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Abstract

L’objectiu d’aquest treball ha estat donar una classificació de les formes d’extensions
Picard-Vessiot definides sobre un cos diferencial amb cos de constants Qp, que no és alge-
braicament tancat, i amb grups de Galois diferencial O(2,Qp) o SO(2,Qp). Per fer això es
presenta una base teòrica de geometria algebraica, cohomologia de grups i teoria de Galois
diferencial.

The goal of this project has been to give a classification of the forms of Picard-Vessiot
extensions defined over a differential field with field of constants Qp, which is not algebrai-
cally closed, and with differential Galois group O(2,Qp) or SO(2,Qp). To do so we present
a theoretical background in algebraic geometry, group cohomology and differential Galois
theory.

2020 Mathematics Subject Classification. 14A10, 20G07, 11R34, 11E08, 11E72, 30M50
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Introduction

Differential Galois theory gives an analogue of the classical Galois theory for algebraic
equations to the situation of homogeneous linear differential equations (HLDE). The theory
studies fields with an operation called derivation that has the properties of the derivative in
real analysis. In this setting, differential equations can be studied from an algebraic point
of view. Several results of the Galois theory for algebraic equations find a direct parallel in
differential Galois theory when the set of constants—elements of the field with derivative
0—is algebraically closed. Perhaps the most important of these results is the existence and
uniqueness of the Picard-Vessiot extension, the minimal extension of the base field where
a given HLDE has all its linearly independent solutions (the parallel of the splitting field).
Concepts and results such as the Galois group and the fundamental theorem of Galois theory
also have a direct parallel in differential Galois theory.

The situation when the field of constants is not algebraically closed is not as straightfor-
ward as the case above. There are examples where there are no Picard-Vessiot extensions
for an HLDE or there are more than one. In the particular situation where the differential
field K is formally real or formally p-adic and the field of constants is R or Qp, it was shown
by Crespo, Hajto and van der Put in [CHvdP15] that there exist Picard-Vessiot extensions
for any HLDE defined over K, but uniqueness does not necessarily follow. However, if we
take all the possible Picard-Vessiot extensions for a given HLDE and we extend scalars
to the algebraic closure of R or Qp, C or Qp respectively, all the extensions must become
isomorphic by the uniqueness theorem in the algebraically closed case.

The situation where non-isomorphic mathematical objects defined over a non-algebraically
closed field become isomorphic when extending scalars to the algebraic closure appears fre-
quently in mathematics. Objects that have this property are called forms of each other.
This situation can be studied through Galois cohomology and, in fact, we will show (in some
easy but general cases) that the set of equivalence classes of forms of a given K-object X is
in a bijective correspondence with the cohomology set H1(G,AutK(X)), which is usually
computable.

We will use Galois cohomology to study the particular cases of Picard-Vessiot extensions
L over a differential field K with field of constants Qp when the differential Galois group is
O(2,Qp), the group of 2× 2 orthogonal matrices with coefficients in Qp. We will show that
the forms of the Picard-Vessiot extension L are classified by H1(Gal(Qp|Qp), O(2,Qp)), and
this same cohomology set classifies the quadratic forms of rank 2 over Qp. We will use this
correspondence to compute the forms of the extension, thus we will have given a detailed
example of the power of Galois cohomology applied to the setting of differential Galois
theory.

Structure of this thesis

This thesis consists of four chapters. The first three chapters provide a theoretical
background and are mostly self-contained.

The first chapter is an introduction to algebraic geometry: the definition of affine variety
and some basic properties are studied and we delve into the theory of affine algebraic groups,
in particular linear algebraic groups. We are interested in studying linear algebraic groups
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because the differential Galois group of a Picard-Vessiot extension has this kind of structure.
The second chapter provides a comprehensive overview of group cohomology in several
settings but with the aim to study Galois cohomology and the theory of Galois descent,
which is thoroughly explored in some of the most basic situations. The third chapter is an
introduction to differential algebra and differential Galois theory, structured to give a clear
parallel to the classic theory.

Finally the fourth chapter provides applications of the previous three chapters on objects
defined over Qp and Qp. We compute the forms of the multiplicative group as a linear
algebraic group, and the forms of a p-adic Picard-Vessiot extension with differential Galois
groups O(2) and SO(2).

We presuppose knowledge about the construction and properties of the field of p-adic
numbers and the classification of quadratic forms over this field. This can be found on
[Ser78] in english or in [Tra16] in catalan.
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Chapter 1

Algebraic geometry and linear
algebraic groups

Algebraic geometry is a generalization of the study of linear varieties or conic sections,
which are sets of zeros of linear functions or quadratic functions in several variables, to
study algebraic varieties, sets of zeroes of systems of polynomials in several variables with-
out constraint for the degree. It is a geometric theory, but it is deeply intertwined with
commutative algebra, which is a powerful theoretical frame.

An interesting example of algebraic varieties are those that have an underlying group
structure that is compatible with the algebraic variety structure. It is a situation parallel to
Lie groups in differential geometry. The matrix group GL(n,K) and some of its subgroups
are examples of this situation. We will see that in fact, every affine algebraic group can be
thought of as a subgroup of a GL(n,K) with some additional condition.

In this chapter we will precisely define the concepts of affine varieties and their topologies
and prove some fundamental results. We will not define the broader notion of algebraic
variety because it is not necessary for our subsequent study. We will define affine algebraic
groups and we will prove the linearization theorem.

1.1 Algebraic geometry: affine varieties

Definition 1.1.1. Let K be an algebraically closed field. We define the affine n-space to
be An := Kn and we call its elements points. Let K[T ] := K[T1, . . . , Tn] be the ring of
polynomials in n indeterminates over K. An affine variety is the set of common zeroes of
a finite subset of K[T ].

Remark 1.1.2. Given a finite subset S ⊆ K[T ], the set of common zeroes of S is the same
as the set of common zeroes of the ideal of K[T ] generated by S. Furthermore, by Hilbert’s
basis theorem every ideal of K[T ] has a finite set of generators. Therefore we shall restrict
our study to ideals of K[T ] without loss of generality.

Definition 1.1.3. Given a set of points X ⊆ An we denote by I(X) the ideal of K[T ]

consisting of polynomials that vanish on X. Given an ideal I ⊆ K[T ] we denote by V(I)

the affine variety of its common zeroes. These definitions give rise to two well-defined

3



4 Algebraic geometry and linear algebraic groups

mappings. Denote I the set of ideals of K[T ], then we have,

V : I −→ P(An) I : P(An) −→ I

I 7−→ V(I) X 7−→ I(X).

Remark 1.1.4. Although at first it might seem that these correspondences are mutual
inverses, this is not the case. For example, T, T 2 ∈ K[T ] have the same zeroes in A1,
therefore V((T )) = V((T 2)) but clearly (T ) 6= (T 2). In fact, for every X ⊆ An and every
ideal I ⊆ K[T ] we have X ⊆ V(I(X)) and I ⊆ I(V(I)). The following theorem gives a
refinement of the inclusions.

Theorem 1.1.5 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field, An the
affine n-space over K and K[T ] = K[T1, . . . , Tn].

1. If I ⊆ K[T ] is a proper ideal then V(I) 6= ∅.

2. For any ideal I ⊆ K[T ] we have I(V(I)) =
√
I, where

√
I = {f ∈ K[T ] | fn ∈

I for n ∈ N}.

Proof. Theorem 1.1 in [Hum75].

Remark 1.1.6. The theorem above gives a one-to-one, inclusion-reversing correspondence
between the radical ideals of K[T ] and the affine varieties in An though I and V. In
particular it is easy to see that there is a one-to-one correspondence between maximal
ideals of K[T ] and the points of An.

1.1.1 Zariski’s topology

Now that we have defined the main objects of study, affine space and affine varieties,
we would like to give a topology to An. If K = C then we can give AnC the euclidean
topology. In this topology affine varieties are closed subsets, this follows from the fact that
if X = V(I) for I ∈ I is an affine variety then X =

⋂
f∈I f

−1({0}). For a general field K
we would like that the topology in AnK also had the affine varieties as closed subsets.

Definition 1.1.7 (Zariski’s topology). Let K be an algebraically closed field and An the
affine n-space. We define the Zariski topology on An to be the topology where the closed
sets are exactly the affine varieties.

Proposition 1.1.8. The topology defined above is indeed a topology.

Proof. The definition implies that if X is closed then there exists an ideal I ⊆ K[T ] such
that X = V(I). We check the axioms for a topology given by closed sets.

1. ∅ = V(K[T ]) and An = V({0}). Therefore ∅,An are closed.

2. Let X = V(I), Y = V(J) be closed subsets. We show that X ∪Y = V(I ∩ J). Indeed,
let x ∈ X ∪ Y and suppose x ∈ X, then x is a zero of every polynomial in I, since
I ∩ J ⊆ I then x ∈ V(I ∩ J). On the other hand, suppose x ∈ V(I ∩ J) but x is
neither in X nor Y . Then, there are f ∈ I and g ∈ J such that f(x), g(x) 6= 0 but
fg ∈ I ∩ J so f(x)g(x) = 0 so there is a contradiction. Therefore X ∪ Y = V(I ∩ J),
finite unions of closed subsets are closed.
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3. Let (Xi)i be a family of closed sets, we have that Xi = V(Ii) for Ii ideals of K[T ].
Then, if x ∈

⋂
iXi then x is a common zero of each Ii so it is a common zero of

(
⋃
i Ii). Conversely, if x is a common zero of (

⋃
i Ii) then it is a common zero of each

Ii, therefore x ∈ Xi for all i. Thus we have that
⋂
iXi = V((

⋃
i Ii)), so arbitrary

intersections of closed sets are closed.

Proposition 1.1.9. We show now some properties of the Zariski topology on the affine
space.

1. The points of An are closed.

2. Let X ⊆ An, then its closure is X = V(I(X)).

3. If X1 ⊇ X2 ⊇ · · · is a descending sequence of closed subsets of An, there is an h such
that Xi = Xh for i ≥ h. This means the topology has the descending chain condition
and such topological spaces are called Noetherian.

4. It is quasi-compact.

5. It is not Hausdorff.

Proof. 1. If x = (x1, . . . , xn) ∈ An is a point then x = V((T1 − x1, . . . , Tn − xn)).

2. Clearly, X ⊆ V(I(X)). On the other hand, we have that X = V(I) for an ideal
I ⊆ K[T ], therefore I(X) ⊆ I. If f ∈ I then f vanishes on X and therefore vanishes
on X so f ∈ I(X) and we have X ⊇ V(I(X)).

3. This follows from the fact that K[T ] is Noetherian and therefore has the ascending
chain condition on ideals and V is inclusion-reversing.

4. Let (Xj)j∈J be a family of closed sets such that
⋂
j∈J Xj = ∅. If Xj = V(Ij) this

means ((Ij)j) = K[T ], therefore 1 ∈ ((Ij)j). Since ((Ij)j) are finite sums of elements
of the Ij , there are xj1 , . . . , xjl , xjk ∈ Ijk , such that 1 = xj1 + · · · + xjl , therefore
1 ∈ (Ij1 , . . . , Ijk) so

⋂l
k=1 Ijk = ∅.

5. We give a counterexample. The only non-trivial closed sets in A1 are the points,
therefore any two open sets have non-empty intersection.

Remark 1.1.10. If X ⊆ An is an affine variety it can be given the induced Zariski topology.

Definition 1.1.11. We define the principal open sets of the Zariski topology to be the
sets of non-zeros of individual polynomials of K[T ]. The principal open sets form a basis
to the topology. An interesting property of the principal open sets of An is that they are
affine varieties of An+1, indeed if U = {x ∈ An |f(x) 6= 0} then U can be identified with
{(x, t) ∈ An+1 | f(x)t− 1 = 0}.
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Another interesting topological property is that of irreducibility. The study of topologi-
cal manifolds is often centered to connected manifolds, this is because we can always restrict
the theory to the connected components, the goal being to study the simple pieces of the
manifold. When it comes to affine varieties, such decomposition into simpler pieces cannot
arise from connectedness. The union of two intersecting affine varieties is connected, but
clearly the variety can be decomposed.

Definition 1.1.12. Let X be a topological space. We say X is irreducible if it cannot be
written as the union of two proper closed sets. If Y is a topological subspace of X it is
called irreducible if it is irreducible with the induced topology. If X is a Noetherian space,
it can be shown that X has a finite number of maximal irreducible subspaces, and those
are called irreducible components.

Remark 1.1.13. An equivalent definition is that X is irreducible if every pair of open
subsets has nonempty intersection. This implies that irreducible spaces are connected.

Proposition 1.1.14. If X ⊆ An is closed, then it is irreducible if and only if I = I(X) is
prime.

