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Abstract

In the present work we define the concept of Minimal Surface and prove some
important results related to it. To begin with, we review some elementary def-
initions and results of differential geometry. Then, we study normal variations
of curves and surfaces and solve some optimisation problems as examples of this
techniques. Afterwards, we define Minimal Surface and prove a theorem relating
Minimal Surfaces and normal variations of surfaces. The next section is dedicated
to graph surfaces and in it we prove Jörgen’s Theorem and Bernstein’s Theorem.
Finally, we extend the definitions introduced to a higher number of dimensions,
study the cone in three and four dimensions and give a brief account of the history
of Bernstein’s theorem and its generalisation to higher dimensions.

Resum

En el present treball definim el concepte de Superfície Minimal i demostrem
alguns resultats importants en relació amb aquest. Per començar, repassem algu-
nes definicions elementals i alguns resultats de geometria diferencial. Aleshores,
estudiem variacions normals de corbes i superfícies i resolem alguns problemes
d’optimització com a exemples d’aquestes tècniques. Seguidament, definim Su-
perfície Minimal i demostrem un teorema que relaciona les Superfícies Minimals
amb les variacions normals de superfícies. La següent secció està dedicada a les
superfícies formades per una gràfica i en aquesta demostrem el teorema de Jörgen
i el teorema de Bernstein. Finalment, estenem les definicions introduïdes a un
nombre gran de dimensions, estudiem el con en tres i quatre dimensions i donem
un breu resum sobre la història del teorema de Bernstein i la seva generalització a
dimensions altes.
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"Then came they to these lands where now thine eyes
Behold yon walls and yonder citadel

Of newly rising Carthage. For a price
They measured round so much of Afric soil

As one bull’s hide encircles, and the spot
Received its name, the Byrsa."

- Virgil
Æneid (between 29 and 19 BC) ([20])



Introduction

The theory of Minimal Surfaces is a very broad topic in Mathematics dating
back to the nineteenth century. The study of this kind of surfaces has motivated the
development of numerous concepts and techniques in the calculus of variations
which later have been applied to solving a great quantity of problems in very
diverse areas ranging from the study of partial differential equations to topology
and even to settling conjectures in relativity.

The aim of this project is to define the concept of Minimal Surface and to prove
some important results related to it. It is divided in four chapters.

The first chapter is a review of some elementary definitions and results of
differential geometry. Definitions such as parametrized curve, regular surface or
curvature are given as well as some propositions and theorems without proof.

In the second chapter, we first study normal variations of curves. We define
what a normal variation is and use it to solve an optimisation problem as an
example, namely finding the shortest path between two points. Then we study
briefly the regularity of the solutions we can find using the tools introduced and
comment on their limitations. To finish the chapter, we define Minimal Surfaces,
which are surfaces whose mean curvature vanishes everywhere, define normal
variation of a surface and the variation of area. Then we show that the catenoid is
an example of such surfaces and introduce and prove a theorem relating minimal
surfaces and normal variations.

The next chapter is dedicated to proving Bernstein’s Theorem, which states
that if a surface S is given by the graph of a function mapping R2 to R, and is also
minimal, then S is a plane. In the first place we study graph surfaces with a focus
on those that are minimal. Then, we present some well known results without
giving any proof and use them to prove Jörgen’s theorem. The chapter concludes
with a proof of Bernstein’s theorem for surfaces in three dimensions.

In the fourth and last chapter we begin by extending some of the definitions
introduced to higher dimensions. Then we study the cone in three and four di-
mensions. To conclude, in the last section we present a brief account of the history
of Bernstein’s theorem and its generalisations to higher dimensions.

v



vi

Notation

• n represents a natural number (including 0).

• Differentiable will be used to mean infinitely differentiable.

• Given a function on 1 variable f , we indicate its derivative as f ′.

• Given a function f on variables x1, ..., xn and 1 ≤ i, j ≤ n, we indicate its
partial derivative with respect to xi evaluated at a point a, ∂ f

∂xi
(a), as ∂xi f (a).

And successive partial derivatives ∂2 f
∂xi ∂xj

(a) as ∂xixj f (a).

