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Abstract. We present a comprehensive study about the relationship between the way

Detailed Balance is broken in non-equilibrium systems and the resulting violations of

the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both

odd and even variables under Time-Reversal, we exploit the relation between entropy

production and the breakdown of Detailed Balance to establish general constraints on

the non-equilibrium steady-states (NESS), which relate the non-equilibrium character

of the dynamics with symmetry properties of the NESS distribution. This provides

a direct route to derive extended Fluctuation-Dissipation Relations, expressing the

linear response function in terms of NESS correlations. Such framework provides

a unified way to understand the departure from equilibrium of active systems and

its linear response. We then consider two paradigmatic models of interacting self-

propelled particles, namely Active Brownian Particles (ABP) and Active Ornstein-

Uhlenbeck Particles (AOUP). We analyze the non-equilibrium character of these

systems (also within a Markov and a Chapman-Enskog approximation) and derive

extended Fluctuation-Dissipation Relations for them, clarifying which features of these

active model systems are genuinely non-equilibrium.
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1. Introduction

The Fluctuation-Dissipation Theorem (FDT) relates the correlations of spontaneous

fluctuations, to the fluctuations induced by external stimuli [1]. In practice, it allows

to probe the response to external fields by analyzing the corresponding time-dependent

equilibrium fluctuations, either in experiments or in simulations. For instance, it allows

to infer transport or mechanical properties of soft materials from light scattering without

ever perturbing them [2, 3]. The FDT plays a particular important role in statistical

mechanics as it is among the very rare general results in non-equilibrium, although near

to, conditions. It is valid for any equilibrium system (both in the classical and quantum

realm) gently driven out-of-equilibrium by a small perturbation. Accordingly to the

FDT, the response of an observable A at time t to a perturbation h , applied at time s,

and causing the change in the energy of the system E → E − h(s)B, is determined by

an equilibrium correlation function as

δ〈A(t)〉
δh(s)

∣∣∣∣
h→0

= RA(t, s) = β
∂

∂s
〈A(t)B(s)〉eq, t > s (1)

where RA is the response function of the observable A reacting to a perturbation

conjugated to B and 〈A(t)B(s)〉eq is the equilibrium correlation function between these

two latter observables at temperature β−1 = kBT ‡.
In its general formulation above, the FDT was first derived in the context of

Hamiltonian mechanics [4, 5], where the dynamics is specified via a Liouville operator

and the equations of motion are invariant under Time-Reversal. It has later been

extended to stochastic descriptions [6] which rely on the hypothesis of scale separation

between the system of interest and the bath, the latter being a collection of (many)

degrees of freedom with fast relaxation to equilibrium. Once such distinction is settled,

dissipative and noisy terms enter into the equations of motion. As a result, the latter are

no longer invariant under Time-Reversal. Nevertheless a footprint of reversibility holds

at the stochastic description level under the name of Detailed Balance (DB)[7, 8]. As

long as DB is guaranteed, the FDT holds, both in thermal and athermal states [9, 10].

For systems breaking DB, relentlessly evolving far-from-equilibrium, the FDT is

no longer justified. The question of whether a similar relation as eq. (1) can be

derived in this case, has been the focus of a great deal of research efforts over the

last decades. In particular, several extended Fluctuation-Dissipation Relations (FDR)

have been derived, using different approaches, for systems in non-equilibrium steady-

states (NESS). However, contrary to equilibrium states, no universal relation such as

eq. (1) exists for NESS. The establishment of a general extended FDR with the features

of the equilibrium FDT, remains a central challenge towards the construction of a

general framework to deal with non-equilibrium systems. In the context of stochastic

dynamics, extended FDR for NESS have mostly focused on overdamped descriptions

[11, 12, 13, 14, 15, 16, 17]. We refer to [18, 19, 20] for recent reviews on the topic.

‡ We consider, without loss of generality, observables with zero mean.
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Among the variety of non-equilibrium systems, living matter constitutes a

particularly interesting class. From a physics viewpoint, it can be considered as active

matter: systems composed of interacting units - be it a cell, a molecular motor, a auto-

catalytic colloid - capable of extracting energy from their environment to perform some

task and, typically (as in the cases we consider here), self-propel. In contrast with

passive systems relaxing towards NESS, which are driven out-of-equilibrium by external

global means (usually through their boundaries), active systems break DB at the level

of each of its constituents, defining a fundamentally different class of non-equilibrium

systems [21, 22].

A renewed interest in the characterization of NESS comes indeed from active

matter physics. The possibility to extend equilibrium-like concepts to characterize

active matter, in particular their NESS, has been the focus of intense efforts over

the past decade. Most of our general understanding of such fundamental aspects of

active matter has been gained through the detailed investigation of simple models of

self-propelled particles, such as the Active Brownian Particles (ABP) [23, 24, 25, 26]

and Active Ornstein-Uhlenbeck Particles (AOUP) [27, 28, 29, 30, 31, 32] models

that we consider here. Quantities such as the pressure or chemical potential have

been defined for model active systems and exploited to characterize their phase

behavior and the nature of the (non-equilibrium) phase transitions they exhibit

[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 26, 44].

Attempts to extend the FDT to characterize the linear response of active systems

has been limited to specific cases or regimes, mostly considering activity as a small

parameter. In [45, 46], activity is treated as the perturbation on an otherwise equilibrium

state, while in [30] a FDR is obtained in a small activity regime for which the dynamics

of the system fulfills DB. In both cases, the reference state that is perturbed is not a

genuine NESS: in the first case, it is an equilibrium state with Boltzmann statistics, while

in the latter an effective equilibrium state with a generalized potential. The fundamental

difficulties arising from the violation of DB are therefore bypassed. The linear response

beyond such small activity limit has been analyzed for a single active particle in [47]. In

[48], response functions were obtained beyond such limit regimes, although they are not

written in terms of NESS time-correlation functions, as one wills for establishing FDR,

but as weighted averages (in the spirit of Malliavin weight sampling [49]). Another

strategy consists in systematically quantifying the violations of the FDT through an

effective temperature [50, 51, 27, 52, 53, 54, 55, 56, 57, 58]. While this approach

provides useful insights into the dynamics of NESS, it does not carry the same piece

of information as a FDR, i.e. a generic way to asses the response function of an active

system in terms of the steady-state fluctuations of measurable observables. Activity

results on transport phenomena which are impossible in equilibrium passive systems, as

recently observed in experiments involving biological microorganisms [59, 60, 61, 62] as

well as artificial phoretic motors [63, 64, 65, 66]. A key step towards the fundamental

understanding of active materials is to characterize transport coefficients and establish

extended Green-Kubo expressions resulting from the FDR.
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Here we address the question of how systems interacting active particles respond to

an external small perturbation. Although the non-equilibrium nature of active systems

is intrinsically different from the one of passive driven systems, as for the construction

of a linear response theory, the fundamental difficulty to be tackled in both cases

is the breakdown of DB. We first establish a general constraint on the NESS to be

fulfilled by any Markovian dynamics, fulfilling or not DB. The framework and results

obtained apply to both systems with only even variables and even and odd variables

under Time-Reversal, such as overdamped and underdamped Langevin processes. Such

constraint on the NESS stands for a relation between the nature of the non-equilibrium

fluxes and the symmetry (under Time-Reversal) of the NESS distribution. We then

derive an extended FDR for stochastic dynamics breaking DB. We finally turn to the

application of these general results to archetypical models of active particles: Active

Brownian Particles (ABP) and Active Ornstein-Uhlenbeck particles (AOUP). For ABP

we consider the non-interacting limit and an effective equilibrium regime resulting from

a Markovian approximation as discussed in [67]. For AOUP we derive a genuine,

although approximated, non-equilibrium FDR unveiling the interplay between activity

and interactions. We discuss in detail the specificities of AOUP as compared with

ABP as well as the different approximation schemes used in the literature to deal with

many-body effects.