Proof. Suppose X is irreducible and f1f2 ∈ I. For each x ∈ X we have that f1(x) = 0 or
f2(x) = 0 therefore X ⊆ V((f1)) ∪ V((f2)) which are closed. Since X is irreducible it must
be a subset of one of these closed sets, for example X ⊆ V((f1)) and therefore f1 ∈ I, it is
prime. Conversely, suppose I is prime and X is not irreducible. We can write X = X1∪X2

where Xi are closed and such that X is not covered by only one of them. There exist
fi ∈ I(Xi) that do not vanish on X, meaning f1, f2 6∈ I. However, we have that f1f2 ∈ I
because the product is in I(X1) ∩ I(X2). This gives a contradiction with the primality of
I.

Remark 1.1.15. The above proposition shows that An is irreducible.

1.1.2 Coordinate algebra and affine variety morphisms

Let X ⊆ An be an affine variety. Every polynomial f ∈ K[T ] defines a mapping
X −→ K by restriction to X. Moreover, if X = V(I) and g ∈ I it is clear that f+g amount
to the same function on X. Therefore, there’s a correspondence between the polynomial
functions on X and K[T ]/I(X).

Definition 1.1.16. We define the coordinate algebra of X, denotedK[X], to be the quotient
K[T ]/I(X). It is also called affine algebra of X or coordinate ring of X. If X is irreducible,
I(X) is prime and therefore K[X] is an integral domain. In this situation we can define
the field of rational functions on X, denoted K(X), to be the field of fractions of K[X]. If
f ∈ K(X) it can be represented as f = g/h with g, h ∈ K[X]. The representation might
not be unique and it is not necessarily well defined on every point of X. We say that a
point x ∈ X is a regular point of f if there exists a representation f = g/h where h(x) 6= 0

and we denote dom(f) the set of regular points of f .

Remark 1.1.17. The algebra K[X] is called reduced, meaning it does not have nonzero
nilpotent elements. This follows from the fact that I(X) is radical. If f ∈ K[X] is nilpotent
there exists n such that fn = 0, this means fn ∈ I(X) and since it is radical f ∈ I(X),
f = 0 in K[X].
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Remark 1.1.18. The algebra K[X] is finitely generated. Finitely generated, reduced
commutative, associative algebras are called affine algebras due to their relationship with
affine varieties.

As we always do when we define a mathematical structure, we study the mappings that
preserve the structure. We define now the morphism in the category of affine varieties over
K.

Definition 1.1.19. Let X ⊆ An and Y ⊆ Am be affine varieties. A mapping ϕ : X −→ Y

is called a morphism of affine varieties if it is of the form ϕ(x) = (ψ1(x), . . . ψm(x)) where
ψi ∈ K[X] and ϕ(x) ∈ Y for all x ∈ X.

Remark 1.1.20. Let Y0 ⊆ Y be a closed set, for each f ∈ I(Y0) we have that f ◦
ϕ(ϕ−1(Y0)) = 0. Since f ◦ ϕ is a polynomial therefore ϕ−1(Y0) is the set of zeroes of
some ideal of polynomials and therefore closed. This means that the morphisms of affine
varieties are continuous in the Zariski topology.

Definition 1.1.21. Let X ⊆ An and Y ⊆ Am be affine varieties and let ϕ : X −→ Y be
a morphism of affine varieties. Given a polynomial f ∈ K[Y ] the composition f ◦ ϕ is a
polynomial in K[X]. This means that ϕ induces a morphism of K-algebras, ϕ∗ : K[Y ] −→
K[X], such that f 7→ f ◦ ϕ. We call ϕ∗ the comorphism of ϕ.

Definition 1.1.22. Let X ⊆ An and Y ⊆ Am be affine varieties and let X be irreducible.
We say a tuple of rational functions (ϕ1, . . . , ϕm), ϕi ∈ K(X) is regular at x ∈ X if all the
ϕi are regular at x ∈ X. We define a rational map ϕ : X −→ Y to be a tuple (ϕ1, . . . , ϕm)

with ϕi ∈ K(X) such that ϕ(x) = (ϕ1(x), . . . , ϕm(x)) ∈ Y for all x ∈ X where ϕ is regular.
We say ϕ is regular if it is regular at every x ∈ X.

Proposition 1.1.23. Let X ⊆ An and Y ⊆ Am be affine varieties and let X be irreducible.
A rational map ϕ : X −→ Y is a morphism of affine varieties if and only if it is regular.

Proof. If ϕ = (ϕ1, . . . , ϕm) is a morphism of affine varieties, the components ϕi are poly-
nomials so they are regular. If ϕ is regular on X then ϕi are regular on X. We have to
see that ϕi ∈ K[X]. We denote den(f) = {h ∈ K[X] | fh ∈ K[X]} the denominator ideal.
It is easy to see that V(den(f)) = X \ dom(f). We have that dom(ϕi) = X, therefore
den(ϕi) = K[X] and in particular ϕi ∈ K[X].

1.1.3 The product variety

Given two topological spaces there is a general notion of product topology, however in
the Zariski topology this notion is not useful. If X,Y are affine varieties of An and Am

respectively, we would like that the elements of X × Y were elements of An+m. This forces
An × Am = An+m.

Definition 1.1.24. Let X ⊆ An and Y ⊆ Am be affine varieties with I1 = I(X) ⊆
K[T1, . . . , Tn] and I2 = I(Y ) ⊆ K[U1 . . . , Um]. We define the product variety X × Y in
An+m to be the induced topological subspace of An+m. This is what is called the Zariski
product topology. It can be shown (1.4 on [Hum75]) that the product X × Y is indeed an
affine variety since it is V((I1, I2)) where (I1, I2) is an ideal of K[T1, . . . , Tn, U1, . . . , Um].
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Remark 1.1.25. The Zariski product topology does not coincide with the usual product
topology. For example, there are more closed subsets on A2 than there are closed subsets
on A1 × A1 (with the usual product topology).

We finish this section giving without proof two important results on the Zariski product
topology that we will use in our study of affine algebraic groups.

Proposition 1.1.26. Let X ⊆ An and Y ⊆ Am be affine varieties. If X,Y are irreducible
then X × Y is irreducible in An+m with the Zariski product topology.

Proof. Proposition 1.4 in [Hum75].

Proposition 1.1.27. Let X ⊆ An and Y ⊆ Am be affine varieties and let X × Y ⊆ An+m

have the Zariski product topology. If R = K[X] and S = K[Y ] are the coordinate algebras
of X,Y then K[X × Y ] ∼= R⊗ S.

Proof. Proposition 2.4a in [Hum75].

1.2 Algebraic groups

Algebraic groups are algebraic varieties endowed with a group structure such that the
multiplication and the inverse operations are algebraic variety morphisms. In the previous
section we have not defined general algebraic varieties, therefore we shall center our study
to affine algebraic groups.

Definition 1.2.1. Let K be an algebraically closed field. Let G be an affine variety over
K. We say G is an affine algebraic group if G has a group structure such that the group
operations (x, y) 7→ xy and x 7→ x−1 are affine variety morphisms. If G,G′ are affine
algebraic groups and φ : G −→ G′ is a mapping, we say it is an affine algebraic group
morphism if it is both a morphism of affine varieties and a morphism of groups.

Example 1.2.2. We can consider A1 = K to be an affine algebraic group with the addition
operation in K, we call this group the additive group, Ga. The multiplicative group of K,
K× is a principal open subset of A1, therefore it is an affine variety on A2, the group
operations are affine variety morphisms since the inversion is regular on K×. Therefore it
is an affine algebraic group and we denote it Gm.

Example 1.2.3. We can identify Mn×n(K) with the affine space An2 , thus the group
GL(n,K) becomes a principal open subset defined by the non-vanishing of the determinant,
and an affine variety of An2+1. The product and inversion rules are regular maps, therefore
GL(n,K) is an affine algebraic group. Furthermore, every subgroup of GL(n,K) that is
closed by the Zariski topology is also an affine algebraic group. The coordinate algebra of
GL(n,K) in An2+1 is K[Tij , det(Tij)

−1].

Definition 1.2.4. An affine algebraic group is called a linear algebraic group if it isomorphic
to a closed subgroup of some GL(n,K).

Example 1.2.5. The special linear group SL(n,K) is the closed subgroup of GL(n,K)

given by
SL(n,K) = {A ∈ GL(n,K) | detA− 1 = 0}.

The orthogonal group O(n,K) and special orthogonal group SO(n,K) are also linear alge-
braic groups though given by more complicated polynomials in the entries of the matrices.
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1.2.1 Properties of affine algebraic groups

We will study now some basic properties and results regarding affine algebraic groups.
We will also introduce the tools to prove the main theorem of this section, the linearization
of affine algebraic groups.

Connectedness

When we have introduced the notion of irreducibility for topological spaces, we have
mentioned that in the Zariski topology, taking connected components of an affine variety
not necessarily results in simpler pieces of the variety. Irreducibility and connectedness are
different notions, but we shall see that in the case of affine algebraic groups, these properties
are equivalent. If G is an affine algebraic group it is connected in the topological sense if
and only if it is irreducible.

Proposition 1.2.6. Let G be an affine algebraic group.

1. There is a unique irreducible component G◦ of G that contains the identity element
e. It is a closed normal subgroup of finite index. The cosets of G◦ are the connected
components of G.

2. Any closed subgroup of G of finite index contains G◦.

Proof. (1) Since G is a Noetherian topological space it has a finite number of irreducible
components, suppose X1, . . . , Xm are the irreducible components that contain e. Then,
X1 · · ·Xm is also irreducible because it is the image of the product morphism. Therefore
X1 · · ·Xm ⊆ Xi for some i, but Xj ⊆ X1 · · ·Xm for all j. Thus m must be 1 and X1 is
closed. We denote it G◦. Since inversion is an homeomorphism, (G◦)−1 is also an irreducible
component that contains e, therefore G◦ = (G◦)−1, it is a closed subgroup. For any x ∈ G,
x−1G◦x is an irreducible component that contains e, therefore x−1G◦x = G◦, it is normal.
The cosets of G◦ are obtained by translation, and therefore are also irreducible components,
sinceG is Noetherian, they are closed and there is a finite number of them. Furthermore they
are disjoint and connected, so the irreducible components are the connected components.
(2) Let H be a closed subgroup of G of finite index. Then H◦ is a closed subgroup of finite
index of G◦. Since H◦ is the complement of the union of its cosets in G◦, which are closed,
it is open. Therefore H◦ = G◦ by connectedness. We have thus G◦ ⊆ H.

Definition 1.2.7. The preceding proposition justifies the following definition. We say an
affine algebraic group G is connected if G = G◦.

Group actions

Since affine algebraic groups are groups nonetheless, it is interesting to study group
actions. Particularly relevant are actions on affine varieties.

Definition 1.2.8. Let G be an affine algebraic group and let X be an affine variety. We say
G acts morphically on X if the action map ϕ : G×X −→ X is an affine variety morphism.

Example 1.2.9. Given an affine algebraic group G and an affine variety X, a morphic
action of G on X induces interesting morphisms on the coordinate algebras. Fixed g ∈ G
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we consider the mapping x 7→ g−1x. Its comorphism is denoted τg and is called translation
of functions by g, note that τg(f)(x) = f(g−1x). A particular example is the case where G
acts on itself by translations. In the proof of the linearization of affine algebraic groups, we
will use the right translation of functions by g, which is the comorphism ρg associated to
the right translation x 7→ xg−1.

Proposition 1.2.10. Let G be an affine algebraic group and X an affine variety acted
morphically by G through ϕ : G × X −→ X given by (x, y) 7→ x−1y. Let V be a finite
dimensional subspace of K[X].

1. There is a finite dimensional subspace W ⊆ K[X] that contains V and is stable under
τg for all g ∈ G.

2. V is stable under τg for all g ∈ G if and only if ϕ∗(V ) ⊆ K[G]⊗ V .

Proof. The proof is very technical and can be found in Proposition 2.3.6 in [Spr98].

1.2.2 Affine algebraic groups are linear algebraic groups

We have defined linear algebraic groups to be closed subsets of GL(n,K) for some n.
It is clear that a linear algebraic group is an affine variety, therefore we have that all linear
algebraic groups are affine algebraic groups. An interesting result is that the converse is
actually true, given an affine algebraic group G there is some n such that we can identify
G with a subgroup of GL(n,K). We will prove this result in this section.

Theorem 1.2.11. Let G be an affine algebraic group. G is isomorphic to a closed subgroup
of GL(n,K) for some n.

Proof. Suppose G acts on itself by right translations ϕ : G×G −→ G, (x, y) 7→ yx. Suppose
K[G] is generated by f1, . . . , fn. By proposition 1.2.10.1 we can suppose that f1, . . . , fn are
a basis of a finite dimensional subspace stable under all right translations ρg. Moreover, by
proposition 1.2.10.2 there exist mij ∈ K[G], 1 ≤ i, j ≤ n such that ρg(fi) =

∑n
j=1mij(g)fj

for g ∈ G. Thus we can define the affine group morphism

φ :G −→ GL(n,K)

g 7−→ (mij(g)).

