
COMPARING LOCALIZATIONS ACROSS ADJUNCTIONS

CARLES CASACUBERTA, ORIOL RAVENTÓS, AND ANDREW TONKS

Abstract. We show that several apparently unrelated formulas involving left or right

Bousfield localizations in homotopy theory are induced by comparison maps associated

with pairs of adjoint functors. Such comparison maps are used in the article to discuss
the existence of functorial liftings of homotopical localizations and cellularizations to

categories of algebras over monads acting on model categories, with emphasis on the

cases of module spectra and algebras over simplicial operads. Some of our results hold
for algebras up to homotopy as well; for example, if T is the reduced monad associated

with a simplicial operad and f is any map of pointed simplicial sets, then f -localization

coincides with Tf -localization on spaces underlying homotopy T -algebras, and similarly
for cellularizations.

1. Introduction

Preservation of structures such as loop spaces, infinite loop spaces, or module spectra
under homotopical localizations or cellularizations has been studied using Segal’s theory of
loop spaces [16, 35], operads [27, 48, 84, 85, 86], algebraic theories [4, 13], or other methods
[17, 19, 29, 49]. Monads and their algebras lie behind many of these approaches. However,
although the existence of liftings of localizations or colocalizations to categories of algebras
over monads has been proved in various special cases, functoriality of such liftings has only
been addressed recently in [9, 50, 87] as well as in the present article.

This article emerged from the observation that some formulas involving localizations or
cellularizations in homotopy theory share common patterns not previously revealed. The
formulas that we consider —some of which are well known while others are new— contain
pairs of adjoint functors in some way or another.

As a first example, it was shown by Farjoun in [35, Theorem 3.A.1] that for every pointed
connected space X and every basepoint-preserving map f there is a weak equivalence

(1.1) LfΩX ' ΩLΣfX,

where Lf denotes localization with respect to f in the homotopy category of pointed spaces,
Ω is the loop functor, and Σ denotes suspension. Similarly, Bousfield proved in [17, Theo-
rem 2.10] that for every spectrum X and every pointed connected space A one has

(1.2) PAΩ∞X ' Ω∞PΣ∞AX,

where PA is A-nullification (that is, localization with respect to the map A → ∗) and Σ∞

is the canonical functor from the homotopy category of pointed spaces to the homotopy
category of spectra, while Ω∞ is its right adjoint. In Section 7 we prove that, as one would
expect, the formula (1.2) holds for all f -localizations, not only nullifications.

In a different context, it was shown in [29, Theorem 1.3] that

(1.3) LfX ' LSP∞fX
for every basepoint-preserving map f and every commutative topological monoid X, where
SP∞ is the infinite symmetric product [34]. The stable analogue of this fact is the statement
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that, if HZ denotes the spectrum that represents homology with integral coefficients, then

(1.4) LfX ' LHZ∧fX

for every f and every spectrum X splitting as a product of Eilenberg–Mac Lane spectra.
Another seemingly unrelated fact was observed in [25, Corollary 4.3], namely that there

is a natural homomorphism of groupoids

(1.5) πLfX −→ Lπf (πX)

for all spaces X and every map f , where π is the fundamental groupoid. This homomorphism
is almost never an isomorphism, yet it becomes an isomorphism after applying Lπf to it.

Further details about these examples and many others are given in the article. Our
encompassing approach is based on a study of comparison maps of type

(1.6) α : FLf −→ LFfF and β : LfG −→ GLFf

for each Quillen pair of adjoint functors F and G between model categories. In fact α and
β form a pair of mates as in [81]. Such comparison maps arise very frequently in practice
but are equivalences only in favorable cases. It is remarkable that α becomes an equivalence
after applying LFf to it, as in (1.5), while β does not share this feature.

The formulas (1.1), (1.2), (1.3) and (1.4) are “of β type” while (1.5) is “of α type”.
Among the new formulas that we obtain by means of comparison maps we emphasize the

following ones. For a cofibrant ring spectrum E and a map f of spectra, if f -localization
commutes with suspension or E is connective, then there is a natural equivalence

(1.7) LfM ' LE∧fM

for every left E-module M . Similarly, for a given spectrum A,

(1.8) CAM ' CE∧AM

for all left E-modules M if A-cellularization commutes with suspension or if E is connective.
These results generalize and dualize (1.4).

The content of the article may be summarized as follows.

1.1. Comparison maps. We start with a purely categorical study of natural transforma-
tions such as α and β in (1.6), relating localizations or colocalizations defined in two distinct
categories linked by pairs of adjoint functors. This is the core technique of the article, dat-
ing back to a preliminary draft written in 2006, which was gradually adapted for its use in
a homotopy-theoretical context. Our task was made feasible by results about transferred
model structures on categories of algebras over monads (or algebras over operads) from
articles that appeared in the meantime.

1.2. Preservation of (co)algebras under (co)localizations. Our main result in Sec-
tion 4 provides necessary and sufficient conditions under which a localization on a category
preserves algebras over a monad defined on the same category. This result uses comparison
maps (1.6) associated with the Eilenberg–Moore adjunction of the given monad.

The central finding, inspired by results in [29], is that, if a monad T and a localization L
are defined on the same category, then T preserves L-equivalences if and only if L preserves
T -algebras. This fact is made precise in Theorem 4.2 and is reminiscent of results in [11],
where distributivity between monads was first discussed.

Theorem 4.2 can be dualized in two different ways. One obvious way consists of passing
to opposite categories: this yields conditions under which colocalizations preserve coalgebras
over comonads. The other way is based on orthogonality between objects and morphisms,
leading to conditions under which colocalizations preserve algebras over monads or localiza-
tions preserve coalgebras over comonads.

1.3. Lifting (co)localizations to model categories of algebras. We subsequently ad-
dress a homotopy-theoretical version of the results in Section 4, hence providing necessary
and sufficient conditions under which a localization or a colocalization on a model category
M lifts to a categoryMT of algebras over a monad T acting onM, assuming that the cate-
goryMT admits a model structure transferred fromM; that is, one for which the forgetful
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functor U : MT → M creates weak equivalences and fibrations. Existence of such trans-
ferred model structures (or semi model structures) has been discussed in several articles,
such as [8, 12, 72]. Our main results in this part of the article (Theorem 7.4 and its dual
counterpart, Theorem 7.9) were obtained in collaboration with Javier Gutiérrez and David
White, who arrived at similar conclusions in [9, 50, 85].

It follows from results in Section 7 below or from [9] that a homotopical f -localization
lifts to a category of T -algebras admitting a transferred model structure if and only if the
forgetful functor U sends Ff -equivalences to f -equivalences, where F is Quillen left adjoint
to U , assuming that LFf exists —in fact, in this case LFf is a lift of Lf to T -algebras.
Similarly, A-cellularization lifts to T -algebras if and only if the forgetful functor U sends
FA-cellular objects to A-cellular objects, and in this case CFA is a lift of CA to T -algebras,
assuming the existence of CFA.

We apply Theorem 7.4 and Theorem 7.9 to modules over a cofibrant ring spectrum E
and to algebras over simplicial operads. In both cases, transferred model structures are
known to exist. However, there is a crucial distinction: in the case of E-module spectra
the associated monad TX = E ∧X preserves all colimits, while in the case of algebras over
a simplicial operad P the corresponding monad (whose algebras are the P -algebras) only
preserves sifted colimits. Therefore our treatment of the case of module spectra is easier.

1.4. Localizations and cellularizations of module spectra. We infer that, if E is a
cofibrant ring spectrum (in the category of symmetric spectra over simplicial sets), then
f -localizations and A-cellularizations lift to the category of left E-modules assuming that
they commute with suspension or that E is connective. This was first shown in [27, 48] by
viewing E-module spectra as algebras over a suitable two-colour operad.

Furthermore, if Lf (or CA) commutes with suspension or E is connective, then for every
left E-module M there are natural equivalences

LfUM ' LU(E∧f)UM ' ULE∧fM(1.9)

CAUM ' CU(E∧A)UM ' UCE∧AM(1.10)

that explain and refine (1.7) and (1.8).
Statements and proofs of claims about cellularizations turn out to be formally analogous

to those about localizations, since passage from Lf to CA involves exchanging objects with
morphisms or conversely. However, as our results are formulated in terms of right-induced
model structures on categories of algebras over monads, cellularizations tend to behave
better than localizations. For example, right Bousfield localizations with respect to objects
commute with forming Eilenberg–Moore categories of monads (Theorem 7.14 below) while
left Bousfield localizations with respect to morphisms need not do so (Example 8.5).

1.5. Algebras over simplicial operads. In Section 9 we recover and extend results of
Bousfield and Farjoun about interaction of localizations or cellularizations with loop spaces
and infinite loop spaces, such as (1.1) and (1.2). For this, we prove that Theorem 7.4 and
Theorem 7.9 apply to model categories of algebras over simplicial operads acting on pointed
simplicial sets. Let us emphasize that our main result in this section (Theorem 9.7) not
only states that localizations and cellularizations preserve algebras over simplicial operads,
but they do it in a functorial way, that is, yielding localization functors and cellularization
functors on algebras. In this respect, our approach shares insight with [50].

1.6. Algebras up to homotopy. The existing examples hinted that some of the above
conclusions did not really require the existence of transferred model structures on categories
of algebras over monads, but held equally well for algebras up to homotopy, i.e., algebras
over the derived monad in the homotopy category.

For example, the equivalences LfM ' LE∧fM and CAM ' CE∧AM still hold when M
is a homotopy E-module. More generally, we found that

LfX ' LTfX and CAX ' CTAX

ifX underlies a homotopy T -algebra, provided that T preserves f -equivalences and Tf -equiv-
alences, or, correspondingly, A-cellular spaces and TA-cellular spaces. These assumptions
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on T are automatically satisfied if T is the reduced monad associated with a simplicial op-
erad acting on pointed simplicial sets. Our proof of this fact relies on arguments used by
Farjoun in related parts of [35].

As consequences we infer that

LfX ' LΩΣfX and LfX ' LΩ∞Σ∞fX,

assuming in each case that X is a homotopy algebra over the corresponding monad, namely
ΩΣ in the first case (whose algebras are the homotopy associative H-spaces) and Ω∞Σ∞ in
the second case (whose algebras are called H∞-spaces). The second one can be generalized as

LfX ' LΩ∞(E∧Σ∞f)X

for algebras over the monad TX = Ω∞(E∧Σ∞X), where E is any connective ring spectrum.
This is an unstable analogue of the equivalence LfX ' LE∧fX for homotopy E-modules,
and if E = HZ then one recovers the formula (1.3), since Ω∞(HZ ∧ Σ∞X) ' SP∞X.

All these formulas remain valid if Lf is replaced with cellularization CA with respect to
some pointed connected space A. Our results are true, more generally, for localizations with
respect to collections of maps (possibly proper classes) and for colocalizations with respect
to collections of objects, whenever these exist.

The results in Section 7 are conceptually related with the content of [22, § 4], where it is
shown that the derived localization of a differential graded algebra A at a set of homogeneous
homology classes coincides with the derived localization of A as a left A-module.

Equivalences such as (1.9) and (1.10) hold as well, with suitable assumptions on E, for
other stable model categories, such as orthogonal G-spectra [33, 55, 63] for a compact Lie
group G, or motivic symmetric spectra over a field [39, 60]. Note that (1.10) with A = S (the
G-equivariant sphere spectrum or the motivic sphere spectrum, respectively) implies that

CSUE ' UCEE ' UE,
so the underlying spectrum of E is S-cellular, which is a strong restriction. Thus, S-cell-
ularity of E is a necessary condition for (1.10) to hold for all A, and it is shown in Theorem 8.3
below that it is also sufficient. In this context, (1.10) may be relevant in the study of the
derived category DM(k) of motives over a field k of characteristic zero, which is equiva-
lent, according to [77], to the homotopy category of modules over the spectrum MZ that
represents motivic cohomology for the given field k.

Acknowledgements. We appreciate many conversations with Javier Gutiérrez and David
White on the subject of this paper. Our results in Section 7 have been obtained through
exchanges of ideas with them. The first-named author also benefited from remarks by Boris
Chorny, Fernando Muro and José Luis Rodŕıguez, and the second-named author wants
to acknowledge useful discussions with Ilias Amrani, John Bourke, George Raptis, and
Alexandru Stanculescu. We are much indebted to the referee, whose pertinent suggestions
improved the article with additional details and new results and examples. The hospitality
of the Max-Planck-Institut für Mathematik in Bonn and the Institut Mittag-Leffler, where
parts of this article were written, is also gratefully acknowledged.

2. Adjunctions, monads and comonads

This section contains standard terminology and basic facts that will be used in the article.
More information can be found in [62, Chapters IV and VI]. If C and D are categories, we
denote by F : C � D : G a pair of adjoint functors, with F left adjoint and G right adjoint,
meaning that there are natural bijections of morphism sets

(2.1) D(FX, Y ) ∼= C(X,GY )

for X in C and Y in D. We denote by ϕt : X → GY the adjunct of a morphism ϕ : FX → Y
under (2.1) and, similarly, ψt : FX → Y denotes the adjunct of ψ : X → GY . Adjuncts of
identities yield natural transformations η : Id → GF (called unit) and ε : FG→ Id (called
counit), which, in turn, determine the adjunction by ψt = εY ◦ Fψ and ϕt = Gϕ ◦ ηX .

Passage to opposite categories transforms an adjunction F : C � D : G into another
adjunction G : Dop � Cop : F , where G is now the left adjoint and the former unit becomes
the counit, and conversely, since C(X,GFX) = Cop(GFX,X) for all X.
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If F : C � D : G is a pair of adjoint functors, then F is a retract of FGF and G is a
retract of GFG. This follows from the triangle identities

(2.2) εFX ◦ FηX = (ηX)t = idFX and GεY ◦ ηGY = (εY )t = idGY

for all objects X and Y . Moreover, if we consider the full subcategories

Cη = {X ∈ C | ηX : X ∼= GFX}, Dε = {Y ∈ D | εY : FGY ∼= Y },

then F and G restrict to an equivalence of categories

(2.3) F : Cη � Dε : G.

A monad on a category C is a triple (T, η, µ) where T : C → C is a functor and η : Id→ T
(the unit) and µ : TT → T (the multiplication) are natural transformations such that

µ ◦ Tµ = µ ◦ µT and µ ◦ Tη = µ ◦ ηT = IdT .

A monad (T, η, µ) is called idempotent if µ is an isomorphism, which we then omit from the
notation. If F : C � D : G is an adjunction with unit η and counit ε, then (GF, η,GεF ) is
a monad. In fact, all monads are of this form, in a non-unique way.

If (T, η, µ) is a monad on a category C, then a T -algebra is a pair (X, a) with a : TX → X
such that a ◦ Ta = a ◦ µX and a ◦ ηX = idX . A morphism of T -algebras (X, a)→ (Y, b) is a
morphism ϕ : X → Y in C such that ϕ ◦ a = b ◦ Tϕ. Thus, the T -algebras form a category,
denoted by CT and called the Eilenberg–Moore category of T , which fits into an adjunction

(2.4) F : C � CT : U

where FX = (TX, µX) and U(X, a) = X. This adjunction is terminal among all adjunctions
whose associated monad is T .

A comonad on a category C is a monad on the opposite category Cop. We denote a
comonad by (T, ε, δ) where ε : T → Id is the counit and δ : T → TT is the comultiplication.
A coalgebra over (T, ε, δ) is a pair (X, a) with a : X → TX such that Ta ◦ a = δX ◦ a and
εX ◦a = idX . If F : D � C : G is an adjunction with unit η and counit ε, then (FG, ε, FηG)
is a comonad. The category CT of T -coalgebras provides an initial adjunction

(2.5) U : CT � C : G

among those yielding T , where GX = (TX, δX) for all X; cf. [54, § 2].
A full subcategory S of a category C is reflective if the inclusion J is part of an adjunction

K : C � S : J . In this case, the counit KJ → Id is an isomorphism and the functor L = JK
is called a reflector or a localization on C. If we denote the unit by l : Id → L, then (L, l)
is an idempotent monad. An object of C is called L-local if it is isomorphic to an object
in the subcategory S; hence, X is L-local if and only if lX : X → LX is an isomorphism.
A morphism g : U → V is an L-equivalence if Lg is an isomorphism, or, equivalently, if for
all L-local objects X composition with g induces a bijection

(2.6) C(V,X) ∼= C(U,X).

Conversely, the L-local objects are precisely those X for which (2.6) holds for all L-equiva-
lences g : U → V ; see [2] for further details.

Dually, a full subcategory S of a category D is coreflective if the inclusion J has a right
adjoint J : S � D : K. Then the functor C = JK is called a coreflector or a colocalization
on D, and in this case the unit Id → KJ is an isomorphism. If we denote the counit by
c : C → Id, then (C, c) is an idempotent comonad. An object of D is called C-colocal if
it is isomorphic to an object in S; thus, X is C-colocal if and only if cX : CX → X is
an isomorphism. A morphism g : U → V is a C-equivalence if Cg is an isomorphism, or,
equivalently, if for all C-colocal objects X composition with g induces a bijection

(2.7) D(X,U) ∼= D(X,V ).

The C-colocal objects are precisely those X for which (2.7) holds for all C-equivalences
g : U → V . In fact, colocalizations are localizations on the opposite category.
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3. Comparison morphisms

Suppose we are given a localization L1 on a category C1 and a localization L2 on a
category C2. We say that a functor F : C1 → C2 preserves local objects if FX is L2-local for
every L1-local object X, and we say that F preserves equivalences if Ff is an L2-equivalence
whenever f is an L1-equivalence. We also say that a functor F : C1 → C2 reflects local objects
if, for an object X of C1, the assertion that FX is L2-local implies that X is L1-local.
Similarly, F reflects equivalences if f is an L1-equivalence whenever Ff is an L2-equivalence.
The same terminology will be used for colocalizations.

Lemma 3.1. Let F : C1 � C2 : G be a pair of adjoint functors.

(a) If localizations on C1 and C2 are given, then G preserves local objects if and only if
F preserves equivalences.

(b) If colocalizations on C1 and C2 are given, then F preserves colocal objects if and only
if G preserves equivalences.