• Given functions f1, f2, ... , fn,

∂( f1, f2, ... , fn)
∂(x1, x2, ... , xn)

(p) :=


∂x1 f1(p) ∂x2 f1(p) ... ∂xn f1(p)
∂x1 f2(p) ∂x2 f2(p) ... ∂xn f2(p)

...
∂x1 fn(p) ∂x2 fn(p) ... ∂xn fn(p)


• Sn−1 = {(x1, ... , xn) ∈ Rn : x2

1 + ...+ x2
n = 1} is the (n-1)-dimensional sphere

of radius 1 in Rn.

• C n (A) is the set of functions defined on A that are n times continuously
differentiable.

• Let D be a set. We denote by ∂D the boundary of D and by D = D ∪ ∂D the
closure of D.

• For any x = (x1, x2, ... , xn), y = (y1, y2, ... , yn) ∈ Rn, we denote the
Euclidean distance between x, y as

d (x, y) =
√
〈x− y, x− y〉 =

√
(x1 − y1)2 + ... + (xn − yn)2

• We write the open ball in Rn with center x ∈ Rn and radius ε > 0 as Bε(x) =
{y ∈ Rn : ‖x− y‖ < ε}



Chapter 1

Review of basic concepts in
differential geometry in R2 and R3

In this chapter we are going to recall some of the basic concepts and results
we are going to use throughout this thesis. They can be found in any book on
differential geometry such as [9], [13] and [17].

1.1 Curves

Definition 1.1. Given an open interval of real numbers I ⊆ R , we define a
parametrized curve as a differentiable function α : I −→ Rn.

Figure 1.1: The curve
α : I −→ Rn and its tangent
vectors α′(t1), α′(t2).

We will often call differentiable curves just curves
and, unless specified otherwise, I, J will be open in-
tervals of R.

Definition 1.2. Let α : I −→ Rn be a curve. We define
the tangent vector to α at t ∈ I as α′(t).

Definition 1.3. Let I, J ⊆ R. A change of parameters
from I to J is a differentiable function h : I −→ J such
that h is bijective and ∀t ∈ I, h′(t) 6= 0.

Remark 1.4. The inverse of h, h−1 : J −→ I, is also
differentiable.

Definition 1.5. Given two curves α : I −→ Rn and
β : J −→ Rn, we say β is a reparametrization of α if
there exists a change of parameters h : I −→ J such that α = β ◦ h.

Definition 1.6. Let α : I −→ Rn be a curve and let t ∈ I. We say that t is a:

1



2 Review

• regular point of α if α′(t) 6= 0

• singular point of α if α′(t) = 0

We say that α is 1-regular if t is a regular point of α ∀t ∈ I.

Definition 1.7. Let t ∈ I be a regular point of a curve α : I −→ Rn. We define the
tangent line to α at t as the straight line {α(t) + kα′(t) ∈ Rn : k ∈ R}.

Definition 1.8. Let α : I −→ Rn be a curve. Given two points t0, t1 ∈ I, t0 ≤ t1 we
define the arc length of α from t0 to t1 as:

len(α, t0, t1) :=
∫ t1

t0

‖α′(t)‖ dt

Remark 1.9. Using Weiesrstrass extreme value theorem we see that this integral
exists since [t0, t1] is a compact set and ‖α′(t)‖ is continuous on I.

Remark 1.10. We can approximate a curve using straight line segments. The
length of the approximation is defined as the sum of the lengths of each segment.
In the limit as the length of each segment is smaller and the number of segments
is larger, the approximated length and the length defined previously coincide.

Proposition 1.11. Arc length is invariant under change of parameters in the sense that
if α : I −→ Rn, β : J −→ Rn are curves and h : I −→ J is a change of parameters such that
∀t ∈ I, h′(t) > 0 and α = β ◦ h, then ∀t0, t1 ∈ I, t0 ≤ t1

len(α, t0, t1) = len(β, h(t0), h(t1))

Definition 1.12. A curve α : I −→ Rn is said to be parametrized by arc length if
∀t ∈ I, ‖α′(t)‖ = 1.

Proposition 1.13. Let α : I −→ Rn be a curve. There exists a change of parameters
h : J −→ I such that the curve β := α ◦ h is parametrized by arc length if, and only if, α is
1-regular.

