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Enhanced diffusion and non-Gaussian dynamics in driven magnetic nanoparticles
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We investigate the out-of-equilibrium dynamics of paramagnetic colloidal nanoparticles driven above a
triangular lattice of cylindrical ferromagnetic domains. We use an external precessing magnetic field to create a
dynamic energy landscape which propels the particles along complex trajectories, characterized by an alternation
of periodic orbital motion (localization) and stochastic particle jumping between nearest domains. We show that
this system is populated by localized particles as well as delocalized (transported) ones, and tune their relative
fraction via the field cone angle. Our driven system presents enhanced diffusive dynamics and an emergent
non-Gaussian behavior which can be explained by considering two coexisting dynamic transport modes.
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Introduction. The complex dynamics of particles driven
through periodic potentials is common to many physi-
cal systems in condensed matter physics, spanning from
charge density waves [1] to magnetotransport of electron
gases [2–4], vortex matter in high Tc superconductors [5–7],
skyrmions [8,9], and active matter systems [10]. Thus, de-
scribing and understanding the statistical properties of such
systems is especially important for fundamental reasons. On
the application side, the acquired knowledge can be also used
to design logic devices based on the motion of interacting
particles above periodic substrates [11–13]. Microscopic col-
loidal particles represent a versatile model system to investi-
gate these general phenomena [14], since they have tunable
interactions [15] and nowadays periodic potentials can be
easily engineered on such a length scale [16–20]. More-
over, advances in chemical synthesis enable one to produce
monodisperse and field responsive nanoparticles, which can
be used to test these phenomena on smaller length scales,
where thermal fluctuations play an important role.

An apparently unrelated phenomenon that has been re-
ported in several soft matter systems [21–28] is the non-
Gaussian diffusivity. This effect appears when a physical
system displays a mean-square displacement (MSD) 〈�r2〉 ≡
〈|r(t ) − r(0)|2〉 linear in time t , 〈�r2〉 = 2dDt , where d is the
system dimension and D the diffusion coefficient, while the
displacement distribution, Gs(r, t ) ≡ 〈δ(r − |ri(t ) − ri(0)|)〉,
is profoundly non-Gaussian. The surprise here comes from the
fact that it is often assumed that non-Gaussian Gs(r, t ) would
imply nondiffusive MSD, with 〈�r2〉 ∼ tα and an anoma-
lous exponent α �= 1 [29,30]. This behavior was initially
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interpreted as the result of an exponential distribution of
different diffusivities [31]. Another explanation provided later
was based on assuming the presence of a dynamic environ-
ment, such that a tagged particle experiences a continuously
changing environment [32,33]. This picture was placed in a
general framework which reconciles the diffusing diffusivity
model with a superstatistical description of the physical sys-
tem [34]. We note that non-Gaussian displacement distribu-
tions have been also observed in the past in other systems [35],
including glassy [36–38] or granular [39] materials. However,
for microscopic particles driven above periodic potentials,
MSD has been reported as superdiffusive [40] or ballistic [41],
not normal (α = 1), while the emergence of non-Gaussian
statistics was observed for diffusing (not driven) particles
confined above a plane [42–44].

In this Rapid Communication we experimentally demon-
strate non-Gaussian diffusivity in a driven colloidal system,
where paramagnetic nanoparticles are transported above a
two-dimensional triangular lattice of cylindrical Bloch walls.
We use a precessing magnetic field to modulate the stray
field on the surface of a magnetic bubble lattice and realize
a rotating energy landscape that forces the particles along
complex trajectories characterized by a random switching
between different orbital motions. We find that for a set of
field cone angles, the dynamics are described by a linear MSD
but a completely non-Gaussian displacement distribution. We
note that larger particles driven across a bubble lattice were
characterized by ballistic or localized trajectories but never
diffusive ones [41]. The presence of strong thermal fluctu-
ations weakens the pinning of the particles to the domain
walls and generates a fraction of particles which are unable to
follow the periodic magnetic modulation. Thus, our situation
is similar to the case of molecules adsorbed and transported
above a solid-liquid interface [45], although our system is
further characterized by the driving field superimposed to the
periodic substrate. Since many out-of-equilibrium effects ob-
served with colloidal particles occur also in other condensed
matter systems, such as vortex matter [46], we expect that our
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FIG. 1. (a) Schematic showing a paramagnetic nanoparticle
driven above a magnetic bubble lattice by a precessing magnetic field
with frequency ω and cone angle θ . One unit cell is highlighted in red
with a schematic of the 12 possible directions. The basic vectors are
a± = (

