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Abstract

In this project we deal with random holomorphic polynomials pN . Specifically,
we study the relationship between zeros and critical points of pN considering two
different probabilistic models. The first one is based on chosing independently and
with uniform probability N random points that will be the zeros of our polynomial
pN . The second model is that of the so-called parabolic Gaussian Analytic Function.
In this second model, the distribution of points is more rigid, and the striking
phenomenon continues to be observed: zeros and critical points appear, with high
probability, in pairs.

Resum

En aquest treball tractem polinomis holomorfs aleatoris pN . En concret, estudiem la
relació entre els zeros i els punts cŕıtics de pN considerant dos models probabiĺıstics
diferents. El primer es basa en escollir independentment i amb probabilitat uniforme
N punts aleatoris que seran els zeros del nostre polinomi pN . El segon model és el
de l’anomenada Funció Anaĺıtica Gaussiana parabòlica. En aquest segon model, la
distribució de punts és més ŕıgida, i se segueix observant el sorprenent fenomen: els
zeros i els punts cŕıtics apareixen, amb alta probabilitat, aparellats.

2020 Mathematics Subject Classification. 30B20, 30C15, 60G99
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Introduction

In this project we study the relationship between zeros and critical points of certain
random holomorphic polynomials pN(z). This problem is more easily understood if
we think of pN as a meromorphic function defined in the Riemann sphere S2 ' CP1.

The main probabilistic model we consider is the following. Given N ∈ N, let
η1, . . . , ηN ∈ S2 be N random points chosen independently and with uniform prob-
ability. Let ξj = π(ηj) ∈ C, where π : S2 → C is the stereographic projection, and
define a polynomial that has ξj as zeros, that is

pN(z) =
N∏
j=1

(z − ξj).

Since the projection (push-forward) of the normalized Lebesgue measure in S2 is

dν(z) =
dm(z)

π(1 + |z|2)2
, one can equivalently think that the zeros in pN(z) are chosen

independently in C according to the probability measure dν.

The second model we consider is that of the so-called parabolic Gaussian Analytic
function. Consider the monomials

ej(z) =

√(
N

j

)
zj, j = 0, . . . , N.

These are just the usual monomials, but normalised so that

||ej||2N := (N + 1)

∫
C

|ej(z)|2

(1 + |z|2)N
dν(z) = 1.

This is a natural norm for polynomials of degree at most N .

Consider then the random polynomial

pN(z) =
N∑
j=0

ajej(z),

where aj ∈ C are independent and identically distributed (i.i.d.) standard Gaus-
sians NC(0, 1).

It is known that the zeros of pN , i.e. the set

Z(pN) := {z ∈ C : pN(z) = 0} = {ξ1, . . . , ξN}

is distributed, in average, uniformly on the sphere (i.e. the number of points
π−1(ξj) = ηj ∈ S2 lying in a region U ⊆ S2 is expected to be N times the area of U).

However, in this second model, the distribution of points is more rigid, in the
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sense that the fluctuations around the expected value are smaller than in the first
model. In particular there is a local repulsion phenomenon: it is less likely to find
two close zeros.

The main goal of this work is to study the following striking phenomenon: ze-
ros and critical points appear, with high probability, in pairs.

Figure 1: Zeros (black disks) and critical points (blue squares) for a degree 50 parabolic Gaussian
Analytic polynomial. (Boris Hanin)

We wonder why this pairing occurs. If we choose a zero deterministically, with
what probability can we be sure that there is a critical point around it and how far
away will it be? Why does this pairing break down in some places?

Observe that the expected separation between N points chosen randomly on S2

would be of order 1/
√
N . However, it turns out that, for both models, the prob-

ability of finding a critical point near a given zero is of order 1/N with very high
probability. Moreover, this critical point near a given zero is aligned with the zero.
We will see this in the Theorems 2.3.1 (Chapter 2) and 3.7.1 (Chapter 3).

The main part of the work is devoted to state and proof the theorem for the first
model. For the GAF model, we explain its set-up, its main properties and state the
theorem. The proof of this result is out of our scope.

Probably the best-known result relating zeros and critical points of holomorphic
polynomials is the Gauss-Lucas theorem: the critical points of a given holomorphic
polynomial pN(z) lie inside the convex hull of its zeros.

The phenomenon we study here is of different nature, and it can be understood
with the help of the following electrostatic interpretation.
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Write, as before,

pN(z) =
N∏
j=1

(z − ξj).

where the zeros ξj are chosen with uniform distribution in S2, i.e., if A ⊆ S2 and
ηj = π−1(ξj) ∈ S2, then P (ηj ∈ A) = σ(A), where σ is the area measure on S2

normalized with σ(S2) = 1.

Consider the function of one complex variable (random electrostatic potential)

g(w) = log |pN(w)|2 =
N∑
j=1

[
log(w − ξj) + log(w − ξj)

]
.

Then, we have, for w /∈ {ξj}Nj=1

∂g(w) =
pN(w) · ∂pN(w)

|pN(w)|2
=

N∑
j=1

∂ log(w − ξj) =
N∑
j=1

1

w − ξj
.

Given pN(w), the critical points (∂pN(w) = ∂
∂w
pN(w) = 0) are therefore solutions

of the equation

EN(w) :=
N∑
j=1

1

w − ξj
= 0. (1)

We note that EN(w) is the electric field at w given by positive charges of value +1
located at each point ξj. Thus, the critical points can be viewed equilibrium points
of this electric field.

We interpret this on S2. We think of pN as a meromorphic function (with pole
of order N at infinity) on S2. Then

∆g = ∆ log |pN |2 = −Nδ∞ +
∑

ξ : pN (ξ)=0

δξj ,

where the Laplacian ∆ is understood in the distributional sense and δ∞, δξj are the
Dirac delta measures. This is interpreted as an electrostatic field on the Riemann
sphere generated by N positive charges located at the zeros of the random polyno-
mial and a negative charge of weight N at the north pole, which corresponds to the
point at infinity.

This expression of ∆g comes out of writing w = 1/z (that is, taking the chart
at ∞) and writing

pN(z) = pN

(
1

w

)
= c

N∏
j=1

(
1

w
− ξj

)
=

c

wN

N∏
j=1

ξj

(
1

ξj
− w

)
.
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Let now ξ be a fixed zero and write

pN,ξ(w) =
1

wN
(w − ξ)

N−1∏
j=1

(w − ξj),

with the remaining zeros ξj, j = 1, . . . , N − 1, i.i.d. uniformly distributed on the
Riemann sphere. Strictly speaking, we would have ξi to be the inverse of zeros of pN
uniformly distributed on S2, but the distribution of ξj and 1/ξj is equally uniform
at S2.

With this factorization, the electrostatic field becomes

EN(w) = −N
w

+
1

w − ξ
+

N−1∑
j=1

1

w − ξj
. (2)

A critical point of the polynomial corresponds to a point where the gradient of the
electrostatic potential cancels out, i.e., to a point of equilibrium of this electrostatic
field. At a point of equilibrium, three types of forces act and must be compensated:

(i) The force of the negative charge of the infinity point, which is proportional
to the degree of the polynomial (number of zeros) N .

(ii) The force of the positive charge of the nearest random particle. It is propor-
tional to 1/d, where d is the distance to the particle. If we choose w with
|w − ξ| ≈ 1/N , then 1

w−ξ is of order N .

(iii) The force of the other charges. These are uniformly distributed around the
equilibrium point, and the central limit theorem allows us to see that this
force is proportional to

√
N with high probability, i.e. negligible with respect

to the force of the charge coming from the point of infinity.

By the uniform distribution of each ξj, we have that E
(

1

w − ξj

)
= 0, and thus

E

(
N−1∑
j=1

1

w − ξj

)
=

N−1∑
j=1

E
(

1

w − ξj

)
= 0.

Therefore, generically

EN(w) ≈ −N
w

+
1

w − ξ
= E[EN(w)].

If ξ /∈ {0,∞} (i.e. north and south poles of the sphere), we have E[EN(wN,ξ)] = 0
in precisely the point

wN,ξ = ξ

(
1− 1

N

)−1

.

Therefore, there is a point wN,ξ at distance of order 1/N from ξ where the mean
electrostatic field cancels out.
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This means is that to compensate all the charges, it is necessary that the posi-
tive charge closest to the critical point is at a distance 1/N and, approximately, in
the segment that joins the critical point and the origin.

Near the origin (at the South pole on the Riemann sphere) this reasoning does
not work, since the force exerted by the North pole charge is zero, by isotropy. As
a consequence, the pairing of zeros and critical points breaks down near the origin.

A final word on the structure of the memoir. In the first chapter we introduce
(or recall) the necessary elements to write the statements and proofs of the fol-
lowing chapters. Chapter 2 is devoted to study in detail the model of N points
chosen independently and uniformly in S2. Finally, in Chapter 3 we discuss the
GAF model.
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Chapter 1

Preliminaries

1.1 The Riemann sphere, topology and chordal

metric

Stereographic projection and properties

It’s useful to consider that rational functions take values (and are defined on)

Ĉ = C ∪ {∞} = CP1, the extended complex plane or Riemann sphere. Topo-
logically it’s just S2 (unit sphere in R3).

C

(a, b, 0)

(x1, x2, x3)

N =∞ = (0, 0, 1)

Figure 1.1: The stereographic projection

We consider in Ĉ a topology that induces in C the usual topology. This is de-
fined by fixing a basis of open sets of each point of Ĉ:

(i) If a ∈ C, the basis is {D(a, r)}r>0.

(ii) The basis for ∞ is Ĉ \ {D(0, r)}r>0.

We recall this well-known fact.

7



8 Preliminaries

Proposition 1. Ĉ with this topology is homeomorphic to the unit sphere of R3,

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1},

with the topology induced by R3.

Proof. Set N = (0, 0, 1) ∈ S2 the north pole. Identify C with the equatorial plane
x3 = 0, i.e., R2 × {0} = {(x1, x2, x3) ∈ R3 : x3 = 0}.

Consider the stereographic projection π : S2 \ {N} → C given in the following
way: if x ∈ S2 \ {N}, π(x) is the point of intersection with the plane x3 = 0 of the
line determined by N and x.

If x = (x1, x2, x3) ∈ S2 \ {N}, x3 6= 1, then, π(x) = (0, 0, 1) + λ(x1, x2, x3 − 1) =
(a, b, 0) and λ = −1

x3−1
= 1

1−x3 . Therefore, a = x1
1−x3 , b = x2

1−x3 and

π(x) = π(x1, x2, x3) =
x1

1− x3

+ i
x2

1− x3

,

an expression that gives us the continuity of π.

We note that π is bijective, because if π(x) = z = a + ib, with a = x1
1−x3 and

b = x2
1−x3 , then

(a) |z|2 = a2 + b2 = 1+x3
1−x3 and, in particular, x3 = |z|2−1

1+|z|2 ,

(b) x1 = a(1− x3) = 2a
1+|z|2 = z+z

1+|z|2 ,

(c) x2 = 2b
1+|z|2 = 1

i
z−z

1+|z|2 .