Definition 1.14. Let α : I −→ Rn be a curve parametrized by arc length. The
curvature of α is defined as the function

κα : I −→ R

t 7−→ κα(t) := ‖α′′(t)‖
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Definition 1.15. Let α : I −→ Rn be a curve parametrized by arc length. The
curvature vector of α at a point t ∈ I is defined as α′′(t).

Remark 1.16. We can think of the curvature vector of α at t as the derivative of the
unit tangent vector to α at t.

Definition 1.17. Let α : I −→ Rn be a curve parametrized by arc length. A vector
N(t) is said to be normal to α at t if it is orthogonal to α′(t), that is, N(t) ⊥ α′(t).

Remark 1.18. If α is parametrized by arc length, then at every point its tangent
vector and curvature vector are orthogonal:

‖α′(t)‖ = 1 =⇒ ‖α′(t)‖2 = 〈α′(t), α′(t)〉 = 1 =⇒ d
dt
〈α′(t), α′(t)〉 = 0

=⇒ 〈α′(t), α′′(t)〉 = 0

Definition 1.19. If α : I −→ Rn is a curve parametrized by arc length and
‖α′′(t)‖ 6= 0 for some t ∈ I, the unit vector N(t) := α′′(t)

‖α′′(t)‖ is normal to α at t and
is called the unit normal vector to α at t.

Remark 1.20. In this case, N(t) = α′′(t)
κα(t)

.

Remark 1.21. If α is 2-regular, that is, ∀t ∈ I, α′′(t) 6= 0, the function
N(t) := α′′(t)

‖α′′(t)‖ defined by the unit normal vector at each point t ∈ I is differen-
tiable.

Remark 1.22. If α = (α1, α2) : I −→ R2 is a curve on the plane, the vector
(−α′2(t), α′1(t)) is a normal vector to α at t ∈ I and it is differentiable.
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1.2 Surfaces

Figure 1.2: The surface
ϕ : Ω −→ R3

Unless specified otherwise, Ω will denote an
open set in R2.

Definition 1.23. A parametrized surface is de-
fined as a differentiable function
ϕ : Ω ⊆ R2 −→ R3.

Definition 1.24. A parametrized surface
ϕ : Ω ⊆ R2 −→ R3 is called regular at a point
q ∈ Ω if vectors ∂x1 ϕ(q) and ∂x2 ϕ(q) are linearly
independent. We say that ϕ is regular if it is reg-
ular at every point q ∈ Ω.

Proposition 1.25. Let ϕ : Ω ⊆ R2 −→ R3 be a parametrized surface. Then, for each point
q ∈ Ω, the following statements are equivalent:

• ϕ is regular at q.

• The jacobian matrix ( ∂x1 ϕ(q) ∂x2 ϕ(q) ) has rank 2.

• ∃i, j ∈N such that i < j and
∂(ϕi ,ϕj)

∂(x1,x2)
(q) 6= 0.

• ∂x1 ϕ(q)× ∂x2 ϕ(q) 6= 0.

Remark 1.26. Given a differentiable function f : Ω −→ R, we can define a parametrized
surface as ϕ : Ω −→ R3 , ϕ(x1, x2) := (x1, x2, f (x1, x2)). This surface is regu-
lar because for every point q ∈ Ω, ∂x1 ϕ(q) = (1, 0, ∂x1 f (q)) and ∂x2 ϕ(q) =

(0, 1, ∂x2 f (q)) which are linearly independent. Such parametrized surfaces are
called graph surfaces.

Definition 1.27. Let S ⊆ R3. A local regular parametrization of S is defined as a
differentiable function ϕ : Ω ⊆ R2 −→ S such that:

• ϕ is a regular parametrized surface.

• ϕ(Ω) ⊆ S is an open set in S.

• ϕ : Ω −→ ϕ(Ω) is a homeomorfism.