The paper is organized as follows. In section 2 we establish the general framework

and notation used throughout the paper. Section 3 recalls some general aspects of

equilibrium dynamics that are important to clarify before moving to non-equilibrium

dynamics. A reader familiar with the formalism of stochastic processes may directly

move to section 4, where general aspects of non-equilibrium dynamics are discussed: We

derive a general expression for the generator of the time-reversed dynamics and connect

it to the concept of entropy production, allowing the derivation of general constraints

a non-equilibrium stationary measure must fulfill. An extended FDR valid for systems

breaking DB is then derived and discussed. Section 5 is dedicated to the application of

these results to simple models of self-propelled particles (ABP and AOUP). Section 6

contains our conclusions and final remarks.

2. Stochastic dynamics: general aspects and definitions

2.1. Fokker-Planck equation

Our starting point is a generic system with N dynamic variables Γ ≡ {Γi}Ni=1 defined on

a manifold M ⊂ RN . We introduce a probability distribution Ψ which assigns Ψ(Γ, t)

to any point Γ ∈ M at a time t. The implicit assumption is the requirement for Ψ to

be smooth enough for its partial derivatives to exist.

Generically the time evolution of Ψ(Γ, t) is described by a generator Ω0(Γ):

∂tΨ(Γ, t) = Ω0(Γ)Ψ(Γ, t) (2)

together with an appropriate initial condition Ψ(Γ, 0). Formal integration of eq. (2)
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leads to Ψ(Γ, t) = eΩ0tΨ(Γ, 0). We denote Ψ0 the steady-state solution of the dynamics

above, meaning

Ω0Ψ0 = 0 . (3)

Up to here, we did not need to specify the nature of the dynamics. We shall now

focus on stochastic dynamics (although the following formalism could be extended to,

say, Hamiltonian dynamics). In that case, an extra assumption is needed to ensure

that eq. (2) is fully determined by the initial condition Ψ(Γ, 0) i.e. the requirement of

markovianity for {Γi} [68]. Whenever this assumption is met, the generator in eq. (2)

has the so-called Fokker-Planck form:

Ω0(Γ) =
∑
i

(
−∂iAi(Γ) +

∑
j

∂i∂jBij(Γ)

)
(4)

where ∂i ≡ ∂/∂Γi, A ≡ {Ai}Ni=1 is the drift vector and B ≡ {Bij}Ni,j=1 is the N × N

diffusion matrix. In the following, unless explicitly stated otherwise, we will take B to

be invertible and diagonal with constant entries, such that Bij ≡ Diδij.

The dynamics is fully specified by the knowledge of Ψ(Γ, t) or, equivalently, by the

knowledge of the conditional probability density P (Γ, t|Γ0, t0) defined as the probability

to be in Γ at time t given the configuration Γ0 at time t0. Eq. (2) can be recast in terms

of P (Γ, t|Γ0, t0) as

∂tP (Γ, t|Γ0, t0) = Ω0(Γ)P (Γ, t|Γ0, t0) (5)

which is often called forward equation to distinguish it from the backward equation:

∂t0P (Γ, t|Γ0, t0) = −Ω†0(Γ0)P (Γ, t|Γ0, t0) (6)

where Ω†0(Γ) =
∑

iAi(Γ)∂i + Di∂
2
i is the adjoint operator of Ω0. The main difference

between the two equations is the set of variables that we hold fix. In eq. (2) we fix the

initial condition at time t0 and we look at the evolution for t > t0. In eq. (6), instead,

we fix the final condition at time t and we look at the evolution for t0 < t. This remark

will show its relevance when characterizing the departure from equilibrium in systems

breaking DB.

2.2. Symmetry aspects under Time-Reversal

We shall distinguish the dynamic variables Γi according to their parity under Time-

Reversal

T : Γ ∈M 7→ εΓ ≡ {εiΓi} ∈ M, εi = ±1. (7)

Variables Γi for which εi = 1 are said even under Time-Reversal and variables for which

εi = −1 are said to be odd. For instance, if one has in mind the dynamics of a particle

in phase space, Γ = (x, p) and

T : (r, p) 7→ (r, −p) . (8)

The position variable r is even while momentum p is odd.
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The Fokker-Planck equation stands for the conservation of the probability density

and can thus be written in terms of a probability flux J ≡ {Ji}Ni=1 as

Ω0Ψ(Γ, t) = −∇ · J(Γ, t) = ∂tΨ(Γ, t) (9)

Ji(Γ, t) = Ai(Γ)Ψ(Γ, t)−Di∂iΨ(Γ, t) (10)

where ∇ ≡ {∂i}. Since we allow {Γi} to be either even or odd under Time-Reversal, we

can decompose the drift vector in a reversible and an irreversible part, A = Arev +Airr,

defined as

Arev
i (Γ) ≡ 1

2
[Ai(Γ)− εiAi(εΓ)] (11)

Airr
i (Γ) ≡ 1

2
[Ai(Γ) + εiAi(εΓ)] (12)

which, under Time-Reversal transform as

Arev
i (εΓ) = −εiArev

i (Γ), Airr
i (εΓ) = εiAirr

i (Γ) . (13)

We thus identify two distinct contributions to the total probability flux Ji(Γ, t) =

J rev
i (Γ, t) + J irr

i (Γ, t), where

J rev
i (Γ, t) = Arev

i (Γ)Ψ(Γ, t) (14)

J irr
i (Γ, t) = Airr

i (Γ)Ψ(Γ, t)−Di∂iΨ(Γ, t) . (15)

We denote the steady-state flux J0 and define the phase-space velocity as

V(Γ) ≡ J0(Γ)/Ψ0(Γ) = {Vrev
i + V irr

i }Ni=1. (16)

[In the following, we also report its time-dependence V(Γ, t) ≡ J(Γ, t)/Ψ(Γ, t)]. The

decomposition of the probability flux into two contributions with different symmetry

under Time-Reversal will play a central role in the following treatment [69, 70, 71]. All

the dissipative terms are embedded in eq. (15).

To illustrate the definitions above, let us consider a simple example: a Brownian

particle, moving in one dimension, at position x(t) and momentum p(t) at time t, i.e.

Γ = (x, p), described by the following Langevin equation:

ẋ(t) = p(t) ṗ(t) = −U ′(x)− γp(t) +
√

2γkBTξ(t) (17)

where −U ′(x) is the total force exerted on the particle, which can either come from

inter-particle interactions or an external field, γ is the drag coefficient and ξ(t) is a

Gaussian white noise of zero mean and unit variance. Here and in the rest of the paper

we set the mass m ≡ 1. We consider here the one dimensional case for simplicity, though

the extension to higher dimension is straightforward. The last two terms of the right

hand side account for the coupling of the particle with a thermal bath at temperature

T , source of noise and dissipation. In equilibrium, the FDT constraints the amplitude

of the noise and dissipation to be related, as made apparent in the equation above. The

latter Langevin equation, can be equivalently written as the Fokker-Planck equation,

with drift vector

A =

[
Ax = p(t)

Ap = −U ′(x)− γp(t)

]
(18)
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and diffusion matrix

B =

[
0 0

0 γkBT

]
. (19)

Under Time-Reversal, the dynamic variables transform as

εΓ = ε

[
x

p

]
=

[
x

−p

]
. (20)

We now apply the definition of the reversible and irreversible drift vectors Eqs. (11-12)

and find

Arev =

[
p(t)

−U ′(x)

]
, Airr =

[
0

−γp(t)

]
. (21)

(22)

In the overdamped limit, the Brownian particle can be described by

ẋ(t) = −µU ′(x) +
√

2µkBTξ(t) (23)

where µ = 1/γ. The drift and diffusion vector thus read

A = −µU ′(x) = Airr , B = µkBT = Dx . (24)

In this case, the only dynamic variable is x, which is even. The absence of odd variables

implies the absence of reversible fluxes, and thus Arev is identically zero.

It is worth at this stage to make a few remarks. For the underdamped system, B is

non-invertible. This will have a consequence on the determination of the steady-state

distribution fulfilling DB as shown in the next sub-section; see therein for more details.

