
RESEARCH ARTICLE
www.advtheorysimul.com

Nematic Ordering of Anisotropic Nanoparticles in Block
Copolymers

Javier Diaz,* Marco Pinna, Andrei V. Zvelindovsky, and Ignacio Pagonabarraga

Block copolymer melts have been previously used to control the position and
alignment of anisotropic nanoparticles. In this work, 2D and 3D mesoscopic
simulations are used to explore the phase behavior of block
copolymer/nanoparticle systems. The method combines a time-dependent
Ginzburg-Landau for the polymer and Brownian dynamics for the anisotropic
nanoparticles. Rhomboidal and spheroidal shaped particles are simulated in
two and three dimensions, respectively. It is found that the nanoparticle
nematic order aligned by the block copolymer domains enhances the lamellar
phase of the block copolymer, due to an anisotropy-driven phase transition.
Additionally, anisotropic nanoparticles within circular-forming block
copolymer leads to a competition between the nematic colloidal ordering and
the hexagonally ordered mesophase. At large concentrations, the nematic
order dominates, deforming the block copolymer mesophase.

1. Introduction

Block copolymer(BCP) melts have been largely used as tem-
plates to control the position of colloidal nanoparticles (NPs)
due to the ability of BCP to self-assemble into periodic ordered
structures such as lamellae, hexagonally ordered cylinders or
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body-centered cubic(BCC) spheres. Tun-
ing the chemical interaction between the
BCP and the NP surface allows to con-
trol the dispersion of the NPs within
the BCP mesophase.[1–3] Moreover, NPs
with additional degrees of freedom—due to
nonspherical shapes[4,5] or chemically inho-
mogeneous coating in its surface[6,7]—can
acquire a defined orientation with respect to
the BCP mesophase. Anisotropic NPs such
as semiconductive nanorods (NRs) mixed
with polymer matrices have applications
for photovoltaic devices.[8] Additionally, the
optical properties of NR/polymer mixtures
can be controlled by the NR loading.[9]

Achieving control over the NR orientation
is desirable to exploit the anisotropic prop-
erties of NRs. The control of NR align-
ment can be obtained using external fields

as electric[10,11] or shear flow,[12] while the need for additional
methods has been previously noted.[5] Furthermore, complex-
shaped NPs have been shown to self-assemble into a rich phase
behavior,[13] ranging from liquid crystals to nanocrystals.[14]

A common realization of BCP-controlled NR assembly is the
alignment of NRs within lamellar-forming BCP melts in thin
films, where the BCP matrix provides control over both the po-
sition and orientation of the NPs.[4,15–18] Nonetheless, semicon-
ductive NRs have also been found to organise in side-by-side
configurations perpendicular to the BCP interface.[19,20] Further-
more, ordered NR structures have been found in non-lamellar
morphologies such as cylinders.[15,16,21] Similarly, large NRs have
been found to seed the orientation of cylindrical domains.[22,23]

Additionally, more complex NP shapes such as nanoplates have
been shown to align within lamellar domains.[24] The work by
Shenhar et al. has shown that anisotropic NPs can modify the
BCP with respect to isotropic counterparts[25] which motivates a
detailed study of the role of anisotropy by studying the aspect ra-
tio of anisotropic NPs.
Theory and simulations have been used to study systems com-

prising BCP and anisotropic NPs, to provide insight over the
rich phase behavior of BCP/anisotropic NPs systems. Namely,
dissipative particle dynamics has been employed to study the
phase behavior and orientation of BCP/NRs.[26–29] Strong and
Weak Segregation Theories have been used to determine the
distribution of anisotropic NPs within BCP domains in di-
lute regimes.[30–32] Recently, hybrid models combining time-
dependent Ginzburg-Landau theory and Brownian dynamics
have been used to reach large system sizes.[33,34]

Computational works have shown that the BCP morphology
can change drastically in the presence of finite NP concentrations
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for both isotropic nanospheres[35,36] and anisotropic NPs.[25,37]

This implies that the BCP does not act as amere passive template
and the anisotropic NPs co-assembles with the BCP template. In
order to achieve optimal NP alignment, we will explore the inter-
play between the BCPmorphology and the NP assembly. Further-
more, experiments have shown additional changes in the BCP
morphology due to the NP shape[25] which motivates a detailed
study of the NP anisotropy and its relationship with the BCP
mesophase. Moreover, previous experiments and simulations
have focused on dilute or moderate concentrations of NPs. In
this work, we use computer simulations to study the alignment
of anisotropic NPs within BCP melts. We will explore consider-
ably large NP concentrations, in which competition between the
BCP morphology and NP nematic order emerges. For these ob-
jectives, it is suitable to make use of a relatively fast mesoscopic
computational method that allows to reach large system sizes.

