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Degeneracy and hysteresis in a bidisperse colloidal ice
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We use numerical simulations to investigate the low-energy states of a bidisperse colloidal ice, realized by
confining two types of magnetic particles into double wells of different lengths. For this system, theoretical
calculations predict a highly degenerate ground state where all the vertices with zero topological charge have
equal energy. When raising the applied field, we find a re-entrant transition where the system passes from the
initial disordered state to a low-energy one and then back to disorder for large interaction strengths. The transition
is due to the particle localization on top of the central hill of the double wells, as revealed from the position
distributions. When we decrease the applied field, the system displays hysteresis in the fraction of low-energy
vertices, and a small return point memory by cycling the applied field.
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I. INTRODUCTION

Geometrically frustrated systems, such as water ice Ih [1,2]
and magnetic spin ice materials [3–8], feature a degenerate
ground state (GS) at low temperature. Such degeneracy pro-
duces novel physical phenomena, including a residual entropy
and dipolar spin-spin correlations, and has attracted much
attention by the scientific community both in natural and
artificial systems [9–16].

In spin ice materials, the dipole moments carried out by
rare-earth ions sit on a lattice of corner-sharing tetrahedra.
At each vertex, these spins have equal distances, and at low
temperature they tend to follow the “ice rules” [17], where
two spins point towards the center of the tetrahedron and two
away from it. The multiple configurations of these low-energy
states give rise to the GS degeneracy. However, when the spin
lattice is projected onto a two dimensional (2D) plane, as in
lithographically designed artificial spin ice systems (ASIs)
[18–22], some features may be lost due to the reduced di-
mensionality [23]. In a square ASI, the distance between the
ferromagnetic islands at each vertex is not the same, since
opposing spins are separated by greater distances than adja-
cent ones, and the corresponding interaction energies are not
equivalent. As a result, the degeneracy is lost, and the GS
becomes an antiferromagnetic order filled only by one type of
vertices (type 3, see Fig. 1). A way to recover the GS degen-
eracy in such systems was suggested by Möller and Moessner
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[24], based on the idea of introducing a height displacement
between the ferromagnetic islands. Changing the elevation of
only two of the four nanoislands at each vertex effectively
relieves degeneracy, but it requires a complex nanofabrication
procedure, as demonstrated recently [25]. Another possibility
relies on the use of bicomponent systems [26,27], charac-
terized by ferromagnetic nanoislands with different size and
distances, and thus interaction strengths.

The artificial colloidal ice is an alternative soft matter
system to investigate the complex physics emerging from
geometric frustration, by using confined colloids as analog
of interacting spins [28–36]. For lattices characterized by a
single coordination number cN , it was shown both by the-
ory [37] and experiments [38] that the collective interactions
between the particles lead to similar vertex energetics than
ASIs. Thus the square colloidal ice, similar to the square ASI,
also has its GS degeneracy lifted. However, the flexibility of
the colloidal system in changing the structure and tuning the
pair interactions enables us to search for alternative solutions
to this problem.

Here we use numerical simulations to explore the low-
energy states and the degeneracy of a bidisperse colloidal ice,
composed of two populations of particles and double wells.
We choose to explore this particular geometric arrangement
since single vertex calculations of the magnetic interactions
between the particles predict a degenerate GS, where all
vertices that satisfy the ice rule have equal energy. We find
that, by raising the interaction strength, the fraction of GS
vertices first increases but later decreases reaching again a
disordered state. We thus uncover a novel re-entrant effect
which distinguishes the colloidal system with mobile particles
from the ASI [39], and where the applied field can be used to
disorder the system by raising its amplitude. This effect can
be used to induces hysteresis in the fraction of GS vertices.
We note that memory effects in colloidal [40] and artificial
[41,42] spin ice systems have been reported in a few works,
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FIG. 1. (a) Schematic (not on a scale) showing a colloidal ice
made of a square lattice of double wells, each filled with one param-
agnetic colloidal particle. The vectors within the particles denote the
magnetic moments m induced by the external field B. (b) Different
types of vertices in the square colloidal ice with their associated
topological charge Q. The ratio between the magnetostatic energy
of one vertex u and that of the type 3 (u3) is illustrated at the bottom.
(c) Average fraction of vertices φ for the square colloidal ice vs the
applied magnetic field B.

however those systems where driven by an in plane field
rather than having tunable repulsive interactions induced by
a perpendicular field.