Definition 1.28. A set S ⊆ R3 is called a regular surface at a point p ∈ S if there
exist a local regular parametrization of S ϕ : Ω ⊆ R2 −→ S and a point q ∈ Ω such
that ϕ(q) = p. S is said to be regular if it is regular at every point p ∈ S.
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Proposition 1.29. Let S ⊆ R3 be a regular surface and let ϕ : Ω −→ S, ψ : ∆ −→ S
be local regular parametrizations of S where Ω, ∆ ⊆ R2 are open sets. Suppose also that
W := ϕ(Ω)

⋂
ψ(∆) 6= ∅. Then, h := ψ−1 ◦ ϕ : Ω −→ ∆ is a diffeomorphism, that is, h

is differentiable and invertible, and its inverse is also differentiable.

Figure 1.3: Given two local regular parametrizations ϕ and ψ of a regular surface
S, the function h = ψ−1 ◦ ϕ is a diffeomorphism from Ω to ∆ as seen in Proposition
1.29.

Definition 1.30. Let S ⊆ R3 be a regular surface and let p be a point in S. Let
ϕ : Ω ⊆ R2 −→ S be a local regular parametrization of S such that for some q ∈ Ω,
p = ϕ(q). The tangent plane to S at p is defined as:

TpS := { λ ∂x1 ϕ(q) + µ ∂x2 ϕ(q) : λ, µ ∈ R }

Remark 1.31. This definition does not depend on the choice of ϕ.

Remark 1.32. The tangent plane to S at a point is a 2-dimensional vector space.

Definition 1.33. Let S ⊆ R3 be a regular surface and let p ∈ S be a point in S.
We say a function F : S −→ Rn is differentiable at p if there exist a local regular
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parametrization of S ϕ : Ω ⊆ R2 −→ S and a point q ∈ Ω such that p = ϕ(q) and
F ◦ ϕ : Ω −→ Rn is differentiable at q.

Remark 1.34. Using Proposition 1.29 it can be seen that this definition does not
depend on the choice of ϕ.

Definition 1.35. We say a curve α : I −→ R3 lies on a parametrized surface
ϕ : Ω −→ R3 if α(I) ⊆ ϕ(Ω).

Proposition 1.36. Let ϕ : Ω −→ R3 be a local regular parametrization of a surface S such
that for a point q ∈ Ω, ϕ(q) = p is a regular point in S. Then, for any curve α : I −→ R3

lying on S such that for some t ∈ I, α(t) = p, the tangent vector to α at t lies on the
tangent plane to S at p, that is α′(t) ∈ TpS.

Remark 1.37. Using this proposition one can show that for any regular point p in
a surface S and for any vector w ∈ TpS there exist a curve α : I −→ R3 and a point
t ∈ I such that, in a neighbourhood of p, α lies on S, α(q) = p and α′(q) = w.

Definition 1.38. Let S ⊆ R3 be a regular surface, let p ∈ S be a point in S and let
F : S −→ Rn be a differentiable function at p. Let w ∈ TpS and let α : (−ε, ε) −→ S
be a curve on S such that α(0) = p and α′(0) = w. Consider the curve
β = F ◦ α : (−ε, ε) −→ Rn.

We define the differential of F at p as a function dpF : TpS −→ Rn that acts on
vectors w ∈ TpS in the following manner: dpF(w) := β′(0).

Proposition 1.39. The definition of dpF does not depend on the choice of α and dpF is
linear.

Definition 1.40. Let S ⊆ R3 be a regular surface and p ∈ S a point in S. We define
the normal space to S at p as the orthogonal complement of TpS in R3 and denote
it by TpS⊥.

A vector N ∈ TpS⊥ is called a normal vector to S at p.

Definition 1.41. [Gauss map] Let S ⊆ R3 be a regular surface. A Gauss map on
S is defined as a continuous function N : S −→ S2 such that at every point p ∈ S,
N(p)⊥ = TpS. Equivalently, N(p) is a normal vector to S at every point p in S.

Definition 1.42. A regular surface S is said to be orientable if there exist Gauss
maps on S. An orientation of S is a certain Gauss map on S. We say S is oriented
if we have chosen a certain orientation of S.
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Remark 1.43. There are only two possible orientations of a regular surface S.

