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Abstract 

Over recent decades, much effort has been made to lengthen spin relaxation/decoherence times of 

single-molecule magnets and molecular qubits by following different chemical design rules as 

maximizing the total spin value, controlling symmetry, enhancing the ligand field or inhibiting key 

vibrational modes. Simultaneously, electronic structure calculations have been employed to 

provide an understanding of the processes involved in the spin dynamics of molecular systems and 

served to refine or introduce new design rules. This review focuses on contemporary theoretical 

approaches focused on the calculation of spin relaxation/decoherence times, highlighting their 

main features and scope. Fundamental aspects of experimental techniques for the determination of 

key Single Molecule Magnet/Spin Qubit properties are also reviewed. 
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1. Introduction 

The chemical synthesis of paramagnetic molecules featuring increasingly longer magnetic 

relaxation and spin coherence times, is the main challenge for two intimately linked research areas: 

Single-Molecule Magnet (SMM)1-6 and Molecular Spin Qubit research.7,8 To achieve such 

objectives, spin dynamics of molecular systems must be tuned to suppress a series of relaxation 

mechanisms, depending on intra- and inter-molecular interactions. The main molecular factors 

influencing magnetic relaxation are the energy separation of electronic states, their magnetic 

anisotropy, molecular vibrations, and dipolar and hyperfine interactions. Environmental molecules 

can also affect spin relaxation though long-range spin–spin interactions (dipolar electron-electron 

and hyperfine electron-nuclear) and vibrational coupling. In the case of SMMs, uniaxial magnetic 

anisotropy must be enhanced, and electronic energy gaps must be as high as possible. Vibrations 

must be tuned to minimize vibronic coupling, either by symmetry control or by hampering 

molecular displacements in the magnetically relevant atoms. Detuning vibrational and electronic 

transition energy has been proposed as a convenient strategy for improving SMMs. On the other 

hand, molecular spin qubits can be derived from magnetically anisotropic9,10 or isotropic11-13 

systems. For both SMMs and molecular spin qubits, hyperfine and dipolar interactions must be 

supressed to prolong demagnetization and coherence times. Providing a mechanistic description 

of spin dynamics is a necessarily complex task since a comprehensive picture must consider 

electronic and vibrational aspects of the molecular system and its interaction with surrounding 

nuclear and electronic spins. In this sense, the study of spin dynamics in molecular systems is a 

multidisciplinary field involving resonance spectroscopies, molecular magnetism and theoretical 

chemistry.  

 

 2. Experimental Methods 

2.1 Spin Relaxation Times determined with Electronic Paramagnetic Resonance 

Experimental practice for the determination of spin relaxation times is usually different for qubit 

molecules and SMMs. In the case of qubit molecules, electronic paramagnetic resonance (EPR) is 
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usually employed.14-18 EPR measurements can be performed in single-crystal or powder samples 

also in frozen solution. The latter is often advantageous since solution samples present a lower 

concentration of magnetic molecules per unit volume, diminishing the interactions between 

magnetic centres and, increasing the spin relaxation time. The conventional approach is to use 

pulsed EPR, allowing the pulses to align the spin in a determined direction and to measure the time 

required to recover the initial orientation. There are two crucial parameters: the spin–lattice (or 

longitudinal) T1 and the spin–spin (or transversal) T2 relaxation times.17 

 

The spin–lattice relaxation process involves the interaction of the spin with the vibrations of the 

surrounding lattice; consequently, T1 depends on the temperature. The energy exchange between 

the vibrations and the spin provides the mechanism that produces the spin relaxation. There are 

several methods that use the EPR technique, determining T1 time as the timescale for the evolution 

of magnetization along the z axis.18 Taking the initial magnetization 𝑀0, and subsequent spins in 

the +z direction aligned by an external magnetic field, the T1 time can be determined by applying 

a  microwave pulse inducing a 180º rotation of the magnetization. Analysis of the evolution time 

of the 𝑀𝑧 component until the system recovers the initial direction allows us to extract the T1 value 

using the Bloch equation: 

     𝑀𝑧 = 𝑀0(1 − 𝑒−𝑡/𝑇1)    (1) 

In many cases, a multi-pulse experiment is performed because the system does not follow the 

simple exponential Bloch equation due to the presence of other spin processes. These processes 

are usually called spectral diffusion, which encompasses several different contributions including 

motion of an anisotropic paramagnetic centre, electron-electron exchange, electron-nuclear cross 

relaxation and nuclear spin flip-flops.18 A general strategy for avoiding the presence of spectral 

diffusion effects is to increase the length of the saturating pulse until a constant relaxation time is 

reached, thus T1 is directly determined without any other superposed effects. In some cases, it is 
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possible to improve the fitting with a simple modification of Equation 1 by introducing the effect 

of additional contributions through the  stretching parameter: 

     𝑀𝑧 = 𝑀0(1 − 𝑒−(𝑡/𝑇1)𝛽
)   (2) 

If this does not improve the fitting, it is necessary to add in the mathematical expressions 

corresponding to the spectral diffusion contributions. In a multi-pulse experiment to determine T1, 

one initial  pulse is performed and after a delay of time T, a spin-echo sequence 

(−−− Hahn-echo19 see Figure 1) is used (echo-detected inversion recovery approach). A 

similar method can also be employed if the initial pulse is a long low-power pulse. This is called 

echo-detected saturation recovery method. Analysis of the recovering curve of the echo amplitude 

until equilibrium is reached, as a function of the time T, allows us to estimate the T1 value. 

