fixed when changing 

the dihedral angle, the maximum chirality is obtained for a geometry in the midpoint between the two 

achiral structures, that is at M = 45º. In the case that the geometry of the phenyl rings is allowed to relax 

for each given dihedral angle as in figure 9b, the maximum for the chirality is slightly displaced, around M 

= 43.5º in the curve obtained using the PM6 method. This small difference does however not invalidate 

the interpretation of the results below if we consider that the chirality maximum is exactly at M = 45º.  

 

Two aspects are noteworthy in figure 9b. The first one is that the qualitative behavior for the CCM is 

exactly the same if we consider just the atoms in the carbon skeleton or if we take into account also the 

exterior hydrogen atoms. Since due to its combinatorial nature the calculation of the CCM might become 

heavy when the number of atoms in a structure increases, it is usual to restrict the calculation of CSMs to 

the main atom framework, neglecting the hydrogen atoms. As seen in the example of biphenyl, the 

qualitative results are the same and if we want to compare, for instance, x-ray structures for different 

molecules we will avoid with this procedure uncertainties arising from the difficulty in determining the 

position of the hydrogen atoms that could introduce spurious changes in the CSMs. The other interesting 

point to note is the cusp appearing in the CCM curve for the most chiral structure. This behavior, which is 

often found when plotting CSMs as a function of a structural parameter, originates naturally from the very 

definition of the CSM, eq. [1]. If we recall this definition, the chirality (or in general symmetry) measure is 

defined as the distance between our problem structure and the closest achiral structure. In our case there 

are two alternative chiral structures, the coplanar structure at M = 0º and the orthogonal one at M = 90º. 

For any structure with 0º < M < 45º the closest achiral structure taken as a reference to calculate the CSM 

is the coplanar structure, while for structures with 45º < M < 90º it will be the orthogonal one. The 

maximum chirality structure is equidistant from the two reference achiral structures and it is the switch 

between reference structures in the calculation of the CSM at this point that gives rise to the singularity in 

the CCM curve. 
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Figure 9. a) Potential energy curve for the biphenyl molecule along the internal rotation path. b) 

Variation of the continuous chirality measure (CCM) for the biphenyl molecule along the internal rotation 

path. The CCM has been calculated considering the coordinates of all atoms in the molecule (blue curve) 

and only those corresponding to the carbon atoms (red curve). 

 

The joint analysis of the energy and symmetry curves allows us to predict that the evolution of chirality 

with temperature will not be as simple as in the previous examples. At low temperatures, where the low 

energy barrier at M = 90º can still not be crossed, we will find the population of molecules with dihedral 

angles oscillating around the minimum energy configuration at M = 58º with a corresponding CCM of 

about 1.1 if we consider only the carbon atom framework. Since the potential energy curve is somewhat 

asymmetric around M = 58º, with higher M values corresponding to lower energies, the average CCM will 

initially decrease with the temperature. When the temperature is sufficient to pass the barrier at M = 90º, 

the dihedral angle will oscillate around this value and the molecules will be able to switch between the 

two atropoisomers. This does, however, not lead to a significant change in the symmetry measure since 

the two atropoisomers have exactly the same chirality measure. Increasing the temperature spreads the 

population of molecules with dihedral angles around 90º. Since the CCM starts to decrease for 

geometries below M = 45º or above M = 135º, in general, the average CCM will descend with temperature 

until a temperature is reached in which the barrier at M = 0º can be overcome. From this point onwards 

the distribution will become more and more uniform (each dihedral angle will have similar probability) and 

the average CCM will tend to the average CCM value along the curve, CCM = 0.78 if we consider only 

the C framework. Let us recall, however, that this reasoning is based just using the Maxwell distribution 

for molecules along the relaxed energy versus M curve. At low temperatures this is a good approximation, 

but at higher temperatures the participation of other normal vibrational modes to the atomic displacement 

will lead to distorted geometries with higher CCM values, and in general to an increase in the average 

chirality with temperature. This increase is, however, predicted to be linear as found for the examples 

discussed previously. The exact behavior for the CCM at low temperatures, calculated considering only 

geometries along the relaxed energy versus M curve, is shown in figures 10a for two different 

temperatures and the evolution of the average CCM with the temperature up to 100K is shown in figure 
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10b. As it is evident from these figures, the distribution of CCM values at a given temperature once the 

barrier at M = 90º can be passed is far from being described by a log-normal curve and the evolution of 

the average CCM with temperature is far from being described by a simple linear relation as in the case 

of a potential energy curve with a single well defined energy minimum well separated in energy from 

other minima by large potential energy barriers. In this sense the effects of temperature on shape and 

symmetry for highly flexible molecules will be, in general, complex and a detailed knowledge of the 

particular potential energy surface and of the variation of the CSM with geometry will be needed for a 

reasonable explanation of these effects. 