We have to see it defines an isomorphism of affine algebraic groups between G and φ(G).
We first see that it is injective, suppose φ(g) = Id, this implies that ρg(fi) = fi for all i. The
fi generate K[G], so ρg(f) = f for all f ∈ K[X], thus g = e. The image of an affine group
morphism is closed, so φ(G) is a linear algebraic group and, by the isomorphism theorem
for groups, G and φ(G) are isomorphic as groups. We have to see that this is also an affine
variety isomorphism. We study the comorphism φ∗ : K[GL(n,K)] −→ K[G]. We have that
φ∗(Tij) = mij and φ∗(det(Tij)

−1) = det(mij)
−1. We have that for all g ∈ G,

fi(g) = fi(eg) =

n∑
i=1

mij(g)fj(e),
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the mij also generate K[G] and therefore φ∗ is surjective. φ(G) has coordinate algebra
K[GL(n,K)]/ kerφ∗, and we have an isomorphism of algebrasK[G] ∼= K[GL(n,K)]/ kerφ∗.
Thus G and φ(G) are isomorphic as affine algebraic groups.



Chapter 2

Galois cohomology

A recurrent problem in mathematics is to study whether two structures defined over a
field K are isomorphic. Usually it is useful to consider the problem in the algebraic closure
of K by extension of scalars. However, two structures that are isomorphic over K might
not be isomorphic over K. More generally, let L|K be a Galois field extension and X

an object (e.g. vector space provided with a tensor or an algebraic variety) defined over
K. We can consider X as an L-object XL by extending scalars to L: XL = L ⊗K X, we
call this process ascent. We consider the reverse process: given an L-object A we would
like to find a K-object X such that A = XL, this process is called descent and it is not
straightforward because there can be none or several K-objects that are isomorphic to A
over L and non-isomorphic over K. We say that a K-object Y is an L-form of X if XL and
YL are isomorphic. As mentioned before, X and Y need not be isomorphic over K and there
can be several equivalence classes of objects L-isomorphic to X that are not K-isomorphic.
It is natural to think that the action of the Galois group Gal(L|K) on XL could be studied
to classify the L-forms of X, and it is indeed the case. There is a bijection between the
L-forms of a K-object X and the cohomology set H1(Gal(L|K),AutL(X)) and this allows
for a direct computation of the forms of X.

With all of this in mind, the main goal of this chapter is to introduce the basis of the
theory of Galois cohomology. First we will review the definition and some properties of
profinite groups, since we will be in the context of infinite Galois extensions and the Galois
groups of such extensions are profinite. Then we will study group cohomology with abelian
and non-abelian coefficients, Galois cohomology and we will formally develop the theory of
Galois descent described above.

2.1 Profinite groups

As we will see, group cohomology can be used to study the structure of the Galois
group of an algebraic field extension and its action over associated groups or sets. A case of
particular interest is to study the absolute Galois group, the Galois group of the algebraic
closure of a field, thus we have to consider infinite Galois extensions. Let L|K be a (possibly
infinite) Galois field extension. The Galois group G = Gal(L|K) is infinite, but there is
a natural way to endow G with a topology, called the Krull topology, that encodes the

12
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information of the field extension in a way that two elements of G are considered to be close
if they coincide on a large enough finite normal extension.

Definition 2.1.1. Let L|K be a Galois extension, G = Gal(L|K), the set

S = {Gal(L|N) | N |K finite, normal extension contained in L}

is a basis of open neighborhoods of 1 ∈ G, and for each σ ∈ G, σS is a basis of open
neighborhoods of σ. This defines the Krull topology on G.

Remark 2.1.2. This topology allows for a generalization of the fundamental theorem of
Galois theory for closed groups.

Remark 2.1.3. It can be shown that this topology is Hausdorff, compact and totally
disconnected. Topological groups that have these properties are called profinite groups.
The precise definition is justified by the following proposition.

Proposition 2.1.4. Let G be Hausdorff topological group. The following are equivalent:

1. G is the inverse limit of finite discrete groups.

2. G is compact and the unit element has a basis of neighborhoods consisting of clopen
normal subgroups.

3. G is compact and totally disconnected.

Proof. Theorem 1.1.3 in [NSW08].

Definition 2.1.5. A topological Hausdorff group G is said to be profinite if it satisfies the
conditions of proposition 2.1.4.

Remark 2.1.6. Galois groups with the Krull topology motivate the definition of profinite
groups. In fact, it can be seen that all profinite groups are Galois groups. If G is a profinite
group then there exists a Galois field extension L|K such that G = Gal(L|K).

2.2 Group cohomology

The main goal of group cohomology is to understand the structure of a group G through
its action on other sets or groups. For example, if L|K is a finite algebraic extension, its
Galois group has a natural action on the groups (L,+) and (L×, ·) and the structure of
Gal(L|K) can be studied through this action. For example, it is interesting to study the
invariants of this action.

Definition 2.2.1. Let G be a profinite group. A set A (endowed with the discrete topology)
with a continuous left action of G is called a discrete G-set. If A happens to be a group we
say it is a discrete G-group and if it is an abelian group we say it is a discrete G-module. If
A,A′ are G-sets, a mapping f : A −→ A′ is a G-set morphism if f(g · a) = g · f(a) for all
a ∈ A and g ∈ G. If A,A′ are groups, we also ask that f be a group morphism.
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Remark 2.2.2. We use the word discrete to emphasize that we are taking into account a
topology. When the group G is finite, the theory can be built without the assumption of
continuity since we can take G with the discrete topology so every action and every map is
continuous.

Remark 2.2.3. Group cohomology is the application of homological algebra to group
theory. The main theory of homological algebra is developed for modules, thus the direct
application to group theory requires that A be an abelian group. We will see that abelian
cohomology can be built from the general theory of cohomology of modules, and that we
can build non-abelian cohomology by defining the sets H0, H1, H2 in a way that coincide
with the abelian definition when A is abelian. Throughout this chapter we use results in
homological algebra which can be found on [DF03] and [Rot08].

Remark 2.2.4. If A is an abelian group, then it is a Z-module. In this case a G-module
can be understood as a module over ZG, the ring of formal sums of elements of G with
coefficients in Z. Then a G-module morphism is a morphism of modules over ZG.

Definition 2.2.5. We say that G acts trivially on A if g · a = a for all g ∈ G and a ∈ A.
Unless otherwise stated we will suppose Z to be acted trivially by G.

Definition 2.2.6. If A is a G-set, we write AG = {a ∈ A | g · a = a, ∀g ∈ G}, the
set of fixed elements of A by G. We note that AG will be a G-subset (resp. G-subgroup,
G-submodule) with trivial G-action.

There are several definitions of the discrete G-set structure that can be found in the
literature. We show with the following proposition that all these definitions are equivalent.
Again, as said in remark 2.2.2 if the group G happens to be finite there’s no need for so
much fuss since the requirement for continuity is automatically fulfilled.

Proposition 2.2.7. Let G be a profinite group and A be a set with a left G-action. The
following conditions are equivalent:

1. A is a discrete G-set.

2. For every a ∈ A, StabG(a) = {g ∈ G | g · a = a} is open in G.

3. A =
⋃
U∈N A

U , where N is the set of open normal subgroups of G.

Proof. Let ϕ : G×A −→ A be the action (g, a) 7→ g · a. (1⇒ 2): Suppose ϕ is continuous,
if we fix a ∈ A the map ϕ(�, a) : G −→ A is continuous.Then StabG(a) = ϕ(�, a)−1(a) is
open in G because {a} is open in A.

(2 ⇒ 3): Clearly
⋃
U∈N A

U ⊆ A. Take a ∈ A, we have that a ∈ StabG(a) is an open
subgroup of G and therefore must contain an U ∈ N because N is a basis of neighborhoods
of the identity element. Thus, a ∈ AStabG(a) ⊆ AU , so we have that A ⊆

⋃
U∈N A

U .
(3 ⇒1): Given a ∈ A we have to show that ϕ−1(a) is open in G × A. We have that

a ∈ AU for some U ∈ N , thus for every g ∈ G and every b ∈ A such that g(b) = a, we have
that Ug × {b} ⊆ ϕ−1(a) is open. Since ϕ−1(a) is the union of such open sets it is open. A
is a discrete G-set.
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2.2.1 Abelian cohomology

We have mentioned in remarks 2.2.2 and 2.2.3 that group cohomology is a natural
application of the general theory of homological algebra when G is a finite group and the
set A is an abelian group. The theory can be extended to profinite groups acting on sets
but we will start by giving the idea in this particular case.

Finite groups acting on abelian groups

Throughout this section G will be a finite group and A will be an abelian group with a
left action by G which turns it into a G-module.

It is easy to see that the operation of taking invariants of the action of G acts functorially.
�G is a functor from the category of ZG-modules to the category of ZG-modules with trivial
G action that sends each G-module to its fixed G-submodule and each G-module morphism
to its restriction. The following proposition will allow us to understand �G as a covariant
Hom so we will be able to apply the theory of homological algebra to it.

Proposition 2.2.8. Let A be a G-module. Then AG ∼= HomZG(Z, A).

Proof. Every ZG-module morphism α : Z −→ A is univocally determined by its value at 1.
Furthermore, if α(1) = a then a ∈ AG because g · a = g · α(1) = α(g · 1) = α(1) = a. If αa
is the morphism such that 1 7→ a, then αa 7→ a gives an isomorphism HomZG(Z, A) ∼= AG

(it is surjective by construction, and injective by the univocal determination of a).

Thus we have that �G can be understood as the covariant HomZG(Z,�) which is known
to be left-exact. This means that if A,B,C are G-modules such that

0 −→ A −→ B −→ C −→ 0 (2.1)

is a short exact sequence then

0 −→ AG −→ BG −→ CG (2.2)

is also exact. In general we cannot extend (2.2) to a short exact sequence since the morphism
BG −→ CG need not be surjective. The cohomology groups are a tool that measures to
what extent this sequence cannot be extended to a short exact sequence. This is done
by extending (2.1) to a long (possibly infinite) exact sequence through the right-derived
functors ExtZG(Z,�) of HomZG(Z,�).

We consider the standard resolution of Z as a ZG-module by projective modules.

· · · −→ Fn
dn−→ Fn−1

dn−1−→ · · · d1−→ F0
aug−→ Z −→ 0, (2.3)

where Fn =
⊗n

i=0 ZG is a G-module with G-action, g ·(g0⊗g1 · · ·⊗· · ·⊗gn) = (g ·g0)⊗g1⊗
· · · ⊗ gn. With this action the Fn are free modules of rank |G|n over ZG. The morphism
aug : F0 = ZG −→ Z is defined by aug(

∑
g∈G λgg) =

∑
g∈G λg. Given a G-module A, we

can apply to this resolution the contravariant HomZG(�, A) to obtain the following cochain
complex,

0 −→ HomZG(F0, A)
d1−→ HomZG(F1, A)

d2−→ HomZG(F2, A)
d3−→ · · · (2.4)
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We have that di ◦ di+1 = 0 so Im di ⊆ ker di+1. We define the n-th cohomology group
of G with coefficients in A as Hn(G,A) = ker dn+1/Im dn. We have that Hn(G,A) =

ExtZG(Z, A) and it doesn’t depend on the projective resolution of Z. The details on this
can be found in [DF03].

The definition we have given here, called definition via projective resolutions, is difficult
to work with. We shall give an identification that allows for a more computational ap-
proach. Each element f ∈ HomZG(Fn, A) is univocally determined by its values at the basis
elements of Fn as a ZG-module, thus f is determined by |G|n values in A. We can identify
HomZG(Fn, A) with the set of mappings Gn −→ A, n ≥ 1, and when n = 0 we identify
HomZG(ZG,A) with A. This gives us the definition of cohomology groups via cochains.

Definition 2.2.9. We define C0(G,A) = A and Cn(G,A) = {f : Gn −→ A} for n ≥ 1. The
elements of Cn(G,A) are called n-cochains. Each Cn(G,A) is an abelian group (normally
written additively) that can be identified with HomZG(Fn, A). Through this identification
we have a cochain complex based on (2.4):

0 −→ C0(G,A)
d1−→ C1(G,A)

d2−→ G2(G,A)
d3−→ · · · (2.5)

and the morphisms dn : Cn(G,A) −→ Cn+1(G,A), called n-coboundary morphisms can be
given explicitly:

dn(f)(g1, . . . , gn+1) = g1 · f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1) (2.6)

+ (−1)n+1f(g1, . . . , gn).

Definition 2.2.10. We write Zn(G,A) = ker dn for n ≥ 0 and call its elements n-cocycles.
We write Bn(G,A) = Im dn−1 for n ≥ 1 (and we take B0(G,A) = 0) and call its elements
n-coboundaries. With this formulation we define the n-th cohomology group of G with
coefficients in A as

Hn(G,A) = Zn(G,A)/Bn(G,A). (2.7)

Proposition 2.2.11. H0(G,A) = AG.

Proof. Since by definition B0(G,A) = 0, we only have to compute Z0(G,A) = ker d0. Take
f ∈ C0(G,A) = A, as such, f = a for one a ∈ A. By (2.6) we compute d0(f)(g) = g · a− a
so ker d0 = AG. Therefore H0(G,A) = Z0(G,A) = AG.

As we have mentioned above, the cohomology groups are a tool to study to what extent
(2.2) cannot be extended to a short exact sequence. This is seen through the following
theorem of homological algebra.