II. NUMERICAL SIMULATIONS

We perform Brownian dynamics simulations of a 2D lattice
of double wells, with lattice constant a = 33 μm and each
well featuring a central hill [43,44]. For the monodisperse case
(Fig. 1) the traps have length l1 = 23 μm and they contain
one paramagnetic colloid of diameter d = 2 μm and magnetic
volume susceptibility χ1 = 0.5. On the other hand, for the
binary mixture we keep the values χ1 and l1 for half of the
particles and traps while, for the rest we use χ2 = 0.0675 and
l2 = 30.356 μm and keep constant the particle diameter d . In
both cases, for each particle i at position ri we integrate the
overdamped equation of motion:

γ
dri

dt
= Fdd

i + FT
i + η, (1)

where γ = 0.032 pN s μm−1 is the viscous drag. The first
term on the right-hand side of Eq. (1) is given by, Fdd

i =
3μ0

4π

∑
j �=i

mi·m j

|ri j |4 r̂i j , where mi = χiV B/μ0 is the induced mo-

ment from the applied field B, V = πd3/6 the particle
volume, μ0 = 4π × 10−7 H/m the magnetic permeability of
the medium and r̂i j = (ri − r j )/|ri − r j | is the relative posi-
tion unit vector between two particles (i, j). The second term
in Eq. (1) is the force FT

i that acts on a colloid i due to the
potential well, and it is given by

F i = − ê⊥ktrapr⊥

+ ê‖

{
khillr‖ |r‖| � d

2

ktrap
(

λ
2 − |r‖|

)
sign(r‖) |r‖| > d

2

, (2)

where r‖ and r⊥ are components of a vector r parallel
and perpendicular resp. to the line of length λ that joins
the two minima in the double well. The stiffness ktrap =
6 × 10−4 pN/nm keeps the particle confined to the elon-
gated region around the center of the trap, and khill = 5 ×
10−6 pN/nm creates a potential hill that pushes the parti-
cles away towards one of the two potential wells. Finally,
η represents a random force due to thermal fluctuation,
with zero mean, 〈η〉 = 0 and delta correlated, 〈η(t )η(t ′)〉 =
2kBT γ δ(t − t ′). Here, T = 300 K is the ambient temperature.

The simulations are performed using a constant time step
of 10 ms. We use always a square sample with a number of
vertices on each side equal to N = 20, except for the calcula-
tions in Fig. 2(b) where we vary N ∈ [1, 40]. We increase B
linearly up to B = 300mT, at a rate of αB = 0.035 mT/s for
the initial simulations, and later change the rate when inves-
tigating hysteresis effects. Finally, we neglect hydrodynamic
and electrostatic interactions between the particles since in the
experiments such interactions are screened by the topographic
double wells.

III. THE MONODISPERSE COLLOIDAL ICE

The essential features of the colloidal ice are shown in
the schematic in Fig. 1(a). It is composed of a square lattice
of double wells, each filled by one paramagnetic colloidal
particle that is confined due to gravity. An external magnetic
field B perpendicular to the particle plane induces in each
particle a dipole moment mi ∼ χiB, and pair of particles (i, j)
located at a distance r = |ri − r j | experience a repulsive dipo-
lar interaction:

u = μ0

4π

mi · m j

r3
, (3)

which depends on both, the field amplitude and particle sus-
ceptibility. Thus particles located in close traps on the same
vertex will repel each other, but the interaction strength is such
that while they can cross the central hill, they cannot leave
the double well. Geometric frustration in the system arises
from the arrangement of the double wells, that do not allow
the simultaneous minimization of all pairwise interactions.

