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Thermally active nanoparticle clusters enslaved by
engineered domain wall traps
Pietro Tierno 1,2,3✉, Tom H. Johansen4,5 & Arthur V. Straube 6✉

The stable assembly of fluctuating nanoparticle clusters on a surface represents a techno-

logical challenge of widespread interest for both fundamental and applied research. Here we

demonstrate a technique to stably confine in two dimensions clusters of interacting nano-

particles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to

form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet

film. At each domain, the magnetic stray field generates an effective harmonic potential with

a field tunable stiffness. The experiments are combined with theory to show that the mag-

netic confinement is effectively harmonic and pairwise interactions are of dipolar nature,

leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the sta-

tionary collective states arise from the competition between repulsion, confinement and the

tendency to fill the central potential well. Using a numerical simulation model as a quanti-

tative map between the experiments and theory we explore the field-induced crystallization

process for larger clusters and unveil the existence of three different dynamical regimes. The

present method provides a model platform for investigations of the collective phenomena

emerging when strongly confined nanoparticle clusters are forced to move in an idealized,

harmonic-like potential.
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Stable localization of nanoparticle clusters on a surface
may lead to several technological developments in dif-
ferent research fields, ranging from drug delivery1,2, to

microfluidics3, optics4, and photonics5. Understanding the
adsorption and mobility of nanoparticles on a substrate is also
crucial in different surface-based technologies such as
friction6,7 and heterogeneous catalysis8. For example, loca-
lized impurities as inorganic fullerene-like nanoparticles
showed excellent lubricating properties on layered materials,
with the enhancement of sliding friction and exfoliation-
material transfer9. In addition, investigating the dynamics of
confined nanoparticle clusters is also important from a theo-
retical point of view. These clusters represent a simple yet
nontrivial model system for studying multi-body effects in
condensed matter physics, and understanding their meso-
scopic dynamics may shed light on other systems on differ-
ent length- and timescales. Examples span from the
arrangements of electrons in a parabolic potential, where they
form a Wigner crystal10, to the dynamics of ions in a lateral
optical confinement11.

In colloidal science, the formation of clusters of microscale
particles via isotropic, attractive interactions and their complex
transition pathways have been investigated in two12 and in three
dimensions13,14. More recently, the effect of active perturbations
on the assembly pathways has been reported with levitated
granular particles assembled by acoustic forces.15. These works
demonstrated that current experimental techniques allow
manipulation and control of cluster at the colloidal length scale
and above. However, applying similar approaches to investigate
clusters of magnetic nanoparticles remains a challenging task. At
smaller length scales, large field gradients are required to over-
come thermal fluctuations and provide a stable trapping site for
nanoparticles. Some successful approaches have been recently
proposed based on the use of plasmonic landscapes16,17 or hard-
wall confinements18,19. Most of such techniques require the use of
lithographic patterns composed of fixed microstructures which
may influence the dynamics due to steric interactions and cannot
be easily changed by external control.

Here we demonstrate the stable trapping and control of ther-
mally active clusters of magnetic nanoparticles in solution by
using extended circular traps made of magnetic Bloch walls.
These domain walls generate strong and tunable magnetic gra-
dients which induce the assembly of nanoparticles into fluctuat-
ing clusters in two dimensions (2D). The research on controlled
motion of domain walls in magnetic thin films is currently
pushing the limit of magnetic data storage technology and is also
providing applications in logic devices20,21, spintronics22,
nanowires23,24, and ultracold atoms25. We use these nanoscale
entities to trap and control soft magnetic nanoparticles, as an
alternative approach to optical tweezers26 or dielectrophoretic
traps27.

Results
Experimental system. We realize cylindrical ferromagnetic
domains, or magnetic "bubbles”, by using a single crystal, uniaxial
ferrite garnet film (FGF), see Fig. 1a–c. The FGF is grown via
dipping liquid phase epitaxy on a 〈111〉 oriented single crystal
gadolinium gallium garnet (Gd3Ga5O12)28, and has the compo-
sition Y2.5Bi0.5Fe5−qGaqO12 (q= 0.5−1). The grown film displays
a labyrinth pattern of stripe domains with alternating perpendi-
cular magnetization vector. The domains are separated by
~20 nm thick Bloch walls (BWs) where the magnetization vector
rotates by 180° in the (x, z) plane. To transform the stripe pattern
into a triangular lattice of magnetic bubbles, we anneal the lattice
by keeping it for � 15 min to a high frequency (0.5 kHz)

magnetic field of amplitude Bz= 3 mT. After switching off the
field, the FGF displays a triangular lattice of cylindrical ferro-
magnetic domains with uniform magnetization, lattice constant
a= 11.8 μm and diameter D= 8.8 μm. The size of the magnetic
bubbles can be tuned by an external field perpendicular to the
film, Bext ¼ Bz ẑ. When the field is parallel (antiparallel) to
the bubble magnetization, it increases (decreases) the radius of
the cylindrical domains. From the analysis of the experimental
data, Fig. 1d, we extract a saturation magnetization of Bs= 21.3
mT (critical field Bc= 11.4 mT29). More technical details can be
found in “Methods”. We also note that recently a strong edge
stray field has been generated by an array of regular nanorod
assembled in a triangular lattice30. However, the presence of the
oppositely magnetized surrounding film impedes the formation
of localized vortices in our system.