These calculations give us, for z ∈ C,

π−1(z) =

(
z + z

1 + |z|2
,
1

i

z − z
1 + |z|2

,
|z|2 − 1

1 + |z|2

)
. (1.1)

Note that π−1(z) 6= N , so π−1 is continuous. We have then that π : S2 \{N} → C is
a homeomorphism and, in particular, C is topologically equivalent to S2\{N}. Since
lim
x→N
|π(x)| = +∞, if we define π(N) =∞, we also have that π is a homeomorphism

between S2 and Ĉ. To see that π is continuous at the point N observe that if

|x−N | < δ, then |π(x)| > M , i.e. π(D(N, δ)) ⊂
(
C \D(0,M)

)
∪ {∞}. �

Some well-known properties that come out from the definition of stereographic
projection are:

Observation 1. • The southern hemisphere projects on the unit disk.

• The stereographic projection is conformal, i.e., it preserves angles and orien-
tations. (see [Shu21])
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• The push-forward in C of the Lebesgue measure in S2 by the stereographic
projection π is (see [HKPV09] for more details)

dν(z) =
dm(z)

π(1 + |z|2)2
, z ∈ C.

Chordal distance

The Euclidian distance in R3 restricted to the sphere projected to C by the stereo-
graphic projection π induces a natural distance in C.

Definition 1.1.1. (Chordal distance). The cordal distance between z, w ∈ C is

dC(z, w) := |π−1(z)− π−1(w)|R3 =
2|z − w|√

1 + |z|2
√

1 + |w|2

We justify that the chordal distance has this form. Let us call z = x + iy and
w = u + iv. By the stereographic projection, π−1(z) = (x1, x2, x3) and π−1(w) =
(y1, y2, y3). Since x2

1 +x2
2 +x2

3 = 1 and y2
1 + y2

2 + y2
3 = 1 we have, from the definition

dC(z, w)2 = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 = 2(1− x1y1 − x2y2 − x3y3)

Using Equation (??) of π−1:

dC(z, w)2 = 2

(
1− 4xu+ 4yv + (|z|2 − 1)(|w|2 − 1)

(|z|2 + 1)(|w|2 + 1)

)
=

4(|z|2 + |w|2 − 2xu− 2yv)

(|z|2 + 1)(|w|2 + 1)

Using that |z − w|2 = |z|2 + |w|2 − 2xu− 2yv,

dC(z, w)2 =
4|z − w|2

(1 + |z|2)(1 + |w|2)
⇒ dC(z, w) =

2|z − w|√
1 + |z|2

√
1 + |w|2

If w =∞ and z ∈ C,

dC(z, w)2 = x2
1 + x2

2 + (x3 − 1)2 = 2(1− x3) = 2

(
1− |z|

2 − 1

|z|2 + 1

)
,

then

dC(z, w) =
2√

1 + |z|2
.

The Euclidean distance in R3 is invariant by rotations of the sphere, and therefore
the chordal distance is invariant as well. For the Riemann sphere, it is the one point
compactification of the plane. So, (Ĉ, dC) is a compact metric space.

If a ∈ C and r > 0, then the chordal disk of center a and radius r will be de-
noted as

Dc(a, r) = {z ∈ C : dC(z, a) < r}.
Finally, we compute the natural area of the chordal disk of center a and radius r,
which will be used often.
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Proposition 2. If a ∈ C and r > 0, then

ν(Dc(a, r)) =
r2

1 + r2
.

Proof. Using polar coordinates, we have that:

ν(Dc(a, r)) =

∫
Dc(a,r)

dν(z) =

∫
Dc(a,r)

dm(z)

π(1 + |z|2)2

=

∫ r

0

∫ 2π

0

ρ

π(1 + ρ2)2
dθdρ =

2π

π

∫ r

0

ρ

(1 + ρ2)2
dρ

= 2
r2

2(1 + r2)
=

r2

1 + r2
.

�

Rotations in S2

The transformations we consider are the rotations of S2, through π, which are seen
as

ϕλ,θ(z) = eiθ
z − λ
1 + λz

, λ ∈ C; θ ∈ [0, 2π).

We note that the point λ = π(η) goes to 0 = π(S); i.e. in S2 that is the rotation
that takes η to the S pole.

We shall denote simply by ϕλ the canonical transformation corresponding to θ = 0.

The area in S2 is invariant by rotations, so the measure dν is invariant by these
transformations. Let us check for the sake of completeness:

Corollary 1.1.1. The measure dν is invariant by ϕλ,θ, for all λ ∈ C, θ ∈ [0, 2π).

Proof. We have to see that for all z ∈ C, θ ∈ [0, 2π), dν(ϕλ,θ(z)) = dν(z):

dν(ϕλ,θ(z)) =
dm(ϕλ,θ(z))

π(1 + |ϕλ,θ(z)|2)2
=

|ϕ′λ,θ(z)|2

π (1+|λ|2)2(1+|z|2)2

|1+λ̄z|4
dm(z)

=

(1+|λ|2)2

|1+λ̄z|4

π (1+|λ|2)2(1+|z|2)2

|1+λ̄z|4
dm(z) =

dm(z)

π(1 + |z|2)2
= dν(z).

�
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1.2 The Gamma and Beta functions

Further calculations will require these two classical special functions.

Definition 1.2.1. The Gamma function of parameter p > 0 is defined as

Γ(p) =

∫ ∞
0

xp−1e−x dx.

Some properties of this function are:

1. Γ(1) = 1.

2. Γ(p) = (p− 1)Γ(p− 1), p > 1.

3. If p ∈ N and p ≥ 1, then Γ(p) = (p− 1)!.

4. Γ(1/2) =
√
π.

Definition 1.2.2. The Beta function of parameters p > 0 and q > 0 is defined as:

β(p, q) =

∫ 1

0

xp−1(1− x)q−1 dx.

The most relevant properties of this function are:

1. β(p, q) = β(q, p).

2. β(1, q) =
1

q
.

3. β(p, q) =
q − 1

q
β(p+ 1, q − 1), for all p > 0 and q > 1.

4. β(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

1.3 Complex Gaussian distribution

This section will be used thoroughly Chapter 3.

Throughout this section, we shall encounter complex Gaussian random variables.
As conventions vary, we begin by establishing our terminology. By N (µ, σ2), we
mean the distribution of the real-valued random variable with probability density

1

σ
√

2π
e−

(x−µ)2

2σ2 where µ ∈ R and σ2 > 0 are the mean and variance respectively.

Our goal in this section is define and study the univariate complex normal dis-
tribution.
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Definition 1.3.1. A complex random variable X can be written as

X = U + iV,

where U and V are the uniquely determined real random variables corresponding to
the real and the imaginary parts of X, respectively.

When we consider complex random variables, three operators are important.
The complex random variable space (where we will define the operators) is given
by

L(C) = {X|X is a complex random variable and E(XX) <∞},
where E denotes the expectation operator of a real random variable.

Observe that L(C) is the vector space of complex random variables having finite
square length: writing X = U + iV we can see that

E(XX) = E(U2 + V 2) = E(|X|2).

Definition 1.3.2. Let X = U + iV be a complex random variable. We define the
expectation operator of X, E : L(C)→ C as

E(X) = E(U) + iE(V ).

Definition 1.3.3. Let X and Y be complex random variables. The covariance
operator of X an Y , Cov(X, Y ) : L(C)× L(C)→ C is defined as

Cov(X, Y ) = E
(

(X − E(X))(Y − E(Y ))
)

In the case where X = Y it is called the variance operator. This provides us
with the following definition.

Definition 1.3.4. Let X be a complex random variable. The variance operator of
X, Var(X) : L(C)→ R+ is defined as

Var(X) = Cov(X,X) = E
(

(X − E(X))(X − E(X))
)

= E
(
|X|2

)
− |E(X)|2

Observe that the complex conjugate is necessary in the variance operator as we
requiere the variance to be a nonnegative real number.

Property 1. Let X = U + iV be a complex random variable. Then,

Var(X) = Var(U) + Var(V ).

Proof. This property follows immediately from the definitions above:

Var(X) = E
(

(X − E(X))(X − E(X))
)

= E
(
|X − E(X)|2

)
=

= E
(
|U + iV − E(U + iV )|2

)
= E

(
|U + iV − E(U)− iE(V )|2

)
=

= E((U − E(U))2) + E((V − E(V ))2) = Var(U) + Var(V ).

�
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We say that X has a univariate standard complex normal distribution (with
mean zero and variance one) if and only if

1. X has a bivariate normal distribution on R2.

2. X has a complex covariance structure.

3. E(X) = 0 and Var(X) = 1.

Remark 1. Let us discuss these conditions:

2. Let X = U+iV be a complex random variable. The 2-dimensional real random
vector X = (U, V ) is said to have a complex covariance structure if

Var(X) =

(
Σ −ξ
ξ Σ

)
,

where Σ, ξ ∈ R. Since a real variance matrix is symmetric it follows that
Cov(U, V ) = 0 and it implies that U and V are independent with Var(U) =
Var(V ).

3. This condition standarizes the mean and the variance of the real and imag-
inary part of the complex random variable: using E(X) = E(U) + iE(V ),
Var(X) = Var(U) + Var(V ) and Var(U) = Var(V ) we get

E(U) = E(V ) = 0; Var(U) = Var(V ) =
1

2
.

The three conditions lead to the following definition.

Definition 1.3.5. (The standard complex Gaussian distribution) A complex ran-
dom variable X has a (univariate) complex Gaussian distribution with mean zero
and variance one if

L(X) = N
(

0,
1

2
Id2

)
.

This is denoted by L(X) = NC(0, 1).

Proposition 3. Let X be a complex random variable with L(X) = NC(0, 1). The
density function of X with respect to Lebesgue measure on C is given as

fX(z) =
1

π
e−|z|

2

, z ∈ C. (1.2)

Proof. From the bivariate real normal distribution we know that, when L(X) =

N
(

0,
1

2
Id2

)
, then the density of X with respect to Lebesgue measure on R2 is

given as

fX([x]) = (2π)−1 det

(
1

2
Id2

)− 1
2

e−
1
2

[x]T ( 1
2

Id2)
−1

[x]

=
1

π
e−[x]T [x], [x] ∈ R2.
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Using the one-to-one correspondence between the univariate complex standard
Gaussian distribution and this bivariate normal distribution established by the iso-
morphism between C and R2, the density function of X with respect to Lebesgue
measure on the complex plane C is identical to the density function of X with
respect to Lebesgue measure on R2. Then,

fX(z) =
1

π
e−zz =

1

π
e−|z|

2

, z ∈ C.

�

We have proved that it’s equivalent to define the standard complex Gaussian
with the probability density (1.2) and with X = U + iV , where U and V are i.i.d.

N
(

0,
1

2

)
random variables.

For future use we compute the moments of the standard complex Gaussian.

Property 2. Let X be a complex random variable with L(X) = NC(0, 1) and n ≥ 1.
Then,

a) E(Xn) = 0.

b) E(|X|n) = Γ
(n

2
+ 1
)

.

Proof. a) By definition and the density (1.2),

E(Xn) =

∫
C
znfX(z) dm(z) =

∫
C
zn

1

π
e−|z|

2

dm(z)

Integrating in polar coordinates

E(Xn) =

∫ 2π

0

∫ ∞
0

ρneinθ
1

π
e−ρ

2

ρ dρ dθ =
1

π

∫ 2π

0

einθ dθ

∫ ∞
0

ρn+1e−ρ
2

dρ = 0

because, for n ≥ 1,∫ 2π

0

einθ dθ =
1

in
einθ
∣∣∣∣θ=2π

θ=0

=
1

in
(ei2πn − 1) = 0

b) Again, using polar coordinates and Definition 1.2.1 (with p =
n

2
+ 1 > 0):

E(|X|n) =

∫
C
|z|n 1

π
e−|z|

2

dm(z) =

∫ 2π

0

∫ ∞
0

ρn
1

π
e−ρ

2

ρ dρ dθ

=
1

π

∫ 2π

0

dθ︸ ︷︷ ︸
2π

∫ ∞
0

ρn+1e−ρ
2

dρ = 2

∫ ∞
0

ρn+1e−ρ
2

dρ

=

∫ ∞
0

t
n
2 e−t dt = Γ

(n
2

+ 1
)

�
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In Chapter 3 we shall study holomorphic functions whose Taylor series coeffi-
cients are Gaussians (or multiples of Gaussians). The following result is important
when studying the convergence of such series.