2. Model

In this section we present the model used to study block copoly-
mer melts with anisotropic NPs. This is a mesoscopic hybrid
model which permits to achieve relatively large box sizes com-
pared to previous works. In a previous work,[34] we have pre-
sented the full 2D model, which is here summarized and briefly
extended to 3D. Furthermore, this model has been exploited and
compared with experiments[37] obtaining a considerable match.
The evolution of the BCP/colloids system is determined by the

excess free energy which can be separated as

tot = pol + cc + cpl (1)

with pol being the free energy functional of the BCP melt, cc
the colloid-colloid interaction and the last contribution Fcpl being
the coupling term between the block copolymer and the colloids.
The diblock copolymer is characterized by the order parame-

ter 𝜓(r, t) which represents the differences in the local volume
fraction for the copolymer A and B

𝜓(r, t) = 𝜙A(r, t) − 𝜙B(r, t) + (1 − 2f0) (2)

with respect to the relative volume fraction of A monomers in
the diblock, f0 = NA∕(NA + NB). The concentration fluctuations
follow diffusive dynamics, described by the Cahn-Hilliard-Cook
equation (CHC),[38–40]

𝜕𝜓(r, t)
𝜕t

= M ∇2

[
𝛿tot[𝜓 ]
𝛿𝜓

]
+ 𝜂noise𝜉(r, t) (3)

where M is a phenomenological mobility constant and 𝜉 is zero
mean and unit variance white Gaussian random noise which sat-
isfies the fluctuation-dissipation theorem.[41] The amplitude of
the random noise is given by 𝜂noise.
The copolymer free energy is a functional of the local order

parameter which can be expressed as

pol[𝜓(r)] = ∫ dr
[
H(𝜓) + 1

2
D|∇𝜓|2]

+ 1
2
B∫ dr∫ dr′ G(r − r′)𝜓(r)𝜓(r′) (4)

where the first and second terms are the short and the long-range
interaction terms, respectively. The coefficientD is a positive con-
stant that accounts for the cost of local polymer concentration in-
homogeneities, theGreen functionG(r − r′) for the Laplace equa-
tion satisfies∇2G(r − r′) = −𝛿(r − r′), B is a parameter that intro-
duces a chain-length dependence to the free energy[42] andH(𝜓)
is the local free energy,[42,43]

H(𝜓) = 1
2

[
−𝜏0 + A(1 − 2f0)

2
]
𝜓2 + 1

3
v(1 − 2f0)𝜓

3 + 1
4
u𝜓4 (5)

where 𝜏0, A, v, u are phenomenological parameters[43] which can
be related to the block-copolymer molecular specificity. Previous
works[43–45] describe the connection of these effective parameters
to the BCPmolecular composition. 𝜏 ′ = −𝜏0 + A(1 − 2f0)

2,D and
B can be expressed[45] in terms of degree of polymerizationN, the
segment length b and the Flory-Huggins parameter.

2.1. Coupling between the Block Copolymer and Nanoparticles

The presence of Np particles is introduced by the coupling free
energy term,[44]

cpl =
Np∑
p=1

𝜎 ∫ dr 𝜓c(s)
[
𝜓(r) − 𝜓0

]2
(6)

where 𝜓0 is the affinity controlling the preference of the NP with
the medium which is experimentally related to the coating of the
NP surface.[1–3] Meanwhile, the strength of the interaction is con-
trolled by 𝜎. The shape of the particle is specified by the tagged
function𝜓c which describes the range of the NP-polymer interac-
tion, the interior/exterior[46] and the orientation of the particle.[34]

It is amonotonically decreasing function in s, with a cut-off in the
surface of the NP,

𝜓c(s) = exp
[
1 − 1

1 − s

]
(7)

Therefore, 𝜓c(s = 1) = 0. The shape of the particle is introduced
by the expression of s(r, û) where û is the orientation of the par-
ticle. In 2D, the particle orientation can be determined by a sin-
gle orientational degree of freedom for the ith particle 𝜑i, such
that ûi = (cos𝜑i, sin𝜑i). The generic shape of an unrotated 2D
anisotropic NP is captured by the super-ellipse equation[47] for a
particle with two main semi-axis a, b aligned along the x, y carte-
sian axis, respectively,

s(r) =
[||||xa

||||
2n

+
||||
y
b

||||
2n]1∕n

(8)

where a and b < a are the two main semi-axis of the particle.
The aspect ratio e = b∕a < 1 characterizes the anisotropy of the
particle, along with n. The exponent n specifies the subfamily of
curves: 1∕2 < n < 1 for rhomboidal, n = 1 for ellipses and n > 1
for rectangular particles with increasing sharpness in the edges.
Equation (8) can be readily generalized to 3D simulations

s(r) =
[||||xa

||||
2n

+
||||
y
b

||||
2n

+
||||zc

||||
2n]1∕n

(9)
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to model particles with three main semi-axis a, b and c with b =
c < a. For the sake of clarity, the x, y, z cartesian axis are chosen
to align with the body-fixed coordinate system.