 

 

Figure 1. −−− Hahn echo employed to determine the spin relaxation times. 

 

The spin–spin relaxation involves the T2 time that follows the temporal evolution of magnetization 

in the xy plane until recovery of thermal equilibrium. Usually, T2 is considerably smaller than T1, 

thus the spin reorientation in the xy plane is much faster than in the z axis. However, as T1 decreases 
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with increasing temperature, in some cases at higher temperatures both magnitudes could be 

similar. There are also several methods to determine T2. Again, the simplest method would be to 

apply a  pulse and follow the evolution of the 𝑀𝑥 component according to the following 

equation:  

     𝑀𝑥 = 𝑀0𝑒−𝑡/𝑇2    (3) 

Multi-pulse approaches are also employed for the xy spin relaxation, using the −−− Hahn 

echo, modifying the  time between the pulses to overcome the problems of fitting with a simple 

model (Eq. 3).18 The spin echo dephasing time constant, usually known as phase memory decay 

time Tm, can be determined from the representation of the echo amplitude as a function of  time.20 

The longer the delay of  time after the  pulse, the larger the number of dephased spins; a lesser 

number will be refocused with the  pulse, resulting in a decrease of the xy magnetization. An 

exponential decay of the echo signal with the  time is expected, and such decay is proportional to 

exp(-2/Tm). Thus, a fitting procedure allows us to determine the Tm magnitude, including all the 

processes that produce loss of electron spin phase coherence, T2 being one of them. If the system 

follows the Bloch equation (Eq. 3), we can assume that Tm=T2 because other contributions such 

as librational motion of the paramagnetic species (sometimes important at high temperatures) and 

nuclear spin diffusion are negligible. Sometimes, in the fitting procedure to extract Tm, it is 

mandatory to introduce a stretching factor, as in Eq. 2, or to employ a biexponential function with 

two different phase memory times, Tm,f and Tm,s (fast and slow, respectively), indicating two 

dephasing mechanisms with different timescales. Analysis of the dependence of Tm on the 

temperature (T2 is temperature independent) can provide some insights into the additional 

contributions. 

 

Other useful EPR measurements for molecular qubits include variable power nutation experiments 

to show the coherent spin behaviour. In such experiments, the thermal equilibrium along the +z 

direction is reached by the alignment of the magnetization with an external field B1.18 Then, 
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microwave pulses of a certain duration tp and B1 value are applied. Thus, a rotation of the spins is 

performed by an increasing nutation angle that depends on tp and B1. The representation of the z-

component of the magnetization with the tp values shows the typical oscillatory pattern of the Rabi 

oscillations (Rabi nutation frequency 1=B·g·B1/ℏ) proving that the qubit can be placed in an 

arbitrary state superposition in the Bloch sphere. It is important to keep in mind that the oscillations 

can be damped by the spin relaxation, when such processes can be observed only in slow spin–

spin relaxation, 1/T2 << 1. 

 

2.2 Spin Relaxation Times determined with AC Susceptibility 

Analysis of the spin relaxation time for single-molecule magnets is usually performed by 

measuring alternating current (ac) magnetic susceptibility with, for instance, a SQUID device. 

Data on ac susceptibility can be analysed within the extended Debye model, in which a maximum 

in the out-of-phase component χM″ of the complex susceptibility is observed when the spin 

relaxation time τ equals (2πν)−1.3 The Cole-Cole expression is introduced to describe distorted 

Argand plots,  

cac (w )  =  cS +
(cT - cS )

1  +  (iwt )1–a
   (4) 

where ω = 2πν, and χT and χS are the isothermal and adiabatic susceptibilities i.e., the 

susceptibilities observed in the two limiting cases ν → 0 and ∞, respectively. The  parameter 

(between 0 and 1) describes the distribution of relaxation times; the wider the distribution, the 

larger is . If  is equal to 0 there is only one single  value. The frequency dependence of χM’ 

and χM″ can be split into: 
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   (5) 

From this kind of measurement it is possible to fit the τ values, temperature and external magnetic 

field21 that can be modified in the experiment. It is worth noting the papers of Ho and Chibotaru 

which provide an analysis of the results for systems showing two maxima in the ac susceptibility 

that can appear even in mononuclear systems.22,23 

 

2.3 Comparison Spin Relaxation Times using different Techniques 

In principle,  can be identified with the spin–lattice T1 relaxation time determined by EPR. The 

comparison between these magnitudes is not straightforward because in most cases the EPR 

samples are diluted to avoid decoherence. Such a process is induced by spin–spin interactions, 

either electron-electron or electron-nuclear. Hence, dilution in diamagnetic matrices or solution 

using solvents with elements with or without reduced nuclear spin, for instance CS2 or deuterated 

solvents, help to increase T2 values determined by EPR.24 The use of solutions complicates the 

comparison with ac-susceptibility relaxation times because such measurements are usually taken 

in powder, and the molecular environments are completely different. Dilution in diamagnetic 

matrices is also a problem for susceptibility measurements due to the low percentage of magnetic 

species in the sample. Thus, it is difficult to compare the spin–lattice relaxation times determined 

by EPR and susceptibility measurements. Among the few reported examples with both sets of data 

available, it is worth mentioning the studies of Sessoli et al., which focused on vanadyl 

phthalocyanine complex.25-31 This molecule shows room temperature coherence time of around 1 

s at 300 K despite the presence of hydrogen atoms diluted in the diamagnetic titanium analogue. 

