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Emergent colloidal currents across ordered and
disordered landscapes
Dominik Lips1,5, Ralph L. Stoop2,5, Philipp Maass 1 & Pietro Tierno 2,3,4✉

Many-particle effects in driven systems far from equilibrium lead to a rich variety of emergent

phenomena. Their classification and understanding often require suitable model systems.

Here we show that microscopic magnetic particles driven along ordered and defective lattices

by a traveling wave potential display a nonlinear current-density relationship, which arises

from the interplay of two effects. The first one originates from particle sizes nearly com-

mensurate with the substrate in combination with attractive pair interactions. It governs the

colloidal current at small densities and leads to a superlinear increase. We explain such effect

by an exactly solvable model of constrained cluster dynamics. The second effect is inter-

preted to result from a defect-induced breakup of coherent cluster motion, leading to jam-

ming at higher densities. Finally, we demonstrate that a lattice gas model with parallel update

is able to capture the experimental findings for this complex many-body system.
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Interacting particles driven above potential energy landscapes
display emergent phenomena that are ubiquitous in con-
densed matter physics, while posing a considerable challenge

in understanding their complex, out of equilibrium dynamics1,2.
Such phenomena include nonlinear current-voltage relationships,
plastic or elastic deformations, depinning transitions, locking, and
rectification effects. Examples have been reported in disparate
systems, including vortices in type II superconductors3,4, charge
density waves5,6, skyrmions7,8, sliding frictional surfaces9,10, and
active matter systems11,12.

Ensembles of polarizable colloidal particles driven across per-
iodic potentials represent a relatively simple, yet nontrivial model
system to investigate these many-particle effects. Potential land-
scapes for colloidal transport have been realized in the past via the
use of electric13–15, magnetic16–18 or optical fields19–21. However,
previously experimental realizations have often been focused on
measuring the speed and the position of a single particle16,22–25

or few interacting ones26,27, or to demonstrate some technological
functionality such as the controlled transport of a microscopic
cargos28,29. However, many fundamental effects arise when
raising the system density and forcing the driven particles to
interact30,31. Experimental studies in this situation are scarce32, in
particular for disordered energy landscapes33, and in most of the
cases, they involve the use of diffusive rather than driven
particles34–36.

Here we use a colloidal model system to investigate the out-of-
equilibrium dynamics of particles driven across ordered and
disordered traveling-wave-like energy landscapes. In our system,
the disorder is induced by the presence of an increasing amount
of defects that destroy the orientational symmetry of the lattice.
We find that collective interactions between the moving particles
lead to a nonlinear current-density relation which is reminiscent
of that seen in theoretical studies of driven lattice gases37 and
driven Brownian motion across periodic potentials38. At small
densities, the colloidal current increases superlinearly, corre-
sponding to a rise of the particle speed with density. This effect
contrasts the decrease previously reported in driven systems on a
magnetic landscape17,39. We explain this phenomenon by a
commensurability effect of particle clusters with the underlying
landscape that causes a stronger synchronization with the energy
landscape. When rising the density we find that the collective
colloidal speed eventually decreases and the system approaches a
jammed state. We argue that such state is induced by the break-
up of the cluster motion due to the presence of defects in the
lattice. To explain these observations together, we develop a lat-
tice gas model with a parallel update of particle positions. This
model is able to capture the experimental findings for both
weakly and strongly disordered (i.e. large amount of defects)
energy landscapes.

Results
Particle transport on magnetic substrates. We use an ensemble
of paramagnetic polystyrene microspheres of diameter d= 2.8 μm
and magnetic volume susceptibility χ ~ 0.4. The particles are diluted
in highly deionized water and sediment above a ferrite garnet film
(FGF) with uniaxial anisotropy. Such film displays a triangular
lattice with lattice constant a= 3 μm, which consists of cylindrical
ferromagnetic “bubble” domains immersed in an opposite magne-
tized film, see Fig. 1(a). Film synthesis and growth process are
described in Ref. 40. A strong magnetic gradient,∇ B ~ 0.5 Tm−1 is
used to distort the lattice and to introduce a controlled degree of
spatial disorder in the bubble arrangement, see Fig. 1(b, c). We
quantify such disorder by calculating both the radial distribution
function g(r) and the bond correlation function g6(r) from the
bubble positions. We find that the disordered lattices display a