2.2. Interparticle Potential

The calculation of forces and torques requires a choice of a suit-
able intercolloidal pairwise additive potential. In order to assure
non-overlapping of particles, we introduce a colloid-colloid con-
tribution to the free energy as

cc =
∑
i≠j

U(ri, rj, ûi, ûj) (10)

with U(ri, rj, ûi, ûj) a potential that depends on the distance be-
tween two colloidal particles, as well as their orientations ûi, ûj.
The specific form of the colloid-colloid potential depends on the
NP shape, in particular, the subfamily of super-ellipses deter-
mined by the value of n.
In 2D, in this work we are restricted to rhomboidal parti-

cles with n < 1. A completely repulsive potential which is pro-
portional to the overlapping area between two arbitrary-shaped
rhomboids has been presented in reference[34] and is used in this
work. This potential captures the NP shape and is limited to in-
stances of overlapping, which are determined exactly via the sep-
aration axis theorem,[48] which states that the overlapping of two
convex objects in 2D is prevented if a line can be drawn sepa-
rating both objects. The overall scale of the potential is tuned to
prevent overlapping.
In the particular case of 3D ellipsoids (n = 1) the Gay-

Berne(GB) potential, a Lennard-Jones potential adapted to ellip-
soidal geometry, is widely used.[49] While this potential possess
appropriate features—capturing the spheroid shape and possess-
ing attractive and repulsive terms—we select a totally repulsive,
Yukawa-like potential, as we are mainly interested in the NP-
polymer interaction. In order to capture the anisotropy of the par-
ticles, we substitute the Yukawa diameter for the orientational de-
pendent 𝜎GB(r̂ij, ûi, ûj) parameter present in GB potentials, lead-
ing to a potential of the form

U(rij, r̂ij, ûi, ûj) =
exp(rij∕𝜎GB(r̂ij, ûi, ûj))
rij∕𝜎GB(r̂ij, ûi, ûj)

− 1 (11)

where rij is distance between two particles’ center of mass. This
potential only acts upon particles when two colloids overlap. The
modified diameter 𝜎GB captures the NP shape

[49] and, in the case
of an ellipsoidal NP with n = 1, it describes the same shape as
the polymer-colloid coupling shape function, 𝜓c(s), as expressed
in Equations (7) and (8).

2.3. Brownian Dynamics

Colloids undergo diffusive dynamics described by the Langevin
equation in the overdamped regime. The center of mass of each
colloid follows Brownian dynamics, that is,

dri
dt

= 1
𝛾t

(
f cci + f cpli +

√
2kBT𝛾t𝜉t

)
(12)

where f cpli = −𝜕cpl∕𝜕ri is the coupling force derived from Equa-
tion (6) and f cci = −𝜕cc∕𝜕ri is the colloid-colloid force derived
fromEquation (10). Similarly, the orientation of particle i follows

d𝜑i

dt
= 1
𝛾R

(
Mcc

i +Mcpl
i +

√
2kBT𝛾R𝜉R

)
(13)

where 𝛾t and 𝛾R are the translational and rotational friction co-
efficients and torques can be calculated as Mcpl

i = −𝜕cpl∕𝜕𝜑i
and Mcc

i = −𝜕cc∕𝜕𝜑i, respectively for the coupling and colloid-
colloid torques. In 3D the orientation of particle i can be gener-
alized to the Euler angles 𝛼i, 𝛽i, 𝛾i. Generally speaking, the trans-
lational diffusivity is a tensor that accounts for the anisotropic
diffusivity of arbitrary shaped particles[50] along the parallel and
perpendicular main axis of the colloid. Nonetheless, we are inter-
ested on the equilibrium properties of the assembly of complex
shaped colloids. Thus, we can assume 𝛾t and 𝛾R to be a scalar.

[51]

2.4. Computational Method

The dynamic CHC Equation (3) is solved with the Cell Dynamic
Simulation(CDS) method which has been widely used to model
the time evolution of BCP melts.[43,52–54] While the detailed fea-
tures of this approach have been widely shown before,[44] it is
important to notice that the high isotropy of the Laplacian in
the CDS scheme is due to the numerical expression ∇2𝜓 ≈
1∕(𝛿x)2[⟨⟨𝜓⟩⟩ − 𝜓 ], where the average operator is expressed as
⟨⟨𝜓⟩⟩ = 6

80

∑
NN

𝜓 + 3
80

∑
NNN

𝜓 + 1
80

∑
NNNN

𝜓 (14)

in 3D, with NN, NNN, NNNN meaning nearest neighbors, next-
nearest neighbors, and next-next-nearest neighbors, respectively.
In 2D instead,

⟨⟨𝜓⟩⟩ = 1
6

∑
NN

𝜓 + 1
12

∑
NNN

𝜓 (15)

In this work, we use standard parameters used in hybrid
CDS/Brownian dynamics methods: the BCP parameters are 𝜏0 =
0.35, B = 0.002, D = 1.0, u = 0.5, v = 1.5, A = 1.5 and M = 1.0.
A moderate noise term 𝜂noise = 0.05 is introduced following the
algorithm by Ball et al.[41] The CDS time and space discretization
are set to 𝛿t = 0.1 and 𝛿x = 1.0.
The NP parameters are kBT = 0.1 and 𝜎 = 1.0. The affinity of

the NP is set to 𝜓0 = −1, indicating that the NPs are totally mis-
cible within one of the BCP phases.
The main length scales in this work are BCP interface thick-