Finally, in the absence of dissipation (and diffusion) the generator Ω0 would be identified

with the Liouville operator. In that case, the irreversible part of the flux would vanish

and the motion would be purely reversible, as expected from Time-Reversal symmetry

of the ‘microscopic’ Hamilton equations of motion.

2.3. Observables

In this section we fix some notations and definitions that will be used in the following.

Physical observables are represented by real functions acting on M, such that

A : Γ ∈M 7→ A(Γ) ∈ R. Their steady-state average is defined as

〈A〉0 =

∫
M
dΓA(Γ)Ψ0(Γ) (25)

and the ensemble average at time t is defined as

〈A〉t =

∫
M
dΓA(Γ)Ψ(Γ, t) =

∫
M
dΓA(Γ)eΩ0tΨ(Γ, 0) . (26)

The time evolution may be given to the observables (instead of the probability

distribution) using the adjoint of the Fokker-Planck generator

〈A〉t =

∫
M
dΓeΩ†

0tA(Γ)Ψ(Γ, 0) ≡
∫
M
dΓA(t)Ψ(Γ, 0). (27)
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ti ti
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tf tf
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Figure 1. Illustration of a dynamics verifying Detailed Balance: the probability to

transit from an initial steady-state Γi, to a final steady-state Γf , must be equal to the

probability of the reverse transition, meaning, the probability of the transition from

an initial steady-state εΓf (the time-reversed version of Γf ), to εΓi.

Both expressions of 〈A〉t are fully equivalent and are respectively referred to as the

Schrödinger and Heisenberg representation, by analogy with quantum mechanics [72].

In the Schrödinger the time dependence is encoded in the probability density (analogous

to the wave-function), while in the Heisenberg representation, the time dependence is

encoded in the observables, which are now explicitly time-dependent and are evolved

by the adjoint of the evolution operator (analogous to Hermitian operators acting on a

Hilbert space).

The function RA(t, s) encodes the linear response of an observable A, due to a

perturbation h, applied at t = 0, conjugated to an observable B which results in a

change of generator Ω0 → Ω = Ω0 + Ωext. It is defined as

〈A〉t − 〈A〉0 =

∫ t

0

dsRA(t, s)h(s) +O(h2) , t > s. (28)

Then, writing the response function RA as given by the equilibrium FDT eq. 1,

considering a constant perturbation h and integrating by parts, we obtain

〈A〉t − 〈A〉0 = hβ[〈A(t)B(t)〉 − 〈A(t)B(0)〉] (29)

In its integrated version, the equilibrium FDT reduces to a simple linear relation between

the integrated response and its conjugated correlation function.

3. A preamble: Equilibrium dynamics

3.1. Detailed Balance

Whether we interpret a stochastic dynamics as deriving from an underlying microscopic

description fulfilling the laws of classical or quantum mechanics or not, DB constitutes

the key symmetry of equilibrium. A system is said to satisfy DB if, at stationarity, any

microscopic process is balanced by the reversed one. It can thus be formally written as

P (Γf , tf |Γi, ti)Ψ0(Γi) = P (εΓi, tf |εΓf , ti)Ψ0(εΓf ) (30)
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for any pair of states (Γi,Γf ) and at any times (ti, tf ) (see cartoon Fig. 1). By setting

ti = tf in eq. (30) we get:

Ψ0(Γ) = Ψ0(εΓ), ∀Γ ∈M . (31)

It follows that the mean value of any current-like observable, i.e. A(εΓ) = −A(Γ)

must be zero if DB is fulfilled §. Rather than being a symmetry at the level of

single trajectories (as for the microscopic description), DB is formulated in eq. (31)

as a symmetry property of the steady-state distribution Ψ0(Γ). Actually, a necessary

and sufficient condition for DB to hold is the absence of irreversible fluxes in steady

conditions [73]:

Detailed Balance ⇔ J irr
0 = 0 (32)

where J irr
0 = {Airr

i (Γ)Ψ0(Γ)−Di∂iΨ0(Γ)}Ni=1. This means that, reversible steady-state

fluxes are not constrained by DB. To illustrate this aspect let us go back to the example

of the Brownian particle. In the absence of even variables, i.e. in the overdamped regime,

DB corresponds precisely to the absence of steady-state fluxes (since J rev = 0). However,

in the presence of odd (momentum-like) variables as in the underdamped description,

reversible steady-state fluxes can be present in a system fulfilling DB (although physical

currents must have all zero ensemble averages, see eq. (31)) [74, 75].

The absence of irreversible fluxes can be rewritten as

∂i log Ψ0(Γ) = D−1
i Airr

i (Γ), (33)

which in turn imposes the so-called ’thermodynamic curvature’ (the curl in N

dimensions) [76] of the irreversible drift to vanish:

D−1
i ∂jAirr

i (Γ)−D−1
j ∂iAirr

j (Γ) = 0 . (34)

The latter expression provides an alternative definition of DB in terms of geometrical

properties of the drift and diffusion terms. The advantage of eq. (34) over the definition

in Eqs.(32-33) is that it allows to verify if a dynamics fulfills or not DB without the need

of finding Ψ0(Γ). The constraint imposed by DB on the steady-state currents provides

a natural route to explicitly derive a steady solution. Whenever eq. (34) is satisfied, one

can derive a steady solution by direct integration. No such a procedure exists if DB is

broken, and no prescribed functional form of the multivariate Fokker-Planck equation

can be derived in general. This is precisely the great advantage of equilibrium dynamics:

the steady-state can be solved just by quadrature, giving the equilibrium distribution

Ψ0(Γ) = Ψeq(Γ) = N exp

[∑
i

∫
D−1
i Airr

i dΓi

]
(35)

with N the normalization constant such that
∫
dΓΨ0(Γ) = 1.

It is straightforward to apply eq. (35) to the case of an equilibrium Brownian

particle in the overdamped limit, eq. (23). In this case the integral in eq. (35) gives the

§ Note that here we are referring to physical currents and not to the probability current Ji in eq. (9).

Indeed, eq. (31) implies 〈A〉0 =
∫
dΓA(εΓ)Ψ0(εΓ)= −

∫
dΓA(Γ)Ψ0(Γ) = −〈A〉0 if A(εΓ) = −A(Γ).
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Boltzmann distribution Ψeq(Γ) = N exp [−βU(x)]. As we mentioned previously, a little

care must be taken when applying eq. (35) to the underdamped particle of eq. (17) -

since in this case, the diffusive matrix is non invertible, see eq. 19. The integral over

the phase space in eq. (35) has to be carried on momenta only, to find

Ψeq(Γ) ∼ exp
[
−βp2/2 + Λ(x)

]
(36)

with Λ(x) a function of spatial coordinates to be determined by imposing stationarity

(i.e. Ω0Ψ0 = 0). In the presence of odd variables (underdamped case), the steady-state

distribution is not fully determined by DB, which only constraints irreversible fluxes,

but one has also to explicitly apply the evolution equation to specify the dependence on

positions, which, as expected, results in Λ = U .

3.2. The Fluctuation-Dissipation Theorem

We focus now on the linear response of a system initially prepared in a steady-state.

At t = 0 we apply an infinitesimal perturbation to the drift vector A → A + δA. The

evolution equation (2) now reads:

∂tΨ(Γ, t) = ΩΨ(Γ, t) = [Ω0(Γ) + Ωext(Γ)] Ψ(Γ, t) (37)

where

Ωext(Γ)Ψ(Γ, t) = −∇ · [δA(Γ)Ψ(Γ, t)] . (38)

accounts for the perturbation. Since the generator Ω does not explicitly depend on time,

we can write [77]:∫ t

0

d

dt′
eΩt′dt′ =

∫ t

0

ΩeΩt′dt′ = eΩt − 1 . (39)

We now use the latter expression into Ψ(Γ, t) = eΩtΨ(Γ, 0) to obtain, to first order in

δA,

Ψ(Γ, t) = Ψ0(Γ) +

∫ t

0

dt′eΩ0(Γ)t′Ωext(Γ)Ψ0(Γ) . (40)

For an observable A, we then find the so-called Agarwal FDR [9]:

〈A〉t − 〈A〉0 =

∫ t

0

ds 〈A(s)B(0)〉0 , B(0) ≡ Ωext(Γ)Ψ0(Γ)

Ψ0(Γ)
(41)

where B is the observable conjugated to the perturbation δA and 〈·〉0 is the ensemble

average weighted with the initial stationary distribution Ψ0. Alternatively, using eq. (38)

into (41) the integrated response can be expressed as:

〈A〉t − 〈A〉0 = −
∫ t

0

ds〈A(s) [∇ · δA+ δA ·∇ log Ψ0] (0)〉0 (42)

which resembles the FDR as originally appeared in [78] in the context of dynamical

systems. At this level, no equilibrium hypothesis has been made and, as such, Eqs.