Proof. This follows from the definitions, in view of the commutative diagram

C2(FB,X) //

∼=
��

C2(FA,X)

∼=
��

C1(B,GX) // C1(A,GX)

for a morphism A→ B in C1 and an object X in C2, where the vertical bijections are given by
the adjunction. Part (b) is deduced from part (a) by passing to the opposite categories. �

Theorem 3.2. Let F : C1 → C2 be a functor. Let L1 be a localization on C1 with unit l1 and
L2 a localization on C2 with unit l2. Then the following hold:

(i) F preserves equivalences if and only if there is a natural transformation

α : FL1 −→ L2F

such that α ◦Fl1 = l2F . If this holds, then α is unique and αX is an L2-equivalence
for all X. Moreover, α is an isomorphism if and only if F preserves local objects.

(ii) F preserves local objects if and only if there is a natural transformation

β : L2F −→ FL1

such that β ◦ l2F = Fl1. If this holds, then β is unique, and it is an isomorphism if
and only if F preserves equivalences.

Proof. For every X in C2, the morphism (l1)X : X → L1X is an L1-equivalence. Therefore,
if F preserves equivalences, then F (l1)X is an L2-equivalence. Hence it induces a natural
bijection

C2(FL1X,L2FX) ∼= C2(FX,L2FX)

and αX is uniquely defined by the equality αX ◦F (l1)X = (l2)FX . Since (l2)FX and F (l1)X
are both L2-equivalences, αX is also an L2-equivalence. In order to prove that α is a natural
transformation, we need to check that αY ◦FL1f is equal to L2Ff ◦αX for every f : X → Y .
This follows from the fact that l2 and Fl1 are natural transformations, by writing

L2Ff ◦ αX ◦ F (l1)X = L2Ff ◦ (l2)FX = (l2)FY ◦ Ff
= αY ◦ F (l1)Y ◦ Ff = αY ◦ FL1f ◦ F (l1)X

and using next that F (l1)X induces a bijection

C2(FL1X,L2FY ) ∼= C2(FX,L2FY ),

which implies that αY ◦ FL1f = L2Ff ◦ αX , as needed.
Next we assume that there is a natural transformation α such that α ◦ Fl1 = l2F , and

infer that F preserves equivalences. For this purpose, let f : X → Y be an L1-equivalence.
Since (l2)FY is an L2-equivalence and L2FX is L2-local, there is a bijection

C2(L2FY,L2FX) ∼= C2(FY,L2FX)
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induced by (l2)FY , yielding a unique s : L2FY → L2FX such that

s ◦ (l2)FY = αX ◦ (FL1f)−1 ◦ F (l1)Y .

In order to prove that Ff is an L2-equivalence, it suffices to check that s is an inverse of
L2Ff . On one hand, from the equalities

s ◦ L2Ff ◦ (l2)FX = s ◦ (l2)FY ◦ Ff = αX ◦ (FL1f)−1 ◦ F (l1)Y ◦ Ff
= αX ◦ (FL1f)−1 ◦ FL1f ◦ F (l1)X = αX ◦ F (l1)X = (l2)FX

we infer that s◦L2Ff is equal to the identity of L2FX, because (l2)FX is an L2-equivalence.
On the other hand,

L2Ff ◦ s ◦ (l2)FY = L2Ff ◦ αX ◦ (FL1f)−1 ◦ F (l1)Y = αY ◦ F (l1)Y = (l2)FY

tells us that L2Ff ◦ s is equal to the identity of L2FY , since (l2)FY is an L2-equivalence.
If F preserves equivalences, then the equality αX ◦ F (l1)X = (l2)FX implies that αX is

an L2-equivalence, and therefore αX is an isomorphism if and only if FL1X is L2-local.
Hence α is an isomorphism if and only if F sends L1-local objects to L2-local objects. This
completes the proof of part (i). The proof of part (ii) is similar. �

Corollary 3.3. Let F : C1 → C2 be a functor. For a localization L1 on C1 and a localization
L2 on C2, the functors FL1 and L2F are naturally isomorphic if and only if F preserves local
objects and equivalences. In this case, α : FL1 → L2F and β : L2F → FL1 are mutually
inverse isomorphisms.

Proof. The “if” part follows from Theorem 3.2. For the converse, note that if FL1
∼= L2F

then F preserves local objects, and the naturality of the isomorphism adds the fact that F
preserves equivalences, since, for a morphism f , we have that L2Ff is an isomorphism if and
only if FL1f is an isomorphism. Furthermore, if F preserves local objects and equivalences,
then the equality α ◦ β ◦ l2F = l2F implies that α ◦ β = id. �

Corollary 3.4. Suppose that a functor U : C1 → C2 reflects isomorphisms. For a localization
L1 with unit l1 on C1 and a localization L2 with unit l2 on C2, if UL1 and L2U are naturally
isomorphic then the following hold:

(i) U preserves and reflects local objects and equivalences.
(ii) There is a natural isomorphism α : UL1 → L2U such that α ◦ Ul1 = l2U , and a

natural isomorphism β : L2U → UL1 such that β ◦ l2U = Ul1.

Moreover, the isomorphisms in (ii) are unique and inverse to each other.

Proof. Corollary 3.3 tells us that U preserves local objects and equivalences, and that
α : UL1 → L2U and β : L2U → UL1, as given by Theorem 3.2, are inverse isomorphisms.
To prove that U reflects local objects, suppose that UX is L2-local. Then (l2)UX is an
isomorphism. Since α◦Ul1 = l2U and αX is an isomorphism, we infer that U(l1)X is an iso-
morphism and therefore so is (l1)X since U reflects isomorphisms. Hence, X is L1-local, as
needed. The fact that U reflects equivalences follows from the equality

UL1g ◦ βX = βY ◦ L2Ug

for every g : X → Y , together with the fact that U reflects isomorphisms. �

Example 3.5. For a cocomplete category C and a small category I, choose F to be the
colimit functor colimI : CI → C, where CI denotes the category of functors I → C. Let L
be a localization on C and extend it objectwise over CI ; that is, for each X : I → C, define
(LX)i = L(Xi) for all i ∈ I. Then the diagonal functor C → CI preserves local objects and
equivalences. Since it preserves local objects, the colimit functor preserves equivalences by
Lemma 3.1. Therefore Theorem 3.2 yields a natural morphism

(3.1) α : colim
i∈I

LXi −→ L
(

colim
i∈I

Xi

)
which is an L-equivalence, that is, it induces an isomorphism

L
(

colim
i∈I

LXi

) ∼= L
(

colim
i∈I

Xi

)
.

This is an instance of the well-known fact that left adjoints preserve colimits.
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Since the diagonal functor C → CI also preserves equivalences, if C is complete then the
limit functor preserves local objects. This yields a natural morphism

β : L
(

lim
i∈I

Xi

)
−→ lim

i∈I
LXi

which is rarely an equivalence of any type. However, for every colocalization C there is an
isomorphism

C
(

lim
i∈I

Xi

) ∼= C
(

lim
i∈I

CXi

)
for each X : I → C, as a special case of the next result, which follows from Theorem 3.2 by
passing to the opposite categories.

Theorem 3.6. Let G : C2 → C1 be a functor. Let C1 be a colocalization on C1 with counit c1
and C2 a colocalization on C2 with counit c2. Then the following hold:

(i) G preserves equivalences if and only if there is a natural transformation

α : C1G −→ GC2

such that Gc2 ◦α = c1G. If this holds, then α is unique and αX is a C1-equivalence
for all X. Moreover, α is an isomorphism if and only if G preserves colocal objects.

(ii) G preserves colocal objects if and only if there is a natural transformation

β : GC2 −→ C1G

such that c1G ◦ β = Gc2. If this holds, then β is unique, and it is an isomorphism
if and only if G preserves equivalences.

The duals of Corollary 3.3 and Corollary 3.4 hold as well. As a special case of Corollary 3.3
and its dual, we obtain conditions for commutativity of a localization and a colocalization.

Corollary 3.7. If L is a localization and C is a colocalization on the same category, then
the following statements are equivalent:

(a) There is a natural isomorphism LC ∼= CL.
(b) L preserves C-colocal objects and C-equivalences.
(c) C preserves L-local objects and L-equivalences.

4. Induced (co)localizations on (co)algebras

If often happens that a localization or a colocalization preserves a certain subcategory.
For example, every localization on the category of groups preserves abelian groups [24]. As
we next point out, in such cases the restriction is also a localization or a colocalization. The
claim that an endofunctor F on a category C preserves a subcategory S means that FX is
in S for every object X of S and Ff is in S for every morphism f of S. If S is full, then
the second condition is implied by the first one.

Proposition 4.1. Let S be a full subcategory of a category C.

(a) If a localization L on C preserves S then L restricts to a localization on S, and the
inclusion S ↪→ C preserves and reflects local objects and equivalences.

(b) If a colocalization C on C preserves S then C restricts to a colocalization on S, and
the inclusion S ↪→ C preserves and reflects colocal objects and equivalences.

Proof. For (a), consider the full subcategory L of S consisting of all L-local objects of C that
are in S. Then, for each object X in S, the morphism lX : X → LX is in S by assumption,
and, for each Y in L, it induces a bijection

S(LX, Y ) = C(LX, Y ) ∼= C(X,Y ) = S(X,Y ),

so L restricts indeed to a reflection of S onto L such that the inclusion preserves and reflects
local objects. If f : X → Y is a morphism in S, then Lf is an isomorphism in S if and only
if it is an isomorphism in C, since the inclusion reflects isomorphisms. Hence, the inclusion
also preserves and reflects equivalences. Passage to the opposite category yields (b). �
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In a similar spirit, the following result enhances [29, Theorem 1.2] by adding the remark
that, if a localization sends algebras over a monad to algebras over the same monad, then
it yields in fact a localization on the category of such algebras. The noteworthy principle
contained in this theorem is that, for a monad T and a localization L on the same category,
T preserves L-equivalences if and only if L preserves T -algebras.

Theorem 4.2. Let (T, η, µ) be a monad on a category C and let L be a localization on C
with unit l. Let U be the forgetful functor from the category CT of T -algebras to C. Then
the following statements are equivalent:

(a) T preserves L-equivalences.
(b) For every T -algebra (X, a) there is a T -algebra structure ã : TLX → LX on LX such

that lX : (X, a)→ (LX, ã) is a morphism of T -algebras, and if g : (X, a)→ (Y, b) is

any morphism of T -algebras then so is Lg : (LX, ã)→ (LY, b̃).
(c) There is a localization LT on CT with unit lT such that LU = ULT and lU = UlT .
(d) There is a localization LT on CT together with a natural isomorphism LU ∼= ULT .

If these statements hold, then the T -algebra structures ã : TLX → LX given in part (b)
are unique and the localization LT in (c) is also unique. Moreover, U preserves and reflects
local objects and equivalences.

Proof. We first show that (a) ⇒ (b). To obtain ã : TLX → LX with ã ◦ T lX = lX ◦ a, we
use the fact that LX is L-local and T lX is an L-equivalence by assumption, and note that ã
is then unique. The relation ã ◦ T ã = ã ◦ µLX follows, as in the proof of [29, Theorem 1.2],
from the equality

ã ◦ T ã ◦ TT lX = ã ◦ T lX ◦ Ta = lX ◦ a ◦ Ta
= lX ◦ a ◦ µX = ã ◦ T lX ◦ µX = ã ◦ µLX ◦ TT lX ,

since TT lX is an L-equivalence. Similarly, we infer that ã ◦ ηLX = idLX from the equality
ã ◦ ηLX ◦ lX = lX . Given a morphism of T -algebras g : (X, a)→ (Y, b), we find that

Lg ◦ ã ◦ T lX = Lg ◦ lX ◦ a = lY ◦ g ◦ a = lY ◦ b ◦ Tg = b̃ ◦ T lY ◦ Tg = b̃ ◦ TLg ◦ T lX ,
which implies that Lg ◦ ã = b̃ ◦ TLg, as claimed.

Next we prove that (b)⇒ (c). For each T -algebra (X, a), let us define LT (X, a) = (LX, ã),
where ã is given by assumption. Thus,

ULT (X, a) = LX = LU(X, a)

for every X and all a : TX → X. Moreover, we set lT = l, so we have indeed lU = UlT . For
a morphism of T -algebras g : (X, a) → (Y, b), we define LT g = Lg, which is a morphism of
T -algebras by assumption. Hence ULT g = LUg, and LT is a functor because so is L.

To check that LT is a localization, suppose we are given any morphism g : (X, a)→ (Y, b)
of T -algebras, and suppose that Y is L-local. Then there is a unique g′ : LX → Y in C such
that g′ ◦ lX = g, and the equality lY ◦ g′ ◦ lX = Lg ◦ lX implies that lY ◦ g′ = Lg as well. We
need to prove that g′ is also a morphism of T -algebras, that is, that g′ ◦ ã is equal to b ◦Tg′.
For this, we use the fact that Lg is a morphism of T -algebras by assumption to infer that

lY ◦ g′ ◦ ã = Lg ◦ ã = b̃ ◦ TLg = b̃ ◦ T lY ◦ Tg′ = lY ◦ b ◦ Tg′,
and then we use the fact that lY is an isomorphism since Y is L-local.

The implication (c) ⇒ (d) is trivial. Finally, we prove that (d) ⇒ (a). Suppose that a
natural isomorphism LU ∼= ULT is given. Then Corollary 3.4 tells us that U preserves and
reflects local objects and equivalences. Now write T = UF where FX = (TX, µX), and
note that F preserves equivalences by Lemma 3.1. Since U also preserves equivalences, so
does T , hence yielding (a). �

When condition (c) of Theorem 4.2 is satisfied, we say that LT is a lifting of L to the
category CT of T -algebras. This notion was already considered by Beck in [11], where it was
shown that the existence of a lifting of L to CT is in fact equivalent to the existence of a
distributive law of T over L, that is, a natural transformation λ : TL → LT subject to the
conditions λ ◦ ηL = Lη, λ ◦ T l = lT , and λ ◦ µL = Lµ ◦ λT ◦ Tλ (the fourth condition in
[11] is automatic in our case since L is idempotent). Under these conditions, LT becomes a
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monad by means of λ. Indeed, it follows from part (i) of Theorem 3.2 that, if LT is a lifting
of L to CT , then there is a unique natural transformation

α : FL −→ LTF

under F , where FX = (TX, µX), and thus λ = Uα is a distributive law of T over L.
The condition that T preserves L-equivalences holds for all localizations L whenever

C(T−,−) = Φ ◦ C(−,−) for some functor Φ, as in the next example.

Example 4.3. If ϕ : R→ S is a central homomorphism of unital rings and S is viewed as an
(R,R)-bimodule via ϕ, then there is a natural isomorphism

(4.1) HomR(S ⊗RM,N) ∼= HomR(S,HomR(M,N))

for any two left R-modules M and N . Here TM = S⊗RM defines a monad on the category
R-Mod of left R-modules, whose algebras are the left S-modules. If L is any localization
on R-Mod, then T preserves L-equivalences, since (4.1) yields

HomR(Tf,N) ∼= HomR(S,HomR(f,N))

for every L-local R-module N and every L-equivalence f between R-modules. Therefore, L
lifts to the category S-Mod of left S-modules. This result generalizes [29, Theorem 4.3].

Example 4.4. Let Ho(Sp) be the homotopy category of spectra and let E be a homotopy
ring spectrum, that is, a monoid in Ho(Sp). Then TX = E ∧X defines a monad on Ho(Sp),
whose algebras are left homotopy E-module spectra.

If A is any spectrum, then an A∗-equivalence is a map of spectra f : X → Y such that
A ∧ f : A ∧X → A ∧ Y is an isomorphism in Ho(Sp). It was proved in [14] that there is an
A∗-localization functor (−)A on Ho(Sp) whose class of equivalences is precisely the class of
A∗-equivalences. Since T preserves A∗-equivalences, it follows from Theorem 4.2 that (−)A
lifts to the category of E-module spectra, as already pointed out in [19, 26]. The resulting
functor annihilates precisely the A∗-acyclic E-modules, that is, those E-modules M such
that A ∧M = 0. But the A∗-acyclic E-modules coincide with the (E ∧ A)∗-acyclic ones,
since A∧M = 0 implies E∧A∧M = 0 and, conversely, if M is an E-module with structure
map m : E ∧M →M and we assume that E ∧A ∧M = 0, then the composite

A ∧M
A∧ηM // A ∧ E ∧M A∧m // A ∧M

is zero and, since it is also the identity map, we conclude that A ∧M = 0. This argument
yields that

(4.2) MA
∼= ME∧A

for every left homotopy E-module M and every spectrum A. This result was first proved
in [47, Proposition 3.2], where it was used to obtain a complete description of homological
localizations of stable GEMs by choosing E = HZ.

If the monad (T, η, µ) is idempotent, as in the next example, then the conditions of Theo-
rem 4.2 are, in their turn, equivalent to the condition that L preserves the full subcategory of
T -local objects, and in this case the lifting LT is just the restriction of L to this subcategory.

Example 4.5. If L is any localization on the category of groups, then, as explained in [24,
Theorem 2.2], L preserves abelian groups and hence restricts to the full subcategory of these.
Therefore there is a natural group homomorphism

(4.3) αG : (LG)ab −→ L(Gab)

and a natural isomorphism L((LG)ab) ∼= L(Gab) for all groups G and every localization L.
We note, however, that (4.3) is far from being an isomorphism in general. For instance, let
P be a set of primes and let P ′ denote its complement. A group G is uniquely P ′-divisible
if the map x 7→ xq is bijective in G for every q ∈ P ′. If lG : G → GP denotes a universal
homomorphism from G into a uniquely P ′-divisible group, then (−)P is a localization on the
category of groups whose restriction to abelian groups is tensoring with ZP . As shown in [10],
if F is a free group of rank n ≥ 2 then (FP )ab

∼= (ZP )n⊕ T where T is a nonzero P ′-torsion
group. Thus the group (FP )ab is not uniquely P ′-divisible, although ((FP )ab)P ∼= (Fab)P .
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As next shown, Theorem 4.2 also holds for coalgebras over a comonad. The proof is totally
analogous, but the roles of local objects and equivalences are exchanged. Thus, the motto
is now that a comonad T preserves L-local objects if and only if L preserves T -coalgebras.