Nanoparticle trapping. Above the magnetic lattice we deposit a
water dispersion of paramagnetic nanoparticles with diameter
d= 360 nm (Microparticles GmbH), and doped with ~40% by
weight of iron oxide. Before placing the particles, we use soft
lithography to cover the FGF with a 1 μm thin layer of a polymer
film to avoid sticking due to magnetic attraction, see “Methods”
for more details. Due to density mismatch, the nanoparticles
sediment in water reaching the FGF surface. As shown in Fig. 1c,
see also Video S1 in the Supporting Information, the particles are
effectively 2D confined within the cylindrical domains, and can
only exchange position by moving within the (x, y) plane, but not
along the perpendicular direction.

The BW trapping at the center of the magnetic domains could
be explained by calculating the magnetostatic potential generated
by the stray field of the film, Bstray. The energy of one
paramagnetic particle at an elevation z above such lattice is given
by U1(r)=−υχB2(r)/(2μ0), see “Methods”. Here, B= Bext+
Bstray is the total magnetic field, υ the particle volume, χ ~ 2 the
effective magnetic volume susceptibility31, and μ0= 4π × 10−7 H/
m is the magnetic permeability of the medium (water). To
determine the energy landscape U1(x, y), we calculate numerically
Bstray by summing up a two-dimensional triangular lattice of
cylindrical ferromagnetic domains, see “Methods” for more
details. Figure 1e shows the result for zero external field
(Bz= 0) at the particle elevation of z= 1.3 μm. The energy
landscape displays a triangular lattice of radially symmetric
potential wells that are centered at the locations of the magnetic
bubbles. Further, from the calculations we find that when the
applied field is parallel to the bubble magnetization (Bz > 0), these
potential wells become deeper, while these minima disappear
when the field is antiparallel to the bubble magnetization (Bz < 0);
we will come back to this effect later.

Single-particle fluctuations. We proceed to determine the effective
shape of the confining potential from the single-particle fluctuations.
As shown in Fig. 2a, a trapped nanoparticle performs a confined,
angle-independent diffusive motion relative to the center of the
magnetic bubble at the origin. The external field Bz increases the
bubble area (red circle), and makes the potential stiffer, which
induces a stronger confinement (red trajectory). This effect is con-
firmed in Fig. 2b, where from the particle trajectory we extract the
effective confining potential U1(r), applying the standard Boltzmann
distribution32. Even if the real trapping potential displays a complex
shape (see Fig. 1e), we find that the nanoparticle explores only the
central well staying away from the boundaries where the Bloch walls
are located. In such region, the potential well can be well approxi-
mated with a harmonic function,

U1ðrÞ ¼
1
2
ker

2; ð1Þ
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Fig. 1 Magnetic bubble lattice. a Schematic of the experimental setup used to visualize and control the Ferrite Garnet Film (FGF). b Detailed sketch of the
FGF with magnetic bubble domains filled by different numbers of paramagnetic nanoparticles. The external magnetic field Bext ¼ Bzẑ is applied
perpendicular to the film (z axis). c Polarization microscope image of trapped nanoparticles (of diameter d= 360 nm). The magnetic bubble domains are
visible due to the polar Faraday effect. Scale bar is 10 μm, see also VideoS1 in the Supporting Information. d Square of the bubble diameter D2 versus
applied field Bz. Scattered points are experimental data while continuous line is a linear fit according to D2 ¼ 4a2½ðBz=Bs þ 1Þ sinðπ=3Þ=ð2πÞ� (see
“Methods”), from which we extract the lattice constant a= 11.81 ± 0.02 μm and the saturation magnetization Bs= 21.3 ± 0.3 mT. Error bars in D2 are
obtained from the statistical average of different measurments. Insets show images of the magnetic domains. e Three-dimensional view of the
magnetostatic potential U1 calculated at an elevation z= 1.3 μm and for Bz= 0mT. The (x, z) positions are rescaled by a, while the potential U1 is rescaled
by the parameter U0 ¼ χπd3B2s=ð12μ0Þ, see text for the values of μ0, χ, and d.

Fig. 2 Single-particle dynamics. a Two trajectories of one paramagnetic nanoparticle trapped above a magnetic bubble for Bz= 0mT (black line) and
Bz= 4.7 mT (red line), the circles indicate the corresponding locations of the Bloch wall. bMagnetic potential U1(r) calculated from the particle fluctuations
for different values of the applied field Bz. Scattered points are experimental data, continuous lines are fit using a simple harmonic approximation,
U1(r)= ker2/2. c Spring constant ke of the potential measured for different magnetic field Bz. Continuous red line denotes linear fit with ke= k0+ k1Bz, with
k0= 0.0129 ± 0.0012 pN/μm and k1= 0.0043 ± 0.0005 pN/(mTμm). The error bars in the data result from the statistical average of different
measurments. d Log–log plot of the mean-square displacement (MSD) for different applied magnetic fields. Continuous lines are fits obtained by using the
theoretical model, see Eq. (2) and text.
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where ke is the effective spring constant. We note that exactly such
radial dependence comes out naturally from our theoretical model
when considering the close proximity of a magnetic bubble, see
“Methods”. Further, Fig. 2b shows that increasing the applied field
makes the potential effectively stiffer and thus ke grows with Bz. Here,
our model predicts a linearly growing function ke(Bz) (see “Meth-
ods”), which is in perfect agreement with the experiment. The cor-
responding experimentally measured values of the spring constant,
extracted from different potential distributions, are shown in Fig. 2c.
As expected, the potential stiffness varies linearly with the field
amplitude, and we measure a maximum value of ke= 0.034 pN/μm
for Bz= 4.7mT, which corresponds to a bubble of diameter
D= 9.5 μm.