Theorem 2.2.12 (Long exact sequence theorem in group cohomology). Let

0 −→ A −→ B −→ C −→ 0

be a short exact sequence of G-modules. Then there exists a long exact sequence,

0 −→AG −→ BG −→ CG
δ0−→ H1(G,A) −→ H1(G,B) −→

−→ H1(G,C)
δ1−→ H2(G,A) −→ · · ·
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In particular, the sequence (2.2) can be extended to a short exact sequence if and only if
H1(G,A) = 0.

Proof. Theorem 17.21 in [DF03].

Profinite groups acting on abelian groups

Let G now be a profinite group and A a discrete G-module. The theory developed in
the previous section can be extended naturally to this case by asking that the mappings
Gn −→ A be continuous.

Definition 2.2.13. We define C0(G,A) = A and Cn(G,A) = {f : Gn −→ A | f continuous}
for n ≥ 1 the set of continuous n-cochains. As before, the sets Cn(G,A) are abelian groups,
and we define the n-coboundary morphisms the same way as (2.6). We define the n-cocycles
and n-coboundaries as in definition 2.2.10. Finally we can define the n-th continuous coho-
mology group of G with coefficients in A as Hn(G,A) = Zn(G,A)/Bn(G,A).

Remark 2.2.14. Every finite group is a profinite group with the discrete topology, as such,
if G is finite all mappings from Gn to any discrete set are continuous and the definitions
coincide. The following proposition and its corollary show that the profinite case can be
reduced to the finite case.

Proposition 2.2.15. Let I be a directed set, (Gi)i∈I a projective system of finite groups,
and let (Ai)i∈I be an inductive system of discrete Gi-modules such that the actions are
compatible with morphisms of each system. Set G = lim←−Gi, A = lim−→Ai. Then we have

Hn(G,A) = lim−→Hn(Gi, Ai), for all n ≥ 0. (2.8)

Proof. Proposition 8 in [Ser01].

Corollary 2.2.16. Let G be a profinite group and A be a discrete G-module. Then
Hn(G,A) = lim−→Hn(G/U,AU ) for all n ≥ 0 when U runs through all open normal subgroups
of G.

Remark 2.2.17. In the finite case we started by defining the cohomology groups by pro-
jective resolutions. This definition is not valid in the profinite case because it can be shown
that ZG is not a discrete G-module.

Remark 2.2.18. Proposition 2.2.11 and theorem 2.2.12 are valid for profinite groups acting
on abelian groups if we consider continuous actions.

The first cohomology group

We will finish the section on abelian cohomology by studying with more detail the first
cohomology group. In this section we suppose G is a profinite group and A a G-module.

To study the group H1(G,A) we have to study the groups Z1(G,A) and B1(G,A).
Consider the morphism d1 : C1(G,A) −→ C2(G,A). In this particular case, (2.6) is defined
by

d1(f)(g, h) = g · f(h)− f(gh) + f(g) for g, h ∈ G. (2.9)
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Then, Z1(G,A) = ker d1 is the subgroup of C1(G,A) consisting of mappings such that

f(gh) = f(g) + g · f(h) for all g, h ∈ G. (2.10)

These mappings, which are the 1-cocycles, are often also called crossed morphisms. One
can easily check that for any a ∈ A the morphism f(g) = g · a − a satisfies this condition.
The elements in Z1(G,A) that take this particular form for some specific a ∈ A are called
principal crossed morphisms. As we could see in the proof of proposition 2.2.11, the set of
principal crossed morphisms is the image of d0. Thus, B1(G,A) is the set of such morphisms.
We say that f1, f2 ∈ Z1(G,A) are cohomologous if f1 − f2 is a principal crossed morphism.
This is an equivalence relation.

Definition 2.2.19. The first cohomology group H1(G,A) is the set of crossed morphisms
modulo the cohomology relation. The principal crossed morphisms correspond to the unit
cocycle.

2.2.2 Non-abelian cohomology

We study now the most general case, profinite groups acting on non-necessarily abelian
groups. From now on, let G be a profinite group and A a G-set, to emphasize the non-
necessity of abelianity we will write the operation on A multiplicatively. We cannot use
the homological algebra approach in this case, but it will be possible to construct the sets
H0(G,A), when A is only a G-set, and H1(G,A), when A is a G-group, in a way that
coincides with the previous definition when A is a G-module. It is important to remark
that in this case, the sets H0 and H1 do not have a group structure but they are in fact
pointed sets.

Definition 2.2.20. A pointed set is a pair (X,x0) where X is a set and x0 ∈ X is a
distinguished element called base point. If X,Y are pointed sets with base points x0, y0
respectively, a mapping ϕ : (X,x0) −→ (Y, y0) is a pointed set morphism if ϕ(x0) = y0.
The kernel of ϕ is kerϕ the set of elements in X that get mapped to y0. This allows for a
notion of exact sequences of pointed sets.

Definition 2.2.21. We define H0(G,A) = AG. Note that, by proposition 2.2.11, if A is a
G-module the definition coincides.

Remark 2.2.22. Let A,B be G-sets. It can be shown that if ϕ : A −→ B is a morphism of
G-sets then ϕ(AG) ⊆ BG, thus H0(G,�) is a covariant functor from the category of G-sets
to the category of G-sets with trivial action.

Definition 2.2.23. Let (A, ∗) be a G-group. A mapping f : G −→ A is called a cocycle
if for all g, h ∈ G we have that f(gh) = f(g) ∗ (g · f(h)). We denote Z1(G,A) the set of
cocycles. Note that the mapping g 7→ 1 for all g ∈ G is a cocycle, it is called the unit
cocycle.

Remark 2.2.24. Note that if A has trivial G-action then the cocycle condition means
that f is a group morphism, thus in this case Z1(G,A) = Hom(G,A). Moreover, if A is a
G-module, B1(G,A) = 0 so H1(G,A) = Hom(G,A).
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Notation 2.2.25. To avoid overloading the notation with the operations on G and A and
the G-action, we introduce a new notation. If f is a cocycle and σ ∈ G we write fσ := f(σ).
If a ∈ A we write σa := σ · a. With this notation and omitting writing the operation on
A we can write the cocycle condition as fστ = fσ

σfτ for all σ, τ ∈ G. However, in some
situations it might be clearer to use the long notation.

Definition 2.2.26. Let α, β ∈ Z1(G,A) be cocycles. We say that α, β are cohomologous,
denoted α ∼ β, if there exists a ∈ A such that for all σ ∈ G we have βσ = a−1ασ

σa. This
is an equivalence relation.

Definition 2.2.27. We define the first cohomology set of G, H1(G,A), to be the set of
equivalence classes of Z1(G,A) by the cohomology relation. It is a pointed set with base
point the class of the unit cocycle. It can be shown that H1(G,�) is a functor, and a
version of theorem 2.2.12 can be stated for this case.

Remark 2.2.28. If A is a G-module writen multiplicatively the definition of the cocycle
condition coincides. Moreover, the cohomology relation coincides with the one defined on
section 2.2.1.

2.2.3 Twisting

Let G be a profinite group and A a G-group. We can compute its cocycle set Z1(G,A)

and cohomology set H1(G,A). Given a set X, it can be acted by both G and A.

Definition 2.2.29. Let X be acted on the left by G and A. We say that the action is
compatible if for all x ∈ X, a ∈ A we have that σ ∈ G, σ · (a · x) = (σ · a) · (σ · x). If X has
such action it is called a (G,A)-set.

Definition 2.2.30. Let X be a (G,A)-set and α ∈ Z1(G,A). We define the twisted action
by α of G on X as σ ∗ x = ασ

σx. We denote the twisted (G,A)-set as αX. It is the same
underlying set, but with this new action.

Proposition 2.2.31. Let α ∈ Z1(G,A) be a cocycle. The twisted action ∗ : G× αX −→
αX is a group action.

Proof. Let σ, τ ∈ G, x ∈ X. Then,

(στ) ∗ x = αστ
στx = ασ

σατ
στx = ασ

σατ
σ( τx) = ασ

σ(ατ
τx) = σ ∗ (τ ∗ x).

Remark 2.2.32. It should be noted that the twisted action depends on the cocycle and
not on the cohomology class of the cocycle. There can be cohomologous cocycles that give
rise to different twisted actions.

Remark 2.2.33. If A is a G-group, it can be turned into a (G,A)-set by the conjugation
action on A. It is an interesting case to consider twisting the G-action on A by a cocycle
α ∈ Z1(G,A). By the preceding proposition αA is a G-group. We will see now that this
action induces a pointed set morphism H1(G, αA) −→ H1(G,A) given by right translation
of the class of α.
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Proposition 2.2.34. Let A be a G-group that acts on itself by conjugation and α ∈
Z1(G,A). The map

θα : H1(G, αA) −−−−→ H1(G,A)

[γ] 7−−−−→ [γα]

is a bijection that maps the class of the trivial cocycle in H1(G, αA) onto [α] ∈ H1(G,A).

Proof. We denote · the action on A by conjugation to avoid confusion with the group
law. We see first that γα is in Z1(G,A). We have that σ ∗ a = ασ · σa = ασ

σaα−1σ .
Thus, the cocycle condition on γ is γστ = γσ(σ ∗ γτ ) = γσασ

σγτα
−1
σ . Thus, γσταστ =

γσασ
σγτ

σατ = γσασ
σ(γτστ ), so γα ∈ Z1(G,A). Secondly, we see that if γ, γ′ ∈ Z1(G, αA)

are cohomologous so are γα and γ′α in Z1(G,A). There exists a ∈ A such that for all σ ∈ G,
γ′σ = aγσσ ∗ a−1. Thus,

γ′σασ = aγσσ ∗ a−1ασ = aγσ(ασ · σa−1)ασ = aγσασ
σa−1α−1σ ασ = aγσασ

σa−1,

so γ′α ∼ γα and θα is well-defined as a map H1(G, αA) −→ H1(G,A). Finally, it is easy to
see that α−1 is an element of Z1(G, αA) so we can twist αA by α−1 to get A. The mapping
θα−1 : H1(G,A) −→ H1(G, αA) gives an inverse.

Remark 2.2.35. The method of twisting will be very useful to construct the forms of an
object. Loosely speaking, to construct a form of an object X we will twist it by a cocycle
and then fix it for the new action. We will see the details of this in section 2.4.

2.3 Galois cohomology

As mentioned in the introduction, one particular application of group cohomology is
the case where G is the Galois group of some Galois extension L|K. G acts naturally
on objects associated to the field (e.g. the multiplicative group, L-vector spaces, L-vector
spaces with a tensor...). The case when the extension is the separable closure K|K is of
special importance in number theory. We prove in this section some classical theorems in
Galois cohomology.

Proposition 2.3.1 (Hilbert theorem 90). Let L|K be a Galois extension andG = Gal(L|K),
then H1(G,L×) = 1.

Proof. By corollary 2.2.16 it suffices to show the result for finite extensions. Suppose then
that L|K is a finite Galois extension. We will check that if α ∈ Z1(G,L×) is a 1-cocycle
then it is a 1-coboundary. Take c ∈ L×, define b =

∑
τ∈G αττc. By the linear independence

of field automorphisms (Dedekind’s lemma), c can be chosen so that b 6= 0. Then, taking
into account that σατ = α−1σ αστ for all σ ∈ G, we get,

σ(b) =
∑
τ∈G

σ(αττc) =
∑
τ∈G

σατστc =
∑
τ∈G

α−1σ αστστc = α−1σ
∑
τ∈G

αστστc = α−1σ b.

Thus, α satisfies the coboundary condition (writen multiplicatively), so H1(G,L×) = 1.
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Corollary 2.3.2. Let L|K be a finite cyclic Galois extension of degree n with Galois group
G = 〈σ〉. If a ∈ L is such that NL|K(a) = 1 then there is b ∈ L× such that a = b

σ(b) .

Proof. By definition NL|K(a) = aσ(a)σ2(a) · · ·σn−1(a). The condition NL|K(a) = 1 implies
that the mapping α : G −→ L× such that α(σ) = a and α(σi) = aσ(a) · · ·σi−1(a), for i ≤ n,
satisfies the cocycle condition. Thus α ∈ Z1(G,L×). By the preceding theorem, α = 1 in
H1(G,L×). So α is also a 1-coboundary and there is some b ∈ L× such that α(σi) = b

σi(b)
.

In particular a = α(σ) = b
σ(b) .

Corollary 2.3.3 (Kummer theory). Let n ∈ N and K be a field that contains µn, the set
of n-th roots of unity. Then H1(Gal(K|K), µn) = K×/K×n.

Proof. Denote G = Gal(K|K). Consider the exact sequence,

1 −→ µn −→ K
× n−→ K

× −→ 1.

By the long exact sequence theorem (theorem 2.2.12), this gives rise to the following exact
sequence.

1 −→ (µn)G −→ (K
×

)G
n−→ (K

×
)G −→ H1(G,µn) −→ H1(G,K

×
) = 1.

This gives an isomorphism H1(G,µn) ∼= K×/K×n.