Theorem 4.6. Let (T, ε, δ) be a comonad on a category C and let L be a localization on C
with unit l. Let U be the forgetful functor from the category CT of T -coalgebras to C. Then
the following statements are equivalent:

(a) T preserves L-local objects.
(b) For every T -coalgebra (X, a) there is a T -coalgebra structure ã : LX → TLX on LX

such that lX : (X, a) → (LX, ã) is a morphism of T -coalgebras, and if g : (X, a) →
(Y, b) is any morphism of T -coalgebras then so is Lg : (LX, ã)→ (LY, b̃).

(c) There is a localization LT on CT with unit lT such that LU = ULT and lU = UlT .
(d) There is a localization LT on CT together with a natural isomorphism LU ∼= ULT .

If these statements hold, then the T -coalgebra structures ã : LX → TLX given in part (b)
are unique, and the localization LT in (c) is also unique. Moreover, U preserves and reflects
local objects and equivalences.

Proof. Suppose that T preserves L-local objects. In order to obtain ã : LX → TLX with
ã◦lX = T lX ◦a, use that TLX is L-local by assumption and lX is an L-equivalence, and note
that ã is then unique. The relations T ã ◦ ã = δLX ◦ ã and εLX ◦ ã = idLX are consequences
of the equalities T ã ◦ ã ◦ lX = δLX ◦ ã ◦ lX and εLX ◦ ã ◦ lX = lX . The localization LT is
defined by LT (X, a) = (LX, ã) and the rest of the proof follows the same steps as the proof
of Theorem 4.2. The implication (d) ⇒ (a) follows from Lemma 3.1, as the right adjoint
FX = (TX, εX) preserves local objects if and only if U preserves equivalences. �

By passing to opposite categories, Theorem 4.6 yields a result about preservation of
algebras over a monad under the effect of a colocalization, which we next state for later
reference, and Theorem 4.2 dualizes into a result relating colocalizations with coalgebras
over a comonad, which we omit. Distributivity between comonads was previously studied
in [7]. Distributive laws of monads over comonads have been considered in [53, § 2.3].

Theorem 4.7. Let (T, η, µ) be a monad on a category C and let C be a colocalization on C
with counit c. Let U be the forgetful functor from the category CT of T -algebras to C. Then
the following statements are equivalent:

(a) T preserves C-colocal objects.
(b) For every T -algebra (X, a) there is a T -algebra structure ã : TCX → CX on CX

such that cX : (CX, ã) → (X, a) is a morphism of T -algebras, and if g : (X, a) →
(Y, b) is any morphism of T -algebras then so is Cg : (CX, ã)→ (CY, b̃).

(c) There is a colocalization CT on CT with unit cT such that CU = UCT and cU = UcT .
(d) There is a colocalization CT on CT together with a natural isomorphism CU ∼= UCT .

If these statements hold, then the T -algebra structures ã : TCX → CX given in part (b)
are unique, and the colocalization CT in (c) is also unique. Moreover, U preserves and
reflects colocal objects and equivalences.

Proof. The given monad T defines a comonad on Cop whose coalgebras are the T -algebras,
and C defines a localization on Cop whose local objects are the C-colocal ones. Thus all the
statements follow from those in Theorem 4.6. �

Example 4.8. As in Example 4.3, if ϕ : R→ S is a central ring homomorphism then we may
consider the monad defined by TM = S ⊗R M on the category R-Mod of left R-modules.
If C is any colocalization on R-Mod, then T preserves C-colocal objects, since (4.1) yields

(4.4) HomR(TN, f) ∼= HomR(S,HomR(N, f))

for every C-colocal R-module N and every C-equivalence f between R-modules. Therefore,
C lifts to the category S-Mod of left S-modules, as first shown in [45, Proposition 2.1].

Example 4.9. If C is any colocalization on the category of groups, then, according to [36],
C preserves nilpotent groups of any nilpotency class k and hence restricts to the full sub-
category of these. This yields a natural group homomorphism

(4.5) βG : CG/ΓkCG −→ C(G/ΓkG)
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for every group G and all k, where Γk denotes the k-th term of the lower central series.
For k = 1, the homomorphism (4.5) takes the form (CG)ab → C(Gab), which is not an
isomorphism in general, not even a C-equivalence. For example, the 3-torsion subgroup of
the symmetric group Σ3 is cyclic of order 3 while the abelianization of Σ3 has no 3-torsion.

5. Inverting morphisms and building from objects

A collection of morphisms F and a collection of objects A in a category C are called
orthogonal if for every morphism f : A → B in F and every object X in A the induced
function

(5.1) C(f,X) : C(B,X) −→ C(A,X)

is a bijection of sets. The objects orthogonal to F are called F-local and the morphisms
orthogonal to the collection of all F-local objects are called F-equivalences.

An F-localization of an object X is an F-equivalence lX : X → LFX into an F-local
object. If an F-localization exists for all objects, then LF is indeed a localization on C.
Note that, if a localization functor L is given, then L = LF where F is the collection of all
L-equivalences.

As shown in [1, Theorem 1.39], if a category C is locally presentable, then LF exists
whenever F is a set, while if F is a proper class then the existence of LF can be proved if
one assumes the existence of sufficiently large cardinals [1, Chapter 6].

Dually, a collection of morphisms F and a collection of objects A in a category C are
co-orthogonal if for every morphism f : X → Y in F and every object A in A the induced
function

(5.2) C(A, f) : C(A,X) −→ C(A, Y )

is a bijection of sets. The morphisms co-orthogonal to A are called A-equivalences and the
objects co-orthogonal to the collection of all A-equivalences are called A-colocal.

An A-colocalization of an object X is an A-equivalence cX : CAX → X from an A-colocal
object into X. If an A-colocalization exists for every object, then CA is a colocalization on C.
If a colocalization C is given, then C = CA where A is the collection of all C-colocal objects.

If C is a locally presentable category, then the existence of CA is ensured for every set
A by the dual of the Special Adjoint Functor Theorem [1, § 0.7], since the full subcategory
of A-colocal objects is closed under colimits and has a generating set (namely A), and C is
cowellpowered according to [1, Theorem 1.58]. If A is a proper class, then the existence of
CA also follows from convenient large-cardinal axioms [1, Theorem 6.28].

For the sake of much greater notational simplicity, we will restrict statements of results
to localizations of the form Lf for a single morphism f and colocalizations of the form CA
for a single object A. Whether there is a loss of generality or not in doing so depends on
set theory, at least if one works in locally presentable categories [5, Theorem 8.4].

It is straightforward to state and prove all the results in this section for collections of
morphisms instead of a single morphism, and for collections of objects instead of a single
object, provided that the corresponding localizations or colocalizations exist. We give details
only in the case of Corollary 5.2, since the rest are similar. Some of the proofs in the
next sections may require a different argument if stated for proper classes of morphisms or
objects, notably part (a) of Theorem 9.7 —however, in that case and in other cases involving
simplicial sets it is enough, for practical purposes, to discuss the case of a single map f , by
[5, Theorem 9.6].

Proposition 5.1. Let F : C1 � C2 : G be a pair of adjoint functors and let f : A→ B be a
morphism in C1.

(i) An object Y in C2 is Ff -local if and only if GY is f -local.
(ii) F sends f -equivalences to Ff -equivalences.

(iii) If Lf and LFf exist, then there is a unique natural transformation

α : FLf −→ LFfF
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such that αX ◦FlX = lFX for all X, and αX is an Ff -equivalence for all X. There
is also a unique natural transformation

β : LfG −→ GLFf

such that βY ◦ lGY = GlY for all Y . Furthermore, α is an isomorphism if and only
if F preserves local objects, and β is an isomorphism if and only if G preserves
equivalences.

Proof. For every object Y in C2, consider the commutative diagram

(5.3) C2(FB, Y ) //

∼=
��

C2(FA, Y )

∼=
��

C1(B,GY ) // C1(A,GY ),

where the vertical bijections are given by the adjunction and the horizontal arrows are
induced by Ff and f . It follows that GY is f -local if and only if Y is Ff -local, as claimed.
Part (ii) is a consequence of (i) using (5.3) again, and all the claims in (iii) follow from
Theorem 3.2. �

For a class of morphisms W and a functor F , we denote FW = {Ff | f ∈ W}.

Corollary 5.2. If F : C1 � C2 : G is a pair of adjoint functors and W is any class of
morphisms in C1 for which LW and LFW exist, then there is a unique natural transformation

α : FLW −→ LFWF

such that αX ◦FlX = lFX for all X, and αX is an FW-equivalence for all X. There is also
a unique natural transformation

β : LWG −→ GLFW

such that βY ◦ lGY = GlY for all Y . Furthermore, α is an isomorphism if and only if F
preserves local objects, and β is an isomorphism if and only if G preserves equivalences.

Proof. By definition, an object Y in C2 is FW-local if and only if it is Ff -local for every
f ∈ W, and GY is W-local if and only if it is f -local for every f ∈ W. Therefore, part (i)
of Proposition 5.1 implies that Y is FW-local if and only if GY is W-local. Hence F sends
W-equivalences to FW-equivalences, and, if LW and LFW exist, Theorem 3.2 yields natural
transformations

α : FLW −→ LFWF, β : LWG −→ GLFW

with the properties specified in the statement. �

The natural transformations α and β in part (iii) of Proposition 5.1 are mates; that is,
each of them determines the other one as follows (see [81, p. 5]):

β = GLfε ◦GαG ◦ ηLfG, α = εLFfF ◦ FβF ◦ FLfη,
where η is the unit of the adjunction and ε is the counit.

The analogue of Proposition 5.1 for colocalizations reads as follows.

Proposition 5.3. Let F : C1 � C2 : G be a pair of adjoint functors and A an object in C1.

(i) A morphism g in C2 is an FA-equivalence if and only if Gg is an A-equivalence.
(ii) F sends A-colocal objects to FA-colocal objects.
(iii) If CA and CFA exist, then there is a unique natural transformation

α : CAG −→ GCFA

such that GcY ◦ αY = cGY for all Y , and αY is an A-equivalence for all Y . There
is also a unique natural transformation

β : FCA −→ CFAF

such that cFX ◦βX = FcX for all X. Furthermore, α is an isomorphism if and only
if G preserves colocal objects, and β is an isomorphism if and only if F preserves
equivalences.
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Proof. Parts (i) and (ii) are proved using the commutative diagram

C2(FA,X) //

∼=
��

C2(FA, Y )

∼=
��

C1(A,GX) // C1(A,GY )

for every g : X → Y in C2, where the vertical bijections are given by the adjunction and the
horizontal arrows are induced by g and Gg. Part (iii) comes from Theorem 3.6. �

Proposition 5.4. Let F : C � CT : U be the Eilenberg–Moore factorization of a monad
T on a category C. Let f be a morphism in C such that Lf exists. Then the following
statements are equivalent:

(i) T preserves f -equivalences.
(ii) LFf exists and there is a natural isomorphism LfU ∼= ULFf .

Moreover, if T preserves both f -equivalences and Tf -equivalences and LTf exists, then
there is a natural isomorphism LfU ∼= LTfU .

Proof. Suppose that T preserves f -equivalences. Theorem 4.2 tells us that there is a local-
ization LT on CT equipped with a natural isomorphism LfU ∼= ULT , for which U preserves
and reflects local objects and equivalences. Hence the LT -local objects in CT are those (X, a)
such that the object X = U(X, a) is f -local in C. But part (i) of Proposition 5.1 tells us
that X is f -local if and only if (X, a) is Ff -local. Hence LT is indeed an Ff -localization
(which therefore exists). Conversely, a natural isomorphism LfU ∼= ULFf implies that T
preserves f -equivalences, according to Theorem 4.2. This proves that (i) ⇔ (ii).

Now assume that T preserves f -equivalences and Tf -equivalences, and that LTf exists.
Then the implication (i) ⇒ (ii) yields natural isomorphisms

(5.4) LfU ∼= ULFf and LTfU ∼= ULFTf .

Since T preserves f -equivalences, Tf is an f -equivalence. Hence all f -local objects are
Tf -local. If a T -algebra (X, a) is Ff -local, then X is f -local by part (i) of Proposition 5.1,
and hence X is Tf -local. But this implies that (X, a) is FTf -local, again by part (i) of
Proposition 5.1. Conversely, since T = UF , the fact that F is a retract of FUF by (2.2)
implies that Ff is an FTf -equivalence, and consequently every FTf -local T -algebra is
Ff -local. This allows us to conclude that the classes of Ff -local T -algebras and FTf -local
T -algebras coincide, so LFf ∼= LFTf . Therefore LfU ∼= LTfU by (5.4), as claimed. �

If T is an idempotent monad on a category C and we denote by J : S → C the inclusion of
the full subcategory of T -local objects and by K : C → S its left adjoint, then, as a special
case of Proposition 5.4, we infer, for a morphism f in C, the following facts:

(i) If Lf preserves S, then there is a natural isomorphism LfJ ∼= JLKf .
(ii) If LTf also preserves S, there is a natural isomorphism LfJ ∼= LTfJ .

In fact, the proof is easier, since the counit ε of the adjunction is in this case an isomorphism
and hence K ∼= KJK.

Example 5.5. As an example, let T be abelianization on the category of groups. Since all
localizations on groups preserve abelian groups, part (ii) tells us that

LfA ∼= LfabA

for every group homomorphism f and all abelian groups A. This fact was used in [29].

As in Section 4, there is an analogous version of Proposition 5.4 for colocalizations:

Proposition 5.6. Let F : C � CT : U be the Eilenberg–Moore factorization of a monad T
on a category C. Let A be an object in C such that CA exists. Then the following statements
are equivalent:

(i) T preserves A-colocal objects.
(ii) CFA exists and there is a natural isomorphism CAU ∼= UCFA.

Moreover, if T preserves both A-colocal objects and TA-colocal objects and CTA exists,
then there is a natural isomorphism CAU ∼= CTAU .
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Proof. The assumption that T preserves A-colocal objects implies, by Theorem 4.7, that CA
induces a colocalization CT on CT such that CAU ∼= UCT naturally, and U preserves and
reflects colocal objects and equivalences. Hence the CT -equivalences are those morphisms
g : (X, a) → (Y, b) in CT such that Ug : X → Y is an A-equivalence. From Proposition 5.3
we then infer that g is a CT -equivalence if and only if it is an FA-equivalence. Consequently,
CT is an FA-colocalization, as claimed. The remaining steps are analogous to those in the
proof of Proposition 5.4. �

Example 5.7. As observed in Example 4.3, if C(T−,−) depends functorially on C(−,−),
then T preserves f -equivalences for every f , and in such cases the assumptions that T
preserves f -equivalences and Tf -equivalences in Proposition 5.4 are automatically fulfilled.
This happens, for instance, if ϕ : R→ S is a central ring homomorphism and TA = S⊗RA,
where C is the category of left R-modules. Thus we infer from Proposition 5.4 that there is
a natural isomorphism

(5.5) LfM ∼= LS⊗RfM

for every left S-module M and every homomorphism f of left R-modules. Proposition 5.4
also tells us that there is no ambiguity in the right-hand term of (5.5), as it may indistinctly
mean the underlying R-module of the localization of M with respect to S ⊗R f in the
category of left S-modules or the localization of the R-module underlying M with respect
to the R-module homomorphism underlying S ⊗R f , that is,

LfUM ∼= ULS⊗RfM
∼= LU(S⊗Rf)UM.

Similarly, T preserves A-colocal R-modules for every left R-module A, and therefore we
infer from Proposition 5.6 that there is a natural isomorphism

(5.6) CAM ∼= CS⊗RAM

for every left S-module M and every left R-module A. In fact, (5.6) really means that

CAUM ∼= UCS⊗RAM
∼= CU(S⊗RA)UM.

Example 5.8. For a commutative unital ring R, let T be the tensor algebra monad on the
category of R-modules, that is,

TM = R⊕M ⊕ (M ⊗RM)⊕ (M ⊗RM ⊗RM)⊕ · · · ,

whose algebras are the R-algebras. Given two R-modules M and N , we have

HomR(TM,N) ∼= N ×
∞∏
n=0

HomR(M⊗n,HomR(M,N)).

Consequently, T preserves f -equivalences for every R-module homomorphism f . This im-
plies that f -localizations of R-modules lift to R-algebras by Theorem 4.2, and moreover
Proposition 5.4 yields natural isomorphisms

(5.7) LfUA ∼= ULTfA ∼= LU(Tf)UA

for every R-algebra A.
As a special case, if S is a multiplicatively closed subset of R, then the classical S-loc-

alization S−1M of an R-module M is obtained as LfM where f is the coproduct for all
s ∈ S of the self-maps fs : R→ R given by fs(r) = sr. In this case, LTfs coincides with Lfs
for every s ∈ S, because TR is an infinite direct sum of copies of R and Tfs : TR → TR
is multiplication by sn−1 on the n-th summand. Therefore, we infer from (5.7) that the
S-localization of an R-algebra coincides with its S-localization as an R-module. The derived
analogue of this fact was proved in [22, Theorem 4.26].

However, the tensor algebra monad T does not preserve A-colocal R-modules for an
arbitrary R-module A (unless R is A-colocal). For this reason, colocalizations of R-modules
need not lift to R-algebras. The same failure occurs in homotopical contexts; see [49, § 5]
and Remark 9.4 below.
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Both Proposition 5.4 and Proposition 5.6 have duals. If Lf is a localization on C for
some morphism f , then Lf may be viewed as a colocalization on the opposite category
Cop whose colocal objects are those that are f -local in C, that is, those objects that are
orthogonal to f in C and hence co-orthogonal to f in Cop. Although it is actually the same
functor Lf , this colocalization could be denoted by Cf for consistency. Similarly, if CA is
a colocalization on C for some object A, then it is a localization on Cop whose equivalences
are those morphisms that are A-equivalences in C, and we denote this localization by LA.
Accordingly, we call A-local those objects in a category that are A-colocal in the opposite
category. In other words, the class of A-local objects in a category is the closure of A under
double passage to the orthogonal complement. This notation and terminology is not of
common use, so we confine it to the statement of the next result. The assumption that LA
exists is really restrictive, since the opposite of a locally presentable category is usually not
locally presentable.