positional order similar to the regular one, e.g., the peaks of g(r)
have nearly the same locations and amplitudes, see Fig. 1(d). By
analyzing the difference between the g(r) for the ordered and dis-
ordered lattices, see the inset of Fig. 1(d), we find that the relative
separation arises mainly from the first peaks of g(r), which do not
exceed 2 μm for the most disordered case. But, as shown in
Fig. 1(e), the two phases clearly differ with respect to their orien-
tational order. In the disordered phase, the magnetic domains
arrange in a hexatic phase, characterized by an algebraic decay of
g6ðrÞ � r�η6 , which features dislocations separating regular crys-
talline domains. Thus, the disorder is mainly present in the orien-
tational degrees of freedom which we quantify via the exponent η6.

We induce a directed particle current by applying a magnetic
field elliptically polarized and rotating in the xz plane with
angular frequency ω, H � ð�Hx cosðωtÞ; 0;Hz sinðωtÞÞ. The
amplitudes of the field components are Hx= 590 Am−1 and
Hz= 830 Am−1. The external field modulates the heterogeneous
stray field of the FGF and produces a traveling-wave like potential
moving at a frequency-tunable speed, Fig. 1(f), vp= aω/(2π).
Figure 1(g) shows how the average speed of a single isolated
particle �vsx along the x-direction varies with ω in the
noninteracting case. For low frequencies ω < ωc= 37.3 rad s−1,
the motion is field-synchronized and �vsx ¼ vp (synchronous
regime). For ω > ωc, the particles desynchronize with the periodic
driving, and their average speed decreases as �vsx ¼ vpð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2
c=ω

2
p

Þ< vp (asynchronous regime)41.
The sequence of images in Fig. 1(f) shows energy landscapes

from a magnetostatic field calculation given in the Supplementary
Note 2 and illustrates the transport mechanism. For t= 0.5 π/ω,
H ¼ Hzẑ and a particle is trapped within a magnetic bubble,
where is a deep energy minimum (blue region). When t= π/ω,
the in-plane field H ¼ Hxx̂ deforms the landscape, and two
energy minima emerge inside the interstitial region along the 01
and 10 directions. Depending on the (fluctuating) particle
position within the bubble at that time instant, the particle
follows one of these two directions. For t= 1.5 π/ω, the field is
antiparallel to the bubble magnetization, H ¼ �Hzẑ, and six
minima appear in the interstitial region. Finally, for t= 2 π/ω the
particle reaches the neighboring bubble. The chirality of the
rotating field ensures unidirectional motion between two bubbles.
Further, since the depths of the potential wells are ~102− 103kBT
for T ~ 290 K, thermal fluctuations are negligible, except for the
selection of the two possible paths between the bubbles.

Current-density relation. For investigating the collective particle
flux, we vary the normalized density ~ρ ¼ Nπðd=2Þ2=A within the
observation area A, and keep constant the magnetic field para-
meters. The flux is quantified by the normalized particle fluxes
~jx;y ¼ ~ρ �vx;y=vp along the x- and y-direction. For frequencies in
the synchronous regime, particles are coherently dragged by the
periodic driving with velocity vp, yielding ~j ¼ ~ρ. By contrast, in
the asynchronous regime at ω= 50.3 rad s−1 [marked with arrow
in Fig. 1(g)], a nonlinear current-density relation is observed, see
Fig. 2(a, b). The current ~jx runs through a maximum upon
increasing ~ρ, while ~jy is negligible.