Example 2.3.4. We can use corollary 2.3.2 to find all rational points on the circle x2+y2 =

1. Let a, b ∈ Q such that a2 + b2 = 1 and consider the extension Q(i)|Q. The element
α = a+ bi has norm 1, so there exists c+ di ∈ Q(i) such that

α = a+ bi =
c+ di

σ(c+ di)
=
c+ di

c− di
=
c2 − d2

c2 + d2
+

2cd

c2 + d2
i,

where σ is the complex conjugation morphism. By eliminating the common denominator
of c and d we can suppose they are integers. Thus, all rational points on x2 + y2 = 1 are of
the form

(a, b) =

(
c2 − d2

c2 + d2
,

2cd

c2 + d2

)
,

for c, d ∈ Z.

Proposition 2.3.5. Let L|K be a Galois extension and G = Gal(L|K), then we have that
H1(G,GLn(L)) = 1.

Proof. As before, we can suppose L|K is a finite Galois extension. Let α ∈ Z1(G,GLn(L))

be a cocycle, we will show it is a coboundary. For each vector x ∈ Ln we define b(x) =∑
σ∈G ασσx. The set S = {b(x) | x ∈ Ln} spans Ln. Indeed, if f is a linear form that

vanishes on each b(x) then for all λ ∈ L we have that

0 = f(b(λx)) =
∑
σ∈G

f(ασσλσx) =
∑
σ∈G

f(ασσx)σλ.

Which gives a linear dependence relation between the σλ, but since the σ are linearly
independent we have that f(ασσx) = 0. Since σ are automorphisms and ασ are invertible
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matrices, we have that f ≡ 0, thus 〈S〉 = Ln. We can choose x1, . . . , xn such that the
b(xi) form a basis for Ln. Take the matrix c with columns (x1, . . . , xn) and define b(c) =

(b(x1), . . . , b(xn)). We have that b =
∑

σ∈G ασσc. We can see as in proposition 2.3.1 that
ατ = b(τb)−1, thus H1(G,GLn(L)) = 1.

Corollary 2.3.6. H1(G,SLn(L)) = 1.

Proof. As before, by proposition 2.2.16 it is sufficient to show it for finite extensions, so
suppose L|K is a finite Galois extension. Consider the following exact sequence,

1 −→ SLn(L) −→ GLn(L)
det−→ L× −→ 1.

By the long exact sequence theorem it gives rise to the following exact sequence,

1 −→ SLn(K) −→ GLn(K)
det−→ K× −→ H1(G,SLn(L)) −→ H1(G,GLn(L) = 1.

Since the det morphism is surjective we have that H1(G,SLn(L)) = 1.

2.4 Forms and Galois descent

We will study now the problem described in the introduction as an application of Galois
cohomology. We will precisely define the notions of K-object, extension of scalars and L|K-
forms of a K-object X, where L|K is a Galois extension. We will prove the correspondence
between the set of L|K-forms and the set H1(Gal(L|K),AutL(XL)).

Remark 2.4.1. Unless otherwise stated, from now on G denotes a profinite group, the
actions are continuous and the cohomology sets are defined as in non-abelian cohomology
(section 2.2.2).

Definition 2.4.2. Let K be a field. A K-object (V,Φ) is a pair where V is a finite dimen-
sional vector space over K and Φ is a tensor type (p, q) (this means Φ ∈ Hom(V ⊗q, V ⊗p).
Let (p, q) be fixed and (V,Φ), (W,Ψ) be K-objects. A K-linear map f : V −→ W is a
morphism of K-objects if f⊗p ◦ Φ = Ψ ◦ f⊗q. We denote C(p,q)K the category of K-objects.

Remark 2.4.3. This definition is very general because it encompasses a broad set of situ-
ations. For example, a vector space over K with a bilinear form is a K-object because the
bilinear form is a tensor of type (0, 2). Another example, a K-algebra can be thought as a
vector space over K with a tensor of type (1, 2) encoding the product operation.

2.4.1 Extension of scalars (ascent)

Let L|K be a Galois field extension. Given an object defined over K we can obtain an
L-object by extension of scalars to L, this means tensoring up with L. Suppose the tensors
mentioned from now on are of fixed type (p, q).

Definition 2.4.4. Let (V,Φ) be a K-object. We define the L-object obtained by extension
of scalars to be the vector space VL = V ⊗K L with the tensor ΦL : (VL)⊗q −→ (VL)⊗p

given by ΦL = Φ⊗ IdL.
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Definition 2.4.5. Let (V,Φ), (W,Ψ) be K-objects and (VL,ΦL), (WL,ΨL) the correspond-
ing L-objects. If f : V −→ W is a morphism of K-objects, we define the associated
morphism of L-objects to be fL : VL −→WL defined by fL = f ⊗ IdL. It is easy to see that
f⊗pL ◦ ΦL = ΨL ◦ f⊗qL , so it is indeed a morphism of L-objects.

Remark 2.4.6. With these definitions, extension of scalars to L gives a covariant functor
C(p,q)K −→ C(p,q)L such that (V,Φ) 7→ (VL,ΦL) and f 7→ fL.

Let G = Gal(L|K), X = (V,Φ) a K-object and XL = (VL,ΦL) its associated L-object.
The group G acts on a natural way on the vector space VL and the morphisms of L-objects.
This action will give AutL(XL) aG-group structure and it will justify taking the cohomology
set.

Definition 2.4.7. LetX = (V,Φ) aK-object and σ ∈ G. σ induces a map 1⊗σ : VL −→ VL
such that for x = v ⊗ λ, with v ∈ V, λ ∈ L we have (1 ⊗ σ)(x) = v ⊗ σ(λ). This gives an
G-action on VL called semilinear action. Furthermore, it can be shown that 1⊗σ commutes
with Φ, so it is a morphism of L-objects.

Definition 2.4.8. Let V,W be vector spaces over K and σ ∈ G. Let f ∈ HomL(VL,WL).
We define the action of G by conjugation on f ∈ HomL(VL,WL) by the following map,

G×HomL(VL,WL) −−−−→ HomL(VL,WL)

(σ, f) 7−−−−→ σf = (1⊗ σ) ◦ f ◦ (1⊗ σ−1).

Remark 2.4.9. If f : (VL,ΦL) −→ (VL,ΦL) is an L-object automorphism, then so is σf ,
thus this action induces a G-group structure on AutL((VL,ΦL)).

Given an L-object Y it is interesting to see when there exists a K-object X such that
Y = XL. This process is called descent. In the case of vector spaces it is trivial, given
a finite-dimensional vector space W over L and a vector space V over K of the same
dimension, dimVL = dimW , so they are L-isomorphic. We state the following theorem
that characterizes this situation for a vector space with a tensor.

Theorem 2.4.10. Let V be a vector space over K and Φ a tensor of type (p, q) on VL. We
define an action of G on T = HomL(V ⊗qL , V ⊗pL ) such that σΦ = (1⊗ σ)⊗p ◦Φ ◦ (1⊗ σ−1)⊗q.
With this, T is a G-group and the following are equivalent:

1. There exists a tensor Ψ of type (p, q) such that Φ = ΨL.

2. For all σ ∈ G, σΦ = Φ, so Φ ∈ H0(G,T ).

3. For all σ ∈ G, (1⊗ σ)⊗p ◦ Φ = Φ ◦ (1⊗ σ)⊗q.

Proof. Proposition 3.26 on [Ric20].

2.4.2 Forms

Definition 2.4.11. Let L|K be a Galois extension, X,Y be K-objects. We say X,Y are
L-isomorphic if there is an L-object isomorphism between XL and YL. In this case we say
Y is a L|K-form of X. Note that if X,Y are K-isomorphic then Y is automatically a
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L|K-form, but there can be other K-isomorphism classes of K-objects that are L|K-forms
of X. We denote E(L|K,X) the set of K-isomorphism classes of L|K-forms of X. It is a
pointed set with base point the isomorphism class of X.

Proposition 2.4.12. Let X = (V,Φ) be a K-object, Y = (W,Ψ) a L|K-form of X. We
denote A = AutL(XL) and B the set of L-isomorphisms between XL and YL. Consider the
map

β : B −−−−→ Z1(G,A)

g 7−−−−→ β(g)(σ) = g−1 ◦ σg

Then,

1. β is well defined.

2. If g, h ∈ B then β(g), β(h) are cohomologous.

3. If a, b ∈ Z1(G,A) are cohomologous then a ∈ Im β implies b ∈ Im β.

Proof. (1) We have to see that indeed a = β(g) is a cocycle. First of all, it is clear that for
all σ ∈ G, aσ ∈ A. We check the cocycle condition,

aστ = g−1 ◦ στg = g−1 σg σg−1 στg = aσ
σ(g−1 τg) = aσ

σaτ .

(2) Denote a = β(g), b = β(h) and c = h−1g. It is clear that c ∈ A. We have that
aσ = g−1 σg and bσ = h−1 σh. Then,

c−1bσ
σc = (h−1g)−1h−1 σh σ(h−1g) = g−1 σg = aσ.

So the cocycles are cohomologous.
(3) Let a, b ∈ Z1(G,A) be cocycles such that a = β(g) for g ∈ B. There exists c ∈ A such
that bσ = c−1aσ

σc. Then, bσ = c−1g−1 σg σc = (gc)−1 σ(gc). gc ∈ B, so b ∈ Im β.

The preceding proposition justifies the existence of a well-defined map,

θ : E(L|K,X) −→ H1(G,AutL(XL)). (2.11)

Given Y a representative of an L-isomorphism class of L|K-forms of X we denote BY the
set of L-isomorphisms between XL and YL. For each BY we consider the associated map βY ,
and by the proposition we have that Im βY is precisely one cohomology class in Z1(G,A).

Proposition 2.4.13. 1. θ is a morphism of pointed sets, it sends the class of X to the
unit cocycle.

2. θ is injective.

Proof. (1) We have that BX = A, we take Id as a representative and so βX(Id) = 1 ∈
Z1(G,A).
(2) Let Y,Z be L|K-forms of X. Let g ∈ BY be an L-isomorphism between X and Y , and
h ∈ BZ be an L-isomorphism between X and Z. We have that gch−1 is an L-isomorphism
between Z and Y . Moreover, since βZ(h), βY (g) are cohomologous we have that h−1 σh =
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c−1g−1 σg σc, so σ(gch−1) = gch−1, it is a K-isomorphism so Y, Z correspond to the same
class in E(L|K,X).

Let X = (V,Φ) be a K-object, VL has the G-action defined above. Given a cocycle
a ∈ Z1(G,A) we can give VL a new action by twisting by a. We obtain aVL which has the
same underlying set as VL but with action σ ∗ x = aσ

σx. We can take invariants of this
action to obtain a vector space over K, W = ( aVL)G.

To turn W into a K-object we have to assign to it a tensor. There is a natural vector
space isomorphism f : WL −→ VL such that x ⊗ λ 7→ λx. We can define ΨL = (f−1)⊗p ◦
Φ ◦ f⊗q, a tensor ΨL on WL. It can be shown that ΦL is fixed by the action of G so by
theorem 2.4.10 it descends to a tensor Ψ on W .

Proposition 2.4.14. Let a ∈ H1(G,A) and (W,Ψ) be the associated construction from
the previous paragraph. Then,

1. (W,Ψ) is a L|K-form of (V,Φ).

2. The K-isomorphism class of (W,Ψ) does not depend on the choice of cocycle a, only
on the cohomology class.

Proof. (1) We have to see that (WL,ΨL) and (VLΦL) are isomorphic. By definition f gives
a vector space isomorphism betweenWL and VL and by construction of ΨL it is an L-object
isomorphism.
(2) Let a, b ∈ Z1(G,A) such that [a] = [b]. We denote W a = ( aVL)G and W b = ( bVL)G.
Since a, b are cohomologous we have that there is c ∈ AutL((VL,ΦL)) such that aσ =

c−1bσ
σc for all σ ∈ G. From this equality we can see that if x ∈ W a, then bσ

σ(cx) =

caσ
σx = cx, so c restricts to a K-isomorphism betweenW a andW b. It is easy to check that

this isomorphism commutes with the tensor Ψ, so we indeed have a K-object isomorphism.

Theorem 2.4.15. Let L|K be a Galois field extension and X = (V,Φ) a K-object. There’s
a bijective correspondence between E(L|K,X), the set of L|K-forms of X, and the coho-
mology set H1(G,AutL(XL)) that preserves base points.

E(L|K,X)←−−−→ H1(G,AutL(XL))

Y 7−−−−→ θ(Y )

((aVL)G,ΨL) 7−−−−→ [a]

with ((aVL)G,ΨL) defined as in proposition 2.4.14.

Proof. Propositions 2.4.13 and 2.4.14 give the bijection. With a bit more of work it can be
seen that the mappings defined in the above correspondence are mutual inverses. This can
be found in theorem 3.40 on [Ric20].