The particle dynamics can be further characterized by the
mean-square displacement (MSD) given by,
hΔr2iðtÞ ¼ hðrðt þ t0Þ � rðt0ÞÞ2i, where r(t)= (x(t), y(t)) is the
particle coordinate measured relative to the center of the
bubble, t is the lag time, and 〈. . . 〉 a statistical average, which
we performed over ~15 independent experiments. The long-
time behavior of the MSD can be described by a power law,
〈Δr2〉(t) ~ tα with an exponent α which is used to distinguish

between normal (α= 1) and anomalous (α ≠ 1) diffusion. In a
harmonic trap, the particle dynamics is described by an
overdamped Langevin equation, ζ _r ¼ �kerþ ξðtÞ, which
follows directly from our model, see “Methods”. Here, ζ is
the particle friction coefficient, and ξ is a random force that
describes thermal fluctuations. This equation is used to arrive
at the 2D time-dependent MSD33,

hΔr2iðtÞ ¼ 2kBT
ke

1� exp � 2ket
ζ

� �� �
; ð2Þ

which describes a crossover at t ≃ τ= ζ/2ke from free diffusion
at small times (t≪ τ), 〈Δr2〉(t) ≃ 4D0t with
D0 = kBT/ζ= 1.04 μm2/s to confined Brownian motion, 〈Δr2〉
(t)= 2kBT/ke at long times (t≫ τ). The long-time limit of this
equation provides an independent way to measure the
effective spring constants.

When using Eq. (2) to plot all the MSD curves, Fig. 2d, we
detect slight differences in the values of spring constants ke
compared to those determined from the potentials in Fig. 2c. This
is not unexpected because the nanoparticle subjected to thermal
noise explores the weakly anharmonic nature of the genuine
confining potential and small deviations relative to the harmonic
model are captured unequally well by the different approaches. As
shown in “Methods”, the account of weak anharmonicity of our
magnetic trap keeps valid the harmonic model, Eq. (1), with an
effectively suppressed spring constant, ke− Δke, where the small
correction Δke ∝ kBT > 0. Although accounting for such slight
shift in ke allows us to achieve a better quantitative agreement for
MSDs shown in Fig. 2d, it remains otherwise unessential for our
study and therefore we neglect Δke further.

Pair interaction and collective states. The circular magnetic
traps can be used to enclose pairs of interacting nanoparticles and
measure the corresponding pairwise interaction potential U2 from
the distribution statistics. As predicted by our theoretical model
(see “Methods”), such interactions arise from the magnetic
moments induced in paramagnetic nanoparticles by both the
stray field of the FGF Bstray � 3e�κzBsẑ and external field
Bext ¼ Bz ẑ, where κ∝ a−1 is a damping exponent. Note that the
total field B= Bstray+ Bext and hence the induced dipoles remain
always perpendicular to the confining plane, for any external field
Bz, as shown in the schematic in Fig. 3a, including the case
Bz= 0 mT. This naturally suggests that the pairwise dipolar
interactions are central and strictly repulsive,

U2ðrÞ ¼
γ

r3
; ð3Þ

with a field-dependent strength γ= γ(Bz).
We show the validity of this hypothesis first for the case

Bz= 0 mT, see Fig. 3a. In the presence of the external potential,
the distribution of particle positions is dictated by the balance
between the external and the repulsive dipolar forces. For a pair
of particles with the displacements r1 and r2 from the trap center
and interparticle distance r, we measure their total potential
U=U1(r1)+U1(r2)+U2(r). A good analytic approximation for
the total potential is given by U(r) ≈ 2U1(r/2)+U2(r), which is
compared with U(r) evaluated directly from the distribution of
interparticle distances; more details are given in “Methods”. We
note that the experimental data, approximate formula and results
of simulations are in good quantitative agreement, see Fig. 3a.
However, as expected U(r) computed from the particle distribu-
tion exhibits a slightly better correspondence to the experimental
data than the prediction from the analytic formula with the same
fitting parameters. Therefore, we stick to the more accurate
representation when setting the mapping between the model and
the experiments. Application of the external field, Bz, induces a

Fig. 3 Total interaction potential. a Total interaction potential U(r)
between two trapped nanoparticles evaluated from the distribution of
the interparticle positions (symbols for experiment and continuous blue line
for simulations) and from the formula U(r)≈ 2U1(r/2)+ U2(r) (theory, red
dashed line) versus the interparticle distance r for Bz= 0mT. Small inset
shows an image of a pair of confined nanoparticles interacting repulsively
due to the parallel induced magnetic moments. b The potential U(r) versus
r for different amplitudes Bz. Symbols and continuous lines refer to the
experiment and simulations, respectively. The horizontal dotted line is
guide to the eye for U= 0.
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visible narrowing of the potential well: notice not only the right
part of the graphs in Fig. 3b, but also steeper repulsion tails with
the growth in Bz, as can be observed from the left part of the
graphs. Fitting the simulation data to the experiment for U(r)
fixes the field-dependent strength γ(Bz) of the pairwise repulsive
interactions, U2(r).