(41-42) remain valid also for NESS. For an equilibrium system fulfilling DB, i.e.

Ψ0(Γ) = Ψeq(Γ), the conjugated observable B can be computed explicitly.
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Figure 2. Illustration of the conditional probability f introduced to quantify

violations of DB. A force F is applied to a colloidal particle, which favors motion

towards the right, and thus f(Γ0, t|Γ, t0) < P (Γ, t|Γ0 t0). In the absence of

external drive, DB is satisfied and there is no preference to move right or left, thus

f(Γ0, t|Γ, t0) = P (Γ, t|Γ0 t0).

As an illustration, we consider again a one-dimensional overdamped Brownian

particle in contact with a thermal bath at temperature T that we perturb by applying, at

t = 0, a constant external force h. In this case Ω0 = µ∂x[kBT∂x − F ] with F ≡ −U ′(x)

the conservative force acting on the particle and Ωext = −µh∂x. From eq. (35) we

immediately obtain the Boltzmann distribution, and from eq. (41)

〈A〉t − 〈A〉0 = −µβh
∫ t

0

ds〈A(s)F (0)〉0 . (43)

If we now replace µF = ẋ−√2µkBTξ and use the fact that RA(t) =
√
βµ/2〈A(t)ξ(0)〉

[79] we find the following familiar form of the FDT for Brownian suspensions

〈A〉t − 〈A〉0 = βh

∫ t

0

ds〈A(s)ẋ(0)〉0 . (44)

From this relation, it is straightforward to derive Green-Kubo expressions for transport

coefficients, such as the mobility and diffusivity. For instance, by choosing A ≡ ẋ we

find the well-known expressions

µ = lim
t→∞

〈ẋ〉t
h

= β

∫ ∞
0

ds〈ẋ(s)ẋ(0)〉0, D =

∫ ∞
0

ds〈ẋ(s)ẋ(0)〉0 . (45)

4. Non-equilibrium dynamics

4.1. Quantifying the violations of Detailed Balance

In order to quantify the breakdown of DB we introduce the conditional probability to

go from Γ to Γ0 forward in time (see Fig. 2):

f(Γ0, t|Γ, t0) ≡ Ψ0(εΓ)

Ψ0(Γ0)
P (εΓ0, t|εΓ, t0) . (46)

Whenever DB holds f(Γ0, t|Γ, t0) = P (Γ, t|Γ0 t0). When DB is violated, such

identification is no longer valid. Nevertheless, it is still interesting to look at the
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evolution equation for f(Γ0, t|Γ, t0) as it allows us to quantify the breakdown of DB.

Following [80] we write the backward evolution equation for P (εΓ0, t|εΓ, t0):

∂tP (εΓ0, t|εΓ, t0) =
∑
i

εiAi(εΓ)∂iP (εΓ0, t|εΓ, t0) +Di∂
2
i P (εΓ0, t|εΓ, t0) . (47)

If we multiply both sides of the latter equation by Ψ0(εΓ)/Ψ0(Γ0), and use the definition

of f(Γ0, t|Γ, t0), we obtain

∂tf = Ω0(Γ)f +
∑
i

∂i
[
f
(
2Airr

i (Γ)− 2Di∂i log Ψ0(εΓ)
])

(48)

where, for simplicity, we write f(Γ0, t|Γ, t0) ≡ f . When DB holds, we recover the

Fokker-Planck equation: since the initial condition for f(Γ0, t|Γ, t0) and P (Γ, t|Γ0, t0)

is the same by definition, it follows that f = P (Γ, t|Γ0, t0), as expected.

The evolution of f is generated by the time-reversal operator, Ω̄0, defined as

∂tf(Γ0, t|Γ, t0) ≡ Ω̄0(Γ)f(Γ0, t|Γ, t0) = Ψ0(εΓ)Ω†0(εΓ)
[
f(Γ0, t|Γ, t0)Ψ0(εΓ)−1

]
. (49)

Its adjoint

Ω̄†0(Γ) = Ψ0(εΓ)−1Ω0(εΓ)Ψ0(εΓ) , (50)

has a precise dynamical meaning: it evolves (forward in time) the observable A along

time-reversal paths, i.e.

〈A〉(−t) ≡
∫
dΓΨ0(Γ)eΩ̄†tA(Γ), t > 0 (51)

generalizing the formulation of Baiesi and Maes [19] to systems with odd variables. The

above definition of the time-reversal operator and the expression of its adjoint in terms

of the original generator, do not rely on any assumption concerning the steady-state

distribution. From eq. (50), one easily finds the following expression quantifying the

breakdown of DB in terms of irreversible probability fluxes:

Ω†0(Γ)− Ω̄†0(Γ)

2
=
εJ irr

0 (εΓ)

Ψ0(εΓ)
·∇ ≡ εV irr(εΓ) ·∇ . (52)

It immediately follows that DB holds if and only if the time-reversal operator equals

the original generator of the dynamics

Detailed Balance ⇔ Ω0(Γ) = Ω̄0(Γ) . (53)

Since DB only constraints irreversible fluxes to vanish, it is thus expected that its

breakdown only concerns their presence. The status of DB as a symmetry of the

dynamics is now transparent. These expressions are general and can be exploited to

quantify the breakdown of DB in systems with both odd and even variables, such as

collections of interacting particles with inertia [81] or noisy RLC circuits [82].
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4.2. General constraints on Non-Equilibrium Steady-States

It is useful to notice that the irreversible phase-space velocity quantifying the non-

equilibrium character of the dynamics, or breakdown of DB, is directly related to the

housekeeping entropy production, i.e. the entropy being produced in a NESS. For a

stochastic dynamics described by the Fokker-Planck equation (9-10), the housekeeping

entropy production rate is expressed as [88]:

〈Ṡhk〉t = kB
∑
i

∫
dΓD−1

i Ψ(Γ, t)
(
εV irr

i (εΓ)
)2 ≥ 0 (54)

where we recognize inside the integral the phase space velocity quantifying the violations

of DB. The house-keeping term constitutes the entropy production necessary to sustain

a NESS and it is positive as soon as DB is broken. It may be compared with the

standard formula for the total entropy production [83, 84, 88]:

〈Ṡtot〉t = kB
∑
i

∫
dΓD−1

i Ψ(Γ, t)
(
V irr
i (Γ, t)

)2 ≥ 0 . (55)

embedding contributions coming from the breakdown of DB as well as from any

time-dependent processes (the so-called excess entropy production). By definition, in

stationary conditions, Ṡhk must reduce to the total entropy change Ṡtot, since no time-

dependent contribution is present. While this is obvious for even variables only, in

presence of odd variables this observation provides a general constraint on the phase-

space velocity such that:[
V irr
i (εΓ)

]2
=
[
V irr
i (Γ)

]2
. (56)

This constitutes one of our main results: as we will show below, this equality constraints

any NESS and allows to relate the nature of the irreversible fluxes, responsible for the

breakdown of DB, with the symmetry of the NESS distribution Ψ0.