√
3a/2, ±a/2), where a = 3.1 μm is the lattice constant, and

gray circles illustrate the magnetic bubbles. (b) Polarization micro-
scope image of the magnetic bubble lattice with a few paramagnetic
colloids at zero external magnetic field (H = 0). The cylindrical
domains (gray circles) are visible due to the polar Faraday effect;
the scale bar is 10 μm. (c) Energy landscape of the bubble lattice
calculated at an elevation z = 0.37a (cone angle θ = 54.1◦) for t = 0
(top), t = 0.3π/ω, t = 0.5π/ω, t = 0.8π/ω, and t = π/ω (bottom).
Energy minima (maxima) are in red (yellow), and the schematic at
the bottom indicates the direction of the in-plane rotating field Hxy.

results will be more general and can be applied to other driven
systems through periodic potentials.

Experimental system. As colloids we use monodisperse
paramagnetic nanoparticles of diameter d = 540 nm and
magnetic volume susceptibility χ ∼ 1 (Microparticles PS-
MAG-COOH). The particles are doped with iron oxide grains,
and exhibit an induced magnetic moment m = d3πχH/6
under the action of an external magnetic field H . The parti-
cles are deposited above a triangular lattice (lattice constant
a = 3.1 μm) of cylindrical ferromagnetic domains, or “mag-
netic bubbles,” located in a ferrite garnet film (FGF) [47]
[see Fig. 1(a)]. The size of the domains can be controlled
by an external field perpendicular to the film, H = Hzẑ.
When Hz = 0 the domains have a radius R = 1.2 μm, while
for Hz > 0 (Hz < 0) their size reduces (increases) linearly
as R = a

√
(Hz/Ms + 1) sin (π/3)

2π
, where Ms ∼ 104 A/m is the

saturation magnetization of the FGF. To drive the particles
above the FGF, we use a precessing magnetic field which
is obtained by using five magnetic coils. Two pairs of coils
are arranged in a Helmholtz configuration and connected to
a power amplifier (IMG STA-800) fed by a wave generator

(TTi TGA1244). An additional coil is placed below the FGF
film to generate the static component Hz using a dc power
supply (EL302RT, TTi). The custom-made coils are mounted
on the stage of a polarization light microscope (Nikon, E400)
equipped with a 100×, 1.3 numerical aperture (NA) objective.
The particles are diluted in highly de-ionized water, so that
above the FGF film their interactions are negligible, and we
focus on the individual particle dynamics.1 We use digital
video microscopy [48] to track the positions ri ≡ [xi(t ), yi(t )]
of N particles above the FGF, with i = 1N .

Particle transport. Once located above the FGF, the parti-
cles are pinned to the Bloch walls (BWs), which are located at
the perimeter of the magnetic bubbles where the stray field of
the FGF, Hs is maximal. As shown in Fig. 1(a), we modulate
Hs and transport the particles across the lattice by using an
external precessing magnetic field with a frequency ω and a
cone angle θ with respect to ẑ,

H ≡ H0{cos θ ẑ + sin θ [cos (ωt )x̂ + sin (ωt )ŷ]}. (1)

The applied field is composed of a rotating in-plane com-
ponent of amplitude Hxy = H0 sin θ and the out-of-plane one
Hz = H0 cos θ , where the latter is used to control the width
of the interstitial region between the bubbles. Throughout this
work we mainly vary θ and keep the driving frequency fixed
at ω = 4π rad s−1.