When increasing the number of nanoparticles in the magnetic
trap, the repulsive colloids are forced to coexist and they compete for
filling the central minimum. Since the confining potential and
interparticle interaction potential are now completely specified by
Eqs. (1) and (3) with the parameters extracted from the experiment,
we construct a Brownian dynamics simulation model. Combining
these deterministic forces with irregular forces caused by thermal
fluctuations, we arrive at the Langevin equations for N interacting
particles (see “Methods”),

ζ
driðtÞ
dt

¼ �keri þ 3γ∑
j>i

r̂ij
r3ij

þ ξiðtÞ ; ð4Þ

used to rationalize the experiments and to characterize the emerging
collective states. The evolution of particle i with the position
ri= (xi(t), yi(t)) is determined by the restoring, repulsion and thermal

noise forces, as given by the three terms in the right-hand side of
Eq. (4), respectively.

We will now report collective states for an increasing number
N= 1,…, 6 of particles confined to the trap, as shown in Fig. 4a
for Bz= 0 mT. In Fig. 4b we show the stationary spatial density
distribution ρ(x, y) at different fields Bz ranging from 0 to 4.7 mT.
The corresponding one-dimensional displacement distributions
P(δx) obtained by cutting ρ(x, y) along one direction (y= 0) are
presented in Fig. 4c, as drawn from experiments (left column)
and simulations (right). Both experiments and simulations show
a very good agreement in describing the particle behavior within
the trap. Under zero field (first column Fig. 4b) the density field
remains highly localized only for a single particle, N= 1. Already
for two particles, N= 2, the density distribution significantly
flattens across the trapping region and each position within the
magnetic trap has almost the same probability to be visited. With
the further growth in N, this feature becomes more pronounced:
the density distribution broadens, while staying nearly uniform
in the most part of the trap. Note that although the particles repel,
tending to keeping apart and filling larger regions, the repulsion
strength remains relatively weak to break the quasi-uniform
structure of ρ(x, y).

Fig. 4 Stationary collective states in the magnetic trap. a Sequence of optical microscope images showing different confined nanoparticles (from top to
bottom) for Bz= 0mT. The superimposed dashed line indicates the location of the Bloch wall, scale bar is 2 μm. b Two-dimensional density distribution of
the particle positions projected onto the (x, y) plane. High (low) probabilities correspond to yellow (blue) regions. Scale bar at the bottom is 2 μm. c
Probability distributions P(δx) of the particle displacement along the x-axis from experiments (left column) and numerical simulation (right column).
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An increase in Bz strengthens the repulsion between the
particles and qualitatively changes the density distribution. While
one particle still shows the similar Gaussian distribution but
increasingly sharper at large Bz, for N= 2, 3 and 4 the density
distributions ρ(x, y) become significantly nonmonotonic. Indeed,
for relatively stronger repulsion, the restoring trap force is no
longer able to keep particles distributed uniformly about the
central potential well. Instead, they are radially displaced from
the trap center and localize at a certain distance from it. Thus, the
density field ρ(x, y) shows an angle-independent, ring-like
structure, which corresponds to the bimodal distributions P(δx)
with a local minimum at the center, see Fig. 4c. This picture,
however, does not preserve for the further growth in N. Starting
from N= 5, the local minimum at the center flips to a global
maximum, while other maxima do not disappear and the
distribution slightly broadens. At N= 5 and 6, the clusters
contain enough particles to stabilize one particle at the trap center
by forming a stable outer ring out of the other particles, which is
impossible for smaller N. The structure of density plots reflects
the shell-like ordering of particles, which is determined by the
balance of confining and repulsive forces. Under these forces, the
number of local maxima can be understood from the number of
rings that can be formed by the given number of particles34.

Cluster crystallization and trap escape. Apart from contrasting
the experimental data for a few trapped particles, our numerical
mapping model, Eq. (4), allows exploring the assembly and
dynamics for large field amplitudes, which are currently
unreachable by our experimental setup. These results, however,
could be readily tested with other ferromagnetic thin films able to
support larger field modulations35. Increasing the applied field,
leads to a stronger localization of nanoparticles in the trap and
simultaneously strengthens the repulsion between them. In a
related context, melting of confined few-body systems has been
investigated in experiments36,37 and numerical simulations38–40

for dipolar particles under hard-wall confinements. However, in
contrast to these works, our system is characterized by a nearly
harmonic confining potential that can be controlled together with
the pairwise interaction.

Figure 5 shows the field-induced crystallization process for a
cluster composed of N= 29 nanoparticles. We first analyze the
structural transition from disorder to order in terms of the time-
averaged bond-orientational parameter Ψ6, see “Methods”.
Generally, its values range from 0 to 1, indicating complete
disorder and perfect order, respectively. As shown in Fig. 5a, we
can identify three different regimes. For low fields, Bz < 60mT,
the particles are thermally delocalized and can explore the whole