Corollary 5.9. Let U : CT � C : F be the Eilenberg–Moore factorization of a comonad T
on a category C. Let A be an object in C such that LA exists. Then the following statements
are equivalent:

(i) T preserves A-local objects.
(ii) LFA exists and there is a natural isomorphism LAU ∼= ULFA.

Moreover, if T preserves both A-local objects and TA-local objects and LTA exists, then
there is a natural isomorphism LAU ∼= LTAU .

6. Homotopical localizations and cellularizations

In the remaining sections we discuss localizations and colocalizations in a homotopical
context, using the formalism of Quillen model categories [73], and we assume that these are
equipped with functorial factorizations. In every Quillen model category M one can define
homotopy function complexes as described in [56, § 17.5] or [57, Chapter 5]. Their main
feature is homotopy invariance in both variables. We denote by mapM(−,−) a choice of
such which is functorial in each variable.

If the model category M is simplicial and Map(−,−) denotes its simplicial enrichment,
then for every choice of a homotopy function complex mapM(−,−) in M we have

(6.1) mapM(X,Y ) ' Map(QX,RY )

for all X,Y , where Q is a cofibrant replacement functor and R is a fibrant replacement
functor. Hence, in practice we may pick Map(QX,RY ) as a homotopy function complex
from X to Y after having made choices of Q and R in M.

An adjunction between model categories F : M � N : G is a Quillen adjunction if F
preserves cofibrations and trivial cofibrations or, equivalently, if G preserves fibrations and
trivial fibrations. If this is the case, then they give rise to a derived adjunction

(6.2) FQ : Ho(M) � Ho(N ) : GR

between the corresponding homotopy categories, after having chosen a cofibrant replacement
functor Q onM and a fibrant replacement functor R on N . It then follows, as explained in
[56, Proposition 17.4.16], that the induced map

(6.3) mapN (FQX, Y ) −→ mapM(X,GRY )

is a natural weak equivalence of simplicial sets for X in M and Y in N , whose value at π0

coincides with the bijection given by the derived adjunction (6.2).
Unless otherwise specified, in the next sections we will consider this kind of enriched

orthogonality between objects and maps in model categories. Thus, an object X and a map
f : V →W in a model category M will be called homotopy orthogonal, as in [56, § 17.8], if

(6.4) mapM(f,X) : mapM(W,X) −→ mapM(V,X)

is a weak equivalence of simplicial sets.
The objects that are homotopy orthogonal to every map in a given collection F are

called F-local, and the maps that are homotopy orthogonal to the collection of all F-local
objects are called F-equivalences. For convenience we omit in this article the standard
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assumption that F-local objects have to be fibrant (thus, our convention is that an object
weakly equivalent to an F-local object is F-local). Every F-equivalence between F-local
objects is a weak equivalence.

If M satisfies suitable assumptions —for instance, if it is cofibrantly generated and left
proper, and its underlying category is locally presentable, as for pointed or unpointed sim-
plicial sets, Bousfield–Friedlander spectra [20], symmetric spectra over simplicial sets [58],
groupoids [25], and many other cases— then for every set of maps F there exists a model
category MF , called left Bousfield localization of M with respect to F , with the same un-
derlying category as M and the same cofibrations, in which the weak equivalences are the
F-equivalences and the fibrant objects are those that are fibrant inM and F-local; see [56,
§3.3] for details. Left Bousfield localizations still exist if F is a proper class, provided that
a suitable large-cardinal axiom holds [78].

An F-localization of an object X ofM is a trivial cofibration lX : X → LFX inMF with
LFX fibrant in MF . Thus if MF exists then LF is a fibrant replacement functor on MF .
As such, (LF , l) is a monad on M that is idempotent on the homotopy category Ho(M).
Therefore the classes of F-equivalences and F-local objects determine each other by ordinary
orthogonality in Ho(M).

In what follows, a homotopical localization on a model categoryM will mean an F-local-
ization LF for some collection of maps F . This terminology is consistent with previous
articles such as [27]. We will state and prove our results for a single map f for simplicity of
notation and because most motivating cases involve one map only.

The next result is a homotopical version of Proposition 5.1. As explained in [56, § 3.1.11],
we need to impose suitable fibrancy and cofibrancy assumptions due to the fact that F pre-
serves weak equivalences between cofibrant objects but not all weak equivalences in general,
and G preserves weak equivalences between fibrant objects.

Proposition 6.1. Let F : M � N : G be a Quillen adjunction between model categories.
For a map f : V →W in M between cofibrant objects, the following assertions hold:

(i) A fibrant object Y in N is Ff -local if and only if GY is f -local.
(ii) F sends f -equivalences between cofibrant objects to Ff -equivalences.
(iii) If the left Bousfield localizations Mf and NFf exist, then for every cofibrant object

X in M there is a homotopy unique and homotopy natural Ff -equivalence

αX : FLfX −→ LFfFX

such that αX ◦FlX = lFX , and for every object Y in N there is a homotopy unique
and homotopy natural map

βY : LfGY −→ GLFfY

such that βY ◦ lGY = GlY . Moreover, αX is a weak equivalence if and only if FLfX
is Ff -local, and βY is a weak equivalence if and only if GlY is an f -equivalence.

If F preserves all weak equivalences then the cofibrancy assumptions are not necessary,
and if G preserves all weak equivalences then the fibrancy assumption in part (i) can be
omitted.

Proof. For a fibrant object Y in N , consider the commutative diagram

mapN (FW,Y ) //

'
��

mapN (FV, Y )

'
��

mapM(W,GY ) // mapM(V,GY ),

where the vertical weak equivalences are given by (6.3) since V and W are cofibrant and
F preserves cofibrant objects while G preserves fibrant ones, and the horizontal arrows are
induced by Ff and f respectively. It follows that, if Y is fibrant, then GY is f -local if and
only if Y is Ff -local, as claimed in part (i).

Therefore, G sends fibrant Ff -local objects to f -local objects, and this implies that F
sends f -equivalences between cofibrant objects to Ff -equivalences. This proves (ii).
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Now (ii) implies that, for every cofibrant X in M, the map FlX is an Ff -equivalence
and hence a trivial cofibration in NFf . Since LFfFX is fibrant in NFf , there is a map

αX : FLfX −→ LFfFX

such that αX ◦ FlX = lFX , and αX is unique up to homotopy with this property. It
also follows that αX is an Ff -equivalence since FlX and lFX are Ff -equivalences, and αX
is a weak equivalence if and only if FLfX is Ff -local (although it need not be fibrant).
Naturality of α after passing to the homotopy categories is proved as in Theorem 3.2.

Since the map lGY is a trivial cofibration in the model categoryMf and GLFfY is fibrant
in Mf by part (i), there is a map

βY : LfGY −→ GLFfY

such that βY ◦ lGY = GlY . It is unique up to homotopy since GLFfY is f -local and lGY is
an f -equivalence, and it is natural up to homotopy for similar reasons. Moreover, βY is a
weak equivalence if and only if it is an f -equivalence, which happens if and only if GlY is
an f -equivalence.

If F preserves weak equivalences then for every object X we may choose a cofibrant
approximation X̃ → X and we have FX̃ ' FX, so the previous arguments hold with X̃ in
the place of X. Similarly, if G preserves weak equivalences, then for each Y we may choose
a fibrant approximation Y → Ŷ and use Ŷ instead of Y . �

Example 6.2. The standard model structure on the category Gpd of groupoids [15] has a
simplicial enrichment given by NHom(−,−), where Hom(G,H) denotes the groupoid of
functors G → H and N denotes the nerve. Since all groupoids are fibrant and cofibrant,
NHom(G,H) is a homotopy function complex from G to H in Gpd by (6.1).

Fundamental groupoid and nerve form a Quillen adjunction

π : sSet � Gpd : N,

where sSet denotes the category of simplicial sets, and Proposition 6.1 yields a morphism

(6.5) αX : πLfX −→ Lπf (πX)

for all X and all f , which is the natural πf -equivalence studied in [25]. From the fact that
the morphism (6.5) is a πf -equivalence it follows that, if X is 1-connected, then Lπf (πLfX)
is trivial. It is a long-standing open problem to decide if LfX is in fact 1-connected for
every map f when X is 1-connected [70, 83].

It should be possible to extend (6.5) to higher dimensions by using suitable categories of
algebraic models for n-types, in which homotopical localizations can be effectively computed,
as done in [25] for the model category of groupoids. This might yield relevant information
on the n-type of LfX, which is usually difficult to relate with the n-type of X.

Let us however emphasize that Lπf (πX) is very different from the space LP1f (P1X),
where P1 denotes the first Postnikov section, that is, P1X = K(π1(X,x0), 1). The spaces
P1LfX and LP1f (P1X) are not P1f -equivalent in general. For example, let f be a map
between wedges of circles such that LfX is the localization of X at the prime 3; thus
P1f = f . If X = K(Σ3, 1) where Σ3 is the symmetric group on three letters, then, as shown
in [28, Example 8.2], the space LfX = K(Σ3, 1)(3) is 1-connected since Σ3 is generated
by elements of order 2, yet it is not contractible since Σ3 has nonzero mod 3 homology.
Therefore, P1LfX is contractible while LP1f (P1X) = LfX is not. Although P1 is left
adjoint to the inclusion of the full subcategory of 1-coconnected spaces, the functor LP1f

does not restrict to this subcategory; that is, LP1f (P1X) need not be a K(G, 1).

If A is any collection of objects in a model category M, then a map g : X → Y will be
called an A-equivalence if

mapM(A, g) : mapM(A,X) −→ mapM(A, Y )

is a weak equivalence of simplicial sets for every A ∈ A. Correspondingly, an object B (for
the purposes of this article, not necessarily cofibrant) is called A-colocal if mapM(B, g) is a
weak equivalence for every A-equivalence g. The name A-cellular is more commonly used for
the A-colocal objects, for the following reason: The class of A-colocal objects is the smallest
class of objects of M containing all the objects in A and closed under weak equivalences



COMPARING LOCALIZATIONS ACROSS ADJUNCTIONS 19

and homotopy colimits [56, Theorem 5.1.5]. In other words, the A-cellular objects are those
that can be “built” from objects in A by means of homotopy colimits.

The fact that homotopy colimits of A-cellular objects are A-cellular matches with the fact
that, for a collection of maps F , every homotopy colimit of F-equivalences is an F-equiv-
alence. Dually, every homotopy limit of F-local objects is F-local, and, for a collection of
objects A, every homotopy limit of A-equivalences is an A-equivalence.

Homotopy limits and colimits were first defined in [21] for simplicial sets and play a crucial
role in some of our results in Sections 8 and 9. For background and details on homotopy
limits and colimits in model categories, see [56, Ch. 19], [76, Ch. 5], or [82].

As shown in [56, § 5.1], if suitable assumptions are imposed on M then there exists a
model category MA for every set of objects A, called right Bousfield localization of M
with respect to A, with the same underlying category as M and the same fibrations, in
which the weak equivalences are the A-equivalences and the cofibrant objects are those that
are cofibrant in M and A-colocal. In order to ensure the existence of MA it is sufficient
to assume that M is right proper and cofibrantly generated. Local presentability of M
is not needed here; in fact it is sufficient to assume that M is right proper and satisfies
Hypothesis 2.4 in [31], which is indeed fulfilled for cofibrantly generated model categories.

An A-colocalization (or A-cellularization) of an object X of M is a trivial fibration
cX : CAX → X inMA with CAX cofibrant inMA. Thus ifMA exists then CA is a cofibrant
replacement functor on MA. As such, (CA, c) is a comonad on M that is idempotent on
the homotopy category Ho(M).

A homotopical colocalization on a model category M will mean an A-cellularization CA
for some collection of objects A. We will state our results for a single object A in the rest
of the article for simplicity of notation. In case that A is a set, the A-cellular objects are
the A-cellular ones if A is the coproduct of all the objects in A.

Proposition 6.3. Let F : M � N : G be a Quillen adjunction between model categories.
For a cofibrant object A in M, the following assertions hold:

(i) A map g in N between fibrant objects is an FA-equivalence if and only if Gg is an
A-equivalence.

(ii) F sends cofibrant A-cellular objects to FA-cellular objects.
(iii) If the right Bousfield localizations MA and NFA exist, then for every fibrant object

Y in N there is a homotopy unique and homotopy natural A-equivalence

αY : CAGY −→ GCFAY

such that GcY ◦αY = cGY , and for every object X inM there is a homotopy unique
and homotopy natural map

βX : FCAX −→ CFAFX

such that cFX ◦ βX = FcX . Furthermore, αY is a weak equivalence if and only
if GCFAY is A-cellular, and βX is a weak equivalence if and only if FcX is an
FA-equivalence.

If F preserves all weak equivalences then the cofibrancy assumptions are not necessary,
and if G preserves all weak equivalences then the fibrancy assumptions can be omitted.

Proof. This is proved in the same way as Proposition 6.1. �

Remark 6.4. If an object C is B-cellular and B is A-cellular, then C is A-cellular. To check
this, let g : X → Y be any A-equivalence. Then mapM(B, g) is a weak equivalence. Hence
g is a B-equivalence, and this implies that mapM(C, g) is a weak equivalence, as needed.

A similar argument in the case of localizations shows that if a map h is a g-equivalence
and g is an f -equivalence, then h is an f -equivalence.

Proposition 6.5. Let F : M � N : G be a Quillen adjunction between model categories
and let T = GF be the associated monad.

(a) Let A be a cofibrant object of M. If TA is cofibrant and A-cellular, then the classes
of FA-cellular objects and FTA-cellular objects coincide.

(b) Let f be a map in M between cofibrant objects. If Tf is an f -equivalence between
cofibrant objects, then the classes of Ff -equivalences and FTf -equivalences coincide.
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Proof. In part (a), since TA is cofibrant and A-cellular by assumption, we infer from part (ii)
of Proposition 6.3 that FTA is FA-cellular. Conversely, FA is FTA-cellular since F is a
retract of FUF = FT by (2.2). Hence, by Remark (6.4), the classes of FA-cellular objects
and FTA-cellular objects are equal.

Part (b) is proved with the same argument, using part (ii) of Proposition 6.1. �

We conclude this section with a result relating certain localizations with cellularizations,
followed by examples that will be relevant in Section 9. In a pointed model category,
localization with respect to a map A → ∗ is called A-nullification and denoted by PA.
A motivating example is A = Sn+1 for n ≥ 0 in the category of pointed simplicial sets, for
which PA is the n-th Postnikov section. In this example, CA is the n-connected cover, so
there is a homotopy fibre sequence

(6.6) CAX −→ X −→ PAX

for every space X if A = Sn+1. An analogous sequence exists for spectra. In fact, (6.6)
is a homotopy fibre sequence of spectra if and only if a certain condition stated in [49,
Theorem 3.6] holds, as is the case if A is any suspension of the sphere spectrum, and also
whenever CA (and hence also PA) commutes with suspension. The extent to which (6.6)
fails to be a homotopy fibre sequence for spaces in general was discussed in [30].

Theorem 6.6. Let A be a cofibrant object in a pointed model category M such that CA and
PA exist and for every object X the natural sequence

CAX −→ X −→ PAX

is a homotopy fibre sequence. Let f : V →W be a map between A-cellular objects such that
Lf exists. Then there is a natural equivalence LfCA ' CALf .

Proof. Since V and W are A-cellular, if Z is f -local then there are weak equivalences

mapM(W,CAZ) ' mapM(W,Z) ' mapM(V,Z) ' mapM(V,CAZ)

showing that CAZ is also f -local. Thus CA preserves f -local objects, so our result will follow
by applying Corollary 3.7 within Ho(M) if we prove that CA preserves f -equivalences.

With this purpose, let g : X → Y be an f -equivalence, and consider the commutative
diagram

(6.7) CAX //

CA(g)

��

X //

g

��

PAX

PA(g)

��

CAY // Y // PAY .

Since PAV ' ∗ and PAW ' ∗, the map f is a PA-equivalence. Therefore, by Remark 6.4,
every f -equivalence is a PA-equivalence, so in particular PA(g) is a weak equivalence. Now,
if Z is any f -local object, then (6.7) yields by [57, Corollary 6.4.2(c)] a commutative diagram
whose rows are homotopy fibre sequences of simplicial sets:

(6.8) mapM(PAY,Z) //

'
��

mapM(Y,Z) //

'
��

mapM(CAY, Z)

��

mapM(PAX,Z) // mapM(X,Z) // mapM(CAX,Z).

This diagram shows that CA(g) : CAX → CAY is an f -equivalence, as needed. �

Example 6.7. In the category of pointed simplicial sets, if f is a map between connected
spaces, then a space X is f -local if and only if its basepoint component X0 is f -local,
since the image of every pointed map A⊗∆[n] → X with n ≥ 0 is contained in X0 if A is
connected. Likewise, the inclusion X0 → X is an A-equivalence for every connected space A.
Since every connected space is A-cellular for A = S1, it follows that X0 ' CAX for A = S1.
Thus Theorem 6.6 yields a natural equivalence LfX0 ' (LfX)0 for all X.

More generally, if f is any map between n-connected spaces for n ≥ 0, and X〈n〉 denotes
the n-connected cover of a space X, then X is f -local if and only if X〈n〉 is f -local, because
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every map A⊗∆[m]→ X with m ≥ 0 lifts to X〈n〉 if A is n-connected. Hence Theorem 3.2
yields a natural map

β : LfX〈n〉 −→ (LfX)〈n〉,
which is a weak equivalence by Theorem 6.6, since X〈n〉 ' CAX for A = Sn+1. The fact
that this map β is a weak equivalence was first found in [29, Theorem 5.2]. It no longer holds
if f is not a map between n-connected spaces; for example, it is well-known that localization
with respect to K-theory lowers connectivity [66].

Theorem 6.6 also implies that, if f is any map between n-connected spectra, then
LfX〈n〉 ' (LfX)〈n〉 for every spectrum X and all n ∈ Z. As a special case,

(6.9) LΣ∞fX
c ' (LΣ∞fX)c

for every map f of spaces and every spectrum X, where the superscript denotes the con-
nective cover. By connective we mean (−1)-connected, that is, Xc ' CSX, where S is the
sphere spectrum.

7. Preservation of algebras over monads in model categories

In what follows we consider monads on model categories arising from Quillen adjunctions.
For a monad T acting on a model categoryM, we denote byMT the category of T -algebras,
as in the previous sections.