Proposition 4. Let an be complex random independent variables with L(an) =
NC(0, 1). Then |an|1/n converges almost surely towards 1

lim sup
n→∞

|an|1/n = 1 a.s.

Proof. We are going to use Borel−Cantelli lemma. First note that |an|2 is an
exponential variable with parameter 1, because

P
(
|an|2 ≤ x

)
=

∫
{z∈C:|z|2≤x}

1

π
e−|z|

2

dz =

∫ 2π

0

∫ √x
0

1

π
e−r

2

r dr dθ = 1− e−x. (1.3)

Seeing that |an|1/n converges almost surely towards 1 is equivalent to prove that

P

(
lim sup
n→∞

|an|1/n < 1

)
= P

(
lim sup
n→∞

|an|1/n > 1

)
= 0.

By definition:

lim sup
n→∞

|an|1/n < 1⇐⇒ ∃ε > 0 ∃n0 ∈ N ∀n ≥ n0 |an|1/n < 1− ε

⇐⇒ ∃ε > 0 ∃n0 ∈ N ∀n ≥ n0 |an| < (1− ε)n.

Let’s consider

A = lim sup
n→∞

An =
⋂
n≥1

⋃
k≥n

Ak,

where

Ak = {w : |an(w)|2 < (1− ε)2k} k = 0, 1, 2, . . .

We observe that P (Ak) = 1 − e−(1−ε)2k (by Equation 1.3), and using the Taylor’s
approximation 1− e−t ≈ t for t ≈ 0, we obtain∑

k

P (Ak) =
∑
k

[
1− e−(1−ε)2k

]
≈
∑
k

(1− ε)2k < +∞.

Applying Borel-Cantelli’s lemma, we conclude that

P

(
lim sup
n→∞

|an|1/n < 1

)
= 0.

�

Finally, we write a property of a sequence of independent Gaussians that we will
use when computing the covariance kernel of a GAF (Section 3.4):
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Proposition 5. If ak ∼ NC(0, 1) i.i.d., then

E(anam) =

{
1 if n = m
0 if n 6= m

.

Proof. If n = m, then, by Property 2(b) with n = 2 (or because |an|2 is an expo-
nential variable with parameter 1)

E(anan) = E(|an|2) = Γ

(
2

2
+ 1

)
= Γ(2) = 1.

Otherwise, if n 6= m, then, by the independence of (ak)k, we have that

E(anam) = E(an)E(am) = 0.

�



Chapter 2

Probabilistic model: roots of the
polynomial

2.1 Polynomials on the sphere

Let PN [C] be the space of polynomials of degree at most N ∈ N. By the Funda-
mental Theorem of Algebra, pN ∈ PN [C] has a factorization

pN(z) = c(z − ξ1) · · · (z − ξn) = c
n∏
i=1

(z − ξi)

where each root ξi appears as many times as its multiplicity.

One of the nice reasons for studying polynomials on the Riemann sphere is that
we can naturally see them as meromorphic functions pN : Ĉ → Ĉ in the extended
complex plane Ĉ (specifically, they have a single pole of order N and at ∞). To
study pN at ∞ we have to study f(z) = pN(1/z) at z = 0. A more general result is
the following: (for all the details, see [Tai16])

Proposition 6. A function is meromorphic on the Riemann sphere if and only if
it is a rational function.

There is a relationship between the location of the zeros of pN and its critical
points (the zeros of p′N). This is precisely what we want to explore, in the case that
the polynomials are random.

By Rolle’s theorem, if a real polynomial pN has all its roots real, then all the
roots of its derivative are in the smallest closed interval containing all the roots of
pN . Let’s see a beautiful extension of this result to C, the classical Gauss-Lucas
theorem.

Theorem 2.1.1. (Gauss-Lucas) The critical points of a polynomial in one complex
variable lie inside the convex hull of its zeros, that is, in the smallest convex polygon
containing the zeros.

17
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Proof. Let ξ1, ξ2, . . . , ξn ∈ C be the zeros of the complex polynomial pN ∈ PN [C].

Let β be a zero of p′N . If β is a zero of pN , then β is automatically in the con-
vex hull of the points ξ1, . . . , ξn. So, we suppose that β is not a zero of pN .

By equation (1) in the introduction, we know that the critical points that are
not zeros are the points where

0 =
n∑
i=1

1

β − ξi
.

This is equivalent to

0 =
n∑
i=1

β − ξi
|β − ξi|2

which is
n∑
i=1

ξi
|β − ξi|2

= β

n∑
i=1

1

|z − ξi|2
.

Letting ζ =
n∑
i=1

1

|z − ξi|2
, we get

n∑
i=1

1
|β−ξi|2

ζ
ξi = β.

So β is a linear combination of the roots ξi by non-negative coefficients adding up
to 1. This proves that β is a convex combination of the ξi. �

A nice consequence of this theorem is the following: if the polynomial has real
zeros, then the derivative must have real roots.

2.2 Electrostatic Interpretation of Zeros and Crit-

ical Points

From the introduction, we consider the polynomial

pN,ξ(z) =
1

wN
(w − ξ)

N−1∏
j=1

(w − ξj),

where ξ is a fixed zero and ξj, j = 1, . . . , N − 1 are the remaining zeros i.i.d. uni-
formly distributed on the Riemann sphere.

The polynomial pN,ξ generates the electric field given by equation (2):

EN(w) = −N
w

+
1

w − ξ
+

N−1∑
j=1

1

w − ξj
.
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The first term is the contribution from the −N charges at ∞ and is of order N .
The second term is the contribution from the +1 charge at ξ, which is also of order
N if |w − ξ| ≈ N−1. Since the zeros ξ1, . . . , ξN−1 by assumption are distributed
uniformly, for large N , the third term has generically order

√
N , by the central

limit theorem. Let’s see this:

Proposition 7. The random term
N−1∑
j=1

1

w − ξj
has order

√
N with high probability.

Proof. We note that E
(

1

w − ξj

)
= 0 for all j = 1, . . . , N − 1, by the spherical

symmetry. Thus, E

(
N−1∑
j=1

1

w − ξj

)
= 0.

Letting Xj =
1

w − ξj
, the central limit theorem yields

X1 + · · ·+XN−1 =

X1+···+XN−1

N−1
− 0

σ√
N−1

· N − 1√
N

σ ∼ NR(0, 1)
√
Nσ

and therefore X1 + · · ·+XN−1 has order
√
N with very high probability. �

In the formula (2), we have that E

(
N−1∑
j=1

1

w − ξj

)
= 0, and therefore the expected

critical point wN,ξ is the one that results from solving the equation

− N

w
+

1

w − ξ
= 0 =⇒ wN,ξ = ξ

(
1− 1

N

)−1

. (2.1)

Then the expected value of EN(w) is

E[EN(w)] = −N
w

+
1

w − ξ
.

We want to use Rouché’s Theorem and the concentration of these variables around
the mean to justify the existence of a true critical point (a zero of EN) near the
zero of the expectation.

If we find a curve ΓN,ξ of index 1 around wN,ξ with:

i) |EN(w)− E[EN(w)]| < |E[EN(w)]| w ∈ ΓN,ξ,

ii) dC(w,wN,ξ) . 1/N w ∈ ΓN,ξ

we will have, by Rouché’s theorem,

#{zeros of EN(w)− E[EN(w)] closed by ΓN,ξ} =

= #{zeros of E[EN(w)] closed by ΓN,ξ} = 1
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That is, there will be a single critical point χξ of pN in the region bounded by ΓN,ξ.
By the second condition, we will have

dC(ξ, χξ) ≤ d(ξ, wN,ξ) + d(wN,ξ, χξ) . 1/N

In summary, we will have that χξ is a small perturbation of wN,ξ, with very high
probability.

2.3 Statement and proof of main result

To write this section I followed [Han16].

Theorem 2.3.1. (Pairing of a Zero and a Critical Point). Let η ∈ S2 \ {0,∞} be
fixed and let ξ = π(η) ∈ C, i.e. ξ is the projection of point η ∈ S2. Let pN,ξ be a
random polynomial as described above: the zero ξ fixed and the remaining N − 1
zeros ξj = π(ηj) are chosen in S2 with uniform probability. Fix r > 0 and define

ΓN =

{
w ∈ C : dC(w,wN,ξ) =

r

N

}
,

where wN,ξ is defined in the equation (2.1). Suppose that ξ /∈ ΓN for all N ≥ 1.
Then, for any δ ∈ (0, 1), there exists C = C(r, δ) > 0 such that for all N ≥ 1

P

(
∃!w ∈ Dc

(
wN,ξ,

r

N

)
with

dpN,ξ
dw

(w) = 0

)
≥ 1− C

N δ
.

Observation 2. The ξ /∈ {0,∞} condition is not a drawback of this method. At
ξ = 0 (south pole) the contribution of the N charges to the opposite pole is not felt,
because of isotropy. Thus, near 0 in the field EN dominates the part of the zeros,
which has statistical fluctuations that cannot be neglected now.

Remark 2. The theorem holds equally well if we replace ΓN,ξ by a curve with
winding number 1 around wξ,N that does not pass through ξ and satisfies:

(i) There exists c1 > 0 such that

inf
w∈ΓN,ξ

∣∣E [∂ log |pN,ξ(w)|2
]∣∣ ≥ c1N.

This means that inf
w∈ΓN,ξ

|E[EN(w)]| ≥ c1N , and this is the condition that allows

us to obtain

|EN(w)− E[EN(w)]| < |E[EN(w)]| w ∈ ΓN,ξ

and then apply Rouché’s Theorem.



2.3 Statement and proof of main result 21

(ii) There exists c2 > 0 such that for all N

sup
w∈ΓN,ξ

dC(w, ξ) ≤ c2

N
.

This is the condition that allows us to conclude that the critical point (zero of
EN(w)− E[EN(w)]) is at distance . 1/N from wN,ξ (zero of E[EN(w)]).

Observation 3. The order of growth 1−C ·N−δ is optimal, in the sense that, due
to the uniformity and independence of the zeros

P

(
∃ξj ∈ Dc

(
ξ,

1

N

))
≈ 1

N
(2.2)

and if such a zero exists it will distort the presence of the critical point.

Now, we justify equation (2.2): we define the variables

Xr := #{ξj : ξj ∈ Dc(a, r)}

for r > 0. Then

(i) Xr does not depend on a (center of the disk).

(ii) Xr follows a binomial distribution with parameters N−1 and p = ν (Dc(a, r)) =
r2

1 + r2
, by Proposition 2.