At room temperature, T1 and Tm have similar values.26 For this system, the  value extracted from 

susceptibility measurements is around 0.04 ms (at 5 K and external field of 0.08 T) for either the 
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bulk or 1:10 diluted samples.26 The EPR value at low temperature for the same diluted sample is 

not available, but for a 1:1000 dilution, that should have a strong influence on T2 and not on T1, 

the T1 value is 14 ms (at 4.3 K). The same VOPc molecule in a 0.5 mM solution of D2SO4/H2SO4 

has T1 values of 226 ms and 2405 ms, at 7 K, with a double exponential fitting by van Slageren 

and others.32 Also, Sessoli et al. studied the [Ph4P]2[VO(dmit)2] and [Ph4P]2[V(dmit)2] 

complexes.11 The susceptibility  values for the bulk samples are 0.12 ms (at 5 K and external field 

0.02 T) and 0.025 ms (at 5 K and external field 0.1 T), respectively. The EPR T1 values of the 

diluted samples in diamagnetic matrices are 24 ms and 10 ms at 4.3 K, respectively. The dilution 

clearly affects the time relaxation values, as we can see in next section, not only are spin–spin 

contributions modified in the diluted samples, but also some spin relaxation mechanisms, such as 

quantum tunnelling. 

 

2.4 Complexes with Long Coherence Times 

For the practical application of the qubits, it is vital to reach a reasonable coherence time, usually 

quantified with a figure of merit as the 1·Tm product, Rabi nutation frequency by phase memory 

decay time, of around 104-105.7,33,34 The usual 1 values are around 107 s-1 (10 MHz), thus Tm (or 

in general T2) must be larger than 10-4 s (0.1 ms). A detailed discussion of the best molecular qubits 

according to their coherence time can be find in recent review papers,7,8,12,24,34 but the usual Tm 

times in an environment similar to a device are smaller than such a threshold. A record value was 

obtained with a deuterated vanadium complex [Ph4P]2[V(C8S8)3] using a nuclear spin-free 

dithiolene C8S82- ligand, by Zadrozny, Freedman et al.,12 in a solution of a similarly nuclear spin-

free solvent CS2, to give a Tm value of 0.7 ms at 10 K. However, despite this case, which utilized 

the most favourable conditions, the typical Tm values for diluted mononuclear transition 

complexes, usually with low spin ions such as VIV or CuII,12,30,31,35-41are still in the approximate 

range of 0.01-0.001 ms. 7,24 A systematic study of the coherence time of heteronuclear Cr7Ni wheel 

systems was carried out by Winpenny et al.,13,42-48 showing T2 values in the range of 0.0003-0.015 
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ms. Similar coherence times have been obtained with lanthanide systems. Coronado et al. have 

proposed molecular qubits by using polyoxometalate systems to provide a protective nuclear free 

spin to the lanthanide due to the low abundance of the non-zero nuclear spin isotopes of Mo and 

W elements. 8,9,49-55 As high spin and large magnetic anisotropy systems are unsuitable for qubits, 

the studies have mainly focused on systems with relatively small magnetic anisotropy, such as 

GdIII compounds or HoIII with a 4f10 configuration. Also, Pedersen et al. performed extensive 

studies of a molecular spin qubit based on YbIII cations coordinated to a Schiff-base ligand 

(trensal).10,56 A diluted sample in the LuIII analogue presents a T2 value of 0.005 ms. The potential 

application of these molecular systems as qubits is mainly to use them in superconducting 

microwave resonator devices.27,57,58 However, coherence times for the molecular systems are still 

relatively far off those regularly obtained by doping diamond and silicon with N or P atoms with 

T2 values reaching 1-5 ms at room temperature.59-61 

 

3. Spin Relaxation Mechanisms 

3.1 Spin Relaxation Mechanism through Phonons 

Due to the multitude of interactions associated with spin relaxation, several magnetic relaxation 

mechanisms are described in the literature. First, we focus on mechanisms involving energy 

exchange with the environment through phonons.  

 

Direct Process. Under the influence of an external magnetic field B, the splitting of the states due 

to the Zeeman effect results in a spin flip energy that is an exact match with one lattice phonon 

energy.17 For Kramers systems with half-integer spin values, an admixture with electronic excited 

states is required, as pointed out by van Vleck, to break the time-reversal symmetry principle.62 

The hyperfine coupling producing an admixture of states can be effective in breaking such a 

principle.63 For the direct spin relaxation mechanism for a Kramers system, the rate can be 

expressed by the following equation: 
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     𝑇1
−1 = 𝐴 𝐵4 𝑇     (6) 

where A is an adjustable parameter, B is the external magnetic field and T is the temperature, while 

an equivalent term with the relaxation rate proportional to B2 is used for non-Kramers species.64 

 

Raman Process. This is a mechanism involving a two-phonon process with a virtual excited state 

with an energy smaller than the Debye temperature.65 The relaxation rate can be expressed as, 

     𝑇1
−1 = 𝐶 𝑇𝑛     (7) 

where C is a constant parameter, T the temperature and n is 7 and 9 for non-Kramers and Kramers 

systems, respectively. In practice, n is treated as an adjustable parameter and can strongly deviate 

from its theoretical temperature dependence. The energy in the transfer from the spin system to 

the lattice is the difference between absorption and emission to the virtual state (see Fig. 2). In 

some cases, there are few available phonons with the appropriate energies for exchange with the 

spin. Thus, there is a less efficient relaxation mechanism, and a similar equation (Eq. 7) is proposed 

with n=2 (phonon bottleneck).66 van Vleck introduced a dependence with the external field of the 

constant parameter C,62 resulting in 

     𝑇1
−1 = 𝑑 (

1+𝑒·𝐵2

1+𝑓·𝐵2) 𝑇𝑛    (8) 