Remark 2.4.16. As mentioned in remark 2.4.3 this method can be applied to a plethora
of different situations. A particularly interesting case is that of finding the L|K-forms of
an algebraic variety defined over K. An algebraic variety over K is determined by its
coordinate ring which is a K-algebra. We can find its L|K-forms by applying this method
to the coordinate algebra.



Chapter 3

Differential Galois theory

Classical Galois theory arises from the study of polynomial equations and their sym-
metries. Given a polynomial f defined over a field K one can find a finite extension L|K
where f splits completely. The fundamental theorem of Galois theory gives a connection
between the structure of L|K as a field extension and its group of automorphisms.

Differential Galois theory is an analogue of this theory but as the name suggests, instead of
studying algebraic equations, it will study differential equations. For this we have to endow
fields with an operation akin to the derivative operator defined in analysis. Such fields will be
called differential fields and in this setting it makes sense to consider differential equations.
Given a linear homogeneous differential equation L(Y ) = 0 (which will be defined later in
this chapter) defined over a differential field K there is a differential field extension L|K
generated by the solution of the equation. Under some additional conditions this extension
is called a Picard-Vessiot extension and is the parallel to splitting fields in the algebraic
setting. The group of symmetries of such extensions has the additional structure of being
linear algebraic groups and there is a fundamental theorem of differential Galois theory that
connects their structure to the structure of L|K. Furthermore, solvability notions such as
solvability by radicals can also find a parallel in this theory.

The main goal of this chapter is to give a construction of differential Galois theory fol-
lowing the book Algebraic groups and differential Galois theory, [CH11]. We will start
by defining some basic notions of differential algebra, then we will study Picard-Vessiot
extensions and the differential Galois group.

3.1 Differential algebra

Differential algebra is the study of algebraic structures equipped with a mapping that
satisfies the properties of the derivative as defined in real analysis.

Definition 3.1.1. Let A be a ring. A derivation on A is a mapping d : A −→ A such that
the following conditions are satisfied:

1. d(a+ b) = d(a) + d(b) for all a, b ∈ A. (additive linearity).

2. d(ab) = d(a)b+ ad(b) for all a, b ∈ A. (Leibniz’s rule).

26
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A ring A endowed with a derivation is called a differential ring, furthermore, if A is a field
then it is called a differential field. If there is no risk of confusion, we shall write a′ = d(a).
The elements a ∈ A such that a′ = 0 are called constants and the set of constants, CA, has
a ring structure (resp. field structure) and is called ring (resp. field) of constants of A.

Remark 3.1.2. Let A be a differential ring with unity 1. It is easy to check that d(1) = 0.
Also, if a is a unit then (a−1)′ = −a−1a′a−1, and in particular, if A is commutative then
(a−1)′ = −a′/a2.

The previous remark makes us think that if A is an integral domain there is a natural
way to extend the derivation on A to its field of fractions in a way consistent with inversion
on A. We shall, in fact, obtain the usual quotient rule.

Proposition 3.1.3. Let A be an integral domain. A derivation on A can be extended to
the fraction field Fr(A) in a unique way such that for all a, b ∈ A, b 6= 0,(a

b

)′
=
a′b− ab′

b2
.

If S is a multiplicative system in a commutative integral domain A then a derivation on A
can also be extended in a unique way to the localization S−1A.

Proof. Proposition 5.1.2 in [CH11].

As it is always done when an algebraic structure is defined, it is interesting to study
substructures and the notion of morphism of this particular structure.

Definition 3.1.4. Let A be a differential ring and I an ideal of A. We say I is a differential
ideal of A if for all a ∈ I we have that a′ ∈ I, that means d(I) ⊆ I. This definition will
allow to give a differential structure to the quotient ring A/I by a differential ideal I such
that d(a) = d(a).

Example 3.1.5. Any unitary commutative ring A can be a differential ring with the trivial
derivation, d(a) = 0 for all a ∈ A. In fact, for the rings Z and Q this is the only possible
derivation. This follows from the fact that if CA is the ring of constants of A, then it
contains the image of the characteristic morphism Z −→ A, 1 7→ 1A.

Example 3.1.6. Let A be a differential ring and A[X] its polynomial ring. The derivation
on A can be extended to A[X] if we define X ′ to be an arbitrary element of A[X]. Once
X ′ is fixed we have that (

∑
aiX

i)′ =
∑

(a′iX
i + aiiX

i−1X ′). Inductively this allows us to
give a differential structure to A[X1, . . . , Xn].

Example 3.1.7. We can use the preceding example to formalize taking successive deriva-
tives of an indeterminate. Consider the ring A[Xi] for i ∈ N, we can define a unique
derivation such that X ′i = Xi+1. We denote this ring by A{X} and call it the ring of
differential polynomials in X, it is a ring of polynomials in X and its derivatives. This
example will be of particular importance when constructing the Picard-Vessiot extension of
a differential equation as we will see in the following sections.

Definition 3.1.8. Let A,B be differential rings (resp. fields). A mapping f : A −→ B

is a differential ring (resp. field) morphism if it is a ring (resp. field) morphism and it is
compatible with the derivations on A and B, this means that for all a ∈ A, f(a′) = (f(a))′.
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Proposition 3.1.9 (Isomorphism theorem). Let A,B be differential rings. If f : A −→
B is a differential morphism, then ker f is a differential ideal and there is a differential
isomorphism between A/ ker f and Im f .

Proof. Let a ∈ ker f , we have that f(a) = 0, thus, 0 = (f(a))′ = f(a′). a′ ∈ ker f . Since
differential morphisms are ring morphisms we apply the isomorphism theorem for rings.
There is a ring isomorphism f : A/ ker f −→ Im f given by factorization of f through
the quotient ring, this means f is defined by f(a) = f(a). For all a ∈ A we have that
(f(a))′ = (f(a))′ = f(a′) = f(a′) = f(a′). Thus f is differential and the ring isomorphism
is a differential ring isomorphism.

3.1.1 Differential ring and field extensions

Keeping to the goal of giving an analogy with classical Galois theory, we can define the
extensions of a differential ring or field.

Definition 3.1.10. Let A,B be differential rings, A ⊆ B a subring. We say B|A is a
differential ring extension if the derivation on B restricted to A coincides with the derivation
on A. In particular, if A,B are differential fields we say it is a differential field extension.
If L|K is a differential field extension and S ⊆ L is a subset, we denote K〈S〉 to be the
differential subfield of L generated by S over K. K〈S〉 will be the smallest subfield of L
which contains K,S and the derivatives of the elements of S.

Given a differential field, its algebraic extensions can be made compatible with its differ-
ential extensions. Let L|K be an algebraic field extension such that K is a differential field.
If the extension is separable, the derivation on K can be extended to a unique derivation on
L and the elements of Gal(L|K) are differential field morphisms relative to this derivation.
We see this for finite extensions.

Proposition 3.1.11. LetK be a differential field and L|K a finite separable extension. The
derivation on K can be extended to a unique derivation on L and every K-automorphism
of L is differential.

Proof. (Uniqueness). Suppose the derivation on K extends to L. If L|K is finite and
separable it follows from the primitive element theorem that L = K(α) for α ∈ L. Write
P = Irr(α,K). We have that P (α) = 0, deriving this equation we get 0 = P (d)(α)+P ′(α)α′

where P (d) is the polynomial with derived coefficients. Since the extension is separable,
P ′(α) 6= 0. Thus, α′ = −P (d)(α)/P ′(α) which means that the derivation on L is uniquely
determined by the derivation on K.
(Existence). We have that L = K[X]/(P ), therefore to define a derivation on L suffices to
define a derivation on K[X] and check that (P ) is a differential ideal. We have to define X ′,
we use the construction in the proof of unicity as an inspiration. Since L|K is separable,
we have that (P, P ′) = 1, thus by Bezout’s identity there are polynomials h, k ∈ K[X] such
that h(X)P ′(X) + k(X)P (X) = 1. In particular P ′ is invertible mod P with inverse h. We
define X ′ := −P (d)(X)h(X). With this definition and using Bezout’s identity it is easy to
check that (P (X))′ = P (d)(X)k(X)P (X) ∈ (P ), so (P ) is indeed a differential ideal.
Finally, for σ ∈ Gal(L|K) it is easy to check that σ−1dσ is a derivation on L that extends
the derivation on K. We have seen such extension must be unique, therefore σd = dσ, σ is
a differential morphism.
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3.1.2 Differential operators and homogeneous linear differential equa-
tions

In classical Galois theory we construct field extensions of a base field K by adding
roots of polynomials defined over K. As said in the introduction, differential Galois theory
deals with linear homogeneous differential equations and we shall construct differential field
extensions by adding the solutions to these equations to K. From now on we will suppose
K is a field of characteristic 0.

Definition 3.1.12. Let K be a differential field with non-trivial derivation. A linear dif-
ferential operator of degree n is a polynomial of degree n in the variable D and coefficients
in K. These operators formalize taking linear combinations of successive derivations so we
add the relation Da = a′ + aD. Therefore K[D] is a non-commutative ring that acts in a
natural way on K by Dy = y′ for all y ∈ K.

Remark 3.1.13. There are Euclidian division algorithms for K[D] for left and right di-
vision. With these algorithms it can be seen that every right (resp. left) ideal of K[D] is
right (resp. left) principal.

Definition 3.1.14. Let K be a differential field with field of constants CK and let L =

Dn + an−1D
n−1 + · · ·+ a0 be a differential operator with coefficients in K of degree n. The

action of K[D] on K justifies associating to L an homogeneous linear differential equation
(HLDE)

L(Y ) = Y (n) + an−1Y
(n−1) + · · ·+ a0Y = 0. (3.1)

The analogy with the theory of algebraic equations continues here. A polynomial of
degree n over a field K has at most n (counting multiplicities) roots on a field extension
of K. The set of solutions of a HLDE such as (3.1) over a differential field extension L|K
behaves in a similar way. This time however, the number of solutions may not be finite, by
the linearity of the derivation on L, if y1, y2 ∈ L are solutions of (3.1) then so is λ1y1 +λ2y2
for λ1, λ2 ∈ CL. Thus the set of solutions of (3.1) on L is a CL-vector space but we will
see that the dimension of this vector space is at most n. This gives the analogy with the
theory of algebraic equations, there are not at most n solutions but there are at most n
CL-linearly independent solutions. We introduce now the Wronskian which is the tool to
prove this result.

Definition 3.1.15. Let K be a differential field and y1, . . . , yn ∈ K. We define the wron-
skian determinant, W (y1, . . . , yn), to be

W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣
y1 · · · yn
y′1 · · · y′n
...

. . .
...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
.

Proposition 3.1.16. Let K be a differential field with field of constants CK . Then
y1, . . . , yn ∈ K are linearly independent over CK if and only if W (y1, . . . , yn) 6= 0.

Proof. Suppose y1, . . . , yn are CK-linearly dependent. There exist ci ∈ CK such that∑
ciyi = 0. Deriving n − 1 times and taking into account that c′i = 0 we get that for
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k = 0, . . . , n−1,
∑
ciy

(k)
i = 0 thus there is a CK-linear dependence between the columns of

the determinant and W (y1, . . . , yn) = 0. To prove the reciprocal we proceed by induction.
Clearly if n = 1, we have W (y1) = y1 = 0 if and only if y1 = 0. Suppose the result holds for
n− 1 and suppose W (y1, . . . , yn) = 0. By the induction hypothesis we can further assume
W (y2, . . . , yn) 6= 0, otherwise there would be a CK-linear combination between y1, . . . , yn
by taking c1 = 0. The determinant being 0 implies that there exist c1, . . . , cn ∈ K not all
0 such that, for all k = 0, . . . , n− 1,

∑
ciy

(k)
i = 0. We can suppose c1 = 1. We have to see

that ci are all constants. For each k,

0 =
( n∑
i=1

ciy
(k)
i

)′
=

n∑
i=1

ciy
(k+1)
i +

n∑
i=2

c′iy
(k)
i =

n∑
i=2

c′iy
(k)
i = 0.

This would imply that W (y2, . . . , yn) = 0 therefore c′i = 0 for i = 2, . . . , n, and of course
c′1 = 0. Thus the ci are elements of CK and there is a CK-linear dependence between the
y1, . . . , yn.

Proposition 3.1.17. LetK be a differential field with field of constants CK and let L(Y ) =

0 be a HLDE of order n defined over K. If y1, . . . , yn+1 are solutions of the equation in a
differential extension L|K then W (y1, . . . , yn+1) = 0. In particular L(Y ) = 0 has at most
n CL-linearly independent solutions on L.

Proof. The last row of the wronskian is (y
(n)
1 , . . . , y

(n)
n+1). Since the yi are solutions of

L(Y ) = 0, the equation gives a linear dependence between the rows of the determinant.
Thus W (y1, . . . , yn+1) = 0.

3.2 Picard-Vessiot extensions

We have seen that if L(Y ) = 0 is an HLDE of order n over K then it has at most n
solutions on a differential field extension L|K that are linearly independent over CL. If
y1, . . . , yn ∈ L are n solutions of L(Y ) = 0 that are CL-linearly independent we say they
form a fundamental system of solutions of L(Y ) = 0 over L.