We consider X1/N to be a binomial with parameters as described above: N − 1 and

p = ν

(
Dc

(
ξ,

1

N

))
' 1

N2
. Then,

P

(
∃ξj ∈ Dc

(
ξ,

1

N

))
= P (X1/N > 0) = 1− P (X1/N = 0)

= 1−
(
N

0

)
p0(1− p)N =

[
1−

(
1− 1

N2

)N]

=

[
1−

(
1− 1

N2

)]
×

×

[
1N−1 + 1N−2

(
1− 1

N2

)1

+ · · ·+ 10

(
1− 1

N2

)N−1
]

' 1

N2
[1 + 1 + · · ·+ 1] =

1

N
.

Proof. (of Theorem 2.3.1)

We work in coordinates centered at ∞ and we fix ξ ∈ S2 \ {0,∞}. Let pN,ξ and
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wξ,N =: wξ be as described in Equation (2.1). Let also be the equation obtained in
(2)

EN(w) = −N
w

+
1

w − ξ
+

N−1∑
j=1

1

w − ξj
.

Recall that a critical point is a zero of EN(w), and that

E[EN(wξ)] = −N
wξ

+
1

wξ − ξ
= 0.

The curve ΓN satisfies

(i) There exists c2 = c2(r, ξ) > 0 such that

sup
w∈ΓN

|w − ξ| ≤ c2

N
.

This follows directly from the triangular inequality

|w − ξ| ≤ |w − wξ|+ |wξ − w| = |w − wξ|+
1

N − 1

and the condition of ΓN . In the chordal metric, since w and ξ are nearby

dC(w, ξ) =
|w − ξ|√

1 + |w|2
√

1 + |ξ|2
≈ |w − ξ|

1 + |ξ|2
.

1/N

1 + |ξ|2
.

(ii) There exists c1 = c1(r, ξ) > 0 such that

inf
w∈ΓN

∣∣∣∣−Nw +
1

w − ξ

∣∣∣∣ ≥ c1N.

This follows from the fact that, by (i), there exists c such that∣∣∣∣−Nw +
1

w − ξ

∣∣∣∣ = N

∣∣∣∣− 1

w
+

1/N

w − ξ

∣∣∣∣ ≥ N

∣∣∣∣ 1

|w|
− 1/N

|w − ξ|

∣∣∣∣ ≥ N

∣∣∣∣ 1

|w|
− cr

∣∣∣∣
It is now sufficient to choose r so that∣∣∣∣ 1

|w|
− cr

∣∣∣∣ ≥ c3(r, ξ) > 0 for w ∈ ΓN

We note that this is equivalent to |1− cr|w|| ≥ c3|w|, i.e.

1 ≥ (c3 + cr)|w| ; |w| ≤ 1

c3 + cr

or

(cr − c3)|w| ≥ 1 ; |w| ≥ 1

cr − c3

We can always choose c3 and r that fulfills this.
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By the way, these two conditions (i) and (ii) are precise those in Remark 2.

Let

ẼN(w) := EN(w)− E[EN(w)] =
N−1∑
j=1

1

w − ξj

be the random part of EN(w). It will be enough to see the following.

Lemma 1. Fix δ > 0. There exists γ = γ(c1, c2, δ) > 0 and C3 = C3(c1, c2, δ) such
that

P

(
sup
w∈ΓN

∣∣∣ẼN(w)
∣∣∣ ≤ N1−γ

)
≥ 1− C3

Nγ
.

As soon as we prove this, in the event that sup
w∈ΓN

∣∣∣ẼN(w)
∣∣∣ ≤ N1−γ we have, for

w ∈ ΓN (for (ii) and N ≥ N0)

∣∣∣ẼN(w)
∣∣∣ ≤ N1−γ < c1N ≤ |E[EN(w)]| ,

and by Rouché’s Theorem

#Z(ẼN) ∩ Γ◦N = #Z(E[EN ]) ∩ Γ◦N = #{wξ} = 1,

where Γ◦N = Dc

(
wN,ξ,

r

N

)
denotes the region closed by ΓN .

That is, there is a (unique) critical point of pN,ξ inside ΓN with probability at
least 1− C3 ·N−γ, as desired.

The proof of Lemma 1 is not sophisticated, but it is a bit technical. Before giving
the details we give a brief outline.

1. sup
w∈ΓN

|ẼN(w)| is not simple to estimate directly, since it fluctuates a lot. We

will estimate the fluctuations of ẼN(w) − ẼN(wξ) and ẼN(wξ) separately
considering that

ẼN(w) = ẼN(w)− ẼN(wξ) + ẼN(wξ).

2. To estimate ẼN(w)− ẼN(wξ) we will use that |w−wξ| ≈ 1/N to discard the
contribution coming from the zeros that are far from ξ (and therefore from w
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and from wξ, since w ∈ ΓN). To see this, estimate

sup
w∈ΓN

∣∣∣∣∣∣∣
∑

|ξj−ξ|> 1

N1/2−δ/2

(
1

w − ξj
− 1

wξ − ξj

)∣∣∣∣∣∣∣ ≤ sup
w∈ΓN

∑
|ξj−ξ|> 1

N1/2−δ/2

|wξ − w|
|w − ξj| |wξ − ξj|

≈ sup
w∈ΓN

∑
|ξj−ξ|> 1

N1/2−δ/2

1/N

N−(1/2−δ/2)N−(1/2−δ/2)

≈ N1−δ

N
#

{
ξj : |ξj − ξ| >

1

N1/2−δ/2

}

≤ N1−δ

N
(N − 1)

≤ N1−δ.

This shows that the contribution of the ξj with |ξj − ξ| > N−
1−δ
2 (zeros that

are far from ξ) is negligible. That is, fixed δ > 0, the contribution of these is
at most of order N1−δ.

3. It remains to estimate the sum corresponding to the zeros ξj near ξ. Let

ẼN(w, δ) :=
∑

|ξ−ξj |≤ 1

N1/2−δ/2

1

w − ξj
.

To prove Lemma 1 it is enough to see that there exist constants γ = γ(c1, c2, δ) >
0, K2 = K2(c1, c2, δ) > 0 and K3 = K3(c1, c2, δ) > 0 such that

P

(
sup
w∈ΓN

∣∣∣ẼN(wξ, δ)− ẼN(w, δ)
∣∣∣ ≥ N1−γ

)
≤ K2

N δ
(2.3)

and

P
(∣∣∣ẼN(wξ)

∣∣∣ ≥ N1−γ
)
≤ K3

Nγ
. (2.4)

With this, since

ẼN(w) = ẼN(w)− ẼN(wξ) + ẼN(wξ)

we see that{
sup
w∈ΓN

∣∣∣ẼN(w)
∣∣∣ ≤ 2N1−γ

}
⊇
{

sup
w∈ΓN

∣∣∣ẼN(w)− ẼN(wξ)
∣∣∣ ≤ N1−γ

}
∩

∩
{ ∣∣∣ẼN(wξ)

∣∣∣ ≤ N1−γ
}

and therefore

P

(
sup
w∈ΓN

∣∣∣ẼN(w)
∣∣∣ ≤ 2N1−γ

)
≥ P

(
sup
w∈ΓN

∣∣∣ẼN(w)− ẼN(wξ)
∣∣∣ ≤ N1−γ

)
·

· P
(∣∣∣ẼN(wξ)

∣∣∣ ≤ N1−γ
)

≥
(

1− K2

N δ

)(
1− K3

N δ

)
≥ 1− (K2 +K3)

N δ
,



2.3 Statement and proof of main result 25

as desired.

There are two reasons to believe that (2.3) and (2.4) hold. First, if |ξ − ξj| ≈
1/N for some j, then both ẼN(w) and ẼN(wξ) will be generically of order N ,
because of the 1

w−ξj (or 1
wξ−ξj

) term. But this occurs with very small prob-

ability. Therefore, we will not have large ẼN(wξ, δ) or ẼN(w, δ) − ẼN(wξ, δ)
because there is a large summand (except in cases of small probability).

The other way to make these terms large is for there to be more than N1/2+δ/2

zeros ξj with |ξj−ξ| ≤ 1
N1/2−δ/2 ; then each 1

w−ξj term in ẼN(wξ, δ) will be large,

of size minus N1/2−δ/2, and all added together can produce an ẼN(w, δ) of size
N1/2+δ/2N1/2−δ/2 = N . But this grouping of zeros has also very small proba-
bility.

In order to quantify all this and prove the steps outlined above, we consider
the random variable explained in Observation 3

N (ξ, R) := XR = #{j | dC(ξj, ξ) ≤ R}.

Observe that N (ξ, R) is a binomial variable with parameters N − 1 and
p = ν(Dc(ξj, R)) and the distribution ofN (ξ, R) does not depend on ξ. Propo-
sition 2 yields

p =
R2

1 +R2
.

Next lemma follows from the properties of the binomial random variable and
it will be crucial in our estimates.

Lemma 2. Fix η ∈
(
0, 1

2

)
and κ > 0. There exist K = K(η) > 0 and

K ′ = K ′(κ, δ) > 0 so that

(i) P

(
N
(
wξ,

1

N1−η

)
≥ 1

)
≤ K

N1−2η

(ii) P

(
N
(
wξ,

1

N1/2−δ/2

)
≥ N δ+κ

)
≤ K ′

N δ+2κ
.

For the estimates, we will want to use Chebyshev’s inequality and so we want
to estimate the variance.

As ξj are independent and E
(

1
w−ξ

)
= 0 for all ξ, we have

E
[∣∣∣ẼN(w)

∣∣∣2] = Var
[
ẼN(w)

]
=

N−1∑
j=1

Var

(
1

w − ξj

)
=

N−1∑
j=1

E
[

1

|w − ξj|2

]
.

Each E
(

1
|w−ξ|2

)
term is infinite, since the singularity of order 2 is not inte-

grable with respect to the area.
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But the conditional variance givenN
(
w, 1

N1−η

)
= 0 (no zeros ξ inDc

(
w, 1

N1−η

)
)

is quite small and allows us to get a good estimate on the tail probability in
(2.4). This is the content of the following lemma.

Lemma 3. Fix η ∈
(
0, 1

2

)
and write A for the event

A =

{
ω :

N−1∑
j=1

1

|wξ − ξj|2
> N2(1−η)

}
.

There exists K = K(η) such that

P (A) ≤ K
logN

N1−2η
.

Observation 4. This implies that for any ε > 0 with probability at least

1 − K
N1−(2η+ε) we have

N−1∑
j=1

1

|wη − ξj|2
< N2(1−η). In this situation we will be

able to use Markov and Chebyshev inequalities.

Now, we are going to give all the details. We start with Lemma 2.

Proof. (of Lemma 2)

(i) Recall that if X follows a binomial of parameter (M, p), then

P (X = k) =

(
M

k

)
pk(1− p)M−k k = 0, . . . ,M.

Here we have variable X = N (w,R) with parameters M = N − 1 and

p =
R2

1 +R2
.

Thus,

P
(
N (w,N−1+η) ≥ 1

)
= 1− P

(
N (w,N−1+η) < 1

)
= 1− ν(Dc(0, N

−1+η))

= 1− (1− p)N−1

= p
[
(1− p)N−2 + · · ·+ 1

]
≤ p(N − 1) ≈ 1

N2−2η
N =

1

N1−2η

since for R small (here R = 1/N1−η), ν(Dc(ξ, R
2)) ≈ πR2 by Proposition 2.