Remark 1.44. [Normal map to a regular surface] All regular surfaces in R3 are
locally orientable. Indeed, if ϕ : Ω −→ S is a local regular parametrization of a
regular surface S, the map

N : ϕ(Ω) −→ S2

p 7−→ N(p) :=
∂x1 ϕ(ϕ−1(p))× ∂x2 ϕ(ϕ−1(p))
‖∂x1 ϕ(ϕ−1(p))× ∂x2 ϕ(ϕ−1(p))‖

is differentiable and satisfies N(p)⊥ = TpS for all p in ϕ(Ω).
We can also define the map

Ñ : Ω −→ S2

(x1, x2) 7−→ Ñ(x1, x2) :=
∂x1 ϕ(x1, x2)× ∂x2 ϕ(x1, x2)

‖∂x1 ϕ(x1, x2)× ∂x2 ϕ(x1, x2)‖

Notice that Ñ = N ◦ ϕ. We will denote both of this maps with the letter N and
call them the unit normal map to S as the context is usually enough to determine
which one we are referring to.

Definition 1.45. Let S ⊆ R3 be a regular surface, let p be a point in S and let
N : S −→ S2 be a Gauss map on S. Since TN(p)S

2 = N(p)⊥ = TpS, the differential
dpN : TpS −→ TN(p)S

2 can be understood as an endomorphism of TpS. We call
dpN : TpS −→ TpS Weingarten’s endomorphism.

Definition 1.46. [First fundamental form] Let S ⊆ R3 be a regular surface, p ∈ S a
point in S and denote the usual dot product in R3 as 〈·, ·〉. The first fundamental
form of the surface S at p is defined as:

Ip : TpS× TpS −→ R

(w1, w2) 7−→ Ip(w1, w2) := 〈w1, w2〉

Remark 1.47. Since the first fundamental form at a point p on a surface S is
the standard dot product in R3 restricted to the tangent plane to S at p, it is a
positive-definite bilinear simmetric function. Therefore, we can express it as a ma-
trix g(p) :=

(
gij(p)

)
, where 1 ≤ i, j ≤ 2, in the basis {∂x1 ϕ(q), ∂x2 ϕ(q)} of TpS

where ϕ : Ω −→ R3 is a local regular parametrization of S such that ϕ(q) = p for
some q ∈ Ω. We have

g11 = 〈∂x1 ϕ, ∂x1 ϕ〉
g21 = g12 = 〈∂x1 ϕ, ∂x2 ϕ〉 = 〈∂x2 ϕ, ∂x1 ϕ〉
g22 = 〈∂x2 ϕ, ∂x2 ϕ〉

(1.1)
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where all gij are evaluated at p and all ∂xi ϕ are evaluated at q.
Note that the matrix g(p) depends on the parametrization ϕ but Ip doesn’t.
By varying p over S we obtain functions gij : ϕ(Ω) −→ R which are differen-

tiable.

Proposition 1.48. Let S ⊆ R3 be a regular surface and let ϕ : Ω −→ R3 be a local regular
parametrization of S. Then, ∀(x1, x2) ∈ Ω

‖∂x1 ϕ(x1, x2)× ∂x2 ϕ(x1, x2)‖ =
√

det g(p) =
√

g11(p)g22(p)− g12(p)2

where p = ϕ(x1, x2)

Corollary 1.49. A parametrized surface ϕ : Ω −→ R3 is regular at p = ϕ(x1, x2) ∈ ϕ(Ω)

if, and only if, g11(p)g22(p)− g12(p)2 6= 0.

Definition 1.50. [Second fundamental form] Let S ⊆ R3 be a regular surface, p ∈ S
a point in S and let N : S −→ S2 be a Gauss map on S. The second fundamental
form of the surface S at p is defined as:

I Ip : TpS× TpS −→ R

(w1, w2) 7−→ I Ip(w1, w2) := −Ip(dpN(w1), w2)

Proposition 1.51. Let S ⊆ R3 be a regular surface, p ∈ S a point in S and let N : S −→ S2

be a Gauss map on S. Weingarten’s endomorphism dpN is a self-adjoint linear map for all
p in S. That is ∀w1, w2 ∈ TpS, 〈dpN(w1), w2〉 = 〈w1, dpN(w2)〉.