The mapping between the colloidal and spin ice systems
can be done by assigning a pseudospin to each double well,
such that it points where the particle is located [28]. As shown
in Fig. 1(b), this mapping allows to construct a set of vertex
rules, and for the square lattice, six energetic configuration of
the particles are possible. Also, to each vertex one can assign a
topological charge Q = 2n − cN [45], where n is the number
of pseudo spins that point toward the vertex center, and cN

the coordination number of the lattice, which for the square is
cN = 4. In this formalism, the vertices that satisfy the ice rules
are those which cancel the topological charge, Q = 0, i.e., the
type 3 and type 4, while low (type 1 with Q = −4, type 2 with
Q = −2) and high (type 6 with Q = +4, type 5 with Q = +2)
energetic vertices break the ice rule and represent topological
defects. The topological nature of such defects arises from the
fact that they can disappear only when annihilating with other
defects of opposite charge, for example type 2 with −2 and
so on.

043023-2



DEGENERACY AND HYSTERESIS IN A BIDISPERSE … PHYSICAL REVIEW RESEARCH 3, 043023 (2021)

FIG. 2. (a) Comparison between one vertex in the monodisperse (left) and in the bidisperse (right) colloidal ice. In the latter case, the
particles have different magnetic susceptibilities (χ1 > χ2) and distances (d1 > d2) at the vertex. (b) Energetic splitting of different types of
vertices in the bidisperse ice. (c) Vertex energy ū vs magnetic susceptibility χ2 for the bidisperse system with particles subjected to an applied
field of amplitude B = 13 mT. For χ2 = 0.067, the energies ū5a ≈ ū5b, ū5a/ū5b = 0.99 and ū3a = ū3b = ū4. (d) Mean vertex energy 〈ū〉/N vs
total number of vertices N for a system composed of type 3 (squares) and type 4 (circles). Inset shows the energy difference (〈ū4〉 − 〈ū3〉)/N
vs N .

In Fig. 1(c), we show the simulation results for a square
lattice composed of N = 20 vertices per side, and plot the
fraction φ of different vertex types versus the amplitude of the
applied field. We find that for the monodisperse ice, the system
displays a clear tendency to follow the ice rules (Q = 0) at
high interaction strength, and it reaches a GS filled only by
type 3 vertices for B > 115 mT. This is also in agreement
with the energy hierarchy showed in Fig. 1(b), and a similar
situation is observed for artificial spin ice systems, where the
GS is characterized by type 3 vertices that form local loop
configurations with alternating chirality [46–49]. As a result,
the degeneracy is lost, and the GS has a twofold antiferromag-
netic order.

IV. THE BIDISPERSE COLLOIDAL ICE

To recover degeneracy, we designed a colloidal ice char-
acterized by two types of traps and double wells such that
the energetic weight of vertices of type 3 and 4 are the
same. The idea is illustrated in Fig. 2(a), where we use
two types of particles characterised by two different mag-
netic susceptibilities (χ1, χ2) and, thus, two different induced
moments (m1, m2) under the same applied field. On each ver-
tex, the particles with lower magnetic susceptibility (χ2) are
placed inside longer double wells (length l2) that are located
closer, i.e., at a distance d2 < d1. Instead the double wells
occupied by the particles with larger magnetic susceptibility

(χ1 > χ2) are located far away when pointing toward the
vertex (distance d1).

For arbitrary values of susceptibilities and trap lengths,
this conformation breaks the symmetry, and splits the vertex
energy as shown in Fig. 2(b): type 2 gives rise to 2a and 2b,
type 3 to 3a and 3b, and type 5 to 5a and 5b. To engineer a
degenerate vertex hierarchy, we fix the values (l1, χ1) and a,
and we solve the system of equations,

ū4(χ2, l2) = ū3a(χ2, l2) = ū3b(χ2, l2), (4)

being ū = ∑
u the sum of the dipolar interactions between

the vertex elements [Eq. (3)], where (l2, χ2) are used as free
parameters. The solution ensures that the pair interactions
between opposing and adjacent particles at a vertex are the
same and thus also the energetic weight of the type 3a, 3b and
type 4, Fig. 2(c).