ness, Linterface, the BCP periodicity H0 and the various NP semi-
axis. Lengths are displayed in units of the BCP periodicityH0. To
facilitate reproducibility, the interface thickness throughout this
work is Linterface∕H0 = 0.09 which indicates a considerable degree
of segregation. A particle-polymer interface width can be approx-
imately defined based on the decay of the shape function 𝜓c(s)
as aw = a − a0 (bw = b − b0), where a0 ≈ 0.64a (b0 ≈ 0.64b) is the
distance such that 𝜓c(a0) = 1∕2 in along main axis. The length
a0 (b0) approximately indicates the hard-core interior of the NP
while the interface width aw indicates the width of the polymer-
grafted corona of the NP. Throughout this work, this length scale
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is aw∕Lint ≈ 2.0(2a∕H0) (bw∕Lint ≈ 2.0(2b∕H0)). Additionally, time
scales are shown in units of the BCPmicrophase separation time
scale tBCP = L2interface∕(M𝜏).

2.5. Observables

In this work, wemake use of several quantities to quantify the co-
assembly of the hybrid system. For the sake of clarity, we provide
a categorized list of the observables.

2.5.1. Block Copolymer Quantities

A domain analysis method is used to quantify the BCP morphol-
ogy in 2D. The BCP interfaces can be numerically identified as
the grid points such that the absolute value of the BCP field is
smaller than a threshold value |𝜓(r)| < 𝜖𝜓 → rinterface. Then, clus-
ter analysis can be used to identify the different clusters, followed
by a determination of the centroids of cluster (domain) and the
shape of the domains. The numberNdomains and shape of the BCP
domains can be calculated for each simulations to determine the
fraction of total domains that are circular below a certain thresh-
old,Φcircle. Thanks to the domain analysis method, we can obtain
the center of mass of each BCP domain.
The hexatic bond order parameter is usually employed in col-

loidal physics to characterize the hexatic—that is, sixfold- order-
ing. It can be expressed as

Ψ6 = ⟨ 1
Ni

∑
j

exp(6i𝜃ij)⟩ (16)

where ⟨⋅⟩ is an average over all particles i = 1…N. For each par-
ticle i, we determine the number of first neighbors Ni through
a cutoff, and calculate the bond angle 𝜃ij. It takes values Ψ6 = 1
and Ψ6 = 0 for perfectly hexatic and random configurations, re-
spectively. This parameter can be used to characterize the BCP
hexagonal mesophase by applying Ψ6 to the coordinates of the
center of mass of each BCP domain, as determined by the do-
main analysis method. Furthermore, the bond angle parameter
can be generalized to n-fold symmetry Ψn = ⟨1∕Ni

∑
j exp(ni𝜃ij)⟩.

In 3D, domain analysis is computationally expensive and the
phase behavior is richer than in 2D (non-planar morphologies
include hexagonally ordered cylinders, gyroid and body-centered
cubic spheres). We make use of the standard Minkowski func-
tionals approach to study the topology of the BCP morphology.
The Minkowski functionals are the volume, surface, curvature
and Euler characteristic, and are calculated by converting the 3D
field 𝜓(r) into open and closed voxels.[55] The Euler characteris-
tic 𝜒 provides topological information on the connectivity of BCP
domains: It takes values 𝜒 = 1 for an isolated sphere, 𝜒 = 0 for a
torus, and negative values for highly connected structures.[56]

The 2Dmean curvature of the BCP interfaces can be calculated
by defining a local normal unit vector to the interface n̂ = ∇𝜓||∇𝜓||
where || ⋅ || is the modulus of a vector. The tangential vector is
t̂ and its change can be calculated with the tensor ̄̄C = ∇t̂ with
components Cij =

𝜕ti
𝜕xj

. Its projection into the tangential direction

is related to the local curvature k(r) = ̄̄C ⋅ t̂. Finally, the total cur-

vature is averaged over space with a weight ||∇𝜓|| to minimize
the bulk contributions.

2.5.2. NP Quantities

The NP properties can be separated in two groups: particle-
particle and particle-polymer order.
The colloid-colloid nematic order is extensively used through-

out this work. The presence of the BCPfield limits the emergence
of global nematic order. Instead, we calculate the nematic order
of a system as the average over all particles Scc = ⟨Sicc⟩ where
Sicc =

1
Ni

∑
j

2(ûi ⋅ ûj)
2 − 1 (17)

where Ni is the number of first neighbors to particle i, which is
specified by the particle-particle distance rij < R∗

ij. The cut-off is
chosen as R∗

ij = 3a. The nematic order indicates the orientation
of particles relative to each other: a value Scc = 1 indicates paral-
lel alignment, Scc = 0 random alignment and Scc = −1 indicates
perpendicular alignment.
Similarly, we use a fourfold tetratic order parameter that in-

troduces additional symmetry, S4,icc = (Sicc)
2. This parameter takes

value 1 for both perpendicular and parallel alignment—that is,
tetratic ordering—which is useful for particles with square shape
which have rotational 𝜋∕4 symmetry.
Finally, Scpl(r) the NP orientation with respect to the center of

the BCP domains is calculated as follows: first, the domain anal-
ysis method is used to determine the center of mass of each BCP
domain, R𝜈 . For each NP, we calculate the nematic contribution
of particle i with respect to the BCP domain 𝜈, and average over
all particles and BCP domains

Si,𝜈cpl = 2(ûi ⋅ r̂i𝜈)
2 − 1 (18)

where the unit vector r̂i𝜈 = (ri − R𝜈)∕||ri − R𝜈|| is the relative vec-
tor between the NP the BCP domain center of mass. A radial his-
togram is produced for the distance r = ||ri𝜈|| of the NP to the
BCP domain center of mass.