(ii) Since for a binomial X of parameters (M, p), VarX = Mp(1− p), we have

Var
(
N
(
w,N−

1
2

+ δ
2

))
≈ (N − 1)

(
N−

1
2

+ δ
2

)2
(

1−
(
N−

1
2

+ δ
2

)2
)

≈ N ·N−1N δ

(
1− 1

N1−δ

)
≤ N δ.
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Then by Chebyshev’s inequality,

P
(
N
(
w,N−

1
2

+ δ
2

)
≥ N δ+κ

)
≤

Var
(
N
(
w,N−

1
2

+ δ
2

))
(N δ+κ)2 ≤ N δ

N2δN2κ
.

�

Proof. (of Lemma 3) Define the event

B = {ω : N (wξ, N
−1+η) = 0},

which has probability

P (B) =

(
N − 1

0

)
q0(1− q)N−1 ∼

(
1− c

N2−2η

)N−1

,

because

q =

1

N (1−η)2

1 +
1

N (1−η)2

∼ 1

N (1−η)2
.

Observe that:

− logP (B) = −(N − 1) log
(

1− c

N2−2η

)
≈ (N − 1)

c

N2−2η
≈ 1

N1−2η
.

So, with a suitable constant c,

P (B) ≥ e−
c

N1−2η ≥ 1− c

N1−2η
.

We now study the variance on ẼN(wξ) under this event. We have

E

[
N−1∑
j=1

1

|wξ − ξj|2
∣∣∣B] =

N−1∑
j=1

E
[

1

|wξ − ξj|2
∣∣∣B]

Rotating the sphere so that wξ = 0 (south pole) and computing in polar coordinates,
we have

E
[

1

|wξ − ξj|2
∣∣∣B] = E

[
1

|ξj|2
∣∣∣N (0, N−1+η) = 0

]
=

∫
|z|>N−1+η

1

|z|2
dm(z)

π(1 + |z|2)2

=

∫ ∞
N−1+η

2r

r2(1 + r2)2
dr

=

∫ ∞
N−2+2η

dt

t(1 + t)2

=

∫ 1

N−2+2η

dt

t(1 + t)2
+

∫ ∞
1

dt

t(1 + t)2

≤
∫ 1

N−2+2η

dt

t
+

∫ ∞
1

dt

t3

= log
1

N−2+2η
+

1

2
= (2− 2η) logN +

1

2
.
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Therefore

E

[
N−1∑
j=1

1

|wξ − ξj|2
∣∣∣B] ≤ (N − 1)

[
2(1− η) logN +

1

2

]
≤ c(1− η) ·N logN. (2.5)

With this and by Lemma (2), we deduce that

|P (A)− P (A|B)| =
∣∣∣∣P (A ∩B) + P (A ∩Bc)− P (A ∩B)

P (B)

∣∣∣∣
≤ P (A ∩B)

∣∣∣∣1− 1

P (B)

]
+ P (A ∩Bc)

≤ 1− P (B)

P (B)
+ P (Bc)

≤ cN−1+2η

1− cN−1+2η
+ cN−1+2η

≤ 3cN−1+2η.

By Markov’s inequality and by the definition of A

P (A|B) = P

[
N−1∑
j=1

1

|wξ − ξj|2
> N2(1−η)

∣∣∣B]

≤

E

[
N−1∑
j=1

1

|wη − ξj|2
∣∣∣B]

N2(1−η)

≤ c
(1− η)N logN

N2−2η
= c

(1− η) logN

N1−2η
.

Then, finally

P (A) ≤ P (A|B) + |P (A)− P (A|B)| ≤ c(1− η)
logN

N1−2η
+

3c

N1−2η

≤ K · logN

N1−2η
,

as desired. �

Proof. (of estimate 2.3)

Recall that

ẼN(w, δ) :=
∑

|ξ−ξj |≤ 1

N1/2−δ/2

1

w − ξj
.
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By definition, and by the condition sup
w∈ΓN

|w − ξ| ≤ c2/N , for w ∈ ΓN

∣∣∣ẼN(wξ, δ)− ẼN(w, δ)
∣∣∣ =

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

w − wξ
(wξ − ξj)(w − ξj)

∣∣∣∣∣∣∣∣
≤ c2

N

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

1

(wξ − ξj)(w − ξj)

∣∣∣∣∣∣∣∣
We split

1

(wξ − ξj)(w − ξj)
=

1

(wξ − ξj)(w − ξj)
− 1

(wξ − ξj)2
+

1

(wξ − ξj)2

=
1

wξ − ξj

[
1

w − ξj
− 1

wξ − ξj

]
+

1

(wξ − ξj)2

=
1

wξ − ξj
wξ − w

(wξ − ξj)(w − ξj)
+

1

(wξ − ξj)2

As |wξ − w| ≤ c2/N and (wξ − w) does not depend on the summation index

∣∣∣ẼN(wξ, δ)− ẼN(w, δ)
∣∣∣ ≤ c2

2

N2

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

1

(wξ − ξj)2(w − ξj)

∣∣∣∣∣∣∣∣+

+
c2

N

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

1

(wξ − ξj)2

∣∣∣∣∣∣∣∣
Iterating this procedure, for every l ≥ 1, adding and subtracting (wξ− ξj)−l, we get

∣∣∣ẼN(wξ, δ)− ẼN(w, δ)
∣∣∣ ≤ cl2

N l

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

1

(wξ − ξj)l(w − ξj)

∣∣∣∣∣∣∣∣ (2.6)

+
l−1∑
k=1

ck2
Nk

∣∣∣∣∣∣∣∣
∑

|ξ−ξj |≤ 1

N
1−δ
2

1

(wξ − ξj)k+1

∣∣∣∣∣∣∣∣ (2.7)

We note that w appears only in the first summand; the second summand only wξ
comes out. We choose l large enough so that

δ <
l + 1

l + 5
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in order to be able to achieve a bound of (2.6).

By Lemma 2, there exists C = C(δ) > 0 such that, except perhaps for an event of
probability at most C/N δ, we have

N
(
wξ,

1

N
1+δ
2

)
= 0 and N

(
wξ,

1

N
1−δ
2

)
≤ N2δ.

Then, since under this event (by assumption (ii))

|w − ξj| ≥ |wj − ξj| − |wξ − w| ≥
1

N1/2+δ/2
− 1

N

=
1

N1/2+δ/2

(
1− 1

N1/2−δ/2

)
≥ C

N1/2+δ/2
,

we can bound the terms of the first summand (2.6):

N−l
∑

|wξ−ξj |≤ 1

N1/2−δ/2

1

|wξ − ξj|l|w − ξj|
≤ N−l

∑
|wξ−ξj |≤ 1

N1/2−δ/2

1

N−l(
1+δ
2 )N

1+δ
2

≤ N−lN2δN l 1+δ
2 N

1+δ
2

= N−l
1−δ
2 N

1+5δ
2 = N1−γ,

with

γ = 1 + l
1− δ

2
− 1 + 5δ

2
=

1

2
(1− 5δ) + l

1− δ
2
≥ 1− 5δ

2

because δ <
l + 1

l + 5
.

This occurs with probability at least 1 − C ′′

N δ
, and therefore with this high proba-

bility we have the first summand (7) bounded by CN1−γ.

Now we bound the other summand (term (8)).

By Lemma 3 with η ∈
(

1− δ
2

,
1

2

)
we have

N−1∑
j=1

1

|wξ − ξj|2
≤ N2(1−η) with probabil-

ity 1−K logN

N1−η or higher.

We also use this well-known inequality for `p-norms: if {xk}k is a sequence in
C and 1 ≤ p ≤ q <∞, then(

∞∑
k=1

|xk|q
) 1

q

≤

(
∞∑
k=1

|xk|p
) 1

p

.

We use this with p = 2 and q = k + 1 ≥ 2. Then, with probability at least
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1−K logN

N1−2η

l−1∑
k=1

ck2N
−k

∣∣∣∣∣∣
∑

|wξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj)k+1

∣∣∣∣ ≤ l−1∑
k=1

ck2N
−k

 ∑
|wξ−ξj |≤ 1

N
1−δ
2

1

|wξ − ξj|2


k+1
2

≤ C ′
l−1∑
k=1

N−kN (2−2η) k+1
2 = C ′N1−η

l−1∑
k=1

N−k+(1−η)k

≈ N1−η
l−1∑
k=1

(
1

Nη

)k
≤ N1−η

∞∑
k=1

(
1

Nη

)k
= N1−η

1
Nη

1− 1
Nη

≈ N1−2η.

As 2η < 1, there is a δ > 0 with N1−2η . N δ. �

Proof. (of estimate (2.4)) We set η =
1

2
(1− δ) and consider, as before, the event

B = {ω : N (wξ, N
−1+η) = 0} = {ω : N (wξ, N

− 1+δ
2 ) = 0}.

Recall thatN (see Observation 3) is a Bernoulli with parameter p = ν(Dc(wξ, N
− 1+δ

2 )) =
N−(1+δ)

1 +N−(1+δ)
≈ N−(1+δ) by Proposition 2. Therefore

P (B) = (1− p)N−1 ≥ 1− C

N δ
, (2.8)

because

− logP (B) = −(N − 1) log(1− p) ≤ Np ≈ N−δ

that is

P (B) ≤ e−
C

Nδ ≈ 1− C

N δ
.

Then, by the independence of the
1

wξ − ξj
, j = 1, . . . , N − 1, and by the inequality

(2.5) given on the proof of the lemma 3 (1− η = 1+δ
2

)

E
[∣∣∣ẼN(wξ)

∣∣∣2 ∣∣∣B] = E

[
N−1∑
j,k=1

1

wξ − ξj
· 1

wξ − ξk

∣∣∣B]

= E

[
N−1∑
j=1

1

|wξ − ξj|2
∣∣∣B]

≤ C
1 + δ

2
N logN.



32 Probabilistic model: roots of the polynomial

From (2.8), P (Bc) ≤ C

N δ
, and therefore

P
(
|ẼN(wξ)| > N1−γ

)
≤ P

(
|ẼN(wξ)| > N1−γ |B

)
+

C

N δ
.

Using Markov’s inequality and the above estimate,

P
(
|ẼN(wξ)| > N1−δ

)
≤

E
[
|ẼN(wξ)|2 |B

]
N2(1−γ)

+
C

N δ

≤ C
N logN

N2−2γ
+

C

N δ

≤ C
logN

N1−2γ
+

C

N δ
.

Taking γ ∈
(

0,
1− δ

2

)
we have 1− 2γ > δ and therefore

lim
N→∞

logN

N1−2γ

1

N δ

= 0.

Then,

P
(
|ẼN(wξ)| > N1−δ

)
≤ C ′

N δ
.

�

This completes the proof of the estimate (2.4) and therefore the Theorem. �



Chapter 3

Probabilistic model: coefficients of
the polynomial (GAFs)

3.1 Local repulsion of this model

We begin this chapter by explaining informally why it is reasonable to expect local
repulsion of the zeros of polynomials with random coefficients. Before going into
this, we look at the following figure. All the three samples shown are portions of
certain translation invariant point processes in the plane, with the same average
number of points per unit area. Nevertheless, they visibly differ from each other
qualitatively, in terms of the clustering they exhibit.

Figure 3.1: The figure on the left corresponds to the model in Chapter 2 and the figure on the
right corresponds to the model in Chapter 3. (J. Ben Hough)

We try to understand the phenomenon of local repulsion observed in the central

33



34 Probabilistic model: coefficients of the polynomial (GAFs)

figure above. A heuristic explanation is as follows: consider a polynomial

pN(z) =
N−1∑
k=0

akz
k + zN ,

where the coefficients are random variables and let us see how the random roots of
pN are distributed. This is just a matter of looking at the change from coefficients
to the roots.