We group the experimental data in two classes: a region of low
disorder with η6 < 0.28, and a region of high disorder with
η6 > 0.28. We find that for the distorted lattice ~jx is smaller than
for the more regular one. For simplicity, we refer to this lattice
with the smallest η6 as the “ordered lattice” in the following. With
an increasing number of defects, the particle motion along the 11
direction becomes progressively disturbed. In general, we find
different types of defects such as point defects in form of larger
magnetic bubbles, finite dislocation lines or planar defects in form
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of grain boundaries. Particle clusters break or merge when they
are traveling above line defects and grain boundaries. A typical
situation is shown in Fig. 2(c), where a seven-particle cluster
crosses a grain boundary, which causes its splitting and raises the
transverse speed, inducing a corresponding reduction of the
longitudinal velocity. The hexatic phase exhibits dislocations

which induce the merging of similar crystallographic directions.
At these points, colloidal trains from different domains can
merge. As we show later, the effect of merging is the main one
responsible for the velocity reduction at large density. These
implications of the disorder can be well observed in
the Supplementary Movie 1. We note that for densities above

Fig. 1 Transport mechanism and magnetic landscapes. a Illustration of paramagnetic colloids driven above a ferrite garnet film (FGF), with small arrows
indicating the magnetization direction of the bubbles. One unit cell is shown in red with the 12 crystallographic directions, with lattice constant a= 3 μm. The
rotating magnetic field is indicated by the arrow in the green circle with the dashed arrows indicating the sense of rotation; the particles move along the
direction of the green arrow. b, c Polarization microscope images of a portion of the FGF with (b ordered (η6=0.05) and c disordered (η6=0.45) magnetic
bubbles; the scale bar is 20 μm. Colloidal particles appear as dark circles. d Radial distribution g(r) and e g6(r) for the ordered (blue) and disordered (red)
lattices, calculated from a total area of 151 × 113 μm2. The inset in g(r) illustrates the difference in absolute value between the two g(r). f Energy landscape of the
magnetic lattice (z=0.4 a) at different times from left to right; scale bar is a/2. Energy minima (dark blue) and maxima (yellow) correspond to (−2000 kBT)
and (−240 kBT), respectively. The particle moves to the right, the red arrow indicates the direction of motion. g Normalized single-particle speed �vsx versus
angular frequency ω from experiments (scattered data) for ordered case, η6=0.05, and disordered one, η6=0.45; η6 denotes the exponent of the bond
correlation function g6(r). Continuous lines are fits to the synchronous and asynchronous regimes and yield a critical frequency of ωc= 37.3 rad s−1. The down-
pointing arrow indicates the location of ωc= 50.3 rad s−1. The experimental data are averaged over different independent measurements, and the error bars
(inside the orange circles) indicate the standard error, error bars in the squares are smaller than the symbols.
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ρ= 0.6, the paramagnetic colloids start jumping above the close-
packed monolayer, and this impedes us to accurately measure the
particle speed with our tracking program.

Figure 2(b) shows that the mean particle velocity �vx ¼ ~jx=~ρ
rises for small densities, corresponding to a superlinear increase
of~jx with ~ρ. This effect results from a faster motion of clusters, as
we discuss next.

Enhanced cluster transport. The dynamics in the many-particle
system is governed by chains of particles along the transport
direction, which we refer to as clusters in the following. As can be
seen from the slopes of the trajectories shown in Fig. 2(d), these
clusters are propelled at a higher average speed than isolated
particles. They increase their size for small ~ρ, yielding the rise of
�vx . Clusters can also reduce in size via breakup processes, which
become progressively more important with increasing cluster
sizes and cause �vx to decrease with the density at larger ~ρ.

We quantify the cluster speed-up effect by determining the
mean velocities of single particles �vsx and clusters �vclx . We note that
in a more detailed analysis, one could consider the mean
velocities �vðnÞx , n= 1, 2, ,…, of clusters composed of n particles
(with n= 1 referring to single particles). Such a refinement of the
analysis, however, is not essential. The speed �vclx corresponds to
the average over all n ≥ 2 and can be obtained with better

accuracy. Figure 3 shows the results as a function of the driving
frequency, wherein the experiments we have included the results
for dimers and trimers. While in both the synchronous (ω≲ ωc)
and the strongly asynchronous (ω≳ 2ωc) regimes the two
velocities are nearly equal, the clusters are significantly faster in
the transient regime ωc≲ ω≲ 2ωc.