The sequence of images in Fig. 1(c) (from top to bottom)
shows how the magnetostatic energy landscape is modulated
during a half period of a precessing field with θ = 54.1◦
(details of the calculations can be found in Ref. [49]). As
shown in the small schematic at the bottom of the top im-
age, Hxy initially (t = 0) points along the −1 − 1 direction.
As the field rotates, a particle trapped in one of the six
energy minima (red wells) lags behind this minimum and
may either circulate around a magnetic bubble or jump to
another potential well of a nearest domain. This occurs at
t = 0.5π/ω, when three equidistant (∼a) wells are nucleated
close to the nearest bubbles, however, the minimum located
along the 2 − 1 direction is avoided by the particle as the sense
of circulation follows the field chirality. From magnetostatic
calculations we estimate that the height of the energy barrier
connecting the equidistant minima can vary from 6kBT to
20kBT , depending on the field cone angle [see Supplemental
Material (SM) [50]], and can be surpassed by thermal fluctu-
ations. The two possible paths after t = π/ω are shown in the
bottom image of Fig. 1(c). Similar energy landscapes were
observed for cone angles θ ∈ [45.1◦, 83.6◦], but not for the
sole in-plane field θ = 90◦ (see below).

Results. To characterize the dynamical regimes we measure
the MSDs for different values of the precession angle θ ∈
[42.1◦, 90.0◦] [see Fig. 2(a)]. For θ = 90◦ (Hz = 0) the in-
plane field forces the particles to perform a rotational periodic
motion around the bubbles [Fig. 2(b)]. Since the magnetic
stray field of the circular domains has cylindrical symmetry,
its perimeter is an equipotential circle. The in-plane field

1Before the experiments, the FGF is coated with a 1-μm-thick layer
of a positive photoresist (AZ-1512, Microchem, MA) to prevent the
particles from sticking to the domain walls.
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FIG. 2. (a) Mean-square displacements 〈�r2〉 (MSDs) vs time
for particles driven at different values of the precessing angle θ .
For θ ∈ [42.1◦, 67.2◦] the MSD 〈�r2〉 ∼ tα is diffusive for all time
(α = 1). The inset shows the effective diffusion coefficient extracted
from the data and rescaled with respect to the free diffusion above the
FGF film, D0 = 0.125 μm2 s−1 measured from independent experi-
ments. (b)–(e) Particle trajectories when driven by a precessing field
with frequency ω = 4π rad s−1 in a field of view of 2640 μm2 (total
field of view is 3120 μm2). The precessing angles are (b) θ = 90◦

(Hz = 0), (c) θ = 72.2◦, (d) θ = 60.9◦, and (e) θ = 42.1◦. For all
cases the amplitude of the in-plane component is Hxy = 720 A m−1.
The positions of the underlying magnetic bubbles are superimposed
to all images, and one trajectory is highlighted in red. Corre-
sponding videos (videos S1–S4) can be found in the Supplemental
Material [50].

Hxy breaks this symmetry and creates a gradient along the
circle. When the field rotates, the particle lags behind the
minimum and is forced to move, but cannot escape from
the magnetic domain. Due to the confined and periodic mo-
tion, the MSD displays a series of oscillations but does not
grow with time. When Hz > 0, the orbital motion around
the bubble becomes unstable and the particles delocalize
through the lattice moving across the interstitial region
[Figs. 2(c) and 2(d)]. A typical trajectory is composed by
a sequence of rotational motion around a magnetic bubble,
followed by random jumps between magnetic domains. While
we expect that such motion would emerge in the form of
a superdiffusive (α > 1) or ballistic (α = 2) dynamics, as
observed with larger micron-size particles [41], we find a

stable diffusive motion with α = 1 for the total measured
time range. The nanoscale particles are affected by strong
thermal fluctuations which randomize the process of jump-
ing between near orbits. Thus, thermal fluctuations play a
decisive role during the short time when the particle decides
between competing directions along the lattice, which occurs
twice during a field period [Fig. 2(c)]. The choice of the
crystallographic direction during propulsion results from a
dynamically symmetry breaking due to the absence of any
bias in the applied precessing field.