A model structure onMT is called transferred or right-induced from the model structure
on M if the forgetful functor U creates (that is, preserves and reflects) weak equivalences
and fibrations in the Eilenberg–Moore factorization of T ,

(7.1) F :M�MT : U.

Transferred model structures on categories of algebras over monads were considered by
Batanin–Berger [8], Batanin–White [9], Elmendorf–Kriz–Mandell–May [43, Chapter VII,
§ 4], Johnson–Noel [61, § 3], Schwede–Shipley [79], and others. The list of references would
be much longer if the extensive work made on transferred model structures since [32, Theo-
rem 3.3] was to be summarized. Sufficient conditions can be found in [56, Theorem 11.3.2] for
a transferred model structure to exist assuming thatM is cofibrantly generated, and specific
conditions for the case of categories of algebras over monads were given in [8, Theorem 2.11]
and in [79, Lemma 2.3].

An instance where a transferred model structure on algebras over a monad does not exist
will be described in Example 8.5 below.

IfMT admits a transferred model structure, then the forgetful functor U is right Quillen
and hence (7.1) is a Quillen adjunction. Therefore T preserves weak equivalences between
cofibrant objects, since T = UF and F preserves weak equivalences between cofibrant objects
while U preserves all weak equivalences. Moreover, there is a derived adjunction

(7.2) FQ : Ho(M) � Ho(MT ) : U,

where Q is a cofibrant replacement functor onM, and fibrant replacement onMT is omitted
since U preserves all weak equivalences.

The adjunction (7.2) is not equivalent, in general, to the Eilenberg–Moore adjunction
of the derived monad UFQ = TQ on Ho(M). From now on, for simplicity, we will omit
the cofibrant replacement functor Q from the notation, thus writing Ho(M)T instead of
Ho(M)TQ. Counterexamples showing that the categories Ho(MT ) and Ho(M)T need not
be equivalent can be found in [46] and [61]. In order to emphasize the distinction, we will
call T -algebras up to homotopy the objects of Ho(M)T , while we will keep calling T -algebras
those of Ho(MT ).

The question of when an f -localization or an A-cellularization onM induces respectively
a localization or a colocalization on T -algebras up to homotopy can be quickly answered
using results from Section 4, as follows.

Theorem 7.1. For a monad T acting on a model categoryM, suppose that the categoryMT

of T -algebras has a transferred model structure.

(a) Let f be a map in M such that Lf exists. Then Lf lifts to Ho(M)T if and only if
T sends f -equivalences between cofibrant objects to f -equivalences.
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(b) Let A be an object in M such that CA exists. Then CA lifts to Ho(M)T if and only
if T sends cofibrant A-cellular objects to A-cellular objects.

Proof. Let Q be a cofibrant replacement functor on M. Theorem 4.2 tells us that Lf lifts
to the Eilenberg–Moore category Ho(M)T if and only if TQ preserves f -equivalences in
Ho(M), and this happens if and only if T sends f -equivalences between cofibrant objects
in M to f -equivalences. Indeed, if g : X → Y is an f -equivalence then so is the map
Qg : QX → QY , and if T sends f -equivalences between cofibrant objects to f -equivalences
then TQg is an f -equivalence. Conversely, suppose that TQ preserves f -equivalences. If
g : X → Y is an f -equivalence where X and Y are cofibrant, then TQg is an f -equivalence
by assumption. Moreover TQX ' TX and TQY ' TY since T preserves weak equivalences
between cofibrant objects, so Tg is an f -equivalence.

In the case of A-cellularizations we use Theorem 4.7 to infer that CA lifts to Ho(M)T

if and only if TQ preserves A-cellular objects in Ho(M). The assertion (b) follows since
TQX ' TX for every cofibrant object X. �

We next address the existence of liftings of f -localizations to the homotopy category of
T -algebras Ho(MT ). This lifting problem and the corresponding one for cellularizations
have also been discussed in [9, 84, 85, 86, 87] and in [48, 49, 50, 51].

We start by formalizing the notion that a homotopical localization or a homotopical
colocalization on M lift to Ho(MT ).

Definition 7.2. Let T be a monad on a model category M such that the category MT of
T -algebras has a transferred model structure.

(a) We say that a homotopical localization (L, l) on M lifts to Ho(MT ) if there is an
endofunctor LT on Ho(MT ) equipped with a natural transformation lT : Id → LT

and a natural isomorphism h : LU → ULT such that h ◦ lU = UlT in Ho(M).
(b) We say that a homotopical colocalization (C, c) onM lifts to Ho(MT ) if there is an

endofunctor CT on Ho(MT ) equipped with a natural transformation cT : CT → Id
and a natural isomorphism h : CU → UCT such that UcT ◦ h = cU in Ho(M).

As next shown, it follows automatically that (LT , lT ) is then a localization and, corre-
spondingly, (CT , cT ) is a colocalization.

Lemma 7.3. If a homotopical localization (L, l) lifts to Ho(MT ) then (LT , lT ) is a lo-
calization on Ho(MT ) and the forgetful functor U preserves and reflects local objects and
equivalences. Similarly, if a homotopical colocalization (C, c) lifts to Ho(MT ) then (CT , cT )
is a colocalization on Ho(MT ) and the forgetful functor U preserves and reflects colocal
objects and equivalences.

Proof. In order to prove that (LT , lT ) is an idempotent monad, it suffices to check that lTLT

and LT lT are isomorphisms on Ho(MT ). On one hand, hLT ◦ lULT = UlTLT . Moreover,
Lh◦ lLU = lULT ◦h and lL is an isomorphism in Ho(M), so UlTLT is also an isomorphism.
Since U reflects isomorphisms, lTLT is an isomorphism. On the other hand, by the naturality
of h, we have hLT ◦ LUlT = ULT lT ◦ h. Here LUlT = Lh ◦ LlU , and, since h and Ll are
isomorphisms, it follows that LUlT is an isomorphism and hence so is ULT lT . Again, since
U reflects isomorphisms, we conclude that LT lT is an isomorphism.

The fact that U preserves and reflects local objects and equivalences follows from the
isomorphism LU ∼= ULT as detailed in Corollary 3.4, and the argument for colocalizations
is analogous. �

In what follows we treat first the case of colocalizations for simplicity. For an object A
in a model category M, we indistinctly denote by CA the A-cellularization functor on M
and the induced colocalization on Ho(M), although it is important not to confuse them.

Theorem 7.4. Let T = UF be the Eilenberg–Moore factorization of a monad T on a model
category M such that the category MT of T -algebras has a transferred model structure. Let
A be a cofibrant object in M such that the right Bousfield localizations MA and (MT )FA
exist. Then the following statements are equivalent:

(i) CA lifts to Ho(MT ).
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(ii) U sends FA-cellular objects to A-cellular objects.
(iii) The comparison map αY : CAUY → UCFAY is a weak equivalence for all Y .
(iv) CFA is a lift of CA to Ho(MT ).

Proof. If (CA, c) lifts to Ho(MT ), then there is a colocalization functor

CT : Ho(MT ) −→ Ho(MT )

with a natural transformation cT : CT → Id and a natural isomorphism h : CAU → UCT

in Ho(M) such that UcT ◦ h = cU . By Lemma 7.3, a map g in MT is a CT -equivalence
if and only if Ug is an A-equivalence, and part (i) of Proposition 6.3 tells us that Ug is an
A-equivalence if and only if g is an FA-equivalence. Hence CT and CFA are colocalizations
with the same class of equivalences, so there is a natural isomorphism g : CT → CFA in
Ho(MT ) with c ◦ g = cT . On the other hand, according to Proposition 6.3, for every
T -algebra Y there is a homotopy unique and homotopy natural A-equivalence

αY : CAUY −→ UCFAY

such that UcY ◦ αY = cUY , where we need not assume that Y is fibrant since U preserves
all weak equivalences. By its uniqueness up to homotopy, αY coincides with UgY ◦ hY in
Ho(M) and therefore αY is an isomorphism for every T -algebra Y , thus yielding (iii).

We next prove that (ii) and (iii) are equivalent. Indeed, αY is a weak equivalence if and
only if UCFAY is A-cellular. Hence αY is a weak equivalence for all Y if and only if U sends
FA-cellular objects to A-cellular objects, as claimed.

Finally, (iii) implies (iv) by definition, and (iv) implies (i). �

A priori, the necessary and sufficient condition (ii) for the existence of a lifting of a cellu-
larization CA to Ho(MT ) given in Theorem 7.4 is stronger than the one given in Theorem 7.1
for the existence of a lifting of CA to Ho(M)T . The argument to prove this is as follows.

Corollary 7.5. Let A be a cofibrant object in a model category M such that the right
Bousfield localizations MA and (MT )FA exist for a monad T = UF on M such that MT

has a transferred model structure. If CA lifts to Ho(MT ) then CA also lifts to Ho(M)T .

Proof. According to part (ii) of Proposition 6.3, F sends cofibrant A-cellular objects to
FA-cellular objects. If CA lifts to Ho(MT ) then, by Theorem 7.4, U sends FA-cellular
objects to A-cellular objects. Hence, for every cofibrant A-cellular object X of M we can
infer that TX = UFX is A-cellular. Consequently, CA lifts to Ho(M)T by part (b) of
Theorem 7.1. �

We do not know if the converse in Corollary 7.5 holds in general. It does under suitable
assumptions, such as the next ones. The condition that U commutes with homotopy colimits
holds in some important situations; for example, whenever U has a Quillen right adjoint, as
in categories of modules over ring spectra, which are discussed in Section 8 below. In general
U does not even commute with coproducts; for example, the coproduct of two commutative
ring spectra R and S is R ∧ S while the coproduct of the underlying spectra is R ∨ S.

Corollary 7.6. Let A be a cofibrant object in a model category M such that the right
Bousfield localizations MA and (MT )FA exist for a monad T = UF on M such that MT

has a transferred model structure. If the forgetful functor U : MT → M commutes with
homotopy colimits, then CA lifts to Ho(MT ) if and only if it lifts to Ho(M)T .

Proof. In view of Corollary 7.5, we only need to prove one implication. If the functor CA
lifts to Ho(M)T , then T preserves cofibrant A-cellular objects according to Theorem 7.1;
hence, UFA = TA is A-cellular, as A is cofibrant. Since the class of FA-cellular objects
is the closure of {FA} under weak equivalences and homotopy colimits, it follows that U
sends all FA-cellular objects to A-cellular objects due to the assumption that U commutes
with homotopy colimits. Hence CA lifts to Ho(MT ) by Theorem 7.4. �

In the following corollaries, we implicity assume thatMT has a transferred model struc-
ture and that the corresponding right Bousfield localizations on M and MT exist.
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Corollary 7.7. If A and TA are cofibrant and both CA and CTA lift to Ho(MT ), then there
is a natural isomorphism

CAUY ∼= CTAUY

in Ho(M) for all T -algebras Y .

Proof. According to Theorem 7.4, our assumptions yield natural isomorphisms

CAUY ∼= UCFAY, CTAUY ∼= UCFTAY

in Ho(M) for all T -algebras Y . The fact that CA lifts to Ho(MT ) implies, by Theorem 7.4,
that U sends FA-cellular objects to A-cellular objects. Hence TA = UFA is A-cellular,
and Proposition 6.5 implies then that the classes of FA-cellular objects and FTA-cellular
objects coincide. This means that CFA ∼= CFTA, hence completing the argument. �

For instance, as we next show, Corollary 7.7 applies when the forgetful functor U has a
Quillen right adjoint.

Corollary 7.8. Suppose that the forgetful functor U : MT →M has a Quillen right adjoint.
If TA is A-cellular, then CA and CTA lift to Ho(MT ) and there is a natural isomorphism

CAUY ∼= CTAUY

in Ho(M) for all T -algebras Y .

Proof. Since both F and U are Quillen left adjoints and A is assumed to be cofibrant,
FA and TA = UFA are cofibrant. Moreover, the fact that U is a Quillen left adjoint
implies, by part (ii) of Proposition 6.3, that U sends cofibrant FA-cellular objects to TA-cell-
ular objects, and, since U preserves weak equivalences, U sends all FA-cellular objects to
TA-cellular ones. Now the assumption that TA is A-cellular implies, by Remark 6.4, that
TA-cellular objects are A-cellular and therefore U sends FA-cellular objects to A-cellular
objects. Therefore CA lifts to Ho(MT ) by Theorem 7.4. Moreover, according to part (a) of
Proposition 6.5, the classes of FA-cellular objects and FTA-cellular objects coincide. Hence
U sends FTA-cellular objects to TA-cellular objects, and this implies that CTA also lifts to
Ho(MT ), so Corollary 7.7 applies. �

We next discuss the case of homotopical localizations, which is largely similar.

Theorem 7.9. Let T = UF be the Eilenberg–Moore factorization of a monad T on a model
category M such that the category MT of T -algebras has a transferred model structure. Let
f be a map in M between cofibrant objects such that the left Bousfield localizations Mf and
(MT )Ff exist. Then the following statements are equivalent:

(i) Lf lifts to Ho(MT ).
(ii) U sends Ff -equivalences to f -equivalences.
(iii) The comparison map βY : LfUY → ULFfY is a weak equivalence for all Y .
(iv) LFf is a lift of Lf to Ho(MT ).

Proof. Recall from Proposition 6.1 that for every T -algebra Y there is a homotopy unique
and homotopy natural map

βY : LfUY −→ ULFfY

such that βY ◦lUY = UlY , and βY is a weak equivalence if and only if UlY : UY → ULFfY is
an f -equivalence. Hence βY is a weak equivalence for all Y if and only if U sends all Ff -loc-
alization maps to f -equivalences, and this happens if and only if U sends Ff -equivalences
to f -equivalences. This proves that (ii) ⇔ (iii).

The claim (i) means that there is a localization functor

LT : Ho(MT ) −→ Ho(MT )

with a natural transformation lT : Id → LT and a natural isomorphism h : LfU → ULT in
Ho(M) such that h ◦ lU = UlT . By Lemma 7.3, a T -algebra Y is LT -local if and only if
UY is f -local, and part (i) of Proposition 6.1 implies that UY is f -local if and only if Y is
Ff -local (no fibrancy assumption on Y is necessary, since U preserves all weak equivalences).
Hence LT and LFf are localizations with the same essential image class, so there is a natural
isomorphism g : LT → LFf in Ho(MT ) with g ◦ lT = l. By its uniqueness up to homotopy,
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βY coincides with UgY ◦hY in Ho(M) and hence βY is an isomorphism for every T -algebra
Y , which proves (iii). By definition (iii) implies (iv), and (iv) implies (i). �

Remark 7.10. The assumption that the model structure (MT )Ff exists is unnecessarily
strong in the statement of Theorem 7.9. The arguments given in the proof remain valid to
conclude that (i) and (ii) are equivalent if we only assume that LFf exists on Ho(MT ), since
the existence of βY is inferred in Proposition 6.1 by means of the model structure Mf .

In the next statements we assume that left Bousfield localizations of M and MT exist
(with the weakening mentioned in Remark 7.10 when pertinent). Proofs are omitted since
they are similar to the ones given in the case of colocalizations.

Corollary 7.11. If Lf lifts to Ho(MT ) then Lf also lifts to Ho(M)T .

We do not know if the converse holds in general.

Corollary 7.12. Suppose that the domains and codomains of f and Tf are cofibrant. If
both Lf and LTf lift to Ho(MT ), then there is a natural isomorphism

LfUY ∼= LTfUY

in Ho(M) for all T -algebras Y .

Corollary 7.13. Suppose that the forgetful functor U : MT → M has a Quillen right
adjoint. If Tf is an f -equivalence, then Lf and LTf lift to Ho(MT ) and there is a natural
isomorphism

LfUY ∼= LTfUY

in Ho(M) for all T -algebras Y .

Proof. The domain and codomain of Tf are cofibrant since U preserves cofibrations and
hence so does T . By part (b) of Proposition 6.5, the class of FTf -equivalences coincides
with the class of Ff -equivalences. Hence, in order to infer that LTf lifts to Ho(MT ), we
need to prove that U sends Ff -equivalences between cofibrant objects to Tf -equivalences.
This follows from part (ii) of Proposition 6.1 since U is, by assumption, a Quillen left adjoint.
Hence our claim is implied by Corollary 7.12. �

There is, however, a relevant distinction between right Bousfield localizations and left
Bousfield localizations of categories of T -algebras equipped with transferred model struc-
tures, due to the fact that in a right-induced model structure one asks the forgetful functor
to create fibrations but not cofibrations. Indeed, as shown in Theorem 7.14 below, the
equality of model categories

(7.3) (MA)T = (MT )FA

always holds, while the analogous equality for f -localizations is not necessarily true, and in
fact if it holds then Lf lifts to T -algebras.

The ideas behind the next theorem were found by Gutiérrez–Röndigs–Spitzweck–Østvær
in [50] for algebras over coloured operads, and also by Batanin–White in [9, Theorem 3.4] and
White–Yau in [87, Corollary 2.8] by weakening the assumption that MT has a transferred
model structure.

Theorem 7.14. Let T = UF be the Eilenberg–Moore factorization of a monad T on a
model category M such that MT has a transferred model structure.

(a) Let A be a cofibrant object in M such that the right Bousfield localizations MA and
(MT )FA exist. Then (MT )FA is a transferred model structure for (MA)T .

(b) Let f be a map in M between cofibrant objects such that the left Bousfield localiza-
tions Mf and (MT )Ff exist. If a transferred model structure for (Mf )T exists,
then this model structure is equal to (MT )Ff and in this case Lf lifts to Ho(MT ).

Proof. For (a), part (i) of Proposition 6.3 states that U : (MT )FA → MA preserves and
reflects weak equivalences. Since the fibrations of (MT )FA are those of MT and the fibra-
tions of MA are those of M, we have that U : (MT )FA →MA also preserves and reflects
fibrations, and this means that (MT )FA is a transferred model structure for (MA)T .
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As for (b), in the adjunction

(7.4) F :Mf � (MT )Ff : U

the cofibrations and trivial fibrations inMf are those ofM and the cofibrations and trivial
fibrations in (MT )Ff are those ofMT ; hence F preserves cofibrations and U preserves and
reflects trivial fibrations. Moreover, part (i) of Proposition 6.1 says that U preserves and
reflects fibrant objects, while part (ii) tells us that F preserves weak equivalences between
cofibrant objects.