Discussion
Commensurability effect – The speed-up of clusters originates
from a combination of particle sizes nearly commensurate with
the energy landscape periodicity (lattice constant a) and attractive
dipolar interactions. These interactions result from the time-
averaged modulated stray field of the FGF42, and can be estimated
for a pair of particles at a distance ~a as Udd ~ 130kBT. To
understand the speed-up effect, let us consider an idealized
situation, where particles are dragged by a traveling wave
potential with wavelength a and within clusters are constrained to
have a distance Δ commensurate with the wavelength, Δ= a. The
distance constraint reflects the interplay of the long-range
attractive dipolar interaction and the repulsive volume exclu-
sion, yielding a minimum in the effective pair interaction
potential at a distance Δ≃ d≃ a. Under the distance constraint,
the assembled particles in the clusters replicate the minima of the
underlying lattice and thus have a tendency to re-synchronize
with the traveling wave even when single particles are in the

Fig. 2 Colloidal current and cluster transport. a Normalized particle fluxes ~jx (filled symbols), ~jy (empty symbols) and b mean velocities �vx;y versus
normalized density ~ρ ¼ Nπd2=ð4AÞ for low disorder lattices (η6 < 0.28) and high disordered ones (η6 > 0.28) in the asynchronous regime at
ω= 50.3 rad s−1. Here N is the number of particles in the area A with diameter d, and η6 is the exponent of g6(r). The dashed black line in (a)
corresponds to the particle flux ~j ¼ ~ρ in the synchronous regime (ω < ωc). The experimental data are averaged over different independent
measurements, and the error bars for ~jx are obtained from the standard error. For ~ρ the statistical errors are smaller than the symbols. In c and d
particle trajectories are shown for the ordered and disordered landscape, respectively. Panel c shows the destruction of a seven-particle cluster as
it enters a disordered region. The small inset displays an image at t= 3 s, scale bar is 20μm. Panel d shows that both dimers and trimers are
faster than single particles. The formers may release a particle and adsorb another giving rise to a new dimer or a trimer. The scale bars for all
insets are 2 μm.
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asynchronous regime. This means that the critical frequency to
the asynchronous regime of cluster motion shifts relative to that
of single particles. The blue (clusters) and orange (single particles)
curves in Fig. 3 demonstrate this behavior. It is important to point
out that the upward shift of the critical frequency relies on the
commensurability of Δ with a (multiple) of the wavelength a.
Considering, e.g., distances Δ≃ a/2, dimers would be less strongly
trapped by the traveling wave potential, because the particles
forming the dimer can not be both at potential minima.
Accordingly, their motion would start to desynchronize at a lower
frequency than that of single particles.

We support these arguments by an exact treatment of driven
Brownian motion in a traveling wave potential Uðx; tÞ ¼
U0 cosð2πx=a� ωtÞ with constrained particle distances Δ. The
detailed derivations in this treatment are given in the Supple-
mentary Note 1. For the mean cluster velocities �vðnÞx we obtain

�vðnÞx

vp
¼ 1� 1� e�ωτn

ωτn
Gðωτn; βU0nÞ : ð1Þ

where

Gðωτn; βU0nÞ ¼
1R 1

0 dx
R xþ1
x dy gðx;ωτn; βU0nÞ=gðy;ωτn; βU0nÞ

ð2Þ
and gðx;ωτn; βU0nÞ ¼ exp½�βU0n cosð2πxÞ þ ωτnx�. Here β= 1/
kBT, U0n ¼ U0 sinðnkΔ=2Þ= sinðkΔ=2Þ, and τn= na2/(2πD) with
D the diffusion coefficient of a particle. The dependence of �vðnÞx =vp
for n= 1, 2 predicted by Eq. (1) is displayed in the inset of Fig. 3
and indeed shows the same type of cluster speed-up effect as
observed in the experiments. The missing quantitative agreement
between the experimental data and theory may be due to different
reasons, including the effect of hydrodynamic interactions
between the particles. Such interactions may help surmounting
energetic barriers43, and thus enhance the speed-up effect, and
will be a matter of future studies.