From the slope of the MSDs we also extract an effec-
tive diffusion coefficient as D = limt→∞〈�r2〉/4t , which is
shown in the inset of Fig. 2(a) rescaled by the free diffusion
measured above the FGF in the absence of external field
D0. The particles display an enhanced diffusive dynamics,
reaching the maximum value of D = 11.9D0 for θ = 60.9◦.
Finally, for angle θ = 42.1◦ the energy minima are so close
that the particles are trapped in triangular orbits between the
magnetic bubbles, and the MSD grows in a subdiffusive way,
α < 1 [Fig. 2(e)].

Further, we measure the distribution of displacement
Gs(r, t ), which gives the probability to find a particle at
position r on the plane after a lag time t . Gs represents the
self-part of the van Hove correlation function [51] and, in a
simple diffusive process, Gs is Gaussian, given by Gs(r, t ) =

1
4πDt exp (− r2

4Dt ). As observed previously [21], a complex
environment could alter the shape of Gs(r, t ), giving rise to
exponential tails. It was also postulated that some systems
could feature a linear MSD with a Gs(r, t ) composed of two
Gaussians with different variances [31]. Such a situation has
been treated theoretically in some works in the past with
biological [52] or other systems [53], however, not many
experimental examples were reported so far. Here, we find that
Gs is Gaussian at a very short time t = 0.027 s and it broadens
for t � 5 s while still keeping its original, Gaussian shape and
central peak [Fig. 3(a)].

After testing different functional shapes, we find that
our data can be well fitted by a combination of weighted
Gaussians,

Gs(r, t ) = φ G1(r, t ) + (1 − φ)G2(r, t ), (2)

where 0 < φ < 1 is the fractional contribution of the two
distributions, G1,2. These are characterized by different vari-
ances and thus effective diffusion coefficients, D1 and D2. The
presence of a mixed Gaussian distribution can be understood
by considering that, after t ∼ 5 s, the nanoparticles can be split
in two populations, namely localized particles (D1) which
perform confined diffusive motion (not rotational) and do not
escape from the bubbles, and the delocalized particles which
stochastically switch between nearest bubbles (D2). We use
Eq. (2) to fit the experimental data for lag times t = 5 s
and t = 10 s, and show in Fig. 3(b) the difference between
the initial Gaussian behavior (t = 0.027 s) and the double
Gaussian one (t = 5 s). From the analysis of the experimental
data, we extract the effective diffusion coefficients of the two
populations which are plotted in Fig. 3(d) for all cone angles
θ ∈ [54.3◦, 83.7◦]. The obtained values can be explained with
the following arguments. For the localized orbits [Fig. 3(d)
top], we find a very small effective diffusion coefficient of

032031-3



RALPH LUKAS STOOP AND PIETRO TIERNO PHYSICAL REVIEW RESEARCH 2, 032031(R) (2020)

FIG. 3. (a) Probability distribution function Gs(r, t ) for θ =
83.7◦ and at different lag times t (s). (b) The distribution Gs(r, t ) for
θ = 83.7◦ and at two lag times fitted with a Gaussian (t = 0.027 s)
and with a mixed Gaussian (t = 5 s), Eq. (3). The top inset shows
an enlargement of the central graphs. (c) Fraction φ = Nd/N of
delocalized particles Nd (the bottom inset shows one trajectory) over
the total number of particles N . The remaining particles perform
localized orbital motion around the magnetic domains. (d) Effective
diffusion coefficients D1 and D2 vs cone angle θ extracted from the
distributions Gs(r, t ) at two lag times, 5 s (magenta) and 10 s (violet).
The top shows D1 for the localized particles, while the bottom graph
D2 for the delocalized ones. The dashed black lines are the estimated
values as explained in the text.