Remark 1.52. Since the first fundamental form and Weingarten’s endomorphism
are linear, the second fundamental form is bilinear. Therefore, similarly to the
first fundamental form, we can express the second fundamental form as a matrix
h(p) :=

(
hij(p)

)
, where 1 ≤ i, j ≤ 2, in the basis {∂x1 ϕ(q), ∂x2 ϕ(q)} of TpS where

ϕ : Ω −→ R3 is a local regular parametrization of a regular surface S such that
ϕ(q) = p for some p ∈ S and q ∈ Ω.

What’s more, it can be shown that the coefficients of the matrix associated to
the second fundamental form can be calculated as

h11 =
〈∂x1 ϕ× ∂x2 ϕ, ∂x1x1 ϕ〉
‖∂x1 ϕ× ∂x2 ϕ‖

h21 = h12 =
〈∂x1 ϕ× ∂x2 ϕ, ∂x1x2 ϕ〉
‖∂x1 ϕ× ∂x2 ϕ‖

h22 =
〈∂x1 ϕ× ∂x2 ϕ, ∂x2x2 ϕ〉
‖∂x1 ϕ× ∂x2 ϕ‖

(1.2)
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where all hij are evaluated at p and all ∂xi ϕ are evaluated at q.
Note that the matrix h(p) depends on the parametrization ϕ but I Ip doesn’t.

By varying p over S we obtain functions hij : ϕ(Ω) −→ R which are differentiable.

In what follows, to simplify the notation, ϕ, N and their derivatives are con-
sidered to be evaluated at q ∈ Ω, and gij, hij at p = ϕ(q).

Proposition 1.53. Let ϕ : Ω −→ R3 be a regular parametrized surface and N be a unit
normal map to ϕ(Ω). Then

h11 = −〈∂x1 ϕ, ∂x1 N〉
h12 = h21 = −〈∂x2 ϕ, ∂x1 N〉 = −〈∂x1 ϕ, ∂x2 N〉 (1.3)

h22 = −〈∂x2 ϕ, ∂x2 N〉

where ϕ and N are evaluated at q ∈ Ω and hij are evaluated at p = ϕ(q), i, j = 1, 2.

Proof. Let α, β ∈ Tp ϕ(Ω) be vectors on the tangent plane to ϕ(Ω) at a point p ∈
ϕ(Ω). Since ϕ is regular, vectors {∂x1 ϕ, ∂x2 ϕ} are linearly independent and form
a basis of Tp ϕ(Ω). Therefore, there exist α1, α2, β1, β2 ∈ R such that α = α1 ∂x1 ϕ +

α2 ∂x2 ϕ and β = β1 ∂x1 ϕ + β2 ∂x2 ϕ. Denote the coordinates of α and β on this basis
as α = (α1, α2) , β = (β1, β2). On one hand,

I Ip (α, β) = −〈dpN (α) , β〉
= −〈∂x1 N α1 + ∂x2 N α2, ∂x1 ϕ β1 + ∂x2 ϕ β2〉
= −

(
〈∂x1 N, ∂x1 ϕ〉α1β1 + 〈∂x1 N, ∂x2 ϕ〉α1β2

+ 〈∂x2 N, ∂x1 ϕ〉α2β1 + 〈∂x2 N, ∂x2 ϕ〉α2β2
)

On the other hand,

I Ip (α, β) =
(

α1 α2

)(h11 h12

h21 h22

)(
β1

β2

)
= h11α1β1 + h12α1β2 + h21α2β1 + h22α2β2

Comparing these expressions we obtain the equalities stated.

Definition 1.54. [Normal curvature] Let S ⊆ R3 be a regular surface, p ∈ S a point
in S and let α : I −→ S be a curve on S such that α(t) = p and α′(t) = w ∈ TpS for
some t ∈ I. Let N ∈ TpS be a normal vector to S at p. The normal curvature of S
at p in the direction w with respect to the normal N is defined as

κn (p, N, w) := α′′(t) · N
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Remark 1.55. This definition is independent of α.