Fig. 5 Field-induced crystallization process. a Average orientational bond order parameter 〈Ψ6〉 versus amplitude Bz of the applied field for a N= 29
nanoparticle cluster. Small insets are snapshots from numerical simulations of one particle trajectory at Bz= 7.3mT (left), Bz= 82.4mT (center) and
Bz= 210.9mT (right). b Interparticle distance fluctuations urel as a function of the field amplitude Bz for the confined nanoparticle cluster.
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bubble area. Increasing Bz, the parameter Ψ6 raises rapidly
towards a maximum value of Ψ6 ≈ 0.7, which is kept stable over a
range of Bz from 60 to 150mT. In this regime of intermediate
fields, the nanoparticles start to localize along three concentric
shells, with frequent intershell jumping which, however, neither
destroys the shell ordering nor suppresses the radial mobility, see
insets in Fig. 5a. Finally, for high fields, Bz > 150mT, we observe a
decrease in Ψ6 similar to a re-entrant behavior. Now the pairwise
interactions are so strong that they impede the intershell jumping,
significantly reducing the radial mobility and forcing the particles
to stay within the formed concentric shells. In this situation, the
angular dynamics within the shell intensifies, while the radial
motion freezes, a re-entrant effect that in many cases appears
similar to the case of hard-wall confinement of particles36. To
further quantify the crystallization process we compute another
parameter urel, the relative interparticle distance fluctuations41

(see “Methods”). As shown in Fig. 5b, the relative interparticle
distance fluctuations urel decrease with the increase of the external
field, with an amplitude of order similar to that reported for
microscopic particles40. Further, we observe a clear change in
slope of urel close to the second transition at high field where only
intrashell motion occurs.

While the experiments reported until now demonstrate the
trapping within the circular Bloch walls, our system allows us also
to change the particle location across the lattice and thus to
exchange particles between magnetic bubbles. Thus, the trapped
nanoparticles are enslaved within the magnetic bubble, and can
leave them only by an external command, such as an applied
field. This feature is demonstrated in Fig. 6a–c by switching the
direction of the applied field Bz→− Bz thus, the field becomes
antiparallel to the bubble magnetization. In this situation, the
nanoparticles are forced to jump into the interstitial region (first
and second image), while a subsequent field inversion (−Bz→ Bz)
forces the nanoparticles to return back to one of the nearest
bubbles (second and third image), see also Video S2 in the

Supporting Information. As shown in Fig. 6a, the central bubble
is initially filled by N= 5 particles which are then ejected toward
six interstitial places, where they meet other nanoparticles coming
from neighboring domains. Thus, each interstitial region receives
a fraction of the nanoparticles from the three nearest neighbor
bubbles, and after the second field reversal only N= 3 have
returned back to the original bubble. The exchange process can be
understood by analyzing the magnetostatic potential in the
particle plane (x, y), see Fig. 6c. When the field is antiparallel to
the bubble magnetization, it induces a reversal of the energy
landscape and the bubbles correspond not to minima but maxima
of the potential, while six potential wells of triangular shape are
nucleated around each bubble. This induces a particle displace-
ment at a speed of v ~ 20 μm/s, which is proportional to the local
magnetic gradient. As shown in the third image of Fig. 6a, some
particles may stay within the interstitial region even after the
second field reversal. They are located in an unstable equilibrium,
and can easily jump back to a bubble due to thermal fluctuations.
Reversing the field polarity may be used to remove nanoparticles
from each bubble, which later can be refilled with another field
reverse. Thus our virtual magnetic trap may be also used as a
rudimentary form of logic memory based on magnetic nano-
particles, which can be stored within the platform by localizing
them, and later "erasing" their location by an external command.
In particular, a recent work42 demonstrated the possibility of
combining lithographic confinement, electrostatic levitation and
external actuation to store and retrieve logic information from
levitated nanoparticles. Since our FGF could be easily coupled
with a lithographic structure, similar operations could be
parallelized on the whole bubble lattice using an external
magnetic field.

Discussion
We demonstrate the controlled magnetic trap to assemble and
manipulate clusters of magnetic nanoparticles in solution. We

Fig. 6 Field-induced trap escape. a Sequence of images showing the nanoparticle exchange process between 7 nearest bubbles. The particle exchange
between the magnetic bubbles (white disks) and the interstitial region (gray) is induced by reversing the field at t= 2.3 s, Bz→− Bz, and later back
to− Bz→ Bz at t= 4.6 s. The scale bar is 10 μm, see also VideoS2 in the Supporting Information. The error bars result from the statistical average of
different simulation data. b Schematics illustrating the particle positions and the applied field in the (x, z) plane. c Energy landscape of the magnetic lattice
calculated at an elevation z= 1.3 μm and for an applied field Bz= 4.3 mT (first and third image) and Bz=− 2.7 mT (second image) as described in
“Methods”. Energy minima are colored in blue, maxima in yellow. The red arrows superimposed to the images display the magnetic gradient.
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combine experiments with theory to show that the equilibrium
dynamics of the clusters arises from the balance between the
confining harmonic potential and repulsive dipolar interactions
induced by the substrate and the applied field. The external field
serves as the only control knob that may be used to tune both the
stiffness of confinement and the strength of interparticle inter-
actions. We further construct a numerical simulation model
based on the experimental parameters as a mapping between the
experiment and theory, which we exploit to extrapolate the
experiment for larger ranges of fields and particle numbers. We
investigate the field-induced crystallization process and reveal
three different dynamics regimes. Finally, we experimentally
demonstrate delocalized transport of nanoparticles across the
lattice and the exchange process between the magnetic domains
by inverting the applied magnetic field. We note also that trap-
ping of microscale colloids has been achieved both by litho-
graphic wedges43,44 and high-frequency electric field45. However,
our work allows us to trap nanoscale magnetic particles via a
magnetic landscape with tunable stiffness, keeping them confined
to a surface in stable two-dimensional clusters in absence of any
topographic relief.