If a transferred model structure exists for (Mf )T , then it has the same trivial fibra-
tions and the same fibrant objects as (MT )Ff , since these are created by U in both cases.
Hence they also have the same cofibrations —and thus the same cofibrant objects— and the
same weak equivalences between cofibrant objects, since these are determined by the fibrant
objects. Therefore they have the same weak equivalences (since cofibrant approximations
are trivial fibrations) and this proves that, indeed, (Mf )T = (MT )Ff as model categories.
From this fact it follows that U : MT →M sends Ff -equivalences to f -equivalences, which,
according to Theorem 7.9, implies that Lf lifts to Ho(MT ). �

Consequently, in order to display a case where a transferred model structure for (Mf )T

does not exist, it is enough to exhibit an f -localization that does not lift to T -algebras. This
is done at the end of the next section.

8. Module spectra

The category Sp of symmetric spectra over simplicial sets has a closed symmetric monoidal
structure with internal function spectrum Hom(−,−) defined as in [58, Definition 2.2.9].
We consider the stable model structure [58, Theorem 3.4.4] on Sp, which, according to [58,
Theorem 4.2.5], is Quillen equivalent to the Bousfield–Friedlander model structure on the
category of ordinary spectra. If Q is a cofibrant replacement functor and R is a fibrant
replacement functor on Sp, we call F(X,Y ) = Hom(QX,RY ) a derived function spectrum.

At the same time, Sp is a simplicial category with enrichment defined as

Map(X,Y )n = Sp(X ∧∆[n]+, Y )

for all n, where ∆[n]+ denotes the standard n-simplex with a disjoint basepoint. Thus, by
Remark 6.1, Map(QX,RY ) is a homotopy function complex from X to Y in Sp. Moreover,
it follows from [57, Lemma 6.1.2] or [58, Corollary 2.2.11] that the homotopy groups of
the simplicial set Map(QX,RY ) are isomorphic to those of the spectrum F(X,Y ) in non-
negative dimensions, hence to those of the connective cover Fc(X,Y ) in all dimensions. As
a consequence of this fact, homotopy orthogonality (6.4) in Sp can be formulated in terms
of Fc(−,−), as done in [17, 19, 26, 48] and in many other articles.

For any ring spectrum E, the category E-Mod of left E-module spectra admits, by [58,
Corollary 5.4.2], a transferred model structure for the Eilenberg–Moore factorization

F : Sp � E-Mod : U

of the monad TX = E ∧X on Sp. Here T preserves cofibrant objects if we impose that E
be cofibrant as a spectrum, and T preserves colimits since it is left adjoint to Hom(E,−).
This follows from the fact that Sp is closed monoidal, so there is an adjunction

Sp(E ∧X,Y ) ∼= Sp(X,Hom(E, Y )).

By the same adjunction, an E-module M can be viewed both as an algebra over the
monad E ∧ (−) and as a coalgebra over the comonad Hom(E,−). Thus there are natural
bijections for spectra X and Y ,

E-Mod(E ∧X,M) ∼= Sp(X,UM),(8.1)

Sp(UM,Y ) ∼= E-Mod(M,Hom(E, Y )).(8.2)

The first one is the free-forgetful adjunction of E ∧ (−) and the second one is the forgetful-
cofree adjunction (2.5) of Hom(E,−). For further details on E-modules, see [43, Ch. III].

Thus, the forgetful functor U preserves both limits and colimits, since it has a left adjoint
and a right adjoint. If E is cofibrant, then these are Quillen adjunctions.
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The model category E-Mod is cofibrantly generated by [79, Theorem 4.1], locally pre-
sentable by [1, § 2.78], and proper since U is both a Quillen right adjoint and a Quillen left
adjoint. Hence, left and right Bousfield localizations exist on E-Mod as well as on Sp.

We say that a homotopy functor on spectra is triangulated if it preserves cofibre sequences.
For a localization or a cellularization, this condition is equivalent to commuting with suspen-
sion, as shown in [26, Theorem 2.7] and [49, Theorem 2.9]. For example, Postnikov sections
and connective covers are not triangulated.

A cellularization CA is triangulated if A =
∨∞
i=0 Σ−iW for some spectrum W —this

condition was also considered in [6, Lemma 5.7]— or if CA ' CÂ where

Â =
∨∞
i=0 Σ−iA.

For this, note that ΣnA is A-cellular if n ≥ 0 but not, in general, if n < 0, unless ΣnA
happens to be a retract of A. Similarly, a localization Lf is triangulated if f =

∨∞
i=0 Σ−ig

for some map g, or if Lf ' Lf̂ where f̂ =
∨∞
i=0 Σ−if , since Σnf is an f -equivalence if n ≥ 0.

Localizations with respect to homology theories [14] are triangulated.

Theorem 8.1. Let A and E be cofibrant symmetric spectra and suppose that E is a ring
spectrum. Let U be the forgetful functor from left E-modules to spectra. If E is connective
or CA is triangulated, then CA lifts to left E-modules and

CAUM ' CU(E∧A)UM ' UCE∧AM

for every left E-module M .

Proof. Since U is a Quillen left adjoint, we are ready to apply Corollary 7.8, and it will
suffice to show that U(E ∧ A) is A-cellular. For this we need to assume, as in [47, § 4] and
[49, Theorem 4.1], that E is connective or CA is triangulated.

If E is connective, then, as explained above, we may use the connective cover Fc(−,−) of
the derived function spectrum instead of a homotopy function complex to infer that every
A-equivalence g : X → Y induces

Fc(E ∧A,X) ' Fc(E,F(A,X)) ' Fc(E,Fc(A,X))

' Fc(E,Fc(A, Y )) ' Fc(E,F(A, Y )) ' Fc(E ∧A, Y ),

since g induces Fc(A,X) ' Fc(A, Y ). In this chain of equivalences we have used the adjunc-
tion F(E ∧ A,X) ' F(E,F(A,X)) and the fact that, for every spectrum G, the canonical
map Gc → G induces an equivalence F(E,Gc) ' F(E,G) if E is connective.

If E is not necessarily connective but CA is triangulated, each A-equivalence g : X → Y
induces a weak equivalence F(A,X) ' F(A, Y ) by [49, Theorem 2.9], and therefore

F(E ∧A,X) ' F(E,F(A,X)) ' F(E,F(A, Y )) ' F(E ∧A, Y ),

as needed. In conclusion, if E is connective or CA is triangulated, then CA lifts to Ho(E-Mod)
and Corollary 7.8 tells us that CAUM ∼= CU(E∧A)UM for every cofibrant spectrum A and
every left E-module M . Moreover Theorem 7.4 implies that CE∧A is a lift of CA and hence
CAUM ' UCE∧AM for every left E-module M , as claimed. �

As in the algebraic setting (5.6), the equivalences stated in Theorem 8.1 tell us that both
interpretations of the right-hand term in the ambiguous expression

(8.3) CAM ' CE∧AM,

namely UCE∧AM and CU(E∧A)UM , are valid if E is connective or CA is triangulated.
If S is the sphere spectrum, then the S-cellular spectra are the connective ones, while all

spectra are Ŝ-cellular if Ŝ =
∨∞
i=0 Σ−iS. Therefore, the condition that E is connective is

not only sufficient for (8.3) to hold for all spectra A, but it is also necessary, since if we pick
A = S and M = E then we have CSE ' CEE ' E, so E is S-cellular and hence connective.

Corollary 8.2. Let E be a ring spectrum whose underlying spectrum is cofibrant.

(a) Every left E-module is Ê-cellular, where Ê =
∨∞
i=0 Σ−iE.

(b) If E is connective, then every connective left E-module is E-cellular.
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Proof. For (a), we use the fact that the functor CŜ is triangulated and therefore (8.3) yields

M ' CŜM ' CE∧ŜM

for every left E-module M . Here E ∧ Ŝ '
∨∞
i=0 Σ−iE. For (b), if E is connective, then

M c ' CSM ' CEM
for every left E-module M , and this tells us that M c is E-cellular.

Both claims also follow from the observation that if M is a left E-module then M is a
retract of E ∧M , together with the fact that E ∧ (−) preserves homotopy colimits. �

Of course the same is true for right E-modules, since E and the opposite ring spectrum
Eop have the same underlying spectrum.

Similar results hold in the stable motivic category, with the crucial difference that motivic
spectra need not by far be cellular [38]. Note that the cellular motivic spectra defined in

[38, Definition 2.10] are in fact the Ŝ-cellular ones, where Ŝ =
∨∞
i=0 Σ−iS.

The bigraded family of (unstable) motivic spheres is defined as follows: For p, q ≥ 0,
one denotes by Sp,q the wedge product of p − q copies of the constant simplicial presheaf
whose value is the simplicial circle S1 and q copies of the affine line A1 minus the origin (or,
equivalently, the multiplicative group scheme Gm) with 1 as basepoint. Thus S1,0 = S1 and
S1,1 = Gm. The Tate sphere T = A1/Gm is equivalent to the projective line P1 pointed
at 1, and, since the affine line is contractible, T ' S2,1 = S1 ∧ Gm. The sphere spectrum
S is given by S0 = S0 and Sn = S2n,n ' T∧n for n ≥ 1. This is the unit of a monoidal
structure for symmetric motivic spectra [60, § 4.3].

The category of symmetric motivic spectra over any ground field with the stable model
structure described in [60, Theorem 4.15] satisfies the assumptions of the next theorem,
which generalizes Theorem 8.1. A model category M is called combinatorial [37] if it is
cofibrantly generated and the underlying category is locally presentable. The assumption
that M be locally presentable is needed in order to use [79] in the proof of the next result.
However, it is worth noticing that it would be sufficient to assume that M be strongly
cofibrantly generated as defined in [85, § 6.1]. Examples where this extra generality matters
include topological spaces, spectra built on spaces, and G-equivariant orthogonal spectra for
a compact Lie group G.

As customary, we call a model category monoidal if it has a closed symmetric monoidal
structure and the pushout-product axiom holds [79, § 3].

Theorem 8.3. Let M be a right proper, combinatorial, monoidal model category, and let
S denote the monoidal unit. If E is a cofibrant object of M with a monoid structure, then
there is a natural weak equivalence CAM ' CE∧AM for all left E-modules M and every A
if and only if E is S-cellular.

Proof. If E is an S-cellular cofibrant object, then E ∧ A is A-cellular for every A, since
E ∧ (−) commutes with homotopy colimits. If E is equipped with a monoid structure, then
[79, Theorem 4.1] endows the model category of left E-modules with a transferred model
structure which is right proper and cofibrantly generated (here the monoid axiom is not
needed since E is cofibrant, as indicated in [79, Remark 4.2]). Since M is assumed to be
closed monoidal and E is cofibrant, the forgetful functor from E-modules has a Quillen right
adjoint given by (8.2). It then follows from Corollary 7.8 that

(8.4) CAM ' CE∧AM
for all left E-modules M and every A. The condition that E be S-cellular is also necessary,
since (8.4) implies that CSE ' CEE ' E. �

Moreover, S-cellular E-modules are E-cellular if E is S-cellular, similarly as in part (b)
of Corollary 8.2, since if M is S-cellular then M ' CSM ' CEM by (8.4).

Another example where Theorem 8.3 applies is the category of G-equivariant orthogo-
nal spectra. In this case, the unit S of the monoidal structure consists of the one-point
compactification of V for each finite-dimensional orthogonal representation space V of G.
Being S-cellular in the sense of Theorem 8.3 is much more restrictive than being a cellular
G-spectrum as in [55, Definition B.57]. The model structures on the category of orthogonal
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G-spectra described in [33] or [55] are proper and cofibrantly generated, and they admit
combinatorial versions as shown in [84, § 8].

Theorem 8.4. Let E be a cofibrant symmetric spectrum and let f be a map between cofibrant
spectra. Suppose that E is a ring spectrum, and let U be the forgetful functor from left E-mod-
ules to spectra. If E is connective or Lf is triangulated, then Lf lifts to left E-modules and

LfUY ' LU(E∧f)UY ' ULE∧fY

for every left E-module Y .

Proof. As in Theorem 8.1, we use the fact that the forgetful functor U has a Quillen right
adjoint, namely Hom(E,−). In view of Corollary 7.13, it is enough to prove that U(E ∧ f)
is an f -equivalence. This happens provided that E is connective or Lf is triangulated, by a
similar argument as in the proof of Theorem 8.1; see also [26, Theorem 2.7]. Hence, under
these assumptions, Lf lifts to Ho(E-Mod) and Corollary 7.13 together with Theorem 7.9
imply that

LfUY ' LU(E∧f)UY ' ULE∧fY
for every left E-module Y , which is the corresponding homotopical version of (5.5). �

The next counterexample is based on [26, Example 4.4] and shows that the hypotheses
made in Theorem 8.1 and Theorem 8.4 are necessary.

Example 8.5. Let K(n) be the n-th Morava K-theory spectrum at a prime p for any n ≥ 1,
and let k(n) be its connective cover. Then HZ/p ∧ K(n) = 0 while HZ/p ∧ k(n) 6= 0, as
proved in [74, Theorem 2.1]. This implies that k(n) is not a homotopy retract of K(n)∧k(n)
and therefore k(n) cannot be a left K(n)-module. Here k(n) ' CSK(n) where S denotes
the sphere spectrum; consequently, CS does not lift to K(n)-modules. This counterexample
shows that a cellularization CA of spectra need not lift to E-modules if the assumptions
that E is connective or CA is triangulated in Theorem 8.1 both fail to hold. Note that CS
is not triangulated since it converts the cofibre sequence Σ−1S → 0→ S into 0→ 0→ S.

Similarly, if one removes the assumption that E is connective or Lf is triangulated from
Theorem 8.4, then it need no longer be true that Lf lifts to E-module spectra. Indeed,
the cofibre of the canonical map k(n) → K(n) is the Postnikov section P−1K(n); since
HZ/p∧P−1K(n) 6= 0, we find that P−1K(n) is not a homotopy retract of K(n)∧P−1K(n)
and this implies that P−1K(n) cannot be a left K(n)-module. But P−1K(n) = LfK(n)
with f : S → 0. Thus, if f : S → 0 and E = K(n), then Lf does not lift to E-modules.

Example 8.5 also shows that a transferred model structure for (Mf )T need not exist for a
monad T acting on a model categoryM. This is a consequence of part (b) of Theorem 7.14,
since in Example 8.5 we have exhibited a case where Lf does not lift to Ho(MT ).

9. Loop spaces and infinite loop spaces

In this section we consider simplicial operads (that is, operads taking values in simplicial
sets) acting on pointed simplicial sets endowed with the Cartesian product. This choice is
due to the fact that important monads such as the James construction, the Q-construction,
or the infinite symmetric product, which will be used in this section, involve products and
basepoints in their definition.

Another reason is that in the unpointed category cellularizations are trivial due to the
fact that every space X is a retract of map(A,X) if A is nonempty, as pointed out in [35,
Remark 2.A.1.1] and [56, Remark 3.1.10]. In the case of localizations, there are no essential
differences between working with basepoints or without them. In other words, map∗(−,−)
or map(−,−) can indistinctly be used to test homotopy orthogonality for localizations of
pointed connected spaces [18, Lemma 2.1], and hence if a map g of pointed spaces is an
f -equivalence then both g × K and g ∧ K are f -equivalences for every pointed simplicial
set K. However, if a pointed space X is A-cellular then X ∧K is A-cellular for all K but
X ×K need not be (since it has K as a retract).

For a simplicial operad P and every n, the (unpointed) simplicial set P (n) is equipped
with an action of the symmetric group Σn. We assume, as usual, the existence of a unit
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element u ∈ P (1), and we will also assume that operads are reduced, meaning that P (0) is
a single point, denoted by ∗.

If P is such an operad and X is a simplicial set with a basepoint x0 then a P -algebra
structure on X is a morphism of operads P → End(X) where End(X)(n) is the based
function complex map∗(X

n, X), as in [65, § 1]. Here we denote by Xn the n-fold Cartesian
product of X with itself, which is meant to be a point if n = 0, and pick (x0, . . . , x0) as
basepoint of Xn if n 6= 0. The operad End(X) is reduced and the image of the unit element
u ∈ P (1) under the structure map P (1)→ map∗(X,X) is assumed to be the identity map.

For a simplicial operad P acting on pointed simplicial sets through basepoint-preserving
maps, as explained in [65], the P -algebras coincide with the algebras over the reduced monad
T where TX is defined, for a pointed simplicial set X, as the quotient of

(9.1)
∐
n≥0

P (n)×Σn
Xn

by identifiying (w, siy) ∈ P (n)×Xn with (σiw, y) ∈ P (n− 1)×Xn−1 for 1 ≤ i ≤ n and all
w ∈ P (n) and y ∈ Xn−1. Here the map si : X

n−1 → Xn inserts the basepoint into the i-th
place and σi : P (n)→ P (n− 1) is the i-th degeneracy, defined as

σiw = γi(w, u, . . . , u, ∗, u, . . . , u),

where

γi : P (n)× P (1)i−1 × P (0)× P (1)n−i −→ P (n− 1)

is among the multiplication maps of the operad P ; see [65, § 4]. Thus, in particular, P (0)
is identified with (w, x0, . . . , x0) ∈ P (n)×Xn for every n and all w ∈ P (n). The unit map
ηX : X → TX of the monad sends each element x to (u, x) ∈ P (1)×X.

The same happens for non-symmetric operads by discarding the Σn-action from (9.1).
For example, if A is the (non-symmetric) unital associative operad, for which A(n) is a single
point for all n, then the associated reduced monad on pointed simplicial sets is the James
construction [59].

Lemma 9.1. If T is the reduced monad associated with a simplicial operad P acting on
pointed simplicial sets, then T preserves f -equivalences for every map f .