Definition 1.56. [Principal curvatures] Let S ⊆ R3 be a regular surface, p ∈ S a
point in S and let w ∈ TpS. Let N ∈ TpS be a normal vector to S at p. Fixing N we
can consider

κ1(p, N) := max
w∈TpS

κn(p, N, w), κ2(p, N) := min
w∈TpS

κn(p, N, w)

The quantities κ1(p, N) and κ2(p, N) are called the principal curvatures of S at a
point p with respect to the normal N.

Remark 1.57. It can be shown that the principal curvatures at some point p ∈ S
κ1(p, N), κ2(p, N) are the eigenvalues of dpN. By Proposition 1.51, dpN has 2
real eigenvalues with a corresponding eigenvector each, and these are orthogo-
nal. The directions defined by these eigenvectors are called principal directions of
curvature of S at p.

Definition 1.58. [Gauss curvature] Let S ⊆ R3 be a regular surface, p ∈ S a point
in S and let N ∈ TpS be a normal vector to S at p. The Gauss curvature of S at a
point p is defined as

κ(p, N) := κ1(p, N) · κ2(p, N)

Definition 1.59. [Mean curvature] Let S ⊆ R3 be a regular surface, p ∈ S a point
in S and let N ∈ TpS be a normal vector to S at p. The mean curvature of S at a
point p is defined as

H(p, N) :=
κ1(p, N) + κ2(p, N)

2

Remark 1.60. As a consequence of Remark 1.57 we have the following:

κ(p, N) = det dpN (1.4)

H(p, N) =
1
2

tr dpN (1.5)

Sometimes, we might want to choose a parametrization of S ϕ : Ω −→ R3 containing
p at its image to calculate κ(p, N) and H(p, N). Note that κ(p, N) and H(p, N) are
independent of the parametrization ϕ.

Now we restrict ourselves to working with oriented surfaces in R3 and, unless
specified otherwise, given a local regular parametrization of a surface S ⊆ R3

ϕ : Ω −→ R3 we are going to consider the orientation chosen to be the one defined
in Remark 1.44. The next propositions show us how to calculate the Gauss and
mean curvatures in terms of the fundamental forms.
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Proposition 1.61. Let S ⊆ R3 be a regular surface, p ∈ S a point in S, ϕ : Ω −→ R3 a
local regular parametrization of S such that, for some q ∈ Ω, p = ϕ(q) and let N be the
chosen Gauss map on S. Then,

κ(p, N(p)) =
h11h22 − h2

12

g11g22 − g2
12

where all gij and hij are evaluated at q.

Proposition 1.62. Let S ⊆ R3 be a regular surface, p ∈ S a point in S, ϕ : Ω −→ R3 a
local regular parametrization of S such that, for some q ∈ Ω, p = ϕ(q) and let N be the
chosen Gauss map on S. Then,

H(p, N(p)) =
1
2

h11g22 − h12g12 + h22g11

g11g22 − g2
12

(1.6)

where all gij and hij are evaluated at q.

Remark 1.63. Since gij and hij are continuous, κ and H are continuous where
g11g22 − g2

12 6= 0.

Definition 1.64. [Area] Let ϕ : Ω −→ R3 be a parametrized surface, D ⊆ Ω be a
bounded set with closure D ⊆ Ω and write p = ϕ(x1, x2). The area of ϕ(D) is
defined as

area(ϕ(D)) :=
∫

D
‖∂x1 ϕ(x1, x2)× ∂x2 ϕ(x1, x2)‖ dx1dx2

=
∫

D

√
g11(p)g22(p)− g12(p)2 dx1dx2

Proposition 1.65. Let S ⊆ R3 be a surface and R ⊆ S be a subset of S. Let ϕ : Ω −→ S
and ψ : ∆ −→ S be parametrizations of S such that R ⊆ ϕ(Ω) and R ⊆ ψ(∆). Let
D = ϕ−1(R) and Q = ψ−1(R) be bounded and satisfy D ⊆ Ω, Q ⊆ Ω. Then,
area(ϕ(D)) = area(ψ(Q)). That is, the area of a region R of a surface S is independent
of the parametrization.