 

 

Figure 10. a) Distribution of the continuous chirality measure (only C framework) for biphenyl at 50 

and 100K b) Average CCM as a function of the temperature. 

 

 
8 Tetrahedral solids 
In this last example we will explore how local symmetry in a crystal structure is progressively lost as 

the temperature is raised. The cubic diamond-type structure is the prototypical example of a crystalline 

structure for tetrahedral solids such as carbon, silicon, or germanium. In this polymorph all atoms in the 

unit cell are equivalent, with a perfect tetrahedral coordination environment in the equilibrium structure. 

Upon an increase of the temperature, the chaotic displacement of atoms around their equilibrium position 

is responsible for breaking the local tetrahedral symmetry around each single atom in the lattice. In order 

to analyze the effects of temperature on the shape of the coordination environments, we have run several 

molecular dynamics simulations[55] at different pressure and temperature values using a 512 atom super-

cell for the diamond-type structure of C, Si, and Ge. As expected, the shape of the coordination 

environment is basically affected by temperature with the average tetrahedral shape measure increasing 

linearly as the temperature is raised (Figure 11a). The effect of pressure is much smaller and will not be 

commented here in detail, but the basic outcome is that increasing the pressure slightly inhibits the 

symmetry loss by increasing the structure's rigidity. 
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Figure 11. a) Average tetrahedral CSM for C, Si, and Ge as a function of temperature. b) Distribution 

of tetrahedral CSM values for Si at different temperatures. c) Distribution of tetrahedral CSM values for C, 

Si, and Ge at T = 400K. 

 

At a given temperature, the probability for the tetrahedral CSM of the coordination environment around 

each atom is found again to follow a log-normal distribution law, with its maximum shifting towards higher 

values as the temperature increases (Figure 11b). If we compare the probability distributions obtained for 

C, Si, and Ge at a same temperature (Figure 11c), we find that, as expected, in the case of the more rigid 

carbon structure the distribution is much narrower, with its peak located at lower CSM values than for Si 

and Ge. For these two elements we find similar distributions, although unexpectedly, it seems that the 

symmetry loss is somewhat larger in Si than in Ge, although intuition tells us that the silicon structure 

should be more rigid than the germanium one. This fact is confirmed by calculating the phonon spectrum 

for the three structures with the same force field used in the simulations. If we take the frequency of the 

transverse optical mode at the center of the Brillouin zone as a qualitative measure of the crystal 

structure's rigidity, we find that QTO(*) = 48, 16, and 10 THz for C, Si, and Ge, respectively, indicating that 

carbon has, indeed, the most rigid crystal structure, for which we expect the smallest displacements of 

atoms and the smallest symmetry loss with temperature, as it is actually found in the simulations. Silicon 

is, as predicted, more rigid than germanium and intuitively the effect of temperature on local tetrahedricity 

should be lower in silicon than in germanium, just the contrary to what is found (Figure 11a). The 

explanation for this apparently puzzling result is solved again if we reason in terms of eq. [2], and 

consider not only the dependence of the mean atomic displacement on the frequency, but include also 

the mass, much larger in germanium than either in carbon or silicon, as well as the relative size of the 

tetrahedra. While the equilibrium C-C bond distance is found to be 1.53Å, the Si-Si one is 2.35Å and the 