In the field-dependent Raman term, usually known as Brons-van Vleck equation, the d parameter 

corresponds to the zero-field relaxation, the e parameter is highly dependent on the paramagnetic 

centre’s concentration and introduces the relaxation of the interacting spins and finally, the f 

parameter reports the effect of the external field on suppressing the spin relaxation. Eq. 8 was 

proposed by van Vleck for S=1/2 CuII and S=3/2 CrIII compounds.62 However, recently the field-

dependent Raman term was mainly used only to fit the experimental data of S=1/2 systems, mostly 

VIV complexes.11,26,30 In these studies, instead of Eq. 8, the mathematical expression of the Raman 

relaxation was split in two terms. The first one is only temperature dependent (Eq. 7) while the 

field-dependent term is the prefactor of Tn in Eq. 8 that depends of the d, e and f parameters. This 

field dependence Raman term has a similar mathematical expression than the quantum tunnelling 
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relaxation (see section 3.2, Eq. 12), this fact should be carefully considered in the fitting 

procedures. 

 

Recently, Ho and Chibotaru have developed a theoretical model to handle Raman contributions 

together with the direct mechanism.67 Their results indicate that for rigid Kramers systems, the 

Raman mechanism is independent of the magnitude of the external field but dependent on its 

orientation. Furthermore, the Raman process in non-Kramers systems is mostly suppressed by the 

application of an external magnetic field that breaks the resonance. They also proposed that the 

temperature dependence of the Raman term for both Kramers and non-Kramers systems is T9, 

despite traditionally being considered as T7 for non-Kramers systems. Chiesa et. al performed a 

detailed study on the magnetization dynamics of a dysprosocenium SMM with high blocking 

temperature.68 Combining ac- magnetometry and nuclear magnetic resonance measurements, field 

and temperature dependent relaxation times were determined. Furthermore, the phonon density of 

states was obtained inelastic neutron scattering experiments. This information was complemented 

with ab initio calculations to disentangle the different mechanisms contributing to 

demagnetization. Authors highlight the importance of acoustic phonons for the Raman regime. 

 

Orbach Process. Like the Raman mechanism, this is also a two-phonon process, but the 

intermediate state involves an electronic excited state of the system:17 The temperature dependence 

of the Orbach mechanism is exponential. 

𝑇1
−1 = 𝐴 𝐸3

𝑒𝐸/𝑘𝐵𝑇−1
≈ 𝐴 𝐸3 𝑒−𝐸/𝑘𝐵𝑇    (9) 

Where A is a constant parameter, E the energy of the excited state and T the temperature. The 

approximation is valid for E >> 𝑘𝐵𝑇. Thus, from the fitting of 𝑇1
−1 at different temperatures, it is 

possible to extract the energy barrier involved in this process, corresponding to the excited state 

allowing for spin relaxation. The spin inversion process can be due to a complete jump of the 

energy barrier through the highest low-spin excited state of the multiplet or helped by an efficient 
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quantum tunnelling relaxation in one of the intermediate excited states. It is worth mentioning that 

in S=1/2 systems with only two degenerate states, the Orbach process is ill-defined. 

 

Local-mode Process. This is a similar mechanism to the two-phonon processes previously 

described, but here, the involved state is a vibrational excited state of the electronic ground state.69 

The mathematical expression is similar to that for the Orbach process, but the energy involved 

corresponds to a vibrational energy ℏ of the system: 

𝑇1
−1 = 𝐶𝑙𝑜𝑐 ( e−ℏω/𝑘𝐵T

(e−ℏω/𝑘𝐵T−1)
2)     (10) 

Despite recent studies that have analysed the importance of the spin–phonon coupling in the 

relaxation processes, this local term is not usually included in the analysis of the 𝑇1
−1dependence 

on temperature. An expression similar to Eq. 10 can be employed to simulate the effect of 

thermally activated processes such as the rotation of some groups of the molecules 20 when the 

involved Eth energy is comparable to the Larmor (precessional) frequency ω𝐿 of the magnetic 

moment, 

𝑇1
−1 = 𝐶𝑡ℎ( e

𝐸𝑡ℎ
𝑘𝐵T

1+ω𝐿
2e

−
2𝐸𝑡ℎ
𝑘𝐵T

)    (11) 

𝐶𝑡ℎ being a constant. The main difference between this relaxation contribution and Raman, local-

mode and Orbach is the dependence of the Larmor frequency. See Fig. 2 for a pictorial description 

of the spin relaxation mechanisms through spin–lattice processes. 
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Fig. 2 Scheme of the spin relaxation mechanisms based on spin–lattice processes from an 

electronic ground state (and vibrational states). 

  

3.2 Spin-Spin Relaxation Mechanisms and Quantum Tunnelling 

The second main group of spin relaxation mechanisms are those involving the spin–spin 

interactions, which consider both hyperfine (electron-nuclear spin) and dipolar (electron-electron) 

terms.70,71 Some of these interactions will be intramolecular (i.e. by the presence of I0 nuclei or 

more than one paramagnetic centre in the same molecule) or intermolecular (by magnetic centres 

belonging to neighbour molecules). Strategies to supress these interactions include magnetic 

dilution (replacement of a fraction of crystallized magnetic molecules by diamagnetic analogs)72, 

replacement of atoms with I=0 isotopes73,74 or the preparation of frozen solution samples with 

nuclear spin-free solvents.12 The latter approach will supress both hyperfine and spin dipolar 

relaxation. The spin-spin relaxation time (T2) is employed to quantify these relaxation processes. 