3. Results

In this work we study the interplay between the BCP morphol-
ogy and NP anisotropy. First, we will explore the alignment
of rhomboidal NPs within BCP melts, focusing on the lamel-
lar morphology and explore the emergence of nematic order
templated by the BCP domains. Second, we will consider the
case of anisotropic NPs within circle-forming BCP phases
and the competition between the BCP mesophase and the NP
nematic order. In both cases, we additionally consider 3D sim-
ulations to provide support for the conclusions drawn from the
2D simulations.

3.1. Alignment and Morphology of BCP/Anisotropic NPs

In order to study the cooperative co-assembly of anisotropic NPs
and BCP morphology, we explore the overall phase behavior of
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Figure 1. Phase behavior of a BCP/rhomboid system with aspect ratio e = 1∕2. In (a) the phase behavior of the BCP is explored for a BCP composition
f0 and an NP volume fraction 𝜙p. The phase of the BCP is marked as circles for the hexagonal circular phase, with the color indicating the majority phase,
with blue for A as majority and red for B as majority phase. Black squares indicate the lamellar phase. Additionally, regions of high nematic order are
marked as green asterisk. A snapshot of a system with high nematic order and NP-induced lamellar morphology is shown in (b) with a detail view in (c).
The BCP is shown in gray and white, respectively for majority and minority monomer densities, while the NPs are colored according to the local nematic
order Scc of each particle (see colorbar in the right). Snapshots correspond to the final step, with a dimensionless time t∕tBCP = 1.2 × 104.

the system in terms of the NP volume fraction 𝜙p and the BCP
composition f0, respectively controlling the effect of NPs and
the BCP morphology. Isotropic NPs have been shown to induce
phase transitions in the BCP morphology due to the changes
in the effective concentration of the hosting domains.[25,36,57]

Nonetheless, in this work we focus on the collective alignment
of NPs with the BCP matrix and with themselves. In 2D, rhom-
boidal particles with n = 0.6 are used. The NP shape is set
to 2a∕H0 = 0.211 and 2b∕H0 = 0.105 (e = 1∕2), while the role
of anisotropy will be explored in the following sections. Fig-
ure 1 shows the change in the BCP morphology induced by
NPs. In Figure 1a, the phase of the overall system is deter-
mined via the number of BCP independent domains, display-
ing hexagonal circles (A-majority), lamellar and hexagonal cir-
cles (B-majority) for blue circles, black squares and red circles,
respectively. The presence of a volume fraction 𝜙p of NPs is
shown to modify the BCPmorphology. Furthermore, the colloid-
colloid ordering is characterized by the nematic order parame-
ter Scc, with green asterisks marking regions of high nematic
ordering.
The BCP phase is shown to transition from hexagonally

ordered A-majority circular to lamellar (blue circles to black
squares) and from lamellar to B-majority circles (black squares
to red circles) in the presence of NPs. While this behavior is
consistent with simpler isotropic NPs[25,36,57] and homopolymer
additives,[58,59] two additional distinct features can be observed.
First, the lamellar phase space is enhanced in the presence of
anisotropic NPs, which is due to the NP anisotropy that effec-
tive swells the BCP domains. Second, regions of high nematic
ordering are achieved at high volume fractions, but only within
the lamellar-phase. Rhomboidal NPs do not assemble nemati-
cally within the B-majority circular phase (red circles), despite the
larger volume fraction of NPs in the system than in the lamellar
phase at, for instance, f0 ≈ 0.4. Rhomboidal NPs are better ac-
commodated nematically in the lamellar phase, as opposed to the
two circular phases. Within the lamellar phase, the high nematic
regions can grow in time in the direction of the lamellar axis,
which is not possible in a more isotropic circular phase. This in-
dicates the cooperation between the BCP symmetry—elongated

lamellar domains with a preferential axis—and the NP shape—
elongated rhomboidal.
Furthermore, Figure 1b—with f0 = 0.36 and 𝜙p = 0.2—shows

the co-assembly as the BCP serves as a template for the NP ori-
entation and positioning: NPs are aligned along the direction
of the lamellar domain and segregated within the minority do-
mains. NPs are colored according to the local nematic order-
ing Sicc, with red, yellow and blue particles indicating parallel-
nematic, random and perpendicular-nematic ordering, respec-
tively. While considerable nematic ordering is present (long red-
colored areas), deviations from this behavior can be correlated
with defects in the BCP morphology: In Figure 1b randomly ori-
ented yellow-colored particles can be found in the high-curvature
regions of the BCP domains, and at the intersection between two
or more domains. In these instances, the nematic order cannot
be preserved as NPs with different director vector merge. On the
other hand, in Figure 1c NPs with perpendicular-nematic order-
ing (blue-colored) are found at domain ends. We note that the
pure BCP morphology for f0 = 0.36 is circular, and it only ac-
quires a lamellarmorphology after aNP-induced phase transition
following the addition of a concentration 𝜙p of NPs.
The time evolution of the co-assembly shown inFigure 2a addi-