In order to illustrate this general result and its consequences, we now consider a

paradigmatic non-equilibrium model: a one-dimensional particle in a periodic potential

U , coupled to a thermal bath and driven out-of-equilibrium by a non-conservative force

F ‖. The Langevin equation governing the dynamics of such system is (see Fig. (2))

ẋ(t) = p(t) ṗ(t) = −U ′(x) + F − γp(t) +
√

2γkBTξ(t) . (57)

In this simple case, the two components of irreversible part of the phase-space velocity

which enter in eq. 56 read

V irr
x (x, p) = 0 (58)

V irr
p (x, p) = − γp− γkBT

∂

∂p
log Ψ0(x, p). (59)

As we already mentioned, Ψ0 does not necessary have a given parity under Time-

Reversal. Nevertheless (without lack of generality) we may rewrite it as:

Ψ0(x, p) = N exp(−Φ(x, p)) = N exp [−(Φ+ + Φ−)] (60)

‖ Periodicity is needed in order to guarantee the existence of a steady-state.
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where we have decomposed the generalized potential Φ into an even and odd

contribution: Φ(x,−p)± = ±Φ(x, p) ¶. Then, the general constraint eq. (56) yields

Φ+(x, p) = β
p2

2
+ Λ(x) (61)

V irr
p (x, p) = γkBT

∂Φ−
∂p

(62)

where Λ(x) is any derivable function of x. Thus, the even part of the generalized

potential must be of the latter form, meaning that even terms p2n with n > 1 are

strictly forbidden in the NESS distribution. As expected, the dependence of Ψ(x, p) on

the positions, which are associated to reversible fluxes, is not constrained at all. Instead,

irreversible fluxes are given by (gradients of) the odd part of the generalized potential.

Thus, eq. (56) establishes a generic, and explicit, relationship between irreversible fluxes

and the symmetry of the NESS distribution.

In the limit U → 0, the NESS distribution of this simple model can be computed

analytically and consists in a ’tilted’ Gaussian distribution in p and a uniform

distribution in x, such as :

Ψ0(x, p) = N exp

[
−(p− 〈p〉)2

2kBT

]
(63)

where 〈p〉 = F/γ is the mean velocity of the particle. Combining eq. (63) with eq. (62)

we find Φ− = −pF/γkBT and consequently:

V irr
p = − F (64)

〈Ṡhk〉0 =
F 2

γT
> 0 (65)

which reveals the non-equilibrium character of this system and the nature of its phase

space velocity: it is proportional to the particle net current, resulting in a positive

house-keeping entropy production.

Now turning back into a more general discussion, eq. (56) can be rewritten in terms

of the generalized potential as[
Airr
i +Di∂iΦ+

]
Di∂iΦ− = 0 ∀i (66)

which, in order to be verified, requires one of the two following set of conditions:

∂iΦ+(Γ) = −D−1
i Airr

i (Γ) or ∂iΦ− = 0 . (67)

Note that if both constraints are fulfilled simultaneously then the system obeys DB

[see eq. (33)]. Eq. (56) ’relaxes’ one of the two constraints, allowing to distinguish two

different ways of breaking DB, namely

Φ−(Γ) = 0 but ∂iΦ+(Γ) 6= −D−1
i Airr

i (Γ) (68)

or

∂iΦ+(Γ) = −D−1
i Airr

i (Γ) but Φ−(Γ) 6= 0 . (69)

¶ The generalized potential is assumed to be a differential function of the dynamic variables.
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Any non-equilibrium system with only even variables falls into the first category. On the

contrary, systems with odd variables, such as the driven underdamped Brownian particle

considered above or the Active Ornstein-Ulhenbeck Particles that we treat in detail in

section 5.2, fall into the second category. For systems with odd variables, it follows that

the irreversible flux is directly related to the odd part of the NESS distribution, such

that:

V irr
i (Γ) = Di∂iΦ−(Γ) . (70)

4.3. Extended Fluctuation-Dissipation Relations

We now consider a system initially prepared in a NESS with probability distribution

Ψ0. At time t = 0, we apply a perturbation such that A → A + δA. Although the

Agarwal FDR eq. (41) remains valid, the lack of knowledge on Ψ0 does not allow us

to derive an explicit expression of the response function in terms of NESS correlations.

To move further, an option would be to provide a reliable scheme to approximate Ψ0.

We follow this strategy in the next section when dealing with active particles. However,

some general expressions can be establish through the NESS properties derived above.

For instance, alternative FDRs can be written in a way that explicitly relate the non-

equilibrium response of the system to the symmetry properties of Ψ0.

The Agarwal FDR can be rewritten in terms of the even and odd part of the NESS

distribution as

〈A〉t − 〈A〉0 =
∑
i

{
−
∫ t

0

ds〈A(s)(∂iδAi)(0)〉0 +

∫ t

0

ds〈A(s)(δAi∂iΦ+)(0)〉0

+

∫ t

0

ds〈A(s)(δAi∂iΦ−)(0)〉0
}
. (71)

We then make use of the relations, derived in the previous section, between the

generalized potential and the phase space velocity to establish the following extended

FDR

〈A〉t − 〈A〉0 =
∑
i

{
−
∫ t

0

ds〈A(s)(∂iδAi)(0)〉0 −D−1
i

∫ t

0

ds〈A(s)(δAiAirr
i )(0)〉0

+D−1
i

∫ t

0

ds〈A(s)(δAiV irr
i )(0)〉0

}
(72)

which is valid both for overdamped and underdamped systems in the presence any

type of external perturbation δA. As such, it generalizes the FDR appearing in

[12, 19, 89], derived for an overdamped particle subjected to a conservative perturbation

δA ≡ −µ∂xU , for which it reduces to:

〈A〉t − 〈A〉0 = D−1
x µ

∫ t

0

ds

(〈
A(s)U̇(0)

〉
0
−
〈
A(s)∂xU(0)V irr

x (0)
〉

0

)
(73)

and if we consider the perturbation to be a constant force of amplitude h, U ≡ hx, we

end up with the non-equilibrium extension of the FDT eq. (44) as derived by Speck and
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Seifert [12]:

〈A〉t − 〈A〉0 = D−1
x µh

∫ t

0

ds

(
〈A(s)ẋ(0)〉0 −

〈
A(s)V irr

x (0)
〉

0

)
. (74)

The term comprising the irreversible phase space velocity is responsible for the non-

equilibrium character of the dynamics as it encodes the breakdown of DB. We notice by

comparing (71) and (72) that in the presence of odd variables, full knowledge on Ψ0 is

not required to determine the response, but only on its odd part under Time-Reversal.

5. Application to Active Particles

5.1. Active Brownian Particles

5.1.1. The model We consider now N two-dimensional overdamped Active Brownian

Particles (ABP) moving in two-dimensional space. They self-propelled with a constant

velocity v0, along their orientation ni = (cos(θi), sin(θi)) and obey the following set of

coupled Langevin equations

ṙi(t) = µ0F i + v0ni(t) + ξi(t) , θ̇i(t) = νi(t) (75)

where F i = −∂U/∂ri, µ0 is the single particle mobility and ξ and ν are zero-

mean Gaussian noises verifying 〈ξi(t)ξj(t′)〉 = 2µ0kBTδijδ(t − t′)1 and 〈νi(t)νj(t′)〉 =

2Dθδijδ(t− t′). It follows that

〈ni(t) · ni(0)〉 = e−Dθt , (76)

defining a persistence time τ = 1/Dθ. We define the Péclet number Pe=v0/σDθ

where σ is a characteristic length-scale set, for instance, by the inter-particle potential.

Equilibrium is recovered both in the limit of v0 → 0 or τ → 0. In both cases, the

departure from equilibrium can be quantified by Pe. The generator, or Fokker-Planck

operator, corresponding to this Langevin dynamics is

Ω0(Γ) =
∑
i

∂

∂ri
(µ0kBT

∂

∂ri
− µ0F i − v0ni) +Dθ

∑
i

∂2

∂θ2
i

(77)

where Γ ≡ {ri, θi}: All dynamical variables in ABP are considered even under Time-

Reversal.