The detailed behavior of cluster speeds is very sensitive to the
Δ/a ratio, i.e. the degree of commensurability. Figure 4 shows
�vðnÞx =vp given by Eq. (1) in dependence of the cluster size n at
three frequencies in the transient regime for (a) perfect

commensurability Δ= a, and (b) a small incommensurability
Δ= 0.97a. While for commensurable particle distance the cluster
speeds become constant at large cluster sizes, the speed-up at
small n is followed by a slowing down at larger n for the slightly
incommensurable case. This means that in the experiments,
where the commensurability is not perfect, one can expect a
rather subtle variation with n.

From our analysis of particle trajectories in the experiment,
mean cluster speeds can be determined for small cluster sizes. At
a frequency ω= 44 rad s−1, we found �vð1Þx ¼ 9:8 μms�1 for single
particles, �vð2Þx ¼ 13:7 μms�1 for dimers, and �vð3Þx ¼ 16:7 μms�1

for trimers. The increase of �vðnÞx with n for these small clusters is
in qualitative agreement with our theoretical predictions. Mean
cluster speeds for larger n, however, could not be extracted from
the trajectories with reliable accuracy.

We also note that the speed-up effect appears to be similar of
the concerted cluster motions for single-file transport of mole-
cules in zeolites44,45 and the simulated Brownian particles forced
though an asymmetric ratchet potential46. However, in contrast
to those cases, the commensurability of the particle size with the
underlying lattice is a decisive factor and thermal fluctuations do
not play an important role.

Hopping model. – The many-body dynamics at all densities
can be captured in a coarse-grained description by a one-
dimensional driven lattice gas with parallel update, where the
lattice sites represent the potential minima and each site can be
occupied by at most one particle. The mean occupation number
ρlg of lattice sites corresponds to the normalized density ~ρ ¼
ρlg½πðd=2Þ2Þ=ð

ffiffiffi
3

p
a2=2Þ� in the experiment. We develop the model

from the experimental observations by considering first an
idealized situation, where all clusters have the same speed and

Fig. 4 Size dependence of the cluster speeds from analytical caluclations
[Eq. (1) and Eq. (2)]. The cluster speeds �vðnÞx are normalized with respect to
the traveling wave speed vp and shown as a function of the cluster size n for
constrained particle distances (a) Δ= a and (b) Δ= 0.97a (a: lattice
constant). The behavior is shown for three different frequencies in the
transient regime between fully synchronous and fully asynchronous
dynamics. Calculations are performed for parameters U0= 18 kBT,
D= 1.3 μm2s−1 and a= 3 μm.

Fig. 3 Enhanced cluster transport. Single particle
--
v
s
x and cluster

--
v
cl
x mean

velocities versus frequency ω. Here, n= 2 and 3 refer to dimers and
trimers, respectively. The experimental data are averaged over different
independent measurements, and the error bars are obtained from the
standard error. The inset shows analytical results according to Eq.(1) for
cluster (dimers) and single-particle velocities. They refer to driven
Brownian motion in a traveling wave potential U(x, t), with constrained
particle distances Δ= a. The calculations are performed for parameters
U0= 18 kBT, diffusion coefficient D= 1.3 μm2s−1 and lattice constant
a= 3 μm.
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cluster breakups are solely induced by defects. Then we take into
account variations in cluster speeds in dependence of the cluster
size (see Fig. 4) and additional cluster breakups due to limited
attraction between particles (unconstrained dynamics). Currents
and velocities were determined by kinetic Monte Carlo simula-
tions. Results for the model (lines) are shown in Fig. 5(a) and (b)
in comparison with the experimental data for η < 0.28 (circles)
and η >= 0.28 (squares).