This parameter is of prime importance for  the coherence time, which is the key parameter in the 

design of molecular spin qubits.26 
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For an isolated Kramers doublet system, quantum tunnelling is forbidden by the time-reversal 

symmetry principle.62 However, the presence of spin–spin interactions causes a dipolar broadening 

of the energy levels, allowing spin relaxation though quantum tunnelling.75 Prokof’ev and Stamp76 

explained the low temperature tunneling relaxation for Mn12 and Fe8 considering the dynamic 

nature of hyperfine and dipolar interactions. For short times, tunneling relaxation was predicted to 

have a √𝑡 dependence due to the effect of rapidly oscillating hyperfine bias field, which induces 

spin flips, modulating the dipolar field and allowing for further spin relaxation. At long times, the 

time dependence is better represented by an exponential function. Under this model, the tunneling 

rate depends on the nuclear T2, the tunneling gap matrix element between the tunneling doublet 

and the spatial distribution of internal fields. This phenomenology was experimentally 

corroborated by Wernsdorfer et al. for the Fe8 SMM,77 providing a practical setup for the 

estimation of relevant tunneling parameters. 

 

A external magnetic field induces an energy gap in the tunnelling doublet, supressing relaxation. 

Field dependence of tunnelling relaxation time is usually adjusted to the following expression: 

     𝑇1
−1 =

1+𝐵1

1+𝐵2·𝐵2     (12) 

where 𝐵1 and 𝐵2 are constant parameters. Spin relaxation by tunnelling is not only associated with 

the ground state, but excited states can also exhibit relaxation associated to this mechanism, in a 

process called thermally assisted quantum tunnelling.78 Recently, Ding et al. analysed the field and 

temperature dependence for the relaxation dynamics of [Dy(tBuO)Cl(THF)5][BPh4]·2THF.79 In 

the low temperature region, authors found noticeable temperature dependence of the relaxation 

time and proposed the following expression to account for tunnelling:  

     𝑇1
−1 =

(2𝜔)𝑖𝜂𝑖−1

1+(𝜂𝑔𝑒𝑓𝑓𝜇𝐵ℏ−1𝐵)
𝑖   (13) 

where 𝜂−1corresponds to the characteristic phonon collision rate of the lattice that shows an 

exponential temperature dependence, 𝜔 is a perturbation that quantifies the mixing between ±mJ 

ground-state wave functions, ℏ𝜔 is the tunnelling gap and i is the field exponent. A small 
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tunnelling gap (around 10-3-10-5 cm-1) indicates an efficient tunnelling relaxation, thus, the 

experimental fitting of such parameters allows to determine its magnitude. Furthermore, large 

tunnelling gap values (1 cm-1 ≈30 GHz) might be suitable to be determined by pulsed EPR and it 

is a key ingredient for long coherence times and insensitivity to magnetic noise in molecular 

qubits.51 

 

3.3 Determination of Parameters of the Spin Relaxation Mechanisms 

The spin relaxation mechanisms provide the mathematical framework to fit the experimental spin 

relaxation times obtained using EPR or ac-susceptibility measurements. Usually, susceptibility 

measurements of powder samples can be used, according to Eq. 5, to determine the relaxation 

 values. Due to the large number of fitting parameters, the largest possible amount of experimental 

data is recommended for a proper fit. For a S >1/2 system, the expression to fit the temperature 

and external field dependence of  can include direct, Raman, Orbach, local-mode and tunnelling 

terms, 

 𝜏−1 = 𝐴 𝐵4 𝑇+ 𝐶 𝑇𝑛+ 𝐷 𝑒−𝐸/𝑘𝐵𝑇+ 𝐶𝑙𝑜𝑐  (
e−ℏω/𝑘𝐵T

(e−ℏω/𝑘𝐵T−1)2)+
1+𝐵1

1+𝐵2·𝐵2 (14) 

while for S = ½, the Orbach term is not considered, 

 𝜏−1 = 𝐴 𝐵4𝑇 + 𝑑 (
1+𝑒·𝐵2

1+𝑓·𝐵2) 𝑇𝑛+ 𝐶𝑙𝑜𝑐 (
e−ℏω/𝑘𝐵T

(e−ℏω/𝑘𝐵T−1)2)+
1+𝐵1

1+𝐵2·𝐵2  (15) 

As mentioned above (see section 3.1) Brons-van Vleck field dependence of the Raman 

contribution is mostly employed in S=1/2 systems despite that it was originally included to study 

S=1/2 and S=3/2 compounds.62 Thus, the second term of Eq. 14 could be replaced by the equivalent 

field-dependent contribution of Eq. 15. In most reported studies of SMM systems, only the Orbach 

term is considered to extract the energy barrier that corresponds to the energy of the excited state 

involved in the spin relaxation process.1-3,5 Thus, with just the slope of the representation of 

log() vs 1/T in the linear dependence region it is possible to determine the energy barrier. 

Nevertheless, despite over parametrization problems, the determination of the parameters has often 
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been performed. However, as mentioned above, the local-mode term is not usually included in the 

fitting of the data. It is worth noting the analysis of susceptibility data performed by Zheng and 

others.79 They studied a family of mononuclear DyIII complexes for the dependence of the 

relaxation rate on temperature and the external field, using ac and dc measurements. The field-

dependent data was extracted from the time evolution of dc magnetization using a stretched 

exponential decay model. The analysis of a large amount of relaxation rate data allowed for an 

accurate determination of the main relaxation mechanisms for the different temperatures and 

external fields. 