5.1.2. Non-equilibrium character and non-interacting regime For ABP, DB is fullfilled

if and only if {
(µ0F i + v0ni) Ψ0(Γ) = µ0kBT

∂
∂ri

Ψ0(Γ)
∂
∂θi

Ψ0(Γ) = 0
(78)

These two equations can not simultaneously hold due to the self-propulsion term,

and therefore, ABP generically break DB. By integrating the first condition, we get

log Ψ0 ∼ −β[U −∑i v0ni · ri/µ0]. However, the second condition imposes Ψ0 to be a

function of positions only, which is inconsistent with the first condition because of the
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term in ni · ri. In the passive case, v0 → 0, DB is recovered together with the standard

Boltzmann distribution.

An illustrative example for which we can explicitly compute the phase space velocity

is a free ABP. The Fokker-Plank generator reads Ω0 =
[
∂r(µ0kBT∂r − v0n) +Dθ

∂2

∂θ2

]
.

A stationary solution of the Fokker-Planck equation can be derived Ψ0(r, θ) = ρ0/2π

[90]. The phase space velocity corresponding to this homogeneous NESS is

V irr(t) = (V irr
r ,V irr

θ ) = (v0n(t), 0) (79)

Since the system is overdamped, there are no reversible fluxes. In order to apply the

extended FDR, we consider a constant force perturbation h applied along the x-axis.

By choosing A = ẋ in eq. (73) we obtain

〈ẋ〉t
h

= β

∫ t

0

ds〈ẋ(s)ẋ(0)〉0 − βv0

∫ t

0

ds〈ẋ(s) cos θ(0)〉0 (80)

resulting in the following extended Stokes-Einstein relation in the long time regime

D/µ0 = kBT +
v2

0

2Dθµ0

. (81)

Therefore, non-interacting ABP fulfill the Stokes-Einstein relation with an effective

temperature

Teff/T = 1 +
v2

0

2Dθµ0kBT
. (82)

It is worth noting here that, although ABP generically break DB in a fundamental way

(and do not allow for a zero current steady-state solution), in the non-interacting limit

they admit a NESS which fulfills the Stokes-Einstein relation.

5.1.3. Interacting regime: an effective Markovian description As as evidenced by the

extended FDR eq. (72), the response of a non-equilibrium system is not completely

determined by NESS correlations of physical observables, but also depends on the

specific form of its phase space velocity. In other to establish explicit FDR for interacting

ABP one can approximate the dynamics by an effective equilibrium one that fulfills DB.

Such kind of approximation has been used for ABP and also AOUP and come under

different names, the most usual ones being Unified Colored Noise and Fox approximation

[91, 92, 29, 93]. In both cases, the steady-state distribution does not correspond to

the equilibrium Boltzmann distribution in terms of the energy function of the original

dynamics, but a ‘Boltzmann-like’ distribution in terms of an effective energy function

generating the approximated dynamics. Despite the non-Boltzmann character of the

steady-state distribution resulting from these approaches, all the difficulties associated

with the absence of DB are lifted and one can readily derive a FDR by direct application

of the general results presented in the previous section.

To be more specific, we turn now into the analysis of interacting ABP within the

Fox approximation [94, 95], as we previously presented in [67]. The starting point is

to integrate out the angular variables appearing in the ABP dynamics. As usual, the
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integration of some stochastic variables introduces memory in the dynamics, here in the

form of a colored noise with correlation time τ . The equations of motion (75) can be

approximated by

ṙi(t) = µ0F i + ηi(t) (83)

where the noise ηi is approximately Gaussian with zero mean and variance

〈ηi(t)ηj(s)〉 = (2µ0kBTδ(t− s) + v2
0e
−|t−s|/τ/2)δij1. The ABP dynamics in the reduced

configuration space Γ̃ ≡ {ri} is approximated by an effective Fokker-Planck dynamics

generated by the operator :

ΩM
0 (Γ̃) =

∑
α

∂α

(∑
β

∂βDβα(Γ̃)− µ0Fα(Γ̃)

)
(84)

where D ≡ {Dβα} is an effective 2N×2N diffusivity tensor and where greek indices run

over the spatial coordinates and the particle labels. To first order in τµ0∂αFβ, it reads

Dαβ(Γ̃) = µ0kBTδαβ +
v2

0τ

2
(δαβ + τµ0∂αFβ) . (85)

Note that the Fox approximation is meaningful only when |τµ0∂αFβ| < 1. As we show

below, this effective dynamics fulfills DB. The first step is to write the condition of DB

eq. (32) for the stationary probability density Ψ0(Γ̃):∑
β

Dβα(Γ̃)∂βΨ0(Γ̃) = Ψ0(Γ̃)

(
µ0Fα −

∑
β

∂βDβα(Γ̃)

)
. (86)

We then multiply both sides by D−1
αγ and sum over the index α to get:

∂γ log Ψ0(Γ̃) =
∑
α

D−1
αγ (Γ̃)

[
µ0Fα −

∑
β

∂βDβα(Γ̃)

]
≡ βF eff

γ (Γ̃) (87)

Using eq. (85) and eq. (87) the effective force may we re-expressed as [93]:

βF eff
γ (Γ̃) =

µ0

Da

Fγ(Γ̃)−
(
µ0v0τ

2Da

)2∑
α

∂γ(Fα(Γ̃))2 − ∂γ log[detD(Γ̃)] (88)

where Da ≡ µ0kBT +v2
0τ/2. It is now straightforward to verify that ∂βF

eff
γ −∂γF eff

β = 0.

As a result, the system fulfills DB and therefore the FDT. This in turn implies that F eff

derives from an effective potential, such that an analytical expression for Ψ0 in terms of

an effective energy function can be derived [29].

Before leaving this section, it is worth mentioning that a diagonal-Laplacian

approximation for D(Γ̃) was recently introduced and verified a posteriori [96, 97, 98, 93].

Within this approximation the effective force F eff
i on particle i reads:

F eff
i (Γ̃) = kBT (µ0F i − ∂iDi)/Di (89)

with

Di(Γ̃) = Da

(
1

1− τµ0∂i · F i

)
(90)

where ∂i · F i = ∂xiF
x
i + ∂yiF

y
i , further simplifying the analysis of ABP within the Fox

approximation.
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5.2. Active Ornstein-Uhlenbeck Particles

5.2.1. The model We consider in this section a similar model of self-propelled particles,

now governed by the following set of two-dimensional overdamped Langevin equations

ṙi(t) = µ0F i + vi (91)

v̇i(t) = −vi
τ

+

√
2D0

τ 2
ηi(t) (92)

where F i ≡ −∂U/∂ri is a conservative force acting on particle i (whose origin

can be interactions with other particles or an external potential) and vi is the

fluctuating self-propulsion velocity which is described by an Ornstein-Uhlenbeck process

with characteristic persistence time τ . Self-propulsion introduces persistence in the

spatio-temporal dynamics of the active particles via the autocorrelation function of

the self-propulsion velocity 〈vi(t)vj(t′)〉 = D0/τe
−|t−t′|/τδij1 and reduces to passive

(equilibrium) Brownian motion in the limit τ → 0, for which 〈vi(t)vj(t′)〉 → 2D0δ(t −
t′)δij1. Although a standard thermal noise could be added into the Langevin equation

of AOUP, such contribution is assumed to be small with respect to the active noise v

and might be considered redundant, as it is not needed to recover equilibrium. These

AOUP can be thought of as an approximate treatment of the ABP dynamics. Indeed, the

reduced ABP dynamics obtained from the integration of the angular variables eq. (83)

can be identified, in the absence of translational noise (T = 0), to the AOUP dynamics

by setting v2
0/2 (in ABP) to D0/τ (in AOUP).