the order of D1 = 0.02 μm2 s−1. This corresponds to the
dynamics of a Brownian walker which is trapped along a thin
ring, i.e., a circle of length L = 2πR and width δ ∼ 10 nm
(Bloch wall width). The corresponding diffusion coefficient
is given by D = Lδ

td
= 0.03 μm2 s−1, where the self-diffusion

time td can be estimated from the free diffusion coefficient
D0 as td = d2/D0. For these particles we are neglecting the
effect of the driving field on the landscape and considering
only the pinning to the BWs. Thus, they do not continuously
rotate around the bubble as in the case of θ = 90◦, but simply
display a confined diffusive behavior. As shown in Fig. 3(c),
these particles represent a small fraction of the entire sample.
In contrast, the fraction of delocalized particles φ increases as
the field cone angle decreases since, as shown in Fig. S2 in
the SM [50], it is directly related to the height of the potential
barrier �E which increases with θ . Thus, the fraction of
localized orbits increases with �E as more particles are
unable to escape from the nearest bubble. For the delocalized
orbits, we can estimate the effective diffusion coefficient D2

by considering the corresponding value calculated for the
random walk on isotropic lattices [54,55]. We assume that
the step between two consecutive jumps is l ∼ a/2, with a
the lattice constant and the jumping time ts = π/ω = 0.5 s.
We get D2 = l2

4ts
= 1.2 μm2 s−1, in very good agreement with

the results obtained from the distribution Gs [see Fig. 3(d)
bottom]. The non-Gaussianity in our system can be also
confirmed by measuring a positive non-Gaussian parameter
α2. As shown in Fig. 1 in the SM [50], we find that for all
cone angles α2 > 0 with values α2 ∈ [0.2, 4].

FIG. 4. Normalized probability distribution of the trajectory cur-
vature κ for different precession angles θ ∈ [45.1◦, 83.7◦] consid-
ering only the delocalized trajectories. The inset shows the average
mean curvature 〈κ〉 vs θ , where the continuous line is the correspond-
ing value for the fraction of localized particles.

Finally, we analyze the particle trajectories by measur-
ing the path curvature [56], here defined as κ = |∇ · n|/2,
where n is the unit vector normal to the direction of motion.
In Fig. 4 we show the normalized probability distribution
P(κ ) calculated only for the fraction of delocalized particles
and plot the corresponding mean value 〈κ〉 in the inset. All
distributions decay exponentially as P(κ ) ∼ e−κ and display
similar curvatures. This enforces the fact that the delocalized
particles have similar trajectories for all values of θ , which
is in agreement with the similar behavior of the distributions
Gs(r, t ). In contrast, their average curvature is lower than
the curvature of the localized orbits since the latter corre-
sponds to the smallest loop approximately equal to the bubble
perimeter.

Conclusions. We have investigated the out-of-equilibrium
dynamics of nanoparticles magnetically driven above a tri-
angular lattice of ferromagnetic domains. We find that for a
finite set of precession angles, the particles display a diffu-
sive yet non-Gaussian dynamics with a linear mean-square
displacement and a distribution of displacement which can be
interpreted in terms of two Gaussians. These functions result
from the coexistence of two types of dynamics in the system,
namely confined particles performing simple diffusion around
the BWs and delocalized ones. It is also tempting to interpret
the statistics of our system within the framework of the
continuous-time random walk, since the magnetic bubbles
can be considered as trapping spots where the particles are
adsorbed for a finite period of time. This indeed represents
a future avenue for this work. An alternative development
would be to analyze the system as a dissipative Galton
board [57,58] where the magnetic bubbles behave as scat-
tering centers. Apart from the different theoretical directions
that our experimental work may open, we demonstrate the
emergence of non-Gaussian diffusivity, in the field of particle
transport across periodic potentials. Thus, we add another
dimension to this mature yet expanding research field.
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