 

4. Theoretical Approaches for Spin Relaxation 

Spin dynamics have been extensively studied by means of classical approaches such as the 

Landau-Lifshitz-Bloch equation of motion.80 This methodology is phenomenological and allows 

to estimate the time evolution of magnetization in terms of the gyromagnetic ratio and a damping 

parameter. However, quantum effects are not considered in this method and it cannot be directly 

applied to the spin relaxation of single-molecule magnets and molecular qubits. Some attempts to 

include such effects have been carried out for single-molecule magnets.81 

 

4.1 Direct Calculation of the Spin Relaxation Times (T2 and Tm) 

The direct calculation of the spin relaxation times T1 and T2 from electronic structure methods is 

not a trivial task, due to the importance of different parameters as lattice vibrations, magnetic 

anisotropy, temperature, electron spin–spin interactions, spin nuclear effects and so on. Hence, 

there is an increasing number of theoretical proposals focusing on different aspects of spin 

relaxation/dephasing, where a comprehensive model is still an open challenge in this field. 

 

A simple procedure for obtaining a rough estimation of T2 is to consider the expression proposed 

by Bloembergen et al.,70 in which the spin dipolar interactions are proportional to r-3, with r being 

the distance between the spins (electron-nuclear terms could also be considered). Escalera-Moreno 
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et al. proposed a method to calculate the phase memory time Tm for samples with a high 

concentration of electronic spins,82 based on a previous model by Stamp and others.83 This model 

focuses on systems presenting instantaneous diffusion as the limiting decoherence mechanism and 

is particularly suited for describing Tm at zero first-order Zeeman shift conditions (ZEFOZ or clock 

transitions). As the Zeeman effect progressively vanishes up to first order at clock transitions, the 

molecular qubit becomes insensitive to magnetic interactions related to neighbour nuclear and 

electronic spins. Thus, decoherence mechanisms associated with these interactions are largely 

supressed, and relatively long Tm values can be reached even for non-diluted samples with large 

spin–spin interactions. The Tm values arising from the nuclear and electron-spin baths are 

calculated using the following expression: 

    𝑇𝑚
𝑛+𝑒 =  

ℏΔ

E𝑛
2 +E𝑒

2      (16) 

where Δ is the energy gap between the two given magnetic states and E𝑛
2 (E𝑒

2) is the nuclear 

(electron) contribution to the echo line half-width. A reasonable reproduction of the experimental 

Tm values for a HoIII polyoxometalate and a copper(II) phthalocyanine complex82 was obtained. In 

a subsequent paper this model was applied to a GdIII polyoxometalate qubit candidate.84 

 

Recently, Chen et al.85 performed a theoretical study of spin relaxation in a family of mononuclear 

vanadyl complexes synthesized by Freedman and others.86,87 These four complexes 

(Ph4P)[VO(Cn+1H6Sn]2) (n= 2,4,6, and 8) show an increase of the distance between the 

paramagnetic vanadyl centre and the hydrogen nuclei that has non-zero nuclear spin. Authors 

focused on the hyperfine electron-nuclear interaction by calculating the hyperfine coupling 

constants using DFT methods. These parameters were later employed to solve the time-dependent 

Schrödinger equation. The electron spin decoherence time is estimated through a cluster-

correlation expansion scheme88 that allows to calculate the Hahn echo decay for the four metal 

complexes. The long-time plateau of the calculated echo decay curve (residual coherence) as 

proposed as a convenient molecular descriptor for T2. This parameter is molecular since it depends 
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on the interaction of the electronic spin with nuclear spins from the same molecule. The effect of 

counterion nuclear spins was also considered, showing an important role of spin dephasing.  

 

4.2 Ab Initio Calculations for Magnetic Anisotropy and Spin–Lattice Relaxation 

As mentioned above, strong uniaxial magnetic anisotropy is absolutely necessary to obtain high 

performance SMMs, while this requirement is not so strict for molecular spin qubits. Accordingly, 

theoretical methods describing SMMs must be particularly accurate when describing magnetic 

anisotropy. The direct use of time-dependent Density Functional Theory (TD-DFT) to calculate 

the low energy state manifold responsible for magnetic relaxation is problematic since DFT is a 

monodeterminant methodology, and incapable of properly describing wave functions associated 

with systems with large magnetic anisotropy. Multiconfigurational methods, mainly those based 

on the complete active space self-consistent field (CASSCF), including scalar relativistic and spin–

orbit effects can provide an accurate description of the magnetic anisotropy for mononuclear 

complexes. In order to corroborate the descriptions provided by these theoretical methods, it is 

possible to perform a comparison of the g-components, magnetization, and magnetic susceptibility 

with experimental data. For polynuclear systems, the substitution of all the paramagnetic cations, 

but one, with diamagnetic ones, allows us to determine the local magnetic anisotropy of each 

paramagnetic centre in an independent calculation. The calculation of the exchange interactions 

between highly anisotropic magnetic centres of polynuclear systems remains an open challenge, 

despite some recent advances.89 van Slageren et al. have reported a CASPT2 approach applied to 

more than one group of open-shell orbitals89  focusing in a dinuclear YbIII complex previously 

reported by Winpenny and collaborators.90,91 Up to now, the most common option has been to 

extract exchange interaction parameters92 by fitting experimental magnetization and susceptibility 

data using the calculated local anisotropy of each magnetic centre.93 

 

Ab Initio Calculations for Magnetic Anisotropy. The main success of electronic structure 

methods in analysing spin relaxation in single-molecule magnets was in providing a qualitative 
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description of the relative importance of the spin relaxation mechanism and some information 

about the states of the molecule involved in Orbach and quantum tunnelling processes. Chibotaru 

et al.94-98 employed multiconfigurational ab initio calculations to estimate transition matrix 

elements for the magnetic dipole operator over relativistic states. These matrix elements are 

considered to be proportional to the transition rates between pairs of states and can be employed 

to derive relaxation pathways by identifying the largest matrix elements connecting both sides of 

the double well potential. One example of such studies is represented in Fig. 3.  