Ge-Ge one 2.45Å. Although the lower vibrational frequency in Ge hints towards larger atomic 

displacements as in silicon, the larger mass for Ge and the fact that the displacement has to be 

contemplated with respect to a larger structure in Ge, leads at the end to the right answer, that is, that the 

local tetrahedral symmetry is more affected by temperature in silicon than in germanium. 
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Another interesting question is about the degree of chirality induced in the diamond structure by 

thermal motion. The displacement of the atoms will give raise at each moment to distorted tetrahedra 

that, in general, do not preserve any of the symmetry planes, neither the S4 improper rotation axes 

present in a perfect tetrahedron. In this sense, at a given temperature, the vast majority of the 

instantaneous tetrahedral coordination environments will be chiral and the structure will acquire an 

average internal chirality that, in principle, will increase with temperature. Molecular dynamics simulations 

for the diamond-type polymorphs of C, Si and Ge show that this is, indeed, the case: the average 

continuous chirality measure is not zero and it increases linearly with temperature. The effect is smallest 

in the rigid carbon framework and most noticeable in silicon. If at any given temperature the 

instantaneous structure of solids with a diamond-type lattice is chiral, why don't we observe any effects of 

this chirality at a macroscopic scale, for instance in some kind of optical activity? The answer is again 

simple if we consider the distinction between chirality and handedness. For a chiral object we may have 

two enantiomers, with identical structures, one mirror image of the other. If we consider a set of structures 

containing equal proportions of the two enantiomers, let us label them R and S, we obtain an optically 

inactive racemic mixture. Using the enantiomer labeling scheme proposed by Avnir and coworkers[42] for 

chiral distorted tetrahedra we find that, on average, at a given temperature there is always the same 

proportion of R and S tetrahedra, regardless of the value of the chirality measure, or in other words, the 

probability of generating either a left or right-handed chiral tetrahedron by applying thermal motion to an 

originally achiral structure is exactly the same. A practically perfect racemic mixture of tetrahedra is found 

for all temperatures. A more detailed analysis shows that there is not only no enantiomeric excess 

considering all distorted tetrahedra as a single set, but that this is also true at all different scales of 

distortion. If we select all tetrahedra with chiralities between two arbitrary s1 and s2 values for the 

continuous chirality measure, we will find a practically equal amount of R and S tetrahedra, regardless of 

the values of s1 and s2 that we select. This is, of course, only true if the equilibrium structure is achiral as 

in the diamond structure. If the local coordination is, however, chiral, small distortions will in general 

preserve the handedness of the coordination environment in the equilibrium structure, while large 

distortions may lead to a handedness switch. In these cases the enantiomeric excess for the whole 

crystal structure will depend on various factors such as the initial enantiomeric excess in the equilibrium 

structure and the temperature that is needed to have a sufficiently large atomic displacements to switch 

the handedness of each individual chiral center. 

 
Summary and Outlook 
Stereochemistry, the study of the relative spatial arrangement of atoms in molecules or crystals is 

nowadays a well established subdiscipline of chemistry, with its roots lying in the stereoformulae 

established in the late 19th century. The lack of experimental tools to determine precisely the atomic 

structure of molecules and crystals in the early development of stereochemistry lead to an abuse of the 

use of highly symmetrical polyhedral shapes in describing molecular structure that has been later shown 

to be just an idealization of more complex geometrical features. The neglect in early stereochemical 

studies of important factors such as the influence of the environment on molecular structure and the 

inherent dynamical nature of molecular structure has resulted in the widespread use of vague concepts 
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such as distortion by molecular packing forces, molecular flexibility or dynamical disorder that are used to 

explain why usually experimental data differ from the idealized models used to describe molecular 

shapes. In this sense the forging of a new language, that of continuous symmetry and shape measures, 

describing in a quantitative fashion the departure of experimentally determined molecular shapes from 

those supposed in the ideal stereochemical models allows chemists to deepen in the comprehension of 

the fundamental links between structure and the physical properties of molecules and crystals. Taking 

into account in a quantitative way the departure from the ideal shapes/symmetries of molecular structure 

induced by interactions with the environment or by temperature gives a much richer description of 

molecular shape that may be profitably incorporated to modern machine learning approaches to explore 

the complexity of structure-property relations in fields such as medicinal chemistry or materials science. 

The approach described in this work provides also a useful tool to analyze complex data obtained in 

molecular dynamics simulations, allowing to focus on the emergence of relevant structural changes in 

complex systems disregarding the noise of random atomic displacements not directly involved in these 

changes. 
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