Lemma 4. Let pN(z) =
N∏
k=1

(z − ξk) have coefficients ak, 0 ≤ k ≤ N − 1, i.e.

p(z) = zN + an−1z
N−1 + · · ·+ a1z + a0.

Then the transformation T : Cn → Cn defined by

T (ξ1, . . . , ξN) = (aN−1, . . . , a0),

has real Jacobian determinant
∏
i<j

|ξi − ξj|2.

Proof. Let us consider the Jacobian matrix J , constructed by the transformation
T (ξ1, ξ2, ξ3, . . . , ξN). It has the following form:

J =



∂aN−1

∂ξ1

∂aN−1

∂ξ2

∂aN−1

∂ξ3
· · · ∂aN−1

∂ξN−1

∂aN−1

∂ξN
∂aN−2

∂ξ1

∂aN−2

∂ξ2

∂aN−2

∂ξ3
· · · ∂aN−2

∂ξN−1

∂aN−2

∂ξN
∂aN−3

∂ξ1

∂aN−3

partialξ2

∂aN−3

∂ξ3
· · · ∂aN−3

∂ξN−1

∂aN−3

∂ξN
...

...
...

. . .
...

...
∂a1
∂ξ1

∂a1
∂ξ2

∂a1
∂ξ3

· · · ∂a1
∂ξN−1

∂a1
∂ξN

∂a0
∂ξ1

∂a0
∂ξ2

∂a0
∂ξ3

· · · ∂a0
∂ξN−1

∂a0
∂ξN


.

To compute the coefficients, we consider the polynomial

p(z) = zN + aN−1z
N−1 + · · ·+ a0

=
N∏
k=1

(z − ξk)

= zN −
N∑
k=1

ξk · zN−1 +
∑

1≤i,j≤n

ξiξj · zN−2 + · · ·+ (−1)N
∑

1≤i1,...,iN≤N

ξi1 · · · ξiN ,

where we used Vieta’s formula for computations. This gives an expression of the aj
in terms of the ξj.
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Compute the derivatives:

∂aN−1

∂ξ1

=
∂aN−1

∂ξ2

= · · · = ∂aN−1

∂ξN
= −1,

∂aN−2

∂ξi
=
∑
k 6=i

ξk, i = 1, . . . , N

...

∂a0

∂ξi
= (−1)N

∑
1≤i1,...,iN−1≤n

ik 6=i

ξi1 · · · ξiN−1
i = 1, . . . , N

As we can see from computations of derivatives, det(J) is a polynomial in the vari-

ables ξ1, . . . , ξN . Its degree is 1 + 2 + · · ·+N − 1 =
N(N − 1)

2
.

By the symmetry in ξj’s it follows that if ξi = ξj for some j 6= i, then the ith
and jth column are equal and the determinant det(J) vanishes. Thus, the deter-

minant is divisible by
∏
i<j

(ξi − ξj). Since the degree of the polynomial is equal to

N(N − 1)

2
, we have:

det(J) = C
∏
i<j

(ξi − ξj).

We conclude that C = (−1)N(N+1)/2. Thus, we get:

| det(J)|2 =
∏
i<j

|ξi − ξj|2,

because we are looking for the real Jacobian determinant | det(J)|2. �

The Lebesgue measure of the coefficients is pulled back to the measure(∏
i<j

|ξi − ξj|2
)
dm(ξ),

which is small near the zeros {ξj}. Thus, given a fixed zero ξ, it is unlikely to find
another one nearby. That is, there is negative correlation between the zeros.

This makes the probability of finding multiple zeros zero and the probability of
finding zeros very close to each other very small, since the coefficients of the poly-
nomials are random variables and locally the probability measure is uniform in the
coefficients.
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3.2 Gaussian analytic functions

For this section we have used the references [HKPV09], [Fel13], [NS10] and [Sod04].

A Gaussian analytic function (GAF) is a random element of the space of analytic
functions on a certain domain in the complex plane. Given a domain Ω ⊆ C let
H(Ω) be the space of analytic functions with the topology of uniform convergence
on compact subsets of Ω.

Definition 3.2.1. (GAF) Let H ⊆ H(Ω) be a Hilbert space and let {ek(z)}k be an

orthonormal system in H with
∑
k

|ek(z)|2 < +∞ uniformly on compact subsets of

H. Then a Gaussian Analytic Function (GAF) is a function of the form:

F (z) =
∞∑
k=0

akek(z)

where ak ∼ NC(0, 1) i.i.d.

Remark 3. As ak ∼ NC(0, 1) i.i.d., for any fixed z ∈ Ω the value F (z) is a
linear combination of zero mean Gaussians, and therefore F (z) follows a normal
distribution with mean 0.

Example 1. The Complex Plane: Let Ω = C and L > 0. Consider the Segal-
Bargmann space of weight L > 0

HL =
{
f ∈ H(C) : ||f ||2HL =

L

π

∫
C
|f(z)|2e−L|z|2 dm(z) < +∞

}
.

This is a Hilbert Space with inner product

〈f, g〉HL =
L

π

∫
C
f(z)g(z)e−L|z|

2

dm(z)

and the functions ek(z) =

√
Lk

k!
zk form an orthonormal basis of HL. Then if

an ∼ NC(0, 1) (i.i.d.), a GAF in the complex plane is

F (z) =
∞∑
k=0

ak

√
Lk

k!
zk

This is the canonical example; the so-called planar GAF.

We can prove that F is a GAF on C using Proposition 4. The radius of convergence
of the series above is given by

r =
1

lim sup
n→∞

∣∣∣∣∣an
√
Ln

n!

∣∣∣∣∣
1
n

=
1

√
L lim sup

n→∞
|an|

1
n︸ ︷︷ ︸

→1

(
1

n!

) 1
2n

︸ ︷︷ ︸
→0

=∞ a.s.

We have that F is analytic on the entire plane. Also, it converges uniformly on
compact subsets.
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Example 2. The Hyperbolic Plane: Let Ω = D = {z ∈ C : |z| < 1} (unit disk)
and L > 1. Consider the weighted Bergman space

BL =
{
f ∈ H(D) : ||f ||2L =

L− 1

π

∫
D
|f(z)|2(1− |z|2)L−2 dm(z) < +∞

}
.

This is a Hilbert Space with inner product

〈f, g〉L =
L− 1

π

∫
D
f(z)g(z)(1− |z|2)L−2 dm(z)

It can be checked that the functions ek(z) =

√
L(L+ 1) · · · (L+ k − 1)

k!
zk =

√(
L+k−1

k

)
zk

form an orthonormal basis of BL.Hence, if an ∼ NC(0, 1) (i.i.d.), a GAF in the unit
disk is

F (z) =
∞∑
k=0

ak

√
L(L+ 1) · · · (L+ k − 1)

k!
zk.

Again, we can prove that F is a GAF on D using again Proposition 4: the radius
of convergence r of the serie above is given by

1

r
= lim sup

n→∞

∣∣∣∣∣an
√
L(L+ 1) · · · (L+ n− 1)

n!

∣∣∣∣∣
1
n

= lim sup
n→∞

|an|
1
n

(
L(L+ 1) · · · (L+ n− 1)

n!

) 1
2n

= 1 a.s.

Thus r = 1 a.s.

We have that F is analytic on the unit disk.

3.3 Covariance kernel of a GAF

F (z) is Gaussian of mean 0, and therefore all the probabilistic properties are deter-
mined by Var[F (z)], or more generally, by Cov[F (z), F (w)].

Definition 3.3.1. The covariance kernel of a GAF F on Ω is

K(z, w) = Cov [F (z), F (w)] = E
[
F (z)F (w)

]
− E[F (z)]E[F (w)]

= E
[
F (z)F (w)

]
, z, w ∈ Ω.
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A formula that will be very important for next computations is:

K(z, w) = E
[
F (z)F (w)

]
= E

[(
∞∑
k=0

akek(z)

)(
∞∑
k=0

akek(w)

)]

= E

[
∞∑
k=0

k∑
n=0

anen(z)ak−nek−n(w)

]

=
∞∑
k=0

k∑
n=0

E
[
anen(z)ak−nek−n(w)

]
=
∞∑
k=0

k∑
n=0

en(z)ek−n(w)E[anak−n]

=
∞∑
k=0

ek(z)ek(w), . (3.1)

by Proposition 5.

Observation 5. If F (z) is a Gaussian (linear combination of Gaussians), we have
that E[F (z)] = 0 and Var[F (z)] = E[|F (z)|2] − (E[F (z)])2 = E[F (z) · F (z)) =
K(z, z). Then,

F (z)− 0√
Var[F (z)]

=
F (z)√
K(z, z)

∼ NC(0, 1)

Example 3. Let’s compute the covariance kernel of the planar and the hyperbolic
GAFs.

The Complex Plane: by definition and since ek(z) =

√
Lk

k!
zk,

K(z, w) =
∞∑
k=0

ek(z)ek(w) =
∞∑
k=0

Lk

k!
(zw)k = eLzw,

using Equation (3.1).

The Hyperbolic Plane: similarly, the covariance function (or kernel) is

K(z, w) =
∞∑
k=0

L(L+ 1) · · · (L+ k − 1)

k!︸ ︷︷ ︸
=(L+k−1

k )

(zw)k = (1− zw)−L.

Remark 4. If F is a GAF on Ω, then for any z1, . . . , zn ∈ Ω we have that
(F (z1), . . . , F (zn)) ∼ N n

C (0,Σ) where Σ = (Σjk)j,k and Σjk =: K(zj, zk). As such
the covariance function (kernel) K(·, ·) determines all finite dimensional marginals
of F , then K(·, ·) on Ω × Ω determines distribution of F . F is Gaussian, and
therefore is determined by their mean and covariance.
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3.4 GAFs on the sphere

For any N ≥ 1 consider the space

PN =

{
p ∈ PN [C] : ||p||2N = (N + 1)

∫
C

|p(z)|2

(1 + |z|2)N
dm(z)

π(1 + |z|2)2
< +∞

}
.

This norm is natural: the measure
dm(z)

π(1 + |z|2)2
= dν(z) is area measure in S2 pro-

jected in C, and the term
|p(z)|2

(1 + |z|2)N
measures the size of p normalized by the

degree.

This is a Hilbert space with inner product given by

〈p, q〉PN =
N + 1

π

∫
C

p(z)q(z)

(1 + |z|2)N
dm(z)

(1 + |z|2)2

= (N + 1)

∫
C

p(z)q(z)

(1 + |z|2)N
dν(z), p, q ∈ PN

Lemma 5. The monomials

ek(z) =

√(
N

k

)
zk, k = 0, . . . , N,

form an orthonormal basis of PN .

Proof. It is clear that {ek}Nk=0 generate all PN , because PN has dimension N + 1
and ek are, up to a constant, the standard monomials.