Proof. For a pointed simplicial set X, we write TX as a homotopy colimit of the partial
sums

TkX =
∐

0≤n≤k

P (n)×Σn
Xn

subject to the same identifications as in (9.1). Thus, T0X = P (0), T1X ∼= P (1)+ ∧X, and
TkX is a pointed simplicial set such that

TkX/Tk−1X ∼= P (k)+ ∧Σk
X∧k,

where X∧k denotes X∧· · ·∧X with k factors. Hence for each k and every pointed simplicial
set Z there is a Kan fibre sequence

(9.2) map∗(P (k)+ ∧Σk
X∧k, Z) −→ map∗(TkX,Z) −→ map∗(Tk−1X,Z).

Since the smash product of two f -equivalences is an f -equivalence, if g : X → Y is an
f -equivalence then so is the induced map

(9.3) W ∧X ∧ · · · ∧X −→W ∧ Y ∧ · · · ∧ Y

for every finite number of factors and every pointed simplicial set W , where (9.3) is the
identity on the first factor and g on the other factors.

If the operad P is non-symmetric then we can omit the Σn-action and (9.2) proves
inductively that if g : X → Y is an f -equivalence then Tkg is an f -equivalence for every
k and consequently Tg is also an f -equivalence.

If P is symmetric, we need to use the fact that the quotient P (k)+ ∧Σk
X∧k is a colimit

over Σk (viewed as a small category), and it is also a homotopy colimit if Σk acts freely on
P (k), but not otherwise. However, P (k)+∧Σk

X∧k is a homotopy colimit of a (free) diagram
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indexed by the opposite of the orbit category of Σk, where the value of the diagram at Σk/G
is the fixed-point space

P (k)G+ ∧ (X∧k)G;

cf. [35, § 4.A.4]. Since each space (X∧k)G is homeomorphic to a product X∧m with m ≤ k, we
obtain that the map Tg : TX → TY is a homotopy colimit of f -equivalences, and therefore
it is itself an f -equivalence. �

Essentially the same argument works for cellularizations. We need the assumption that
A be connected in order to avoid triviality, since S0 is a retract of every non-connected
simplicial set and all simplicial sets are S0-cellular.

Lemma 9.2. If T is the reduced monad associated with a simplicial operad P acting on
pointed simplicial sets and A is connected, then T preserves A-cellular simplicial sets.

Proof. If X is A-cellular, then every finite smash product P (k)+ ∧ X∧k is A-cellular for
k ≥ 1 by [35, Theorem 2.D.8], while P (0) = ∗ by assumption, which is also A-cellular. The
proof continues similarly as in Lemma 9.1. �

Example 9.3. The infinite symmetric product [34], denoted by SP∞, is the reduced monad
associated with the commutative operad. Its algebras are the commutative monoids. The
argument given in the proof of Lemma 9.1 was used in [29, Theorem 1.3] to prove that SP∞

preserves f -equivalences for every map f . Moreover, it was shown in [29, Proposition 1.1]
that a space X underlies an SP∞-algebra in the pointed homotopy category if and only if X
is a GEM, i.e., a weak product of abelian Eilenberg–Mac Lane spaces; moreover, in this case
the SP∞-algebra structure on X is unique up to isomorphism. Therefore, by Lemma 9.1
and part (a) of Theorem 7.1, every f -localization preserves GEMs (as first shown in [35,
Chapter 4]) and defines in fact a localization on the homotopy category of GEMs. Similarly,
every A-cellularization preserves GEMs and defines a colocalization on them by Lemma 9.2
and part (b) of Theorem 7.1.

Remark 9.4. Lemma 9.1 also holds for the unreduced monad T̃ associated with a simplicial
operad P , that is,

T̃X =
∐
n≥0

P (n)×Σn X
n

without any basepoint identifications, whose algebras are also the P -algebras [65, § 4]. The
proof proceeds with the same argument as in the proof of Lemma 9.1, using the fact that
if X → Y is an f -equivalence then W ×Xn → W × Y n is also an f -equivalence for every
simplicial set W and all n. However, Lemma 9.2 is not true for unreduced monads, since,
for an A-cellular space X, a product W ×X is not A-cellular unless W is itself A-cellular.
Still, Lemma 9.2 holds for unreduced monads if we assume that each P (n) and all fixed-
point spaces P (n)G are contractible or empty for every subgroup G ⊆ Σn. This condition
is trivially satisfied if P (n) is a single point for all n and also if each P (n) is contractible
and Σn acts freely on it. This is the case, for instance, for the commutative operad and its
cofibrant approximations.

We next address liftings of localizations Lf and cellularizations CA to categories of al-
gebras over simplicial operads. The existence of a transferred model structure for such
categories of algebras is guaranteed by results in [12]. In order to apply Theorem 7.4 and
Theorem 7.9 to the associated monad T = UF , we need to prove that the forgetful func-
tor U sends Ff -equivalences of T -algebras to f -equivalences of spaces for every basepoint-
preserving map f , and that U sends FA-cellular T -algebras to A-cellular spaces for every
pointed connected space A. Both statements would be straightforward if U preserved homo-
topy colimits. However, in general, U only preserves sifted colimits (including filtered ones
and reflexive coequalizers), since T commutes with these due to the fact that sifted colimits
commute with finite products of simplicial sets; cf. [61, Proposition 2.5].

To surmount this difficulty, we rely on a method used in [50, § 3] with a similar purpose.
For a T -algebra X, we consider the standard simplicial resolution of X by free T -algebras
(compare with May’s two-sided bar construction [64, § 9]), defined as

BnX = (FU)n+1X
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for n ≥ 0. Thus B∗X is a simplicial T -algebra with face and degeneracy maps coming from
the unit and the counit of the adjunction between F and U . The counit FUX → X extends
to a map εX : B∗X → X of simplicial T -algebras, where X is treated as a constant simplicial
T -algebra. We denote by ∆ the indexing category for simplicial objects.

In the next arguments we use the following facts:

(i) The Bousfield–Kan map hocolim∆op An → |A∗| is a weak equivalence for every Reedy
cofibrant simplicial object A∗ in any simplicial model category [56, Theorem 19.8.7].

(ii) According to [50, Corollary 2.10(i)], for every Reedy cofibrant simplicial T -algebra
A∗ the underlying bisimplicial set UA∗ is also Reedy cofibrant.

(iii) The monad T commutes with geometric realization since T is defined by means of a
coend formula, namely (9.1), and geometric realization is itself a coend [76, § 3.8]. It
then follows that the forgetful functor U also commutes with geometric realization
by the argument given in [61, Proposition 3.12].

(iv) The free T -algebra functor F commutes with homotopy colimits. This follows from
the fact that the Quillen pair (F,U) extends to a Quillen pair on diagram categories
with the projective model structure and F preserves weak equivalences because it
is left Quillen and all simplicial sets are cofibrant. Specifically, if Y : K → sSet∗ is
any diagram and Ỹ is a projectively cofibrant replacement of Y , then

F hocolim
k∈K

Yk ' F colim
k∈K

Ỹk ' colim
k∈K

FỸk ' hocolim
k∈K

FYk.

The next lemma is a special case of [50, Lemma 3.2] or [61, Proposition 3.13]. We give
details for completeness.

Lemma 9.5. Let T be the reduced monad associated with a simplicial operad acting on
pointed simplicial sets. If T = UF is the Eilenberg–Moore factorization of T and we denote
BnX = (FU)n+1X, then, for every T -algebra X, the map εX : B∗X → X induces a natural
weak equivalence

hocolim
∆op

BnX ' X.

Proof. The unit UX → UFUX yields a map ηX : UX → UB∗X which is a left homotopy
inverse for UεX ; see [64, Proposition 9.8]. Hence UB∗X is split augmented and this yields
a weak equivalence

hocolim
∆op

UBnX ' UX.

If we denote by B̃∗X a Reedy cofibrant replacement of B∗X, then, since U commutes with
geometric realization and preserves Reedy cofibrancy, we have

U hocolim
∆op

BnX ' U |B̃∗X| ' |UB̃∗X| ' hocolim
∆op

UBnX ' UX,

and therefore hocolim∆op BnX ' X because U reflects weak equivalences. �

Lemma 9.6. Let T be the reduced monad associated with a simplicial operad acting on
pointed simplicial sets, and let T = UF be its Eilenberg–Moore factorization.

(a) Let f be a basepoint-preserving map and let G be a collection of maps of T -algebras
such that Ug is an f -equivalence for every g ∈ G. Then Uh is an f -equivalence for
every h in the closure of G under pointed homotopy colimits.

(b) Let A be a pointed connected simplicial set, and let D be a collection of T -algebras
such that UD is A-cellular for every D ∈ D. Then UX is A-cellular for every X in
the closure of D under pointed homotopy colimits.

Proof. We first prove (b). The strategy is to replace an arbitrary homotopy colimit by a
homotopy colimit indexed by ∆op, as in [50, Lemma 3.6]. Thus suppose inductively that
X ' hocolimi∈I Di where I is a small category and UDi is A-cellular for every i. Let

Jn = hocolim
i∈I

Bn(Di),
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and pick a Reedy cofibrant replacement J̃∗ of the simplicial T -algebra J∗. Using Lemma 9.5
together with the fact that homotopy colimits commute, we have that

|J̃∗| ' hocolim
∆op

Jn ' hocolim
∆op

hocolim
i∈I

Bn(Di)

' hocolim
i∈I

hocolim
∆op

Bn(Di) ' hocolim
i∈I

Di ' X.

Moreover, since U commutes with geometric realization and preserves Reedy cofibrancy,

UX ' U |J̃∗| ' |UJ̃∗| ' hocolim
∆op

UJn.

Hence, in order to infer that UX is A-cellular, it is enough to prove that UJn is A-cellular
for all n.

As observed in (iv) above, F commutes with homotopy colimits. Consequently,

UJn = U hocolim
i∈I

(FU)n+1Di = U hocolim
i∈I

F (UF )nUDi(9.4)

' UF hocolim
i∈I

(UF )nUDi = T hocolim
i∈I

TnUDi.

Since UDi is A-cellular for every i and T preserves A-cellular simplicial sets by Lemma 9.2,
we conclude that UJn is A-cellular, as needed. This proves part (b).

The proof of part (a) follows the same argument in the category of maps of T -algebras
with the projective model structure, using that T preserves f -equivalences by Lemma 9.1.
Some care is needed due to the fact that in this model category not all objects are cofibrant;
in fact, the cofibrant arrows are precisely the cofibrations [57, Theorem 5.1.3]. This has an
effect on (9.4), where we need to derive the functor F in order that it commutes with the
homotopy colimit. However, it is sufficient to choose every Di cofibrant, since U preserves
cofibrancy by [50, Proposition 2.7], and so does F because it is left Quillen. �

To avoid ambiguity with “pushouts of maps”, note that the left-hand square

V
f
//

a

��

W

b
��

X
g
// Y

idV
(idV , f)

//

(a,a)

��

f

(a,b)

��
idX

(idX , g)
// g

is a pushout square in a category C if and only if the right-hand square is a pushout square
in the category of arrows of C.

For a simplicial operad P acting on pointed simplicial sets, if T is the associated reduced
monad, then the category sSetT∗ of P -algebras has a transferred model structure by [12,
Proposition 4.1(c)], which is cofibrantly generated by [32] and locally presentable by [1,
§ 2.78], since T preserves filtered colimits. It is right proper as U preserves limits, fibrations,
and weak equivalences. However, it is not left proper in general; a counterexample is given in
[52, § 4], namely the category of simplicial operads itself is not left proper. Left properness of
the category of P -algebras holds under the assumptions made in [69, Definition 3.1], which
are true for the unital associative operad, among others.

Theorem 9.7. Let T be the reduced monad associated with a simplicial operad P acting on
pointed simplicial sets.

(a) For every basepoint-preserving map f : V →W , the functor Lf lifts to Ho(sSetT∗ ).

(b) For every pointed connected simplicial set A the functor CA lifts to Ho(sSetT∗ ).

Proof. Let T = UF be the Eilenberg–Moore factorization of T . We aim to apply Theo-
rem 7.4 and Theorem 7.9. Since sSetT∗ is right proper, right Bousfield localizations (sSetT∗ )FA
exist for all A. Although sSetT∗ need not be left proper, it is Quillen equivalent to a left
proper combinatorial model category, by [37, Corollary 1.2]. This fact ensures that, for

every map f , a localization exists on Ho(sSetT∗ ) whose equivalences are the Ff -equivalences,

and this suffices to provide a lifting of Lf to Ho(sSetT∗ ) if the remaining assumptions in
Theorem 7.9 are fulfilled (see Remark 7.10).

Thus, for part (a) we need to prove that the forgetful functor U sends Ff -equivalences
of T -algebras to f -equivalences of spaces, and for part (b) we want to see that U sends
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FA-cellular T -algebras to A-cellular spaces. We treat the latter first. The class of FA-cell-
ular T -algebras is the smallest class of T -algebras containing FA and closed under pointed
homotopy colimits [56, § 5.5]. Since UFA = TA is A-cellular by Lemma 9.2, the result
follows from part (b) of Lemma 9.6 with D = {FA}.

As for (a), we note that, since T preserves f -equivalences by Lemma 9.1, the Ff -equiv-
alences coincide with the FTf -equivalences by Proposition 6.5. What we will next prove,
for technical convenience, is that U sends FTf -equivalences to f -equivalences. In fact it
is enough to prove that U sends all localization maps lX : X → LFTfX to f -equivalences,
since if g : X → Y is any FTf -equivalence then lY ◦ g = LFTf (g) ◦ lX and LFTf (g) is a
weak equivalence.

Each localization map lX is constructed as a possibly transfinite composite of homotopy
pushouts of generating trivial cofibrations in sSetT∗ and horns on FTf with n ≥ 0:

(9.5) λn,f : (FTV ⊗∆[n])
∐
FTV⊗∂∆[n] (FTW ⊗ ∂∆[n]) −→ FTW ⊗∆[n],

where we are using the simplicial structure of sSetT∗ described in [61, Proposition 2.14].
Specifically, for a T -algebra X = (UX,α) with structure map α : TUX → UX and a
simplicial set K, the T -algebra X ⊗K is defined by means of a reflexive coequalizer:

F (TUX ×K)

F (α×K)

++

β 44
F (UX ×K) // X ⊗K

where β is adjunct to the map TUX × K → T (UX × K) given by the fact that T is a
simplicial functor, and the common section is F (η ×K) where η : UX → TUX is the unit
map of T . In particular, FUY ⊗K ∼= F (UY ×K) for all Y and K; cf. [44, Lemma 3.8].

Therefore U(FTf ⊗K) ∼= UF (Tf ×K) = T (Tf ×K) is an f -equivalence for every K,
since T preserves f -equivalences by Lemma 9.1.

Then Lemma 9.6 tells us that Uh is an f -equivalence for every map h that can be
constructed from maps of the form FTf ⊗K by means of homotopy pushouts. This implies
that U(λn,f ) is an f -equivalence for every horn λn,f , since λn,f ◦ g = FTf ⊗∆[n] with g a
pushout of FTf ⊗ ∂∆[n] along the cofibration FTV ⊗ ∂∆[n]→ FTV ⊗∆[n]. Finally, as lX
can be constructed from horns and weak equivalences by means of homotopy pushouts, we
conclude that UlX is an f -equivalence using Lemma 9.6 again. �

The fact that localizations preserve algebras over coloured operads in simplicial sets was
proved, with different methods, in [27, § 6], [50, § 3], and [85, § 8.2].

In what follows, Ω denotes the derived loop functor on pointed simplicial sets, that is,
ΩX = map∗(S1, RX), where S1 = ∆[1]/∂∆[1] and R is a fibrant replacement functor. Let A
be the (non-symmetric) unital associative operad, for which A(n) is a single point for all n,
and let ϕ : A∞ → A be a cofibrant resolution [67, 68]. If we let A act on pointed simplicial
sets then the corresponding algebras are the monoids and the associated reduced monad is
the James construction [59].

The morphism of operads ϕ : A∞ → A yields a Quillen equivalence

ϕ! : A∞-alg � A-alg : ϕ∗,

so the homotopy category of monoids is equivalent to the homotopy category of A∞-algebras
in pointed simplicial sets. Moreover, the classifying space functor B is part of an adjunction

(9.6) B : Ho(A∞-alg) � Ho(sSet∗) : Ω,

which restricts, as a special case of (2.3), to an equivalence of categories between the full
subcategory of Ho(A∞-alg) whose objects are those M such that the unit ηM : M → ΩBM
is an isomorphism (that is, grouplike spaces) and the full subcategory of connected simplicial
sets, which are precisely those X for which the counit εX : BΩX → X is an isomorphism.

Corollary 9.8. If f is any basepoint-preserving map between connected simplicial sets, then

(i) LfΩX ' ΩLΣfX, and
(ii) LfΩX ' LΩΣfΩX

for all pointed simplicial sets X.
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Proof. Let F : sSet∗ � A-alg : U be the Eilenberg–Moore factorization of the James cons-
truction J as a monad on pointed simplicial sets. Theorem 9.7 tells us that Lf lifts to
Ho(A-alg), and we then infer from the equivalence of (i) and (iii) in Theorem 7.9 that
LfUM ' ULFfM for every monoid M .

Let X be any pointed simplicial set. Since ϕ : A∞ → A allows rectification of algebras
[12, § 4], there is a monoid MX whose underlying space is weakly equivalent to ΩX. Hence,

LfΩX ' LfUMX ' ULFfMX .

Next we observe that, since homotopical localizations preserve π0 by Example 6.7, the
functor LFf restricts to the full subcategory of Ho(A∞-alg) whose objects are grouplike and
LBFf restricts to the full subcategory of connected simplicial sets. Since (9.6) sets up an
equivalence between these two categories, B preserves both local objects and equivalences
and, by Theorem 3.2, there is a comparison map of β type

LFfMX −→ ΩLBFfBMX

which is a weak equivalence. Now BFf ' Σf since f is a map of connected spaces and
JY ' ΩΣY if Y is connected. Moreover, if X0 denotes the basepoint component of X, then

ΩLΣfBMX ' ΩLΣfX0 ' ΩLΣfX,

and this yields (i). Finally, it follows from Corollary 7.12 that

LfΩX ' LJfΩX ' LΩΣfΩX,

as claimed in part (ii). �

By induction we also have LfΩnX ' ΩnLΣnfX for all X and n ≥ 0. This formula also
holds for n =∞, by the following argument, which is similar to the preceding one.