 

Figure 3. Electronic states and magnetic transition probabilities for a hypothetical linear DyIII 

complex, see analogous SmIII system, calculated at CASSCF level.99 

 

One of the main steps towards increasing the magnetic anisotropy of lanthanide complexes is to 

reach a linear coordination99,100 that will result in an Orbach/tunnelling relaxation mechanism 

through a high-excited state (see Fig. 3). The sixth excited Kramers doublet has an efficient 

tunnelling effect for the hypothetical [(Pr3Si)2N–Dy–N(SiPr3)2]+, proposed by Chilton et al.,99 

resulting in an energy barrier close to 2000 cm-1. The lack of stability of two-coordinate linear 

DyIII complexes has promoted the use of ligands with higher coordination while keeping a similar 

coordination structure, such as the dysprosocenium complexes that are single-molecule magnets 

presenting record blocking barriers up to 80 K.101-103 For the 80 K record molecule [(η5-

Cp*)Dy(η5-CpiPr5)][B(C6F5)4], CASPT2 calculations predict the spin relaxation through the fourth 
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excited Kramer doublet (at 1524 cm-1), very close to the experimental fitted Ueff demagnetization 

barrier of 1542 cm-1. The relation between demagnetization barrier and blocking temperature is 

not direct since complexes with similar barriers can have contrasting blocking temperatures. For 

instance, the pentagonal bipyramidal [Dy(tBuO)2(pyridine)5][BPh4] complex (see Fig. 4) has a 

very high Ueff = 1815 K (1261 cm-1), but the blocking temperature is only 3 K.104  

 

One of us proposed a theoretical approach to calculate the relaxation time due to the tunnelling 

effect between any Kramers doublet, ground or excited. From this information, the effective 

demagnetization barriers can be calculated.75 The intermolecular spin–spin dipolar interaction 

produces a broadening of the single-molecule levels, allowing the quantum tunnelling. It is 

possible to determine the tunnelling relaxation rate for each Kramers doublet 𝑘𝑄𝑇,𝑖. Assuming an 

Orbach regime with a fast-thermal excitation and slower excited-state tunnelling, the 

demagnetization rate for each Kramers doublet is expressed as, 

  𝑘𝑖 (𝑇) =  
exp (

−𝐸𝑖
𝐾𝑇⁄ )

𝑍
𝑘𝑄𝑇,𝑖      (17) 

where Ei is the excitation energy of the i doublet determined at CASSCF level, and Z is the partition 

function. We can define the effective demagnetization barrier as, 

  𝑈𝑒𝑓𝑓(𝑇) =  ∑
𝑘,𝑖

𝑁𝑘
𝐸𝑖

𝑀

𝑖=1
      (18) 

where M is the number of Kramers doublets involved in the spin relaxation and Nk is a 

normalization factor for the tunnelling rate. In Fig. 4 we can identify which Kramers doublets are 

related to large contributions to Ueff.75 In this way, the relaxation pathway is unambiguously 

calculated. In Fig. 4, spin relaxation mostly starts with the third excited state, with the fifth and 

sixth excited states being those that contribute towards reaching a calculated Ueff value of 1196 

cm-1, close to the experimental value of 1261 cm-1. This model was extended to consider relaxation 

time enhancement due to magnetic dilution,105 showing that typical dilution ratios of 10% and 1% 
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can lead to an enhancement of the tunnelling relaxation time of 2 and 4 orders of magnitude, 

respectively.  

 

 

Fig. 4 Calculated contribution of each Kramers doublet and Ueff as a function of temperature for 

the pentagonal bipyramidal [Dy(tBuO)2(pyridine)5][BPh4] complex (CSD refcode RAPUDUK).75 

 

This approach has been recently employed to analyse SMM blocking temperatures.106 As indicated 

previously, there is not a clear relationship between both magnitudes with systems with high 

energy barriers but low blocking temperatures.104 Castro-Alvarez et al. determined which 

relaxation mechanism is limiting the blocking temperature for a set of seventeen DyIII complexes 

with high energy barrier. The best SMMs (TB > 50K) were mainly limited by Orbach regime, while 

molecular magnets with lower blocking temperatures showed more important contributions from 

Raman and tunnelling relaxation. The Orbach limiting temperature corresponds to: 

  𝑇𝑂𝑟 =  
𝑈𝑒𝑓𝑓

𝑙𝑛(
𝜏0

𝜏𝑟𝑒𝑓
)

        (19) 

Where Ueff  as calculated from Eq. 18, 𝜏𝑟𝑒𝑓  was equal to 100 s, following the usual convention107 

and 𝜏0 is the Orbach prefactor. For the studied systems, 𝜏0 as always in a narrow range between 

10-11-10-12 s, so the denominator in Eq. 19 was always close to 28. This value can be considered 
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as a convenient approximation for the relation between the effective demagnetization barrier and 

the Orbach limiting temperature. 