tionally demonstrates the correlation between the nematic order
and the lamellar mesophase: As the nematic order Scc grows, the
curvature of the BCP interfaces decreases, which can can be seen
in (b), (c), and (d), respectively for times t∕tBCP = 12.3, 122.5, and
1225.0 as intermediate stages preceding the final co-assembly
shown in Figure 1b,c.
Figures 1b and 2 have shown that despite the defects in the ne-

matic ordering, uniaxial particles acquire a good alignment with
lamellar-forming BCP. Contrary to that, Figure 1a top-right re-
gion shows lack of nematic ordering at same volume fraction as
(b) and (c). Furthermore, in Figure 1 the lamellar phase space
is enhanced compared to isotropic NPs,[57] which motivates the
study of the role of NP anisotropy in the co-assembly.
The NP shape has been experimentally shown to modify

the BCP morphology,[25] where the higher effective concen-
tration of anisotropic NPs can drive the phase transition, as
NRs effectively occupy a larger area. Figure 3 shows the phase
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Figure 2. Time evolution of the high nematic order within lamellar regime, characterized by the colloid-colloid nematic order Scc (left axis, blue circles)
and the BCP interface mean curvature (right axis, red squares), in (a). In (b), (c), and (d) the intermediate stages of the time evolution are shown for
times t∕tBCP = 12.3, 122.5, and 1225.0, respectively, which are previous to the final step shown in Figure 1b,c.

behavior of the BCP melt in the presence of a volume fraction
𝜙p of rhomboidal particles with aspect ratio e and fixed area per
particle, consistent with Figure 1. The pure BCP morphology
is hexagonally circular (f0 = 0.35) with NPs segregating within
the minority domains, marked as blue circles and determined
by the domain analysis method. At moderate concentrations
the BCP morphology changes drastically depending on the
NP shape: highly anisotropic rhomboids promote a transition
toward elongated lamellar domains, marked with black squares.
On the other hand, isotropic square-shaped NPs (e ≈ 1) swell the
circular domains maintaining a circular morphology while the
elongated rhomboidal particles promote the connection between
domains, merging into a lamellar-like morphology. In addition,
anisotropic rhomboidal NPs can easily match the lamellar phase,
as they tend to form high nematic order regions, as will be shown
in the following section. Right-top and right-bottom snapshots
show the colloid-colloid alignment for two extreme cases: more
isotropic NPs display random nematic orientation (see NP color-
ing, which is generally random); on the other hand, anisotropic
NPs display high nematic order regions (red-colored particles),

following the same principles as in Figure 1b and c, that is, cor-
relation between defects in the BCP mesophase and the nematic
NP ordering. Regions of high nematic ordering Scc are marked
as yellow asterisk, while regions of high fourfold tetratic ordering
S4cc lacking twofold nematic ordering Scc are marked as white
crosses. The change in BCP morphology shown in Figure 3 is
consistent with the experimental results in ref. [25] figure 2 i and
figure 3 h, where an equal NP loading the BCPmorphology is re-
spectively cylindrical and lamellar, which can be compared with
Figure 3 right-top and right-bottom, respectively. In conclusion,
the BCP morphology and NP alignment are clearly intertwined,
with nematic ordering promoting lamellar phases.
Similarly, prolate spheroids (n = 1, a = 0.158, b = c = 0.053

and e = 0.333) in 3D promote elongated domains as the NP as-
pect ratio e decreases. In Figure 4a the topological quantity Euler
characteristic 𝜒 indicates a decrease in the number of spherical
domains, as the concentration grows, signaling the transition
from spherical (𝜒 >> 1) to a highly connected morphology
with 𝜒 < 0. Nonetheless, for the same volume fraction, this de-
crease is more pronounced in anisotropic NPs (e = 0.3) than in
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Figure 3. BCP phase behavior depending on the NP anisotropy, from squares (e = 1) to rhomboids (e = 0.2), and a volume fraction 𝜙p of particles. The
BCP phase is marked as blue squares for circular morphology and black squares for lamellar phase. The colloid-colloid alignment is marked as yellow
asterisk for simulations with high twofold nematic order Scc and white crosses for low twofold nematic order but high fourfold tetratic order S4cc. NPs
are colored according to their local nematic ordering.

Figure 4. 3D BCP morphology quantified by the Euler characteristic 𝜒 , in (a), in the presence of a concentration 𝜙p of ellipsoidal particles with aspect
ratio e. Different composition values f0 are chosen, which are within the BCC spherical phase (large positive value of 𝜒 , indicating several topologically
independent BCP domains). In (b) and (c) snapshots are shown for f0 = 0.3 and 𝜙p = 0.05, corresponding to nanospheres (e = 1) and nanoellipses
(e = 0.3), respectively.

spherical particles (e = 1). Visually, in (b) and (c) the contrast in
the BCP morphology can be observed, respectively for e = 1 and
e = 0.3: anisotropic NPs promote more connected and elongated
BCP domains, which translates to a smaller value of 𝜒 . These
results indicate that both in 2D and 3D, anisotropic NPs promote
highly connected BCPmorphologies and that this tendency is rel-
atively universal, as the specific NP shape plays a secondary role.