Although originally thought of as an overdamped process, eq. (91) involves velocity

variables v that can be considered as being odd under Time-Reversal. Following this

interpretation, eq. (91) can be rewritten as an underdamped Langevin process [30]

ṙi(t) = pi (93)

ṗi(t) = µ0(
∑
j

pj · ∂j)F i −
pi
τ

+ µ0
F i

τ
+

√
2D0

τ 2
ηi(t) (94)

where ∂i ≡ ∂/∂ri. The corresponding generator reads

Ω0(Γ) =
∑
i

[
−pi · ∂i − ∂pi ·

(
µ0(
∑
j

pj · ∂j)F i −
pi
τ

+ µ0
F i

τ
− D0

τ 2
∂pi

)]
(95)

where ∂pi ≡ ∂/∂pi and Γ = {ri,pi}.

5.2.2. Effective equilibrium regime For the AOUP model, the DB condition eq. (32)

reduces to:
1

τ 2
∂pi log Ψ0(Γ) = β(

∑
j

pj · ∂j)F i −
pi
D0τ

(96)

Its formal solution can be expressed up to a function Λ({ri}) that only depend on space

variables such as

Ψ0 = exp

[
−Λ({ri})−

βτ 2

2
(
∑
i

pi · ∂i)2U −
∑
i

τ

D0

p2
i

2

]
(97)
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where β ≡ µ0/D0. In order for DB to hold, the system must fulfill the following equation∑
i

[
∂iΛ +

βτ 2

2
(
∑
j

pj · ∂j)2∂iU −
β2D0τ

2
∂i
∑
j

|∂jU |2 − β∂iU
]

Ψ0 = 0.

(98)

This equation does not have a solution because of the second term comprising a

p−dependence. Interestingly, for a potential with vanishing third derivatives the latter

term vanishes and an exact ‘equilibrium’ solution exists [30, 32]:

Ψeq = N exp

[
−βU − τ

2

∑
i

(
p2
i

D0

+ β2D0|∂iU |2
)
− βτ 2

2
(
∑
i

pi · ∂i)2U

]
.(99)

We wrote equilibrium in quotes because, contrarily to the standard Boltzmann measure,

the probability of a given configuration is not solely given by e−βU , but by a more

complicated function, also involving p. This form is not a priori obvious from the

mere inspection of the generator of the microscopic dynamics. [The same remark holds

for ABP within the Fox approximation discussed earlier, as the effective potential eq.

88 can hardly be guessed from the original Fokker-Planck equation.] However, in this

equilibrium-like regime, AOUP fulfill DB, there are no irreversible fluxes, and the FDT

holds. An equilibrium solution also exists in the case of non-interacting particles U = 0

for which AOUP are formally equivalent to an ideal gas of underdamped particles. In all

other cases, for a generic U , the model breaks DB and therefore falls out-of-equilibrium.

5.2.3. Non-equilibrium regime: Chapman-Enskog expansion An approximated

stationary distribution Ψ0 for AOUP, beyond its equilibrium-like regime, has recently

been derived via the Chapman-Enskog expansion by Bonilla [32]. Our aim being to

study the impact of activity on the response of an interacting system, we briefly present

the Chapman-Enskog results as appeared in [32] and use them to establish extended

FDR for AOUP.

The Chapman-Enskog expansion constitutes a standard perturbative approach to

derive the Navier-Stokes equation from the Boltzmann equation [99, 100]. It is based

on the notions of local equilibrium and time scale separation. The latter is accounted

for by the introduction of a small parameter ε = `/L defined as the ratio between a

microscopic and a macroscopic characteristic length. In kinetic theory, ` is typically the

mean free path between collisional events and L the size of the system. Likewise, we

may associate to the AOUP two different scales: a microscopic one associated to the

persistence time τ and diffusive length
√
D0τ (characterizing the local persistence due

to activity), and a mesoscopic one associated to the inter-particle interactions, with a

’slow’ characteristic time τ0 and a large characteristic length L. We introduce the ratio

parameter ε ≡
√
D0τ
L
≡ τ

τ0
and rescale the AOUP equations of motion Eqs. (93-94)

according to t ≡ t/τ0, r ≡ r/L and F ≡ FL/β−1. The Fokker-Planck equation of

AOUP can thus be written in the following non-dimensional form∑
i

∂pi ·
(
pi + ∂pi

)
Ψ = ε∂tΨ+ε

∑
i

[pi·∂i+F i·∂pi+ε∂pi ·(
∑
j

pj·∂j)F i]Ψ(100)
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From here, the idea is to carry on a perturbative expansion in ε. For ε = 0, a solution

of eq. (100) is:

Ψ(ε=0)(Γ) =
e−

∑
i p

2
i /2

(2π)N
R(r, t) (101)

where R(r, t) is the normalized marginal density such that
∫

ΠidriR(r, t) = 1. For

a system with strong time-scale separation, ε � 1, we assume that the functional

dependence on {pi} and R in eq. (101) is preserved, and expand the probability

distribution as a power series in ε:

Ψ(Γ) =
e−

∑
i p

2
i /2

(2π)N
R(r, t; ε) +

∑
j

εjφ(j)(Γ, R) . (102)

The crucial assumption of the Chapman-Enskog method is to still interpret R in (102) as

the marginal distribution embedding the spatiotemporal dependence upon integration

over the velocities. This corresponds to impose for φ(j):∫
Πidpi φ

(j)(Γ, R) = 0 ∀j . (103)

The ansatz eq. (102) is inserted into eq. (100), resulting in a hierarchy of equations for

the various terms in the expansion. We solve the set of equations up to ∼ o(ε3) and

obtain the following (now made dimensional) probability distribution [30, 32]:

Ψ0(Γ) ' N exp

[
− βU −

∑
i

τ

2

(
p2
i

D0

+ β2D0(∂iU)2 − 3βD0∂
2
i U

)

− τ 2

2

(
β(
∑
j

pj · ∂j)2U + βD0

∑
i,j

(pj · ∂j)∂2
i U

)
+
τ 3

6
β(
∑
j

pj · ∂j)3U

]
.

(104)

Some details on the derivation of eq. (104) are given in the Appendix for the one

dimensional case. The generalization to higher dimensions is straightforward but lengthy

(see also [32] for further details).

We are now in the position of computing the non-equilibrium response of AOUP

up to third order in ε. First, let us decompose Ψ0 into its symmetric and antisymmetric

parts:

Φ+ = βU +
∑
i

τ

2

(
p2
i

D0

+ β2D0(∂iU)2 − 3µ0∂
2
i U

)
+
τ 2

2
β(
∑
j

pj · ∂j)2U

(105)

Φ− =
∑
i,j

τ 2

2
βD0(pj · ∂j)∂2

i U −
τ 3

6
β(
∑
i

pi · ∂i)3U . (106)

Note that, indeed Φ+ does not contain powers of p larger than 2, as forbidden by the

non-equilibrium constraint of eq. (56). The signature of the departure from equilibrium

is all embedded in Φ−, being different from zero (see eq. (69)). Particularly, the latter
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vanishes for a quadratic potential, as expected from the discussion in the previous

section.