Magnetic nanoparticles are the focus of intense scientific
research for their special physical properties which make them
widely used in biomedicine46, microfluidics47,48, magnetic
imaging49,50 or nanomaterial-based catalysts51, among others.
However, the doping with iron oxide makes these nano-size
objects light adsorbing, and thus rather difficult to be reliably
trapped via optical tweezers. Although recent progress in this
direction has been demonstrated at the single-particle level52,53,
extensions to stable entrapment of ensembles/clusters of nano-
particles in more than one spatial direction remains challenging.
With our study, we are able to overcome these restrictions
because our setup provides a versatile platform to localize, stably
confine and tune the behavior of nanoparticles on a spatially
extended surface.

The magnetic bubble lattice can be easily configured by an out
of plane magnetic field and the corresponding bubble domains
manipulated via a small gradient when the field is still on. Fur-
ther, given the fast response of the Bloch wall to magnetic field,
with a propagation speed of the order of ~ 1km s−1 54, these
features make this type of approach a promising candidate for
magnetic-based nanoscale trapping. While our magnetic domains
are relatively large, much smaller bubbles could be also synthe-
sized in garnet film55 that could eventually lead to further system
miniaturization. Moreover, the proposed technique can also be
extended to biological systems such as magnetotactic bacteria56

and different dispersing media such as viscoelastic fluids57. In the
latter case, plans to use our trapped nanoparticles as strongly
thermal microrheological probes are currently under research.

Methods
Experimental system
Preparation of the ferrite garnet film (FGF). We coat the FGF with a thin polymer
film (1 μm) made of a positive photoresist AZ-1512 (Microchem Newton, MA).
The coating increases the effective particle elevation from the FGF, which has a
twofold effect. First, it makes the potential effectively parabolic. Second, it reduces
the otherwise strong attraction by the Bloch walls, preventing the particle sticking
to the FGF. The photoresist is applied via spin coating (Spinner Ws-650Sz, Laurell)
and subsequent UV photo-crosslinking (Mask Aligner MJB4, SUSS Microtec). We
use the following procedure. First, we clean the FGF in an ultrasonic bath filled
with acetone (Merck) for �15 min and then with isopropanol (Sigma) for the
same amount of time. After that, the FGF is dried under a stream of N2. Few drops
of the photoresist are deposited above the cleaned FGF, and then dispersed using a
spin coater working at 3000 rpm for 30 s. After that, the polymer is baked by
placing FGF above a plate heated at 95 ∘C for 1 min, and then photo-crosslinked
via exposure to 5 s of UV irradiation at a power of P= 30 mW/cm2. A final post-

bake process is applied by placing the FGF above a hotplate heated at 115 ∘C for
50 s. The latter process induces further hardening of the photoresist above the FGF.

Preparation of colloidal solution. We dilute a drop of the stock solution of the
nanoparticles in highly deionized water (MilliQ, Millipore). The particles become
electrostatically stabilized in water by the negative charges acquired from the
dissociation of the surface carboxylic groups (COOH). We tune the amount of H2O
to reach a density of ~107 beads/ml and add few drops above the magnetic film.
After a few minutes, the particles sediment to the FGF surface due to density
mismatch and they remain confined above it without sticking. We wait for 15 min
to allow the sedimentation of all particles, place above a coverslip (no.1, Thermo
Scientific Menzel) and use an immersion oil (Immerso 1111-806, Zeiss) between
the coverslip and the microscope objective (100 × 1.3NA, Nikon).

Magnetic field and particle tracking. The external magnetic field perpendicular to
the FGF is applied by using a custom-made coil placed below the magnetic film
(see Fig. 1a). The coil is composed of 700 turns of a 0.5 mm thick copper wire and
is connected to a DC power supplier (TTi El 302), which allows to apply a spatially
uniform, static magnetic field up to Bz ≃ 20 mT. We use a teslameter (FM 205,
Projekt Elektronik GmbH) to calibrate the field amplitude and determine the
homogeneity of the field distribution around the sample plane. We find that for the
amplitudes used (Bz ≤ 6 mT) the field is spatially uniform above the sample area of
~1 cm2. The particle positions are determined via digital video microscopy58. We
use an upright optical microscope (Eclipse Ni, Nikon) equipped with a 100 × 1.3
NA oil immersion objective and a CCD camera (Basler Scout scA640-74fc, Basler)
to record experimental movies at 75 frames per second.

Theoretical model

Derivation of the model
General framework. The experimental measurements are interpreted within a
model that describes overdamped motion of an ensemble of i= 1,…,N nano-
particles with positions ri= (xi, yi) in a potential U and subject to thermal fluc-
tuations,

ζ
driðtÞ
dt

¼ � ∂

∂ri
Uðri; rjÞ þ ξiðtÞ ; ð5Þ

where ζ is the friction coefficient, ξ is the Gaussian white noise with zero mean and
diagonal covariance of strength 2ζkBT with kBT being the thermal energy. The
potential U(ri, rj)=U1(ri)+∑j>iU2(ri, rj), comprising the single-particle interac-
tion with the external field, U1, and pairwise interactions with all other particles,
U2.