These 2D and 3D simulations show that the NP anisotropy
plays a crucial role in the NP assembly and furthermore,
can modify the BCP morphology. The alignment of elon-
gated NPs within lamellar-forming BCP has been shown
experimentally[15,16,25] and in simulations.[26,34,60,61] Nonetheless,
the NP nematic ordering in Figures 1b and Figure 3 is confined
to the BCP lamellar domains, and the NP alignment is dictated
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Figure 5. Nematic ordering of rhomboidal NPs (e = 1∕2) within the majority phase of circle-forming BCP (f0 = 0.6). (a) shows the coupling nematic
order parameter Scpl(r) in function of the distance to the center of BCP domains. (b), (c) and (d) show the snapshots as the concentration grows,
respectively for 𝜙p = 0.1, 0.25 and 0.45.

by the BCP orientation, as the BCP morphology and the NP
shape are both uniaxial.

3.2. Global Nematic Ordering of NPs

In this section we study the emergence of orienta-
tional/translational ordering in non-lamellar morphologies,
where there is significant contrast between the NP shape
and the BCP morphology. Majority-compatible NPs dispersed
in a circle-forming BCP (f0 = 0.6) are disordered within the
continuous phase of the BCP at low concentrations, as shown in
Figure 5 for 𝜙p = 0.1 (b). The circular domains are organized in
an hexagonal lattice, while the presence of NPs induces a large
density of defects.
As the volume fraction of NPs is increased, the NP local con-

centration becomes considerable, as the interior of the BCP do-
mains is excluded for the NPs. In order to maximize packing,
NPs are driven toward BCP domains, acquiring a tangential ori-

entation with respect to the BCP interface, as can be seen in the
scheme in Figure 5 for a moderate concentration 𝜙p = 0.25 (c).
In this regime the BCP templates the orientation and location of
NPs in a different way than shown in Figure 1b.
We quantify the orientational order with respect to the BCP by

calculating the coupling nematic order with respect to the center
of the BCP domains Scpl(r), that is, with respect to the direction
shown in the scheme in Figure 5c. In function of the distance to
the center of domains r, Figure 5a indicates the collapse of the
curve Scpl(r) into a single curve with open symbols, given by the
BCP periodicity, for several NP concentrations. This can be un-
derstood as the consequence of the BCP templating the NP orien-
tational and positional order. Furthermore, a clear negative peak
is found in the immediate vicinity of the BCP interface, where
NPs acquire tangential orientation. This peak is followed by a pos-
itive one, corresponding to the presence of a first domain neigh-
bor, thus it corresponds to the BCP periodicity.
For higher concentrations, the tendency of uniaxial particles to

organise nematically dominates over the BCP mesophase. This
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Figure 6. Orientational order of the BCP domains in sixfold Ψ6 and four-
fold Ψ4 symmetry as a function of the volume fraction of particles, as well
as the colloidal nematic order Scc. The BCP is circular-forming with f0, cor-
responding to simulations in Figure 5.

allows for the formation of large, elongated areas of high nematic
order, which can be seen as red stripes in Figure 5d. The global
director of one of these stripes is shown as a white arrow. These
areas of global nematic ordering are, nonetheless, incompatible
with the hexagonal circular mesophase of the BCP. The stretch-
ing of the BCP periodicity is clear in (d), as the distance between
BCP domains is enhanced in the direction perpendicular to the
nematic stripes (yellow dashed line) and shrinks in the same di-
rection as the global nematic director (blue dotted line). Quanti-
tatively, Figure 5a shows the change in regime as the 𝜙p = 0.45
regime deviates from the general behavior: as the BCP changes
its periodicity, the secondary peaks become smaller in absolute
value and in its position.
In Figure 5d we can observe the NP phase separation into

denser and dilute regions, corresponding to nematically and
randomly oriented regions, respectively. This is a consequence
of anisotropic NPs effective packing fraction being considerably
different in the random (high effective area) and nematic order
(high packing).
The progressive competition between the BCP hexagonal or-

der and the NP nematic order is best quantified in Figure 6where
the BCP domain bond order parameters Ψ4 (fourfold) and Ψ6