The previous calculations are performed on individual ver-
tices, but do not reflect the collective nature of the colloidal
ice and the fact that the paramagnetic colloids interact beyond
the nearest neighbor level. To take into account these effects,
we consider a lattice made of N vertices with fixed particles
arranged to create a state with only type 3 or type 4. In these
two configurations, we calculate the mean energy per vertex,
〈u〉/N , to distinguish whether these two configurations are
energetically equivalent. As shown in Fig. 2(d), the vertex
energy grows with system size reaching a constant value of
∼69kBT for N > 1500 vertices. However, the energetic dif-
ference between the types 4 and 3 is non zero, but it raises to
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FIG. 3. Average fraction of vertices for different field values
for the bidisperse square ice. The results from the simulations are
averaged over 10 realizations.

∼0.4kBT, as seen in the Fig. 2(d). This effect results from
the collective interactions between the particles, that lower
the energy of the type 3 vertices with respect to the type 4.
Thus, at high interaction strength, the bidisperse colloidal ice
is expected to reach a GS filled only by type 3.

To confirm this hypothesis, we run numerical simulations
of the bidisperse system, see Fig. 3. Instead, we find that
even though the fraction of type 3 vertices first raises rapidly
from φ = 0.1 to φ = 0.5 at B ∼ 100 mT, above B ∼ 110 mT,

it starts decreasing until it reaches a relative low value of
φ = 0.2 even for the highest applied field of B ∼ 300 mT.
Further, also the type 4 vertices first decrease from φ = 0.25
to φ = 0.13, but later increase again to recover almost their

initial disordered value of φ ∼ 0.25. Interestingly, inter-
mediate energy vertices with charge Q = ±2, which are
topologically bound, appear with nearly the same probability
as the ice rule vertices. This is in contrast with high and
low charge (Q = ±4) vertices, which completely disappear al-
ready above B = 30 mT, as in previous observations with the
monodisperse systems (Fig. 1 and Ref [43]). In addition, this
transition occurs at a similar magnetic field value when the
monodisperse system reaches the GS, Fig. 1(c).

To understand this re-entrant behavior, we have analysed
the distribution of particles positions within the double wells,
shown in Fig. 4(b), where representative snapshots of the sim-
ulation system are shown for different values of B in Fig. 4(a).
For low field, both types of particles remain confined within
one of the two wells, and this behavior lasts until B ∼ 80 mT.
However, above this value we observe that the particles with
high magnetic susceptibility and located in the short traps tend
to localize close to the central hill rather than away from it,
Fig. 4(b) second column. This effect is remarkable, and it
raises much more the energy of the type 4, decreasing their
statistical fraction within the ensemble. Above B > 110 mT
the induced dipolar interactions are so strong that they force
also the localization of the particles with smaller magnetic
susceptibility close to the central hill, Fig. 4(b) third column.
This localization becomes more pronounced at higher field
strength as shown by the narrow particle distribution around
the central hill for B = 200 mT. The system thus tends to
disorder back to its initial configuration, with the only dif-
ference being the absence of type 1 and 6 vertices that causes
an increase in the final fraction of type 3, while type 2 and 5
reaches practically the same initial value of φ.

The discovered re-entrant behavior is rather robust, as it
was observed for a wide range of field rate αB. By lowering

FIG. 4. (a) Snapshots of the numerical simulations of the bidisperse ice taken at B = 0 (first image), 85 (second) 120 (third), and 200 mT
(fourth). The particles are indicated by the black disks on the square lattice, while the vertex defects are large blue (type 1, Q = −4), small
blue (type 2, Q = −2), small red (type 5, Q = +2), and large red (type 6, Q = +4) disks. The green disks denote vertices which fulfill the GS
(Q = 0). (b) Corresponding histograms of the particle positions in long horizontal traps (first row) and short vertical traps (second row) for the
three field values.
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FIG. 5. (a) Average fraction φ of type 3 vertices vs applied field
B obtained up to B = 200 mT (red and blue circles), and lowering
back to B = 0 mT (green and purple triangles) at two different rates.
(b) Hysteresis area A vs rate αB of the applied field. Inset shows the
same plot in the log-log scale. (c) Spin overlap order parameter qs vs
number of cycles calculated from a minor loop centered at the peak
of the type 3 vertex fraction.