We now apply a constant force h along the x-axis on a tagged particle n. In this

case, the extended FDR eqs. (71-72) reads

〈A〉t−〈A〉0 = δApn
[
−(Dpn)−1

∫ t

0

ds〈A(s)Airr
pn(0)〉0 +

∫ t

0

ds〈A(s)
∂Φ−
∂pxn

(0)〉0
]

(107)

where δApn = µ0h/τ and Dpn = D0/τ
2, leading to

〈A〉t−〈A〉0 = h

[
−τβ

∫ t

0

ds〈A(s)Airr
pn(0)〉0 +

µ0

τ

∫ t

0

ds〈A(s)
∂Φ−
∂pxn

(0)〉0
]
.(108)

The first term is directly determined upon making the identification Airr
pn = µ0(

∑
j pj ·

∂j)F
x
n − pxn/τ . The second integral requires the knowledge of the odd-symmetric part of

Ψ0, which, to third order in ε is given by eq. (106). All in all, we derive the following

FDR for AOUP

〈A〉t − 〈A〉0 = βh

[ ∫ t

0

ds〈A(s)pxn(0)〉0 − τµ0

∫ t

0

ds〈A(s)(
∑
j

pj · ∂j)F x
n (0)〉0 (109)

− 1

2
µ0τD0

(∫ t

0

ds〈A(s)
∂

∂xn
(
∑
j

∂j · F j)(0)〉0 −
τ

D0

∫ t

0

ds〈A(s)(
∑
j

pj · ∂j)2F x
n (0)〉0

)]
By choosing A ≡ pn we eventually obtain an extended Stokes-Einstein relation:

µ = β

[
D − τµ0

∫ ∞
0

ds〈pxn(s)(
∑
j

pj · ∂j)F x
n (0)〉0 (110)

− 1

2
µ0τD0

(∫ ∞
0

ds〈pxn(s)
∂

∂xn
(
∑
j

∂j · F j)(0)〉0 −
τ

D0

∫ ∞
0

ds〈pxn(s)(
∑
j

pj · ∂j)2F n(0)〉0
)]

where D is the many-body diffusivity D =
∫∞

0
ds〈pxn(s)pxn(0)〉. The expression above

embeds the violations to the usual Stokes-Einstein relation due to the interplay between

activity and inter-particle interactions, up to order o(τ 2). In the absence of interactions

the Stokes-Einstein relation is restored. This is also true for the case of a harmonic

potential U(r) = k|r|2/2, for which we are left with

µ = βeff

∫ t

0

ds〈pxn(0)pxn(s)〉0 (111)

being βeff = β(1 + µ0τk) an effective temperature which depends on the stiffness of the

external potential [27]. In contrast with ABP, the existence of a Stokes-Einstein relation

for a harmonic potential in AOUP is due to the fact that the model fulfills DB.

6. Conclusions

In this paper we have recalled, and discussed in detail, the pivotal role played by Detailed

Balance as the defining feature of equilibrium dynamics, and how its breakdown out-

of-equilibrium can be quantified by the presence of irreversible steady-state fluxes.
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We have analyzed the symmetry properties of such fluxes under Time-Reversal for

systems with odd and even variables, taking as illustrative examples Langevin processes

describing Brownian particles both in the underdamped and overdamped regimes. We

have developed a general formalism based on Fokker-Planck operators that allows us to

express irreversible steady-fluxes in terms of the difference between the generator of the

time-reversed dynamics and the original one.

By making the connection between the breakdown of Detailed Balance and the

different contributions to the entropy production, we derived a constraint of the

irreversible steady-state fluxes. This general result applies to non-equilibrium systems

and provides non-trivial information for systems with dynamic variables which are odd

under Time-Reversal. In particular, it constraints the functional dependence of the

NESS distribution on its odd variables. We then considered the linear response of a

system in a NESS and derived extended Fluctuation-Dissipation Relations, allowing

to express non-equilibrium response functions as NESS correlations and shedding light

upon the nature of the different terms responsible for violations of the equilibrium

Fluctuation-Dissipation Theorem.

We then apply these general results and formalism to Active Brownian Particles

(ABP) and Active Ornstein-Uhlenbeck Particles (AOUP). While ABP generically break

Detailed Balance, AOUP fulfill Detailed Balance in the dilute limit, or in the case

of a harmonic potential. The non-equilibrium nature of these two model systems is

therefore not equivalent. We then analyze their linear response in the presence of generic

many-body interactions in an approximated fashion. In the case of ABP, we recall

the Markov approximation method due to Fox and show that the effective dynamics

resulting from it fulfills Detailed Balance, and therefore also the standard Fluctuation-

Dissipation Theorem. For AOUP we exploit the Chapman-Enskog expansion performed

in [32] which allows to derive an extended Fluctuation-Dissipation Relation beyond its

effective equilibrium regime. We discuss the violations of the Stokes-Einstein relation in

these models of active particles and show the possibility of quantifying them in terms

of effective temperatures.

Although some of the results presented here were known, as the existence of

an effective equilibrium regime of AOUP and the NESS solution obtained from the

Chapman-Enskog expansion, the discussion about the violations of DB and the FDT

were scattered and scarce. The extended FDR, as well as the connection with the parity

of the NESS distribution and the constraint on the phase-space velocity we derived,

enrich previous discussions on non-equilibrium response, clarify the non-equilibrium

nature of active model systems and provide a set of analytic results that should be of

interest to study non-equilibrium systems in general, well beyond the context of active

systems.
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Appendix A: Chapman-Enskog method for one dimensional AOUP

Here we report some details of the Chapman-Enskog procedure for a one dimensional

system of AOUP. The starting point is the evolution equation (100) together with the

ansatz of Eqs. (102-103). By integrating (100) over p we obtain a conservation equation

for R:

∂tR = −∂x
∑
j

J (j) = −
∑
j

εj∂x

∫
dp p φ(j) ≡

∑
j

εjF (j) (112)

where J =
∑

j J
(j) is the probability flux.

We now substitute (112) into (100) and we obtain to first order in ε an equation for φ(1):

O(ε) : L[φ(1)] ≡ ∂p(p φ
(1) + ∂pφ

(1)) = p
e−p

2/2

√
2π

(∂xR + U ′R) (113)

In eq. (113) φ(1) has a gaussian dependence in momenta and we find:

φ(1) = −pe
−p2/2
√

2π
DR (114)

with DR ≡ U ′R+ ∂xR. Note that L[e−p
2/2] = 0 such that the functions φ(j) are defined

up to a constant in p which is uniquely determined by conditions (103). The second

order in ε reads:

O(ε2) : L[φ(2)] =
e−p

2/2

√
2π

[F (1)(R) + (p2 − 1)U ′′R] + p∂xφ
(1) − U ′∂pφ(1)(115)

From eq. (114) and (115) it follows that φ(2) is even in p, such that F (2) =
∫
dp p φ(2) = 0.

Using

L
[
p2 e

−p2/2
√

2π

]
= −2(p2 − 1)

e−p
2/2

√
2π

(116)

we find:

φ(2) = α(x)(p2 − 1)
e−p

2/2

√
2π

(117)

with α = 1
2
(∂xDR + U ′DR− U ′′R).

To third order in ε the evolution equation gives:

O(ε3) : L[φ(3)] =
δφ(1)

δR
F (1)(R) + p∂xφ

(2) − U ′∂pφ(2) − U ′′∂p(pφ(1)) (118)

which, using (114) and (117), together with the identity:

L
[
p3 e

−p2/2
√

2π

]
=
e−p

2/2

√
2π

3p(2− p2) (119)

gives:

φ(3) = p
e−p

2/2

√
2π

(β(x)p2 + γ(x)) (120)
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with β = −1
3
(Dα − U ′′DR) and γ = D∂xDR − ∂xα + U ′α. We truncate the hierarchy

of equations to ∼ o(ε3) and, going back to the conservative equation (112), we find an

expression for the first three components of the flux as a function of R:

J (1) = −DR (121)

J (2) = 0 (122)

J (3) = ∂xU
′′R (123)

We have therefore a closed approximated equation for the evolution of R:

∂R

∂t
= −ε∂x[−∂xR− U ′R + ε2∂x(U

′′R)] + o(ε3) (124)

Eq. (124) is readily solved by looking at the zero-flux steady-state with solution:

R(x; ε) = exp

[
−U − ε2

(
1

2
U ′2 − U ′′

)]
+ o(ε3) (125)

In turn (125) is used to find the explicit expressions of φ1,2,3 which are substituted in

(102) to get:

Ψ0(x, p; ε) = Ψ(0)

[
1 +

ε2

2
(1− p2)U ′′ + ε3

(
p3

6
U ′′′ − p

2
U ′′′
)]

+ o(ε3) (126)

Finally, we use (125) into (126) and interpret the term in square brakets as the

linearization of an exponential exp(x) ∼ 1 + x so that:

Ψ0(x, p; ε) ∼ exp

[
−p

2

2
− U − ε2

2

(
p2U ′′ + U ′2 − 3U ′′

)
+
ε3

2

(
p3

3
U ′′′ − pU ′′′

)]
+o(ε3)(127)
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