(sixfold) are shown for different volume fractions, as well as the
colloid-colloid nematic order. As the concentration grows above
𝜙p > 0.25, the nematic order increases, which is followed by an
increase in the fourfold order. The correlation of these two quan-
tities suggests that the system tends to self-assemble into a rect-
angular lattice in order to better accommodate the nematic or-
dering. Meanwhile, the sixfold ordering decreases continuously,
which can be attributed to both the kinetic trapping induced by
small concentrations of particles and the formation of large ne-
matic areas at large concentrations, which distorts the hexago-
nal mesophase.
Furthermore, the time scales of the co-assembly are largely

affected by the NP concentration. At moderate concentrations
𝜙p = 0.25, in Figure 7b we can observe that the colloidal order-
ing is rapidly reached, with Scc reaching a plateau. On the other
hand, the BCP mesophase occurs in a slower time scale, corre-
sponding to the time scale in which defects in the hexagonal or-
dering slowly disappear as Ψ6 grows, shown in (a). Contrary to
that, in the nematic-dominated regime at higher concentrations
𝜙p = 0.45 NPs acquire nematic order over a much slower time
scale (b), while the BCP mesophase ordering tracked by Ψ6 can
be seen to reach a plateau in (a). This suggests that NPs at suffi-
ciently enough concentrations can prevent the BCP mesophase
from forming with a slow nematic order being developed. Addi-
tional simulations have been performed where NPs are initial-
ized with a given global direction, which has no effect in the fi-
nal global orientation of NPs. This can be attributed to the role
of thermal fluctuations in the NPs and specially the effect of the
BCP microphase separation.
In Figure 8 we can observe that the NP size plays an impor-

tant role in the decrease of the sixfold symmetry of the BCP
mesophase and the emergence of fourfold order. As the concen-
tration grows, we can see that relatively large rhomboidal parti-
cles (e = 0.5, 2a∕H0 = 0.84) promote a rapid increase in the four-
fold order almost immediately, in contrast to smaller NPs. Since
these larger NPs are comparable in length with the BCP period-
icity, the presence of even a small concentration can produce sig-
nificant changes in the BCPmorphology, as they cannot be easily
accommodated within the BCP phase. Contrary to that, Figure 5a
shows that small anisotropic NPs are disordered within the con-
tinuous matrix and it is only at moderate concentrations that ne-
matic order emerges. This can be contrasted visually, comparing

Figure 7. Time evolution of the representative regimes shown in Figure 5 for moderate and high concentrations. The time scale is tracked by the hexatic
bond order parameter Ψ6 in (a) and the colloid-colloid nematic order parameter Scc in (b).
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Figure 8. Role of NP size in the BCP fourfold order Ψ4 in (a), as calculated via the domain analysis method to identify the center of each BCP domain.
Rhomboidal particles with length 2a are dispersed within circle-forming f0 = 0.4 BCP while keeping the aspect ratio e = 1∕2 constant. In (b) at snapshot
is shown for for a relatively large NP 2a∕H0 = 0.84 at a moderate concentration 𝜙p = 0.27.

Figure 9. Orientational and translational assembly of 3D ellipsoidal NPs with anisotropy e = 1∕4 in a BCC sphere forming BCP with f0 = 0.7. NPs are
miscible in the majority (continuous) phase. (a) and (b) respectively show the curves for the particle density 𝜌 and coupling nematic order parameter
Scpl (with respect to the radial vector to the center of BCP domains), in function of the distance r to the center of BCP domains. In (c) a snapshot of a
dense simulation 𝜙p = 0.3 is shown with NPs shown in red and the isosurfaces of the BCP interface shown in blue and gray.
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the snapshot in Figure 8b for larger NPs with Figure 5c for a sim-
ilar concentration.
In 3D, the templating effect of the BCP can be observed for pro-

late ellipsoidal particles—2a∕H0 = 0.84, 2b∕H0 = 2c∕H0 = 0.21
(e = 0.25)—within a BCC-forming BCP—f0 = 0.7—as in
Figure 9 where, in addition to the clear peak in the colloidal
alignment, a density peak can be observed in the immediate
vicinity of the BCP domain, which indicates the presence of a
shell of particles with tangential orientation. The generality of
the alignment regardless of the specific shape of the particles is
a common feature in liquid crystal physics and suggests that the
present tangential alignment is considerably generic, both in 2D
and 3D.

4. Conclusions

In this work anisotropic NPs are shown to co-assemble within the
BCP mesophase to produce highly ordered systems. Anisotropic
NPs are shown to align along the direction of BCP lamellar do-
mains, reproducing several experiments. Moreover, NPs can ac-
quire local nematic order with each other, with the BCP domain
axis acting as seed for the orientation. The phase diagram of
such systems shows the cooperation of the lamellar BCP phase
and the nematic ordering of NPs. This leads to an enhancement
of the lamellar phase in the presence of asisotropic NPs due to
an anisotropy-induced phase transition in circular-forming BCP
melts. For the sameNP concentration, the BCP does not undergo
a phase transition for isotropic NPs.
Anisotropic NPs within circle-forming BCP, on the other

hand, leads to the competition between the nematic ordering and
the circular BCP phase. At moderate concentration the BCP tem-
plates the position and orientation of the NPs, with NPs aligning
tangentially to the BCP domains. At a high volume fraction of par-
ticles, the NPs can additionally disrupt the BCP morphology and
produce large NP regions of coherent orientation, which cannot
be easily accommodated by the BCP morphology.
In conclusion, BCP melts can be used as templates to control

the position and orientation of NPs, but the overall structure of
the composite system is the result of the interplay between the
colloidal and polymeric properties, which may be cooperative
(nematic ordering within lamellar phases) or competitive (ne-
matic ordering within circular phases). These results highlight
the co-assembly possibilities and richness of BCP/anisotropic
NPs systems.
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