Let us see that these functions are orthonormal. By definition

〈en, em〉PN =
N + 1

π

∫
C

√(
N

n

)√(
N

m

)
znzm

(1 + |z|2)N
dm(z)

(1 + |z|2)2
=

=
N + 1

π

√(
N

n

)(
N

m

)∫ 2π

0

∫ +∞

0

rm+n+1eiθ(n−m)

(1 + r2)N(1 + r2)2
dr dθ

Since ∫ 2π

0

ei(n−m)θ dθ =

{
0 if n 6= m
2π if n = m

then

〈en, em〉PN = 0, if n 6= m.
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Also, for the case n = m, substituting r2 = u and
1

1 + u
= t and using the functions

Γ and β seen in the Preliminaries, we get

〈en, en〉PN = 2π
N + 1

π

(
N

n

)∫ +∞

0

r2n+1

(1 + r2)N(1 + r2)2
dr

= 2π
N + 1

π

(
N

n

)
1

2

∫ +∞

0

un

(1 + u)N(1 + u)2
du

= (N + 1)

(
N

n

)∫ 1

0

(1− t)n · tN−n dt

= (N + 1)

(
N

n

)
β(N − n+ 1, n+ 1)

= (N + 1)

(
N

n

)
Γ(n+ 1)Γ(N − n+ 1)

Γ(N + 2)

= (N + 1)
N !

(N − n)!n!
n!× (N − n)!

(N + 1)!

=
1

N !
×N ! = 1.

�

Definition 3.4.1. The Gaussian Analytic Function (GAF) in the sphere is the
random polynomial

pN(z) =
N∑
k=0

ak

√(
N

k

)
zk, ak ∼ NC(0, 1) i.i.d.

An important feature of this GAF is that its zeros are distributed proportionally
to the area of the sphere. This is actually the reason for the normalization we have
chosen.

In order to understand the probabilistic properties of pN let us compute the co-
variance kernel of pN using Equation (3.1):

KN(z, w) = E[pN(z)pN(w)] =
N∑
k=0

ek(z)ek(w) =

=
N∑
k=0

√(
N

k

)
zk

√(
N

k

)
wk =

N∑
k=0

(
N

k

)
(zw)k

= (1 + zw)N .

Observation 6. Using Observation 5, we have that

pN(z)√
Var(pN(z))

= pN(z)(1 + |z|2)−N/2 ∼ NC(0, 1).
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In the rest of this subsection we will see that the distribution of the zero set of
the above defined function on S2 is invariant under the transformations ϕλ,θ con-
sidered in Section 1.1.

For other results about invariant zero sets see [HKPV09].

Proposition 8. The zero set of pN is invariant in distribution under the automor-
phisms of the form

ϕλ,θ(z) = eiθ
z − λ
1 + λ̄z

, λ ∈ C, θ ∈ [0, 2π).

Proof. Let pN as in Definition 3.4.1 and let λ ∈ C and θ ∈ [0, 2π). We define
G = pN ◦ ϕλ,θ, which is a GAF over S2.

We need to prove that

{z ∈ S2 : pN(z) = 0} (d)
= {z ∈ S2 : G(z) = 0}

where (d) means that the two sets have the same distribution.

The covariance kernel of G is:

KG(z, w) = E

(
pN

(
eiθ

z − λ
1 + λ̄z

)
pN

(
eiθ

w − λ
1 + λ̄w

))
=

(
1 +

z − λ
1 + λ̄z

w̄ − λ̄
1 + λw̄

)N
=

(
(1 + |λ|2)(1 + zw)

(1 + λz)(1 + λw)

)N
.

Therefore, we have that

{z ∈ S2 : pN(z) = 0} (d)
=

{
z ∈ S2 : G(z)

(
1 + |λ|2

(1 + λz)2

)−N
2

= 0

}
.

If we denote by KH(z, w) the covariance kernel of H(z) := G(z)

(
1 + |λ|2

(1 + λz)2

)−N
2

we have:

KH(z, w) = KG(z, w)

(
1 + |λ|2

(1 + λz)2

)−N
2
(

1 + |λ|2

(1 + λw)2

)−N
2

=

(
(1 + |λ|2)(1 + zw)

(1 + λz)(1 + λw)

)N (
1 + |λ|2

(1 + λz)(1 + λw)

)−N
= (1 + zw)N = KpN (z, w).

Notice that H and G have the same zeros because the factor
1 + |λ|2

(1 + λz)2
does not

vanish. By Remark 4 we have that H
(d)
= pN . The function H differs from G by a

multiplication with a nowhere vanishing function, then

{z ∈ S2 : G(z) = 0} = {z ∈ S2 : H(z) = 0} (d)
= {z ∈ S2 : pN(z) = 0}.

�
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3.5 GAF’s zeros. The empirical measure

In this section we want to prove that the zeros of the GAF are distributed, in av-
erage, as in the model considered in the previous chapter.

Let pN ∈ PN be a GAF on the sphere.

Definition 3.5.1. The empirical measure µpN is the discrete measure

µpN =
N∑
i=1

δξi

where ξi are the zeros of pN counted as many times as their multiplicity, and δξi is
the Dirac delta on ξi.

If A is a set of C, we consider the random variable counting the number of ze-
ros of pN in A

npN (A) = #(ZpN ∩ A) =

∫
A

dµpN .

This random variable is the analog of the binomial of parameters N and p = ν(A)
considered in the previous chapter.

It is well-known that the empirical measure coincides, in the sense of distributions
with the Laplacian of log |pN |. Let us recall this briefly.

Definition 3.5.2. Let Ω ⊆ C be a region and let µ be a finite measure over K ⊂ Ω,
where K is compact. A function g ∈ L1

loc(Ω) is a solution of ∆g = µ on Ω in a
distributional sense if∫

Ω

g(z)∆φ(z) dm(z) =

∫
Ω

φ(z) dµ(z) ∀φ ∈ C∞c (Ω).

Proposition 9. Let pN be a holomorphic polynomial and let µpN be the empirical
measure of its zeros. Then

µpN =
1

2π
∆ log |pN |,

in the distributional sense.

For more details, see [HKPV09] (chapter 2) and [BC08] (empirical measure).

The average behaviour of Z(pN) is described by the following measure which, in a
sense, is the average of the empiric measure µpN .

Definition 3.5.3. The first intensity of the GAF pN is the measure µ defined by

〈µ, φ〉 = E [〈µpN , φ〉] , φ ∈ C∞c (Ω).

In terms of integrals,∫
Ω

φ dµ = E
(∫

Ω

φ dµpN

)
, φ ∈ C∞c (Ω).
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The formula gives the measure that counts the average number of zeros of a GAF
in a set. In other words, the counting measure that maps a set S to the average
number of zeros of a Gaussian analytic function contained in the set S.

Theorem 3.5.1. (Edelman-Kostlan formula) (see [HKPV09], p. 23) Let

pN(z) =
N∑
j=0

aj

√(
N

j

)
zj, aj ∼ NC(0, 1) i.i.d.

be the GAF in S2 and let µpN denote its empirical measure.

Then the first intensity is given by the formula

µ(z) =
1

4π
∆ logKpN (z, z) = N dν(z), (3.2)

where the Laplacian ∆ is understood in distributional sense and KpN (z, z) is the
covariance kernel of pN .

Observation 7. By formula (3.2) the expectation of
1

2π
∆ log |pN | is

1

2π
∆ logE(|pn|),

since E(|pN |2) = KpN (z, z).

Before proving Theorem 3.5.1, let us compute the first intensity for a GAF on
the sphere.

Then, since KpN (z, w) = (1 + zw)N and ∆ = 4∂∂, we have

∆ log (KpN (z, z)) = 4N
∂

∂z

∂

∂z

[
log(1 + |z|2)

]
= 4N

∂

∂z

(
z

1 + |z|2

)
=

4N

(1 + |z|2)2
,

and the first intensity is

µ(z) =
1

4π
∆ logKpN (z, z) =

N

π

dm(z)

(1 + |z|2)2
= N dν,

where dν(z) corresponds to the invariant measure of the sphere.

This shows that the average number of zeros of the GAF in a region of the sphere
is proportional to the area of the region in S2.

Proof. By Proposition 9, for any smooth function φ compactly supported in Ω∫
Ω

φ(z) dµpN (z) =

∫
Ω

∆φ(z)
1

2π
log |pN(z)| dm(z).
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Taking expectations, we get

E
[∫

Ω

φ(z) dµpN (z)

]
= E

[∫
Ω

∆φ(z)
1

2π
log |pN(z)| dm(z)

]
=

∫
Ω

∆φ(z)
1

2π
E[log |pN(z)|] dm(z) (3.3)

by Fubini’s theorem. Now we are going to justify the application of this theorem
seeing that

E
[∫

Ω

∣∣∣∣∆φ(z)
1

2π
log |pN(z)| dm(z)

∣∣∣∣] < +∞.

We note that

E
[∫

Ω

|∆φ(z)| 1

2π
| log |pN(z)|| dm(z)

]
=

∫
Ω

|∆φ(z)
1

2π
E [| log |pN(z)||] dm(z).

For a fixed z ∈ Ω, pN(z) is a complex Gaussian random variable with mean zero and
variance KpN (z, z). Therefore, by observation 6 if a is a standard complex Gaussian
variable

E [| log |pN(z)||] = E

[∣∣∣∣∣log

∣∣∣∣∣ pN(z)√
KpN (z, z)

∣∣∣∣∣
∣∣∣∣∣
]

+ log

∣∣∣∣√KpN (z, z)

∣∣∣∣
= E[| log |a||] + log

∣∣∣∣√KpN (z, z)

∣∣∣∣
=

∫
C
| log |z||e

−|z|2

π
dm(z) +

1

2
log |KpN (z, z)|

=

∫ ∞
0

2ρ| log(ρ)|e−ρ2 dρ+
1

2
log |KpN (z, z)|

=

∫ ∞
0

| log(r)|e−r dr +
1

2
log |KpN (z, z)|

= C +
1

2
log |KpN (z, z)|,

for a finite constant C.

Then we can apply Fubini’s theorem to obtain Equation (3.3).

If we denote by a a standard complex Gaussian, we deduce that

E[log |pN(z)|] = E

[
log

∣∣∣∣∣ pN(z)√
KpN (z, z)

∣∣∣∣∣
]

+ log
√
KpN (z, z)

= E[log |a|] +
1

2
logKpN (z, z)

= γ +
1

2
logKpN (z, z)
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where γ is a constant independent of z. Thus:

E
[∫

Ω

φ(z) dµpN (z)

]
=

∫
Ω

1

4π
∆ logKpN (z, z)φ(z) dm(z),

and by the definition of the first intensity we have

µ(z) =
1

4π
∆ logKpN (z, z).

�

We have just seen that the mean distribution is like the area of the sphere, and is
therefore invariant by rotations of S2 (or the transformations ϕλ,θ in C). In Propo-
sition 8 we have seen that not only the expectation is invariant.

Now, we present the result of Sodin that two GAFs having the same first inten-
sity are essentially equal. In particular we get the remarkable conclusion that the
distribution of the zero set is completely determined by its first intensity! We first
name a standard fact from complex analysis that will be used in the proof of the
Theorem.

Lemma 6. Let K(z, w) be analytic in z and anti-analytic in w (i.e., analytic in w)
for z × w ∈ Ω× Ω. If K(z, z) = 0 for all z ∈ Ω, then K(z, w) = 0 for all z and w
from Ω.

Sodin discovered the following result and related it to Calabi’s rigidity theorem
in complex geometry (see [HKPV09], Chapter 2).

Theorem 3.5.2. (Calabi’s rigidity). Suppose f and g are two GAFs in a region Ω
such that the first intensity measures of Z(f) and Z(g) are equal.
Then there exists a nonrandom analytic function φ on Ω that does not vanish any-
where, such that, with probability 1,

f = φg.

In particular,
Z(f) = Z(g) a.s.