αB, the fraction of type 3 vertices display a maximum at
lower field amplitude and later reaches higher fraction φ,
whereas increasing the rate causes this re-entrant phenomenon
to occur later in time. In the latter case, the system does not
have time to reorganize into low-energy state, and the frac-
tion of type 3 vertices decreases rapidly. However, the final
vertex count remains the same regardless of the field change
rate. Thus this phenomenon represents an alternative way to
disorder the system by raising now the applied field, rather
than resetting the colloidal ice by repeating the experiment
and recollocating the particles randomly within the double
wells.

We now explore the presence of hysteresis and memory in
our system when cycling B. We measure this effect by con-
sidering the fraction GS vertices (type 3) and how it changes
by first increasing and then decreasing the applied field. Some
representative results are shown in Fig. 5(a) for different rates
αB. In general, we find that when the field is cycled sufficiently
fast (αB > 0.5 mTs−1) the fraction φ tends to retrace itself and
there is a small detectable hysteresis. In contrast, for smaller
rates (αB < 0.1 mT s−1), the difference between both curves is
significant as shown in Fig. 5(a). To better understand the rate
dependent behavior, we plot in Fig. 5(b), such difference A be-
tween the area of the two curves versus the magnetic field rate
αB. Effectively, we find that the behavior is power law with
an exponent ∼−0.1 [inset Fig. 5(b)], while A → 0 starting
from αB ∼ 0.25 mT s−1. This rate dependent behavior is the
opposite than the one observed for other bistable systems, like

ferromagnets, where the area of the hysteresis loop increases
with the rate of the field switching [50–52].

Another phenomenon that could arise in our system is
the presence of return point memory, namely the possibility
that our bidisperse colloidal ice could reproduce a microstate,
i.e., a given particle configuration, when the field is cycled
after the first minor loop. To quantify this effect, we follow
previous works on colloidal [40] and artificial spin ice [42],
and calculate the spin overlap order parameter defined as [53]
qs = 1

N

∑
i s(n)

i s(n−1)
i . Form the colloidal position, we asso-

ciate an effective spin s to each of the bistable traps composing
the lattice. Thus s(n)

i represents the magnetic moment asso-
ciated to a bistable trap after a minor loop (n), while s(n−1)

i
is calculated one minor loop earlier. This order parameter
quantifies the presence of reproducible particle microstates
(qs = 1) after a certain number of minor loops starting from
a virgin curve. In contrast, qs = 0 indicates the total absence
of correlation between the configuration of two subsequent
loops n and n − 1. As shown in Fig. 5(c), the spin overlap
parameter has two dramatically different behaviours as the
magnetic ramp rate αB is changed. For αB < 0.7 mTs−1 the
overlap increases, without reaching the fully reversible state
(qs = 1) after 7 minor loops. As the field rate increases, the
overlap becomes smaller, which is expected since the system
lives in more excited states, and has access to a larger phase
space. However, surprisingly for αB = 0.1 mT s−1, we find
that the overlap suddenly increases in the first cycle, but then
decreases until it almost reaches the same steady value as the
case of αB = 0.069 mT s−1. These results indicate that our
colloidal ice does not present a strong memory of its previous
state, and such effect could be attributed to the presence of
noise as thermal fluctuations of the particles within the double
well or disorder resulting from the different magnetic cou-
plings between the two types of particles.

V. CONCLUSIONS

In this paper, we have investigated the low-energy states of
an artificial colloidal ice composed of a binary mixture of par-
ticles and traps. Before this work, the colloidal ice had mainly
been explored with monodisperse particles, and the emerging
physics had been studied extensively for different types of
lattices and interactions strength. However, novel effects may
arise when changing the types of particles or double well
traps. In particular, we uncover a re-entrant behavior which is
induced at high interaction strength, and that can be used as an
effective way to disorder the system. Such effect is absent in
the monodisperse system, where the particles localize in one
of the two double wells at all interaction strengths. Further-
more, it produces hysteresis and small memory effects when
changing the magnetic field rate.

This work opens different future directions. For example,
the idea of using a binary mixture of magnetic colloids to fill
bistable traps suggests the exciting possibility of employing a
polydisperse suspension which will modify the magnetic cou-
pling between the particles at parity of the applied magnetic
field. This is equivalent to varying the amount of disorder in
the system, without altering its geometrical arrangement and
thus, it could be used to uncover the emergence of glassiness
on a periodic lattice [54–56].
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