Coming back to the analogy with the classical Galois theory, if K is a field of character-
istic 0 and p ∈ K[X] is a degree n polynomial then there exists a finite field extension L|K
where p splits completely. The minimal such extension is called the splitting field of K and
under the condition that L|K is separable (which we have since CarK = 0) we say it is a
Galois extension. Now, given a HLDE L(Y ) = 0 of order n defined over a differential field
K, the parallel to the splitting field and Galois extensions will be the minimal differential
field extension L|K where L(Y ) = 0 has a fundamental system of solutions.

Definition 3.2.1. Let K be a differential field and let L(Y ) = 0 be a HLDE of order n
defined over K. We say that a differential field extension L|K is a Picard-Vessiot extension
for L if it satisfies the following conditions:

1. L = K〈y1, . . . , yn〉, with {y1, . . . , yn} a fundamental system of solutions L(Y ) = 0 in
L.

2. CL = CK . No constants are added in the extension.



3.2 Picard-Vessiot extensions 31

Theorem 3.2.2. Let K be a differential field with algebraically closed field of constants
and let L(Y ) = 0 be a HLDE of order n defined over K. There exists a Picard-Vessiot
extension L|K for L and it is unique up to differential K-isomorphism.

We shall not provide a detailed proof of this theorem but we will sketch the construction
of the Picard-Vessiot extension. A detailed proof can be found on [CH11]. The idea consists
on constructing a differential field L extending K where L(Y ) = 0 has n solutions that
are linearly independent over constants. We will first define a solution algebra and then
complete it to be a field.

Let K{X1, . . . , Xn} be the polynomial ring over K in n differential indeterminates and
let (L(X1), . . . ,L(Xn)) be the differential ideal generated by applying the differential oper-
ator to the indeterminates. The classes of the Xi in the quotient ring

K{X1, . . . , Xn}/(L(X1), . . . ,L(Xn))

are solutions of the equation L(Y ) = 0. Furthermore, let W = W (X1, . . . , Xn) be the
wronskian of the indeterminates, we define the full universal solution algebra

R = K{X1, . . . , Xn}/(L(X1), . . . ,L(Xn))[W−1]

to be the previous quotient localized by the multiplicative system of the wronskian. This im-
poses that the wronskian of X1, . . . , Xn must be invertible in R and therefore non-zero. We
state without proof the following two propositions that will be used to finish the argument.

Proposition 3.2.3. Let K be a differential field, K ⊆ R a differential ring extension and
I a maximal differential ideal. Then I is a prime ideal.

Proof. Proposition 5.6.3 in [CH11].

Proposition 3.2.4. Let K be a differential field with field of constants CK , K ⊆ R a
differential ring extension that is an integral domain and finitely generated as a K-algebra
and L the field of fractions of R. If R has no proper differential ideals and CK is algebraically
closed then CL = CK .

Proof. Proposition 5.6.4 in [CH11].

We use the preceding propositions to prove the existence of a Picard-Vessiot extension
for L(Y ) = 0 when CK is algebraically closed. Indeed, take the algebra R defined above and
choose a maximal differential ideal P . The algebra R is generated over K by the solutions
of the equation and since the wronskian is non-zero in R there are n solutions CK-linearly
independent. Taking the quotient R/P preserves this, furthermore by proposition 3.2.3,
P is prime so R/P is an integral domain. By proposition 3.2.4 the field of fractions L of
R/P does not add constants to CK . Therefore L is a differential field extension of K that
is generated by a fundamental set of solutions of L(Y ) = 0 and CL = CK . Thus L|K is a
Picard-Vessiot extension for L.

On the other hand it can be shown (theorem 5.6.9 in [CH11]) that if L1, L2 are two
Picard-Vessiot extensions for an equation L(Y ) = 0 over K then there exists a differential
K-isomorphism L1 −→ L2. Therefore the Picard-Vessiot extension for L(Y ) = 0 is unique
up to isomorphism.
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Remark 3.2.5. There are examples of differential fields with non-algebraically closed field
of constants where the existence or uniqueness of the Picard-Vessiot extension fails. Seiden-
berg gives an example in [Sei56] of a differential field K and an HLDE L over K such that
any extension of K containing a solution of L adds constants so there is no Picard-Vessiot
extension for L over K. In the last chapter of this thesis we will study in detail a case where
uniqueness fails.

3.3 Differential Galois group

Given a finite field extension L|K we can consider the group of field automorphisms that
fix K, this group is called the Galois group of the extension. When K is a differential field
and the extension is a differential field extension we can define a similar notion but taking
differential automorphisms of L that fix K. We will see that, if L|K is Picard-Vessiot, this
group has additional structure of linear algebraic group.

Definition 3.3.1. Let L|K be a differential field extension. We define the differential
Galois group of L|K, G(L|K), as the group of differential field K-automorphisms. If L|K is
a Picard-Vessiot extension for some HLDE L(Y ) = 0 over K then we can refer to G(L|K)

as the differential Galois group of L over K, GalK(L).

Remark 3.3.2. If L = K〈y1, . . . , yn〉 is a Picard-Vessiot extension over a differential field
K then every σ ∈ G(L|K) is uniquely determined by the images of the yj . Indeed, the
elements of L are rational expressions in y1, . . . , yj and their derivatives with coefficients on
K, since σ ∈ G(L|K) is a K-automorphism it is determined by the images σ(y

(k)
j ), for all

1 ≤ j ≤ n and all 1 ≤ k ≤ n− 1. Since σ is differential we have σ(y
(k)
j ) = (σ(yj))

(k).

Proposition 3.3.3. Let K be a differential field with field of constants C and let L(Y ) = 0

be an HLDE overK of order n. Let L|K be a Picard-Vessiot extension for L. Then GalK(L)

is a subgroup of GL(n,CK).

Proof. Let y1, . . . , yn be a fundamental system of solutions of L in L, we have that L =

K〈y1, . . . , yn〉. For every σ ∈ GalK(L) and every solution y of L, σ(y) is also a solution of
L. Take σ ∈ GalK(L), for every j we have that σ(yj) =

∑n
i=1 cijyi, for cij ∈ C. By the

previous remark, σ is determined by the σ(yj), therefore we can associate a matrix (cij) to
every σ ∈ GalK(L). This gives and injective morphism

GalK(L) ↪−−−→ GL(n,C)

σ 7−−−−→ (cij).

Under the hypothesis that the field of constants is algebraically closed we can show
that the differential Galois group of a Picard-Vessiot extension L|K is a linear algebraic
group, that means a subgroup of GL(n,C) closed in the Zariski topology. The following
proposition that we give without proof shows that there is a set of polynomials over C in
n2 variables such that their zeroes are exactly the elements of the matrices associated to
each σ ∈ G(L|K), which is the definition of closed in the Zariski topology.
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Proposition 3.3.4. Let K be a differential field with algebraically closed field of constants
C. Let L = K〈y1, . . . , yn〉 be a Picard-Vessiot extension of K. There exists a set S of
polynomials F ∈ C[Xij ], 1 ≤ i, j ≤ n such that

1. If σ ∈ G(L|K) and (cij) is the associated matrix, then F (cij) = 0 for all F ∈ S.

2. If (cij) ∈ GL(n,C) is a matrix such that F (cij) = 0 for all F ∈ S then there exists
σ ∈ G(L|K) with associated matrix (cij).

Therefore G(L|K) is a linear algebraic group.

Proof. This is proposition 6.2.1 in [CH11].

Example 3.3.5. Let K be a differential field and a ∈ K such that a is not the derivative
of any element of K. Consider differential field K〈α〉, where α′ = a. It can be shown
that the differential field extension K〈α〉|K does not add constants to K. Moreover, 1 and
α are CK-independent solutions of an HLDE of order 2 over K: Y ′′ − a′

a Y
′

= 0. Thus
K〈α〉|K is a Picard-Vessiot extension for this HLDE. The process of adding an α like this
is called adjunction of an integral for obvious reasons. Finally, notice that for any constant
c ∈ CK , α+ c is also a solution of the equation. Therefore the mapping α 7→ α+ c induces
a differential automorphism of K〈α〉 that fixes K. So, the differential Galois group is the
following,

G(K〈α〉|K) =

{(
1 c

0 1

)
| c ∈ CK

}
⊆ GL(2, CK),

which is isomorphic to the additive group of CK .

3.4 Fundamental theorem of differential Galois theory

In this section we will define the connection between the structure of the differential
Galois group and the structure of a Picard-Vessiot field extension L|K. Exactly alike
algebraic Galois theory, given a subgroup of G(L|K) one can find an intermediate field
fixed by the action of this group and given an intermediate field F ⊆ L one can find a
subgroup of G(L|K) that fixes F . The precise connection is given by the fundamental
theorem of differential Galois theory.

Definition 3.4.1. Let K be a differential field and L|K a Picard-Vessiot extension with
differential Galois group G(L|K). For each subgroup H ≤ G(L|K) we define LH := {x ∈
L | σ(x) = x, ∀σ ∈ H} the subfield of L fixed by H. This gives rise to two well-defined
correspondences,

{closed subgroups H of G(L|K)} ←−−−→ {intermediate differential fields F of L|K}
H 7−−−−→ LH

G(L|F ) 7−−−−→ F

between the set of Zariski-closed subgroups of G(L|K) and the set of intermediate differen-
tial fields of L|K.
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Remark 3.4.2. Note that we can define the fixed subfield for any subgroup of G(L|K)

but it can be seen that LH = LH so the correspondences are well-defined when taking
advantage of the linear algebraic group structure of G(L|K). This is much in the same way
the fundamental theorem of infinite Galois theory uses the profinite topological structure.

Theorem 3.4.3. Let L|K be a Picard-Vessiot extension with differential Galois group
G(L|K). Then,

1. The correspondences defined in definition 3.4.1 define inclusion-reversing, mutually
inverse bijective maps between the set of Zariski-closed subgroups of G(L|K) and the
set of intermediate field extensions of L|K.

2. If F ⊆ L is an intermediate field, F |K is a Picard-Vessiot extension if and only if
H = G(L|F ) is a normal subgroup of G(L|K). In this situation the mapping

G(L|K) −→ G(F |K)

σ 7−→ σ|F

induces an isomorphism G(L|K)/G(L|F ) ∼= G(F |K).

Proof. Theorem 6.3.8 in [CH11].



Chapter 4

Applications

In this chapter we will apply the theory we have built in the previous chapters. We
will use the theory of algebraic geometry, group cohomology and differential Galois theory
to study two particular problems. We will first classify the Qp-forms of the multiplicative
group considered as an algebraic group. Then, we will study a particular case of the theory
of Picard-Vessiot extensions for differential fields with Qp as field of constants, which is not
algebraically closed.

4.1 Classification of the Qp-forms of Gm

We start with the general case. Let K be a field of characteristic 0. Let K|K be its
algebraic closure and G = Gal(K|K). We want to find the K|K-forms of the multiplicative
group Gm = K× as a linear algebraic group. We denote by A = AutK(Gm(K)) the group
of K-automorphisms of Gm as a linear algebraic group defined over K. By the theory of
forms developed in section 2.4, the K|K-forms of Gm are in bijective correspondence with
the first Galois cohomology set H1(G,A).

Lemma 4.1.1. AutK(Gm) = {Id, Inv} ' C2 = {1,−1}.

Proof. We want to find the K-automorphisms of Gm as a linear algebraic group. Since the
elements of AutK(Gm) must be morphisms of affine varieties, they must be regular rational
maps. Since they must be automorphisms, the only zero in K these maps can have is 0

(otherwise we would have 0 ∈ Gm). Thus the maps must be of the form t 7→ atn with a ∈ K
and n ∈ Z. The element 1 must be fixed, so a = 1 and since the map must be injective it
is necessary that n = ±1.

Thus we want to compute the cohomology set H1(G,C2). Since C2 is an abelian group,
the cohomology set will in fact be a group. Since G acts on C2 by automorphisms the
G-action will be trivial and it follows from remark 2.2.24 that H1(G,A) = Hom(G,A), the
group of continuous morphisms from G to A. Furthermore, if α : G −→ A is an element
of H1(G,A) then kerα is a closed normal subgroup of G. Therefore, by the fundamental
theorem of Galois theory two possibilities arise:

[K : K
kerα

] =

{
1, if kerα = G,

2, if kerα ( G.

35
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In the first situation the extension is trivial. In the second case, we have that L = K
kerα|K

is a quadratic extension, thus there exists a ∈ K× \K×2 such that L = K(
√
a).

Reciprocally, given a trivial or quadratic extension of K we can define a cocycle G −→ A.
If the extension is trivial we choose the trivial cocycle. If L = K(

√
a) is a quadratic

extension we define the mapping

α(σ) =

{
1, if σ(

√
a) =

√
a,

−1, if σ(
√
a) = −

√
a.

which is continuous and thus a cocycle.
This shows that there is a bijective correspondence between the cocycles G −→ A and

the set of quadratic extensions of K plus the trivial extension. This correspondence is in
fact a particular case of Kummer’s theorem (corollary 2.3.3).