 

Spin-Phonon Coupling Constants. To progress from the calculation of demagnetization barriers 

to directly estimating the relaxation time at a given temperature, the effect of vibrations must be 

considered. In recent years, different groups have developed proposals in this direction.79,108-112 

The common strategy is to determine the vibrational modes and corresponding energies with DFT 

calculations, using periodic or discrete models for the molecules. Once the vibrational modes are 

determined, the second step is to calculate the spin–phonon coupling for each vibrational mode 

using a multiconfiguration method such as CASSCF, CASPT2 or NEVPT2. Thus, it is possible to 

determine which are the most relevant vibrational modes affecting spin relaxation. Normally, this 

information is fed into a master matrix which eigenvalues are the characteristic rates of the system. 

 

To increase the relaxation time, new molecules must reduce the spin–phonon coupling constants 

of their vibrational modes. Thus, knowledge of the vibrational modes with larger spin–phonon 

coupling is crucial to provide a rational design of improved systems. General strategies are: (i) 

tuning lowest-lying vibrational modes to higher energies to avoid the occupation of such 

vibrational states at low temperatures, and/or (ii) reducing the vibrational displacements for the 

paramagnetic ion and its immediate coordination environment. 

 

Sanvito et al. developed a first principles model to study the spin dynamics of mononuclear S=2 

FeII SMMs113,114 and molecular VIV qubits.108,115,116 For the [(tpaPh)Fe] complex (tpaPh is the 

deprotonated form of tris((5-phenyl-1H-pyrrol-2-yl)methyl)amine), authors combined the 

calculation of phonons at  point, using DFT and CASSCF calculations to determine the zero-

field splitting parameters and spin–phonon couplings.114 These parameters are introduced in a 

spin–phonon dynamics simulation using a master equation to reproduce the temperature 
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dependence of the  spin relaxation time and to compare the results with those obtained from the 

ac susceptibility measurements. In the same study, they also analysed the role of anharmonicity 

for spin dynamics. More recently, they examined the role of acoustic phonons, showing it to be 

negligible in diluted samples.113 The same theoretical approach was employed to study a family of 

four mononuclear VIV complexes ([VO(cat)2]2-, [V(cat)3]2-, [VO(dmit)2]2-, [V(dmit)3]2-; cat = 

catecholate, dmit = 1,3-dithiole-2-thione-4,5-dithiolate), focusing on the spin–phonon coupling 

values for the lowest-lying vibrational frequencies and the rigidity of the complex.115 Spin–phonon 

couplings are weaker in the vanadyl complexes. Of the four molecules, [V(cat)3]2- presented the 

slowest experimental relaxation time, despite the spin–phonon being higher, due to it having the 

greatest rigidity. 

 

Chilton et al. applied a similar procedure to determine the spin–phonon coupling and vibrational 

modes involved in spin relaxation, but focusing on mononuclear lanthanide complexes,79,117-120 

especially dysprosocenium derivatives.101,121 This dysprosocenium family, as mentioned above, 

comprise the SMMs with the highest blocking temperature. In the case of [(η5-CptBu3))Dy(η5-

CptBu3)][B(C6F5)4], with blocking temperature of 60 K (open hysteresis criterion), the spin–phonon 

coupling analysis reveals that modes of around 400 cm-1 to 500 cm-1, involving the out-of-plane 

shift of the hydrogen atoms of the cyclopentadienyl ring in non-substituted positions are efficient 

for spin relaxation.101 This justifies the completely substituted [(η5-Cp*)Dy(η5-CpiPr5)][B(C6F5)4] 

system having a higher blocking temperature (80 K).103 However, other structural factors are also 

important, such as the Cp···Dy···Dy angle, because the fully substituted [(η5-CpiPr5)Dy(η5-

CpiPr5)][B(C6F5)4] complex has a blocking temperature of 66 K.102 

 

These methods tend to be computationally demanding since they require several CASSCF 

calculations along every normal mode. Lower cost approaches to determining spin–phonon 

coupling constants have been recently proposed.122,123 In these approaches, only one CASSCF 
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calculation is required to determine energies and wave functions of the central point, whose 

crystal-field parameters are extracted using the SIMPRE code,124 based on effective charge 

electrostatic calculations. Spin–phonon coupling parameters are determined using the evolution of 

the Stevens parameters along the distortion induced by each vibrational mode, using the effective 

charge electrostatic calculations. The comparison shows a reasonable agreement of the spin–

phonon constants between this simplified approach122 and those obtained through CASSCF 

calculations of the distorted geometries for each vibrational mode.103 Basically, the new approach 

allows to identify the key vibrational modes involved in spin relaxation, even though the spin–

phonon constants are at energies that differ slightly from the full method. 

 

5. Concluding Remarks 

To conclude, it is clear that fundamental theoretical challenges in the study of spin relaxation in 

molecular systems still remain unsolved. Current efforts point to several directions as: (i) direct 

and accurate calculation of the relaxation times T1 and T2 for molecular qubits; (ii) calculations of 

the blocking temperature for single-molecule magnets, and development of models that would 

allow the rationalization of magnitudes that are not correlated with the spin-inversion energy 

barrier; (iii) a better description of the Raman process with, a clear description of the states 

involved on such a relaxation process. Furthermore, our understanding of spin–photon coupling 

will be fundamental to the rationalization of processes in qubits, based on microwave resonators 

using molecular qubits. 
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