A spherical paramagnetic particle of diameter d in a magnetic field H behaves as
an induced magnetic moment m= υχH, where χ is the effective magnetic
susceptibility and υ= πd3/6 is the volume of particle. Therefore, considering
U1(ri)=− (mi ⋅ Bi)/2 with Bi= B(ri) as the energy of the dipole-field interaction
and U2 as the energy of dipole-dipole interactions, we have

U1ðriÞ ¼ � υχB2ðriÞ
2μ0

; ð6Þ

U2ðri; rjÞ ¼
ðBi � BjÞ � 3ð̂rij � BiÞð̂rij � BjÞ

4πμ0r
3
ij

; ð7Þ

where rij= ri− rj, r̂ij ¼ rij=rij and rij= ∣rij∣. Note that because the solvent is
nonmagnetic, the magnetic induction B= μ0H with μ0= 4π × 10−7 Hm−1 the
magnetic permeability of free space.

Exact stray field above the FGF. The stray field generated at the surface of the
magnetic bubble lattice, Bstray, can be calculated exactly by summing up the field
from a triangular lattice with period a of magnetic bubbles with lattice vectors
p= na−+ma+ with a± :¼ ð ffiffiffi

3
p

a=2; ± a=2Þ, and n, m integers. Each bubble is
considered as a cylindrical uniformly magnetized ferromagnetic domain, generat-
ing a stray field above its surface written in cylindrical (r, z) coordinates as59:
b ¼ r̂brðr; z; tÞ þ ẑbzðr; z; tÞ with

br ¼
Bs

π

ffiffiffiffiffi
D
2r

r
Q1

2

r2 þ D2=4þ z2

rD

� �
; ð8aÞ

bz ¼ Bs �
Bs

π
κ�ΠðnþjKÞ þ κþΠðn�jKÞ
� �

: ð8bÞ

Here, Bs is the saturation magnetization of the FGF, r ¼ ðx � pxÞx̂ þ ðy � pyÞŷ,
Qn is the Legendre function of the second kind and order n, Π(n,m) gives the

complete elliptic integral of the third kind, K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rD=½z2 þ ðr þ D=2Þ2�

q
;

n ± ¼ 2r=ðr ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p Þ, the bubble diameter depends on the external field Bext
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and can be expressed as: DðtÞ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ � BextðtÞ=Bs þ 1
	 


sinðπ=3Þ=2π
q

and

κ± ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
±D=2Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p

± rÞ=½z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ D=2Þ2 þ z2

q
�.

The field generated by such array of bubbles is given by Bb=∑n,mbnm with the
indexes n and m over the entire triangular lattice. The overall substrate field is
obtained as Bstray≔ Bb− Bf, where Bf is the contribution due to the oppositely
magnetized film calculated for a cylindrical domain covering the entire sample
area. This approach is used to calculate the landscapes in Figs. 1e and 6c.

Reduced description. The total magnetic field above the substrate B= Bext+ Bstray,
where the external field Bext ¼ Bz ẑ and an approximate solution for the stray field
that captures triangular symmetry of the magnetic bubble lattice (see supple-
mentary information in Ref. 60) can be represented as Bstray(x, y, z)= Bs e−κz

h(x, y), h= (hx, hy, hz) with hx ¼ sin κx þ sinðκx=2Þ cosð ffiffiffi
3

p
κy=2Þ,

hy ¼
ffiffiffi
3

p
cosðκx=2Þ sinð ffiffiffi

3
p

κy=2Þ, hz ¼ cos κx þ 2 cosðκx=2Þ cosð ffiffiffi
3

p
κy=2Þ. Here, z

is the particle elevation above the substrate, and κ ¼ 4π=ð ffiffiffi
3

p
aÞ with the lattice

constant a. Expanding the solution about the center of a magnetic bubble, κr≪ 1,
we arrive at the reduced analytic expession

B ¼ 3
4
Bs e

�κz 2κx; 2κy; 4� κ2r2
	 
 ð9Þ

with r2= x2+ y2. Employing this result in Eq. (6), we obtain a harmonic
approximation for the confining potential, U1(r)= ker2/2 (Eq. (1)), with a field-
dependent spring constant of the form, ke(Bz)= k0(1+ c1Bz), where k0 and c1 are
fitting constants. To evaluate the pairwise interaction potential, Eq. (7), we stick to
the limit κr→ 0 in Eq. (9), which reveals central strictly repulsive interactions
between the particles, U2(r)= γ/r3 (Eq. (3)), with the field-depenent repulsion
strength γðBzÞ ¼ γ0ð1þ c2BzÞ2 and fitting constants γ0 and c2. Accounting for
these results in Eq. (5), we obtain the governing equation, see Eq. (4), serving as a
mapping between the theory and experiment.

Fitting the model to the experiment
Particle trapping. Properties of thermal motion of individual particles confined to
the harmonic potential U1(r)= ker2/2 are drawn from the single-particle stationary
probability distribution P1ðrÞ / exp½�βU1ðrÞ�, where β−1= kBT. The effective
spring constant ke(Bz)= k0(1+ c1Bz) is evaluated from the fits of the form ker2/2
against the data represented as �ln ½P1ðrÞ=P1ð0Þ�. The constant βk0 ≈ 3.174 μm−2

(which corresponds to k0 ≈ 0.0129 pN/μm) follows from the case Bz= 0 mT and
the value c1 ≈ 0.333 μT−1 is recovered by satisfying the measured profiles of
potential at different Bz, see Fig. 2b, c.