We will use this correspondence to find the K|K-forms of Gm by twisting the G-action
by the cocycles of H1(G,A). Let α ∈ H1(G,A) be a cocycle. If α is the trivial cocycle then
the K|K-form of Gm is the trivial one, Gm itself. If α is not trivial then let L = K(

√
a) for

some a ∈ K× \K×2 be the corresponding quadratic extension. Let x ∈ L. We have that
x = x1 + x2

√
a for x1, x2 ∈ K. The natural action of G on L is given by

σ(x) =

{
x1 + x2

√
a, if α(σ) = 1,

x1 − x2
√
a, if α(σ) = −1,

for σ ∈ G.

We can identify L as a field of 2 × 2 matrices over K so that we emphasize that we are
working with linear algebraic groups defined over K. We shall give the forms of Gm in this
identification. Consider the mapping ϕ : L −→M2×2(K) defined by

ϕ(x1 + x2
√
a) =

(
x1 ax2
x2 x1

)
.

It is easy to check that it is a field K-morphism and it is injective, so we have the following
isomorphisms:

L ∼=

{(
x1 ax2
x2 x1

)
: x1, x2 ∈ K

}
,

Gm(L) = L× ∼=

{(
x1 ax2
x2 x1

)
: x1, x2 ∈ K, x21 − ax22 6= 0

}
,

K ∼=

{(
x 0

0 x

)
: x ∈ K

}
,

Gm(K) = K× ∼=

{(
x 0

0 x−1

)
: x ∈ K, x 6= 0

}
.
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We define the twisted G-action on L× by the cocycle α by

σ ∗ x = α(σ)(σ(x)) =

{
x1 + x2

√
a, if α(σ) = 1,

(x1 − x2
√
a)−1, if α(σ) = −1.

The corresponding L|K-form of Gm is denoted (αGm)G and is obtained by taking the fixed
elements of L× by the twisted G-action by α. This means, (αGm)G = {x ∈ L | σ ∗ x = x}.

If α(σ) = 1, then for every x ∈ L we already have σ ∗ x = x. However, if α(σ) = −1,
then the fixed elements are those x ∈ L such that (x1 − x2

√
a)−1 = x1 + x2

√
a. We have

that
(x1 − x2

√
a)−1 =

x1 + x2
√
a

x21 − ax22
,

thus the element is fixed if and only if x21− ax22 = 1. In terms of the matrix representation,
this means that (αGm)G is given by the following group:

Ta(K) =

{(
x1 ax2
x2 x1

)
: x1, x2 ∈ K, x21 − ax22 = 1

}
.

We note that the elements of Ta(K) are not diagonalizable over K so Ta(K) and Gm(K) are
not K-isomorphic. However, if we extend scalars to L then Gm(K⊗L) is the set of diagonal
matrices with non-zero determinant, and the elements of Ta(K ⊗ L) are diagonalizable so
we have indeed that Gm(K ⊗ L) ∼= Ta(K ⊗ L) over L.

Theorem 4.1.2. In conclusion, the set of K|K-forms of Gm is the set {Ta(K) | a ∈
K×/K×2}.

4.1.1 The p-adic case: Qp|Qp

We can apply the previous section to find the forms of the multiplicative group of the
field of p-adic numbers. As we have seen, the forms are in correspondence with the quadratic
extensions of Qp. Therefore, through the following lemma that gives the structure of the
non-squares of Qp we will be able to find all quadratic extensions.

Lemma 4.1.3 (Structure of the squares of Qp). Let p be a prime number.

1. If p > 2, the group Q×p /Q×2p is of the type C2 × C2 with representatives {1, p, u, pu},
where u is a non-square unit of Qp.

2. If p = 2, the group Q×2 /Q
×2
2 is of the type C2 × C2 × C2 with representatives

{±1,±2,±5,±10}.

Proof. Theorem 3 in chapter 2 of [Ser78].

Thus, in this particular case there is a finite number of quadratic extensions and con-
sequently there will be a finite number of Qp|Qp-forms of Gm. If p is odd there will be 4
forms and if p = 2 there will be 8.
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4.2 Forms of a Picard-Vessiot extension over a p-adic field
with differential Galois group O(2,Qp)

Let K = Qp(t) be the differential field of rational functions in Qp with the usual deriva-
tion t′ = 1. Let K = Qp(t) with the same derivation. We note that K = K ⊗Qp. The re-
spective fields of constants with these derivations are CK = Qp and CK = Qp. Suppose that
L(y) = 0 is an HLDE of order 2 over K with differential Galois group GalK(L) ∼= O(2,Qp).
By theorem 2 in [CHvdP15] there exist Picard-Vessiot extensions for L over K but there can
be more than one. Let L|K be the distinguished Picard-Vessiot extension from [CHvdP15],
the one that is formally p-adic and let Li|K be the other Picard-Vessiot extensions for L
over K.

Extending scalars to Qp we get an algebraically closed field of constants and therefore, by
theorem 3.2.2, there is a unique Picard-Vessiot extension for L over K. Thus, for all i we
have that L⊗Qp

∼= Li⊗Qp as differential fields, we shall denote L = L⊗Qp and Li = Li⊗Qp.
Let E(L,K|K) be the set of K|K-forms of the Picard-Vessiot extension L|K and denote
G = Gal(K|K). We will see that there is a bijective correspondence between E(L,K|K)

and the cohomology set H1(G,AutK(L)) = H1(G,O(2,Qp)). This gives another example
of the theory of forms and Galois descent applied to a setting that is not a vector space
with a tensor.

First, we see that given a K|K-form of L|K we can find an element of H1(G,O(2,Qp)).
The argument is very similar to proposition 2.4.12. We define

Bi = {g : L −→ Li | g differential isomorphism}.

Then the following mapping is well defined,

βi : Bi −−−−→ Z1(G,O(2,Qp))

g 7−−−−→ βi(g)(σ) = g−1 ◦ σg,

and as in proposition 2.4.12 it induces a mapping θ : E(L,K|K) −→ H1(G,O(2,Qp)).

Now, given a cocycle α ∈ H1(G,O(2,Qp)) we will construct a K|K-form of L|K using
the classification of quadratic forms over Qp because as we will soon see, are also classified
by H1(G,O(2,Qp). The classification of quadratic forms over Qp, which can be found on
[Ser78, Tra16], states that the number of equivalence classes of non-degenerate quadratic
forms of rank 2 over Qp is 7 if p is odd and 15 if p = 2, these are classified by the discriminant
∆ ∈ Q×p /Q×2p and the Hasse-Witt invariant. To simplify the procedure we shall assume
p 6= 2, the case p = 2 is done likewise. We have that Q×p /Q×2p = {1, u, p, up} where u is a
non-square unit of Qp. The diagonal forms of the equivalence classes are the following (can
be found on [RN19]):

• If −1 is a square in Qp:
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1. diag(1, 1).
2. diag(1, u).
3. diag(1, p).
4. diag(1, up).

5. diag(u, p).

6. diag(u, up).

7. diag(p, up).

• If −1 is not a square in Qp:

1. diag(1, 1).
2. diag(p, p).
3. diag(1,−1).
4. diag(1, p).

5. diag(1,−p).

6. diag(−1, p).

7. diag(−1,−p).

Given the quadratic form diag(1, 1), its groups of automorphisms (as a quadratic space) over
Qp and Qp are O(2,Qp) and O(2,Qp) respectively. Moreover, in an algebraically closed field
every quadratic form of rank 2 is equivalent to the form diag(1, 1) therefore the quadratic
forms we listed before will be the Qp|Qp-forms of diag(1, 1). By theorem 2.4.15 there is a
bijective correspondence between the equivalence classes of quadratic forms of rank 2 over
Qp and the cohomology set H1(G,O(2,Qp)).

Now, given an equivalence class of quadratic forms of rank 2 over Qp we shall find a
cocycle α ∈ H1(G,O(2,Qp)) and use it to find a form of L through the twisted action by
α. For example, take the quadratic form with diagonal form diag(u, up). We have that on
Qp, (√

u 0

0
√
up

)T (
1 0

0 1

)(√
u 0

0
√
up

)
=

(
u 0

0 up

)
.

Therefore, the matrix (√
u 0

0
√
up

)
gives a Qp-isomorphism of quadratic spaces, g, between diag(1, 1) and diag(u, up). Proceed-
ing as in proposition 2.4.12, we obtain a cocycle α(σ) = g−1 σg. Thus,

α(σ) = g−1 ◦ σ(g) =
1√
u
√
up

(√
up 0

0
√
u

)(
σ(
√
u) 0

0 σ(
√
up)

)
=

σ(
√
u)√
u

0

0
σ(
√
up)√
up

 .

Now, we get back to L = K〈y1, y2〉 and we study the vector space of solutions. For x ∈ L
such that x is a solution of L we have x = x1y1 + x2y2 with x1, x2 ∈ Qp. We consider αL,
the set L with the twisted G-action by α, σ ∗ x = α(σ)(σ(x)). Fixing αL by this G-action
gives the corresponding K|K-form of L. Therefore we have to study the x1, x2 ∈ Qp such
that for all σ ∈ G we have(

x1
x2

)
=

σ(
√
u)√
u

0

0
σ(
√
up)√
up

(σ(x1)

σ(x2)

)
.

This means that for all σ ∈ G, σ(
√
ux1) =

√
ux1 and σ(

√
upx2) =

√
upx2. Because of the

profinite structure of G we may study the elements of G restricted to the finite extension
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Qp(
√
u,
√
p). Therefore we have that any element of G restricts on Qp(

√
u,
√
up) to one of

the following:

Id :
√
u 7→

√
u

√
p 7→ √p

σ :
√
u 7→

√
u

√
p 7→ −√p

τ :
√
u 7→ −

√
u

√
p 7→ √p

στ :
√
u 7→ −

√
u

√
p 7→ −√p

Applying each of these to
√
ux1 and √upx2 we obtain that for x1, x2 to be fixed by the

action of G, it must be that x1 ∈ Qp(
√
u) and x2 ∈ Qp(

√
up). Therefore x1 = a

√
u and

x2 = b
√
up for a, b ∈ Qp. We will have that the elements of the twisted K|K-form are of the

form a
√
uy1 + b

√
upy2, for a, b ∈ Qp. We take

√
uy1,
√
upy2 as the new basis of solutions,

and the extension K〈
√
uy1,
√
upy2〉|K will be a Picard-Vessiot for L because it is generated

by a fundamental system of solutions of L and no constants were added in the process.

For any other equivalence class of quadratic forms of rank 2 over Qp we can apply the
same procedure. The resulting K|K-forms of the Picard-Vessiot extension L|K are the
following:

• If −1 is a square in Qp:

1. diag(1, 1) =⇒ L|K.
2. diag(1, u) =⇒ K〈y1,

√
uy2〉.

3. diag(1, p) =⇒ K〈y1,
√
py2〉.

4. diag(1, up) =⇒ K〈y1,
√
upy2〉.

5. diag(u, p) =⇒ K〈
√
uy1,
√
py2〉.

6. diag(u, up) =⇒ K〈
√
uy1,
√
upy2〉.

7. diag(p, up) =⇒ K〈√py1,
√
upy2〉.

• If −1 is not a square in Qp:

1. diag(1, 1) =⇒ L|K.
2. diag(p, p) =⇒ K〈√py1,

√
py2〉.

3. diag(1,−1) =⇒ K〈y1,
√
−1y2〉.

4. diag(1, p) =⇒ K〈y1,
√
py2〉.

5. diag(1,−p) =⇒ K〈y1,
√
−py2〉.

6. diag(−1, p) =⇒ K〈
√
−1y1,

√
py2〉.

7. diag(−1,−p) =⇒ K〈
√
−1y1,

√
−py2〉.

As a corollary, the classification of quadratic forms over Qp can also be used to compute the
forms of a Picard-Vessiot extension with differential Galois group SO(2,Qp). The following
result gives the correspondence between some subset of equivalence classes of quadratic
forms over Qp and the set H1(G,SO(2,Qp)).

Proposition 4.2.1. The pointed setH1(G,SO(2,Qp)) is in a bijective correspondence with
the equivalence classes of quadratic forms diag(a, b) such that det(diag(a, b)) = ab = 1.

Proof. This is Corollary IV.11.3 in [Ber10].

If L is an HLDE over K such that GalK(L) = SO(2,Qp) there exists a Picard-Vessiot
extension L for L over K that is not necessary unique. Suppose L = K〈y1, y2〉, where
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y1, y2 is a fundamental system of solutions of L. Extending scalars to Qp the possible
Picard-Vessiot extensions become isomorphic and the K|K-forms of L are classified by
H1(G,SO(2,Qp)). By the preceding proposition, this is corresponded by the quadratic
forms with discriminant 1 ∈ Q×p /Q×2p . If −1 is a quadratic residue, the only quadratic form
with discriminant 1 is diag(1, 1) and there is only one K|K-form of L, L itself. If −1 is not
a quadratic residue, diag(1, 1) and diag(p, p) both have discriminant 1, therefore there are
two K|K-forms of L, L itself and K〈√py1,

√
py2〉.
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