The particle configurations in the lattice gas are updated in
discrete time steps τ= 2π/ω and periodic boundary conditions
are used. In one update step, each particle either jumps to a
vacant nearest neighbor site along the transport (+x)-direction or
it does not move. For a single isolated particle, the jump prob-
ability is p1. In the idealized model, n-clusters composed of n ≥ 2
neighboring particles move as a whole during one time step with
a probability pcl > p1. The positions of single particles and clusters
are updated in sequential order along the (−x)-direction by
starting in each step with a randomly selected cluster (including
single particles as “1-clusters”).

The effect due to merging of transport lanes from different
crystallographic domains, which we consider as the main effect of
disorder on the collective dynamics, is taken into account by
introducing one representative defect site in the lattice and by
requiring a particle to stay at the defect site with a probability q.
Since the rate of particle exchange processes at merging points
can be expected to increase linearly with the density, we suppose
q= αρlg with α a proportionality constant. A single particle
occupying the defect site then moves with the reduced probability
(1− q)p1 during one update step. For an n-cluster occupying the
defect site with its jth particle [counted from the end along the
(+x)-direction], the defect has the following impact: The cluster

moves as a whole in one update step with probability (1− q)pcl,
while it breaks with probability qpcl. In the case of a breakup, only
the (j− 1) particles in front of the defect site move. As before,
none of the cluster’s particles moves with probability (1− pcl).

The results from this idealized model, shown by the dashed
lines in Fig. 5(a) and (b), describe well the defect-induced slowing
down of particle transport in the experiments for large ~ρ. As
expected, for the higher degree of disorder, we find smaller values
of p1 and pcl, and a larger α, see the values given in the figure
caption. Overall, the refined model reflects already the essential
physics observed in the experiments.

However, it is evident from Fig. 5(b) that the cluster speed-up
effect is overestimated in the idealized model. This is because of our
simple assumption that in the defect-free regions clusters either do
not move or move as a whole. In reality, particles in a cluster are
held together by the attractive interaction with some probability,
implying that clusters can break. To include this in the modeling, the
particle positions are sequentially updated in the (−x)-direction
against the bias. For an n-cluster in a defect-free region, each of its
particles moves with an n-dependent probability pn. The cluster size
dependence of pn takes into consideration the variation of cluster
speeds with the cluster size. In the case that a particle of an n-cluster
occupies the defect site, it moves with the reduced probabilitiy
(1− q)pn. In view of our findings in Fig. 4 and the fact that �vðnÞx � pnn
(i.e. large n are less important), we vary pn for n= 1− 4, and take
pn= p4 for all n ≥ 4.

The results from this model refinement are given by the solid
lines in Fig. 5 for the parameters given in Table 1. They show a
very good quantitative agreement with the experimental data for
almost all ~ρ. Deviations from the model are observed above
ρ= 0.5. The data trend, even if noisy, excludes the presence of
saturation of the current at a large density. This noisy trend could
be caused by a lack of statistical accuracy in the experimental data
due to the difficulty in tracking large ordered regions of the FGF
filled with packed colloids.

We note that the hopping model is similar to the totally
asymmetric simple exclusion process (TASEP) with parallel
update37,47. It differs from this TASEP by the fact that the par-
ticles are not moved with the same probability but with the dif-
ferent pn. Already in the idealized model with just the two
different values p1 and pcl, this leads to an important qualitative
change in the transport behavior: contrary to the TASEP, the
mean velocity �vx of a particle increases with ρ for small densities,
see Fig. 5(b).

Fig. 5 Current-density relationship from experiments and hopping model. a Normalized current~jx and (b) mean velocity �vx=vp vs. normalized density ~ρ

for the lattice gas model (lines) in comparison with the experiments for η6 < 0.28 (circles) and η6 > 0.28 (squares). The dashed lines correspond to the
idealized model with parameters p1= 0.2, pcl= 0.61 and α= 0.95 for η6 < 0.28, and p1= 0.19, pcl= 0.5 and α= 1 for η6 > 0.28. The solid lines mark the
results under additional consideration of cluster speeds varying with the cluster size, and cluster breakups due to the limited attraction between particles.
The error bars of the experimental data are obtained from the standard error of different experiments.