Alternatively, the values of ke can be extracted from the mean-square displacement
(MSD), hΔr2iðtÞ ¼ hðrðt þ t0Þ � rðt0ÞÞ2i, with a lag time t. As follows from Eq. (4) at
γ= 0, we obtain a Langevin equation describing Ornstein-Uhlenbeck process,
ζ _rðtÞ ¼ �kerþ ξðtÞ. The motions in x- and y-directions decouple and remain similar,
leading to33hΔx2iðtÞ ¼ hΔy2iðtÞ ¼ ðβkeÞ�1½1� expð�t=τÞ� with τ= ζ/(2ke).
Therefore, the full MSD is evaluated as 〈Δr2〉= 〈Δx2〉+ 〈Δy2〉, to yield Eq. (2), with the
long-time limit 〈Δr2〉→ 2kBT/ke, as t→∞. The time-dependent MSDs with the spring
constant evaluated as described next are shown in Fig. 2d. Note that τ= τ(Bz) with ke/ζ
represented as βkeD0, where D0= (βζ)−1 ≈ 1.04 μm2/s is the free diffusion coefficient.

The originally anharmonic nature of confining potential may lead to deviations
in effective spring constants measured from the particle distribution P1(r) and from
the MSD. For the latter, our measurements indeed show slightly smaller values of
ke, a known effect that is well captured by small anharmonic corrections to the
potential, see Appendix B61; for limited statistics, they may not be well detectable
from measuring P1(r) because of its sharp exponential form. Within our model,
they are equivalent to a coordinate-dependent spring constant
k0eðrÞ ¼ keð1� c4r

2=4Þ. Evaluating its average, we remain within the harmonic
approximation for U1 with a slightly modified spring constant
hk0ei ¼

R
k0eðrÞP1ðrÞdr ¼ ke � Δke;Δke ¼ c4kBT=2> 0, in quantitative accord with

our MSD data. Because the constant correction Δke is otherwise irrelevant for our
study, we do not take it into account.

Pairwise interactions. The parameters of pairwise repulsion interaction are eval-
uated from the case of two particles, for which the total potential U(r1, r2)=
U1(r1)+U1(r2)+U2(r). Here, r= ∣r1− r2∣ is the interparticle distance. The cor-
responding two-particle stationary probability distribution P2ðr1; r2Þ /
exp½�βUðr1; r2Þ� can be projected to
P2ðrÞ ¼

R
P2ðr1; r2Þδðjr1 � r2j � rÞdr1dr2 / exp½�βUðrÞ�. Therefore, we evaluate

U(r) as �ln ½P2ðrÞ=Pmax� by measuring P2(r), where Pmax ¼ max
r

P2ðrÞ; with this

normalization Umin ¼ minr UðrÞ ¼ 0. We match the corresponding data from the
experiment and simulations, see Fig. 3, by keeping the trap parameters as described
above and tuning the strength γðBzÞ ¼ γ0ð1þ c2BzÞ2 of repulsive interactions,
U2(r)= γ/r3. We find the best fit for βγ0 ≈ 2.4 μm3 for Bz= 0 mT and c2= 0.07 mT
−1, which accounts for the field dependence.

For a system with an elongated, quasi-one-dimensional trap, for which the most
probable configuration corresponds to r1=− r2= (r/2, 0) with the trap center at
origin, and a central pairwise potential U2(r) a reliable analytic approximation is

available62, U(r) ≈ 2U1(r/2)+U2(r). For our two-dimensional trap, this estimate is
still valid, because due to axial symmetry, cf. Fig. 4b, the most probable
configuration can be similarly represented as r1=− r2= r/2, leading to the
approximation P2ðrÞ / exp½�βð2U1ðr=2Þ þ U2ðrÞÞ�. The relative weights of other
possible configurations seem weak to introduce significant errors, and the
approximate formula U(r) ≈ 2U1(r/2)+U2(r) remains a robust reference also in
two dimensions, see Fig. 3a.

Analysis of collective states. To study collective states, cluster crystallization and
trap escape, we intergrate Eq. (4) numerically. The parameters of the trap and
repulsion, including their field dependence, are taken as determined in the single-
and two-particle setups. We have additionally ensured that every particle interacts
with all other particles. This way, we have access to particle positions within the
numerical model. Experimentally, particle positions are extracted by particle
tracking. These data are used to evaluate and compare such quantities as mean-
square displacement and particle distributions.

To quantify the degree of local hexagonal ordering, from particle positions we also
calculate the bond-orientational order parameter, defined as
ψ6;k ¼ N�1

b j∑Nb
j¼1 expð6iθkjÞj, where Nb is the number of neighbors of particle k, and

θkj is the angle between a fixed axis and the bond joining particles k and j. Further we
average it at each time step over all particles. Following a previous work on optically
trapped colloidal cluster63, to minimize artefacts from the curved frontier we calculate
ψ6(t)= 〈ψ6,k〉, by considering only the particles not adjacent to the outer boundary.
Finally, we perform a running-time average and obtain the measure Ψ6 ¼ ψ6ðtÞ for
an entire simulation, as shown in Fig. 5. Another order parameter that we use to
quantify the crystallization process is the relative interparticle distance fluctuations41,

urel ¼ 2=ðNðN � 1ÞÞ∑N
1≤ i<j ½hr2iji=hriji2 � 1�1=2, where rij is the distance between

particles i and j, N is the total number of particles, and we have also performed the
running-time averaging.

Data availability
The data that support the findings in this study are available within the article and its
Supplementary information. Further details are available from the corresponding authors
upon reasonable request.
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