Corollary 3.5.1. The random power series of the GAF on S2 described above is,
the only GAFs [up to multiplication by deterministic nowhere vanishing analytic
functions] whose zeros are isometry-invariant under the automorphism ϕλ, λ ∈ C.

3.6 Fluctuations of the zero set of an S2 GAF

This section is based in the references [Buc15] and [Arr19].

Here we are going to measure the rigidity of this point process by evaluating the
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variance of some counting random variables.

Let A ⊆ C and consider the counting random variable

nF (A) = #(Z(F ) ∩ A) =

∫
A

dµF .

To see how fluctuates nF (A) we compute its variance using this general result:

Theorem 3.6.1. (see [Arr19], p. 33) Let F be a GAF on a Hilbert space H ⊆ H(Ω)
and let A be a subset of Ω with C1 boundary. Let nF (A) = #(Z(F ) ∩ A). Then

Var[nF (A)] = − 1

4π2

∫
∂A

∫
∂A

1

1− I(z, w)

∂

∂z

(
KF (w, z)

KF (z, z)

)
∂

∂w

(
KF (z, w)

KF (w,w)

)
dzdw,

where KF (z, w) denotes the GAF covariance kernel and

I(z, w) =
|KF (z, w)|2

KF (z, z)KF (w,w)
.

Our goal is to compute the general formula for the S2 GAF. For simplicity, we
consider A = Dc(a, r) to be a chordal disk of radius r > 0 and center a ∈ C. Due to
the invariance under rotations on S2, the distribution of nF (Dc(a, r)) is independent
of a, so we can just take nF (Dc(0, r)).

Proposition 10. Let F be an S2-GAF. For a chordal disk Dc(a, r), a ∈ C and
r > 0, we have:

Var[nF (Dc(a, r))] =
N2

2π

r

1 + r2

∫ 4r2

(1+r2)2

0

(1− s)N

1− (1− s)N

√
s

1− s
1√

1− (1 + r2)2

4r2
s

ds.

We comment a little this formula (without doing the computations): when N →
∞, we have that

Var[nF (Dc(a, r))] =

(√
N

4
√
π
ζ

(
3

2

)
r

2

√
1−

(r
2

)2
)

(1 + o(1)), (3.4)

where ζ is the Riemann zeta function, i.e.

ζ(s) =
∞∑
n=1

n−s, Re(s) > 1,

and o(1) is a term tending to 0 as N → +∞. The formula (3.4) comes out of
looking at the dominant term in the integral.

Fixed r > 0, Var[nF (Dc(a, r))] ∼
√
N , and that this is much less than in the

other case, which is what we will see now.
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Let’s compute the variance of nF (Dc(a, r)) in the first model: fixed an r > 0,
we have that the random variable nF (Dc(a, r)) follows a binomial distribution with

parameters N and p = ν(Dc(a, r)) =
r2

1 + r2
. Therefore, its variance is:

Var[nF (Dc(a, r))] = Np(1− p)

= N
r2

(1 + r2)2
. (3.5)

Comparing Equations (3.4) and (3.5), we see that the GAF case gives a variance
of the order of

√
N , which is much smaller than the variance in the first model

which is of the order of N . The GAF zeros, despite having the same average as the
uniform model, have more rigidity.

Now we prove Proposition 10.

Proof. Since F is an S2 GAF, we have that KF (z, w) = (1 + zw)N .

Then

I(z, w) =
|KF (z, w)|2

KF (z, z)KF (w,w)
=

|1 + zw|2N

(1 + zz)N(1 + ww)N
=

|1 + zw|2N

(1 + |z|2)N(1 + |w|2)N
.

Computing the derivatives that appear in the formula of Theorem 3.6.1:

∂

∂z

(
KF (w, z)

KF (z, z)

)
=

∂

∂z

(
(1 + wz)N

(1 + |z|2)N

)
= −N(z − w)

(1 + wz)N−1

(1 + |z|2)N+1
,

∂

∂w

(
KF (z, w)

KF (w,w)

)
=

∂

∂w

(
(1 + zw)N

(1 + |w|2)N

)
= N(z − w)

(1 + zw)N−1

(1 + |w|2)N+1
.

Also,
1

1− I(z, w)
=

(1 + |z|2)N(1 + |w|2)N

(1 + |z|2)N(1 + |w|2)N − |1 + zw|2N
.

Taking polar coordinates, for a given r > 0 and denoting z = reiθ and w = reiφ, for
all θ, φ ∈ (0, 2π):

Var[nF (Dc(a, r))] =

=
N2

4π2

∫
∂D

∫
∂D

|1 + zw|2N−2(z − w)2

(1 + |z|2)N+1(1 + |w|2)N+1 − |1 + zw|2N(1 + |z|2)(1 + |w|2)
dzdw

=
N2

4π2

∫ 2π

0

∫ 2π

0

|1 + r2ei(θ−φ)|2N−2(reiθ − reiφ)2|D(θ, φ)|
(1 + r2)2N+2 − |1 + r2ei(θ−φ)|2N(1 + r2)2

dθdφ

where |D(θ, φ)| denotes the determinant of the Jacobian matrix:

|D(θ, φ)| =
∣∣∣∣∣∣∣∣−ire−iθ 0

0 −ire−iφ
∣∣∣∣∣∣∣∣ =

∣∣−r2e−i(θ+φ)
∣∣ = r2e−i(θ+φ).
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Using the change of variables t = θ − φ, we obtain:

Var[nF (Dc(a, r))] =

=
N2r4

4π2

∫ 2π

0

∫ 2π

0

|1 + r2ei(θ−φ)|2N−2(e2iθ − 2ei(θ+φ) + e2iφ)e−i(θ+φ)

(1 + r2)2N+2 − |1 + r2ei(θ−φ)|2N(1 + r2)2
dθdφ

=
N2r4

4π2

∫ 2π

0

∫ 2π

0

|1 + r2ei(θ−φ)|2N−2(ei(θ−φ) − 2 + ei(φ−θ))

(1 + r2)2N+2 − |1 + r2ei(θ−φ)|2N(1 + r2)2
dθdφ

=
N2r4

4π2

∫ 2π

0

∫ 2π

0

|1 + r2ei(θ−φ)|2N−2|1− ei(θ−φ)|2

(1 + r2)2N+2 − |1 + r2ei(θ−φ)|2N(1 + r2)2
dθdφ

=
N2r4

4π2

∫ 2π

0

|1 + r2eit|2N−2|1− eit|2

(1 + r2)2 [(1 + r2)2N − |1 + r2eit|2N ]
dt

=
N2

2π

r4

(1 + r2)2

∫ 2π

0

|1 + r2eit|2N

(1 + r2)2N − |1 + r2eit|2N
|1− eit|2

|1 + r2eit|2
dt.

Observe that

|1 + r2eit|2 = (1 + r2 cos t)2 + (r2 sin t)2 = 1 + 2r2 cos t+ r4

= (1 + r2)2 − 2r2(1− cos t) = (1 + r2)2

[
1− 2r2

(1 + r2)2
(1− cos t)

]
|1− eit|2 = (1− cos t)2 + (sin t)2 = 1− 2 cos t+ cos2 t+ sin2 t = 2(1− cos t).

Therefore

Var[nF (Dc(a, r))] =
N2

π

(
r

1 + r2

)4 ∫ 2π

0

[
1− 2r2

(1 + r2)2
(1− cos t)

]N
1−

[
1− 2r2

(1 + r2)2
(1− cos t)

]N×
× 1− cos t

1− 2r2

(1 + r2)2
(1− cos t)

dt

=
2N2

π

(
r

1 + r2

)4 ∫ π

0

[
1− 2r2

(1 + r2)2
(1− cos t)

]N
1−

[
1− 2r2

(1 + r2)2
(1− cos t)

]N×
× 1− cos t

1− 2r2

(1 + r2)2
(1− cos t)

dt

because the integrand is an even function. Substituting the variable

s =
2r2

(1 + r2)2
(1− cos t),
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we get

ds =
2r2

(1 + r2)2
sin t dt

=
2r2

(1 + r2)2

1 + r2

r

√
s

√
1− (1 + r2)2

4r2
s dt

=
2r

1 + r2

√
s

√
1− (1 + r2)2

4r2
s dt

Also s(0) = 0 and s(π) =
4r2

(1 + r2)2
, so we obtain the final formula for the variance

Var[nF (Dc(a, r))] =
2N2

π

(
r

1 + r2

)4 ∫ 4r2

(1+r2)2

0

(1− s)N

1− (1− s)N
(1+r2)2

2r2
s

1− s
1 + r2

2r

1√
s
×

× 1√
1− (1 + r2)2

4r2
s

ds

=
N2

2π

r

1 + r2

∫ 4r2

(1+r2)2

0

(1− s)N

1− (1− s)N

√
s

1− s
1√

1− (1 + r2)2

4r2
s

ds.

�

3.7 Pairing of zeros and critical points

In this section we state Boris Hanin’s result on pairing of zeros and critical points
for the GAF.

Let pN be a GAF in S2 and let the set of critical points

C(pN) = Z(p′N) = {z ∈ C : p′N(z) = 0}.

Theorem 3.7.1. (Theorem 1 in [Han15b]) Let pN be a GAF in S2, and suppose
that it is conditioned to have pN(ξ) = 0 for a fixed ξ ∈ C \ {0}. Then, for all
ε ∈ (0, 1

2
) the probability that there exists a unique critical point in the annulus

AN,ε(ξ) =

{
z ∈ C :

1

N1+ε
< |z − ξ| < 1

N1−ε

}

and no critical points closer to ξ is at least 1− o
(

1

N3/2+3ε

)
.

More formally: let the events

E1
N,ε(ξ) = {w : #C(pN) ∩ AN,ε(ξ) = 1},

E2
N,ε(ξ) =

{
w : #C(pN) ∩D

(
ξ,

1

N1+ε

)
= 0
}
.
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Then there exists C > 0 independent of N such that

P
(
E1
N,ε(ξ) ∩ E2

N,ε(ξ)
)
≥ 1− C

N
3
2

+3ε
.

The exponent N−3/2 shows that the pairing probability is significantly higher
than the previous model (N−δ, δ < 1). This is in accordance with the fact that
GAF is more rigid.
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Matemàtiques i Informàtica, Universitat de Barcelona, 2016

[Fel13] Naomi D. Feldheim, Zeroes of Gaussian Analytic functions with
translation-invariant distribution, arXiv:1105.3929v3

[Han15a] Boris Hanin, Correlations and Pairing Between Zeros and Critical
Points of Gaussian Random Polynomials. Int. Math. Res. Notices
IMRN, (2):381-421, 2015

[Han15b] Boris Hanin, Pairing of zeros and critical points for random meromor-
phic functions on Riemann surfaces. Math. Research Let., 22(1):111-
140, 2015

[Han16] Boris Hanin, Pairing of Zeros and Critical Points for Random Polyno-
mials, arXiv: 1601.06417, 2016

51



52 BIBLIOGRAPHY

[HKPV09] John Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint
Virág, Zeros of Gaussian Analytic Functions and Determinantal Point
Processes, University Lecture Series, vol. 51, American Mathematical
Society, Providence, RI, 2009

[Kab15] Zakhar Kabluchko, Critical Points of Random Polynomials with Inde-
pendent and Identically Distributed Roots. Proc. AMS. 143(2), 2015

[Mar49] Morris Marden, The Geometry of the Zeros of a Polynomial in a Com-
plex Variable. New York: American Mathematical Society; 1949
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