Table 1 Parameters of the refined driven lattice gas model
for the system with low disorder (η6 < 0.28) and the
disordered one (η6 > 0.28).

η6 p1 p2 p3 p4 α

<0.28 0.20 0.3 0.65 0.66 0.95
>0.28 0.19 0.25 0.38 0.52 1

Here η6 is the exponent of the correlation function g6(r), p1 the jump probability for one particle,
while pn the jump probability for clusters composed of n= 2, 3, 4 particles, and α the
proportionality constant between the probability q to stay at a defect and the main occupation
number ρlg.
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Conclusions
We have investigated the collective transport of colloids across
periodic and disordered lattices of magnetic potential wells.
Pronounced nonlinear current-density relations are obtained for
driving frequencies in the asynchronous regime. For small par-
ticle densities, the current along the transport direction increases
superlinearly and decreases at large densities due to defect-
induced breakup of particle clusters. The superlinear increase is
explained by a stronger synchronization of cluster movements
with the traveling wave. It occurs for particle interactions favoring
particle–particle distances commensurate with the lattice con-
stant. A coarse-grained description of the transport in terms of a
driven lattice gas with parallel update is able to capture the
experimental findings. In this context, driven colloidal particles
above periodic energy landscapes provide a relatively simple
experimental model system to investigate basic aspects of none-
quilibrium transport across ordered and disordered surfaces. The
observed emerging phenomena may equally occur in other con-
densed matter systems on different length scales from vortices in
high Tc superconductor48,49 to biological transport50–52, traffic
flow53,54, and even surface growth55,56. Thus, we provide an
experimental model system where such general phenomena can
be investigated at the single-particle level.

Methods
Details of the experimental setup. We give further details on the sample pre-
paration and on the experimental setup. The strong magnetic attraction of the FGF
film is reduced by coating its surface with a h= 1μm thick polymer film (AZ-1512
Microchem, Newton, MA). This is a light-curable polymer matrix that is fixed above
the FGF by using spin coating at 3000 rpm for 30 s (Spinner Ws-650Sz, Laurell) and
subsequent UV photo cross-linking (Mask Aligner MJB4, SUSS Microtec).

The external magnetic fields are applied via custom-made Helmholtz coils
connected to two independent power amplifiers (AMP-1800, Akiyama), which are
controlled by a wave generator (TGA1244, TTi). The positions of the particles
(Dynabeads M-270, Invitrogen) and their dynamics are recorded using an upright
optical microscope (Eclipse Ni, Nikon) equipped with a 100 × 1.3 NA oil
immersion objective and a CCD camera (Basler Scout scA640- 74 fc, Basler)
working at 75 frames per second. The resulting total field of view is 151 × 113 μm2.

We use video microscopy and particle tracking routines to extract the particle
positions ri≡ {xi(t), yi(t)} with i= 1, . . . ,N, from which we calculate the mean
velocity �vx;y and other statistical quantities.

Correlation functions of disorder. To quantify the spatial disorder, we calculate
from the bubble positions: the pair correlation function g(r) for the positional order
and the bond orientational correlation g6(r) for the orientational order. For a two-
dimensional pattern of points having number density ρ, the first function is given by

gðrÞ ¼ 1
2πrρ

∑
N

i¼1
∑
N

j¼1
δðr � rijÞ

� �
: ð3Þ

Here δ(r) is the Dirac delta function, rij= ∣ri− rj∣ is the distance between particles
i, j and 〈. . . 〉 denotes an average over all particle positions. To calculate g(r), we
counted the particles present in annular rings around each particle.

The second function is given by

g6ðrkjÞ ¼ hψ�
6ðrkÞψ6ðrjÞii ; ð4Þ

where ψ6 ¼ j 1
Nb

∑Nb
j¼1 e

6iθkj j, Nb is the number of neighbor particles k of a given

particle j, and θkj is the angle between a fixed axis, here the x-axis, and the bond
joining particles j and k.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request (ptierno@ub.edu).
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