Let E be the commutative operad, for which E(n) is a point for all n, and let ψ : E∞ → E
be a cofibrant resolution. The algebras over E in pointed simplicial sets are the commu-
tative monoids and the associated reduced monad is the infinite symmetric product SP∞.
Connected commutative monoids are GEMs.

For a space X, the quotient Xn/Σn by the symmetric group action does not have the
same homotopy type for n ≥ 2 as C(n) ×Σn X

n, where C(n) is a contractible space with
a free Σn-action. For this reason, E∞-spaces are not homotopy equivalent to commutative
monoids, in general. Instead, if we denote by B∞X the Ω-spectrum associated with a given
E∞-space X, then there is an adjunction

B∞ : Ho(E∞-alg) � Ho(Sp) : Ω∞,

which restricts, as another instance of (2.3), to an equivalence of categories between the full
subcategory of grouplike E∞-spaces (i.e., infinite loop spaces) and the full subcategory of
connective spectra; see [3, Pretheorem 2.3.2].

If Q denotes the reduced monad associated with E∞ on pointed simplicial sets, then
May’s Approximation Theorem [64] implies that QX ' Ω∞Σ∞X if X is connected.

Corollary 9.9. If f is any basepoint-preserving map between connected simplicial sets, then

(i) LfΩ∞X ' Ω∞LΣ∞fX, and
(ii) LfΩ∞X ' LΩ∞Σ∞f Ω∞X

for every spectrum X.

Proof. Let F : sSet∗ � E∞-alg : U be the Eilenberg–Moore factorization of the reduced
monad Q associated with E∞. The functor Lf lifts to Ho(E∞-alg) by Theorem 9.7, and it
follows from Theorem 7.9 that LfUM ' ULFfM for every E∞-algebra M .

For a spectrum X, we may view Ω∞X as an E∞-algebra. Hence,

LfUΩ∞X ' ULFfΩ∞X.

Since homotopical localizations preserve π0, the functor LFf restricts to the full subcategory
of Ho(E∞-alg) whose objects are grouplike, and, since B∞FY ' B∞Ω∞Σ∞Y ' Σ∞Y if Y
is connected, the functor LB∞Ff restricts to the full subcategory of connective spectra as
explained in Example 6.7. Hence Theorem 3.2 yields a comparison map of β type

LFfΩ∞X −→ Ω∞LB∞FfB
∞Ω∞X
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which is a weak equivalence. Here B∞Ff ' Σ∞f and, if Xc is the connective cover of X,

Ω∞LΣ∞fB
∞Ω∞X ' Ω∞LΣ∞fX

c ' Ω∞LΣ∞fX,

where the last step uses (6.9). This yields (i), and it follows from Corollary 7.12 that

LfΩ∞X ' LQfΩ∞X ' LΩ∞Σ∞fΩ∞X,

as claimed in part (ii). �

Similarly, for cellularizations we have the following.

Corollary 9.10. If A is any pointed connected simplicial set, then

(i) CAΩX ' ΩCΣAX, and
(ii) CAΩX ' CΩΣAΩX

for all pointed simplicial sets X, and

(iii) CAΩ∞Y ' Ω∞CΣ∞AY , and
(iv) CAΩ∞Y ' CΩ∞Σ∞A Ω∞Y

for every spectrum Y .

Proof. The proof follows the same steps as the proofs of Corollary 9.8 and Corollary 9.9,
using part (b) of Theorem 9.7. �

Some of the formulas obtained in the preceding results are contained in [16, 17, 35].
The preservation of loop spaces (and, more generally, spaces with an action of an algebraic
theory) by homotopical localizations was also addressed by Badzioch in [4].

10. Algebras up to homotopy

Suppose given a monad T on a model category M. In this section we will not consider
model structures on the category MT of T -algebras, but we will assume that T preserves
weak equivalences and hence descends to a monad on the homotopy category Ho(M). As
in Section 7, objects of the Eilenberg–Moore category Ho(M)T will be called T -algebras up
to homotopy.

Our purpose in this section is to prove that the equivalence LfX ' LTfX obtained in
Corollary 7.12 also holds when X underlies a T -algebra up to homotopy, provided that T
and f interact in a suitable way, and similarly for cellularizations.

For this, it will be convenient to work with the Dwyer–Kan construction of homotopy
function complexes as simplicial sets of morphisms in the hammock localization of M, as
in [41, 42] or in the more elaborate version discussed in [40, § 35.6]. Thus, in this section
we choose mapM(X,Y ) to be the colimit of the nerves NLn(X,Y ), where Ln(X,Y ) is the
category whose objects are strings of n maps in M in arbitrary directions

(10.1) X = X0 ←→ X1 ←→ X2 ←→ · · · ←→ Xn−1 ←→ Xn = Y,

where the arrows pointing backwards are weak equivalences. A morphism in Ln(X,Y ) is a
commuting diagram between strings of the same type. The colimit of nerves is taken along
the maps induced by the functors Ln(X,Y )→ Ln+1(X,Y ) consisting of adding idY at the
end of (10.1). Choosing instead to add idX or interpolating identities at any other place
would replace mapM(X,Y ) by a weakly equivalent simplicial set, since natural transforma-
tions of functors yield simplicial homotopies between maps after taking nerves.

Lemma 10.1. Let M be a model category and f : A→ B any map in M. Let T : M→M
be a functor that preserves weak equivalences and is equipped with a natural transformation
η : Id → T . Suppose given a Tf -local object X together with a map a : TX → X such that
a ◦ ηX ' idX . Then X is f -local.

Proof. By assumption, mapM(Tf,X) is a weak equivalence. Hence, we will achieve our goal
if we prove that mapM(f,X) is a homotopy retract of mapM(Tf,X) and therefore it is a
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weak equivalence as well. For this, consider the diagram

(10.2) mapM(B,X) //

��

mapM(TB, TX) //

��

mapM(TB,X) //

��

mapM(B,X)

��

mapM(A,X) // mapM(TA, TX) // mapM(TA,X) // mapM(A,X)

obtained by passing to nerves, for every n, the diagram of functors

(10.3) Ln(B,X)
T̄ //

f∗

��

Ln(TB, TX)
a∗ //

(Tf)∗

��

Ln+1(TB,X)
(ηB)∗

//

(Tf)∗

��

Ln+2(B,X)

f∗

��

Ln+1(A,X)
T̄ // Ln+1(TA, TX)

a∗ // Ln+2(TA,X)
(ηA)∗

// Ln+3(A,X),

where T̄ sends each string of maps from B to X to the string obtained by applying T
termwise, while (−)∗ indicates composition on the right and (−)∗ denotes composition on
the left. In (10.3) the left-hand square and the middle square commute, while the right-hand
square commutes up to a natural transformation after passing to Ln+4(A,X), in view of

A
id //

id
��

A
f
//

ηA

��

B
ηB //

ηB

��

TB

id
��

A
ηA // TA

Tf
// TB

id // TB.

Hence, the whole diagram (10.2) commutes up to homotopy, and there only remains to show
that the composite of each of its rows is homotopic to the identity.

For this, note first that (ηB)∗ ◦a∗ = a∗ ◦ (ηB)∗, and the same happens with A. Moreover,
the commutativity of

(10.4) B
ηB // TB oo

Tσ1 // TE1
oo // · · · oo // TEn−1

oo
Tσn // TX

id // TX

B
id //

id

OO

B oo
σ1 //

ηB

OO

E1
oo //

ηE1

OO

· · · oo // En−1
oo

σn //

ηEn−1

OO

X
ηX //

ηX

OO

TX

id

OO

for every string of maps from B to X yields a natural transformation (ηX)∗ → (ηB)∗ ◦ T̄ as
in [75, Theorem 3.2]. Consequently, the composite of the top row in (10.2) is homotopic to
the map obtained by passing to nerves the composite

Ln(B,X)
(ηX)∗

// Ln+1(B, TX)
a∗ // Ln+2(B,X).

Since a ◦ ηX ' idX , the latter map is indeed homotopic to the identity, as shown in detail in
[75, Theorem 3.1]. The same argument is repeated with A instead of B to finish the proof
that mapM(f,X) is a homotopy retract of mapM(Tf,X). �

Theorem 10.2. Let M be a model category and let T be a monad on M preserving
weak equivalences and cofibrant objects. Let f be a map in M between cofibrant objects
such that Lf and LTf exist. If T preserves f -equivalences between cofibrant objects and
Tf -equivalences between cofibrant objects, then

LfX ' LTfX
whenever X underlies a T -algebra up to homotopy.

Proof. Consider the Eilenberg–Moore factorization of T viewed as a monad on Ho(M),

F : Ho(M) � Ho(M)T : U.

Since T preserves f -equivalences between cofibrant objects, it follows from Theorem 4.2 that
there is a localization L′ on Ho(M)T such that U preserves and reflects local objects and
equivalences, and LfUX ' UL′X naturally for every homotopy T -algebra X. Since T also
preserves Tf -equivalences, we infer similarly that LTfUX ' UL′′X for a localization L′′.
We next show that L′ ' L′′ as in the proof of Proposition 5.4.
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The L′-local objects are those (X, a) in Ho(M)T such that X is f -local, and the L′′-local
objects are those such that X is Tf -local. Since T preserves f -equivalences between cofibrant
objects, Tf is an f -equivalence and hence every f -local object of M is Tf -local. This tells
us that all L′-local objects of Ho(M)T are L′′-local. Conversely, if (X, a) is L′′-local in
Ho(M)T , then we may assume that X is fibrant and cofibrant and Tf -local. Since T
preserves cofibrant objects, we may also assume that a : TX → X is represented by a map
in M. Thus, a ◦ ηX ' idX and, in this situation, Lemma 10.1 tells us that X is f -local, so
(X, a) is L′-local. �

As proved in Lemma 9.1, the condition that T preserves f -equivalences and Tf -equiv-
alences in Theorem 10.2 is automatically satisfied for every f if the monad T is associated
with a simplicial operad. Hence we infer the following general result.

Corollary 10.3. If T is the reduced monad associated with a simplicial operad acting on
pointed simplicial sets, then

LfX ' LTfX
for every map f if X is the underlying space of a T -algebra up to homotopy.

Proof. This is a consequence of Theorem 10.2 and Lemma 9.1. �

Example 10.4. The infinite symmetric product SP∞ is the reduced monad associated with
the commutative operad. As shown in [29, Proposition 1.1], the homotopy algebras over
SP∞ coincide with the strict algebras —this is parallel to the fact that, in stable homotopy,
the classes of homotopy HZ-module spectra and strict HZ-module spectra coincide, as
proved in [46]. Corollary 10.3 implies that LfX ' LSP∞fX if X is a GEM, as pointed out
in [29, Theorem 1.3] and generalizing [17, Corollary 3.2(iii)]. Hence, in particular,

LfSP
∞X ' LSP∞f SP∞X

for every space X and every map f .

Example 10.5. The homotopy algebras over the James functor J are the monoids in Ho(sSet∗)
with its Cartesian monoidal structure, that is, the homotopy associative H-spaces. Since
J is the reduced monad associated with the associative operad, we can infer from Corol-
lary 10.3 that LfX ' LΩΣfX for every homotopy associative H-space X and every map f
between pointed connected simplicial sets. This is a more general statement than part (ii)
of Corollary 9.8.

It follows similarly that LfX ' LΩ∞Σ∞fX for every map f between pointed connected
simplicial sets and every homotopy algebra X over the reduced monad Q associated with
an E∞-operad. The homotopy Q-algebras are the H∞-spaces in the sense of [23, § I.3.7].
As shown in [61, 71], H∞-spaces need not be homotopy equivalent to E∞-spaces. Thus we
have also sharpened part (ii) of Corollary 9.9.

More generally, for every cofibrant ring spectrum E, we consider the monad defined as
TX = Ω∞(E ∧Σ∞X) on Ho(sSet∗), and call its algebras unstable E-modules. The previous
two examples are special cases of the following result, namely E = HZ in Example 10.4 and
E = S (the sphere spectrum) in the second part of Example 10.5.

Corollary 10.6. Let E be a connective cofibrant ring spectrum. For every map f of pointed
connected simplicial sets we have

LfX ' LΩ∞(E∧Σ∞f)X

for all unstable E-modules X.

Proof. Let TX = Ω∞(E ∧ Σ∞X). Part (ii) of Proposition 5.1 applied to the adjunction

Σ∞ : Ho(sSet∗) � Ho(Sp) : Ω∞

tells us precisely that Σ∞ sends f -equivalences to Σ∞f -equivalences for every map f of
pointed simplicial sets. Since E is assumed to be connective, smashing with E preserves
Σ∞f -equivalences. This is proved using the derived function spectrum F(−,−) as in Sec-
tion 8. Indeed, if E is connective, then

[E ∧X,Z] ∼= [E,F(X,Z)] ∼= [E,Fc(X,Z)]
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so choosing Z to be Σ∞f -local yields our claim.
Finally, Ω∞ sends Σ∞f -equivalences to f -equivalences by part (i) of Corollary 9.9. Hence

T preserves f -equivalences for every f , and Theorem 10.2 yields the desired result. �

Theorem 10.7. Let M be a model category and let T be a monad on M preserving weak
equivalences and cofibrant objects. If A is a cofibrant object in M such that CA and CTA
exist, and T preserves cofibrant A-cellular objects and cofibrant TA-cellular objects, then

CAX ' CTAX

if X underlies a T -algebra up to homotopy.

Proof. The proof follows the same steps as the proof of Theorem 10.2. From the assumption
that T preserves cofibrant A-cellular objects we infer, using Theorem 4.7, that there exists a
colocalization C ′ on Ho(M)T whose colocal objects are those (X, a) where X is A-cellular,
and CAX ' UC ′(X, a) for all (X, a). Similarly, the assumption that T preserves cofibrant
TA-cellular objects implies that there exists a colocalization C ′′ on Ho(M)T whose colocal
objects are those (X, a) where X is TA-cellular, and CTAX ' UC ′′(X, a) for all (X, a).

Since T preserves cofibrant A-cellular objects, TA is A-cellular, and consequently all
TA-cellular objects are A-cellular. This tells us that all C ′′-colocal T -algebras are C ′-colocal.
If we prove that, conversely, all C ′-colocal T -algebras are C ′′-colocal, then it will follow that
C ′ ' C ′′, and therefore

CAX ' UC ′(X, a) ' UC ′′(X, a) ' CTAX,

for all (X, a), as claimed.
The claim that all C ′-colocal T -algebras are C ′′-colocal is equivalent to the statement

that all C ′′-equivalences are C ′-equivalences. Thus, let g : (X, aX)→ (Y, aY ) be a C ′′-equiv-
alence in Ho(M)T . Since UC ′′(X, aX) ' CTAX, the underlying map g : X → Y in Ho(M)
is a TA-equivalence, that is, mapM(TA, g) is a weak equivalence of simplicial sets. We next
prove, similarly as in Lemma 10.1, that mapM(A, g) is a homotopy retract of mapM(TA, g),
from which it follows that g : X → Y is an A-equivalence, and hence g : (X, aX) → (Y, aY )
is a C ′-equivalence, as U reflects isomorphisms.

For this, consider the homotopy commutative diagram

(10.5) mapM(A,X)
T̄ //

g∗

��

mapM(TA, TX)
(aX)∗

//

(Tg)∗

��

mapM(TA,X)
(ηA)∗

//

g∗

��

mapM(A,X)

g∗

��

mapM(A, Y )
T̄ // mapM(TA, TY )

(aY )∗
// mapM(TA, Y )

(ηA)∗
// mapM(A, Y ),

where (−)∗ indicates composition on the right and (−)∗ denotes composition on the left. It
then follows, as in the proof of Lemma 10.1, that

(ηA)∗ ◦ (aX)∗ ◦ T̄ = (aX)∗ ◦ (ηA)∗ ◦ T̄ ' (aX)∗ ◦ (ηX)∗ ' id,

and similarly with Y . This proves that the composite of each row in (10.5) is homotopic to
the identity, and consequently mapM(A, g) is a homotopy retract of mapM(TA, g), which
completes the proof. �

Corollary 10.8. Suppose that A and E are cofibrant spectra and E is a homotopy ring
spectrum, and assume that E is connective or that CA is triangulated. Then CAX ' CE∧AX
if X underlies a homotopy left E-module.

Proof. The monad TX = E ∧X preserves A-cellular objects and TA-cellular objects by the
argument given in the proof of Theorem 8.1. Thus the result follows from Theorem 10.7. �

Using Lemma 9.2, it follows from Theorem 10.7 that CAX ' CSP∞AX for every pointed
connected simplicial set A if X is a GEM. Likewise, CAX ' CΩΣAX if X is a homotopy
associative H-space, and CAX ' CΩ∞Σ∞AX if X is an H∞-space. More generally, the
analogue of Corollary 10.6 for cellularizations reads as follows.
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Corollary 10.9. Let E be a connective cofibrant ring spectrum. For every pointed connected
simplicial set A we have

CAX ' CΩ∞(E∧Σ∞A)X

for all unstable E-modules X.

Proof. The functor Σ∞ sends A-cellular pointed simplicial sets to Σ∞A-cellular spectra by
part (ii) of Proposition 6.3, while smashing with E preserves Σ∞A-cellular spectra since E
is connective, and Ω∞ sends those to A-cellular spaces by part (iii) of Corollary 9.10. Hence
the monad TX = Ω∞(E ∧Σ∞X) preserves A-cellular spaces and Theorem 10.7 applies. �

All the formulas obtained after Example 10.4 are new, to our knowledge.
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Contemporary Mathematics 181, American Mathematical Society, Providence, 1995, 385–390.
[71] J. Noel, H∞ 6= E∞, in: An Alpine Expedition through Algebraic Topology, Contemporary Mathematics

617, American Mathematical Society, Providence, 2014, 237–240.

[72] D. Pavlov, J. Scholbach, Admissibility and rectification of colored symmetric operads, J. Topology 11,
559–601.

[73] D. G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics 43, Springer, Berlin, Heidelberg,

1967.
[74] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106

(1984), 351–414.

[75] O. Raventós, The hammock localization preserves homotopies, Homology, Homotopy Appl. 17 (2015),
191–204.

[76] E. Riehl, Categorical Homotopy Theory, Cambridge University Press, Cambridge, 2014.
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