12 Review



Chapter 2

Minimal surfaces

One of the first problems which motivated the study of minimal surfaces is the
so called Plateau’s problem, in honour of the Belgian physicist J. Plateau (1801-
1883). This problem consists in finding the surface which has the smallest area
among all surfaces having a certain curve as their boundary. Plateau is known
for having performed several experiments with soap films and, experimentally,
having determined a number of properties of soap films and soap bubbles. While
Plateau’s work is commendable, we seek to provide a more mathematical study
of the problem and of the properties of minimal surfaces. In this section we are
going to introduce the notion of normal variations of curves and surfaces, we are
going to define what a minimal surface is and we are going to study some of their
properties.

2.1 Normal variations of curves

There are many problems in which there is a quantity whose value depends
on a curve and the goal is to find the curve which minimizes this quantity. For
instance, the problem of finding the path an object subjected to gravity has to
follow to go from a higher point to a lower point such that it minimizes the time
it takes the object to travel between the points.1 Or the problem of finding the
path a particle will take when one or more forces are acting on it, which can
be formulated in terms of finding the path that minimizes the action integral.2 In
many of these problems it is infeasible to consider all possible curves so we restrict
ourselves to a set of curves that neighbour a given curve α. This set of curves is
called the set of normal variations of α.

1This is a problem first posed by Galileo Galilei in 1638. The solution is the cycloid. See [11],
p. 42, 3. The brachistochrone problem.

2Also see [11].

13
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Definition 2.1. Let α : I −→ Rn be a 2-regular curve. Consider the differentiable
function N : I −→ Rn where N(t) is the unit normal vector to α(I) at each point
α(t) ∈ I and choose an arbitrary differentiable function h : D −→ R where D ⊆ I
is a bounded open set and D is the closure of D. Let ε > 0. The normal variation
of α determined by h is defined as the family of curves

α : D× (−ε, ε) −→ Rn

(t, δ) 7−→ α(t, δ) := α(t) + δh(t)N(t)

Remark 2.2. The function αδ = α(·, δ) : D −→ Rn, αδ(t) := α(t) + δh(t)N(t) is a
differentiable curve for all δ ∈ (−ε, ε).

Now, if we have a quantity that depends on a curve, we can consider this
quantity evaluated at curves αδ and attempt to find the curve which minimizes it
by minimizing the quantity with respect to δ. Let’s see some examples.

2.1.1 Shortest path between two points

Let’s try to find the shortest path between two points on a plane. It is well
known that it is a straight line and this can be shown by much simpler methods
than those we will present. However, by means of this example we will introduce
ideas and techniques which will be very useful later on, especially Lemma 2.3.

Let α : I = [a, b] −→ R2 be a 2-regular curve that joins the points α(a), α(b).
Let N and h be the corresponding functions in the previous definition but now
impose

h(a) = h(b) = 0 (2.1)

so that we only consider curves with endpoints α(a), α(b), that is, αδ(a) = α(a),
αδ(b) = α(b), ∀δ ∈ (−ε, ε). The length of αδ is

len(αδ, a, b) =
∫ b

a
‖α′δ(t)‖ dt

As α, h and N are differentiable on [a, b], they are continuous on the same
interval and this integral exists. Since the length is invariant under change of
parameters, assume α is parametrized by arc length, that is ∀t ∈ [a, b], ‖α′(t)‖ = 1.

If α = αδ=0 is the shortest curve among the ones we are considering, it is a
minimum of length for all h fulfilling (2.1) so it has to satisfy d

dδ len(αδ, a, b)
∣∣
δ=0 = 0

for all such h. Let’s find the necessary condition α has to fulfill in order to be such
minimum. We have

d
dδ

len(αδ, a, b) =
d
dδ

∫ b

a
‖α′δ(t)‖ dt =

∫ b

a

∂

∂δ
‖α′δ(t)‖ dt
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On what follows we assume all functions are evaluated at t and κ is the curvature
of α. From the definition of αδ it follows that

∂

∂δ
‖α′δ‖ =

∂

∂δ
‖α′ + δ(hN)′‖

=
∂

∂δ
〈α′ + δ(hN)′, α′ + δ(hN)′〉1/2

=
1
‖α′δ‖

〈α′ + δ(hN)′, (hN)′〉

=
1
‖α′δ‖

(
〈α′, (hN)′〉+ δ〈(hN)′, (hN)′〉

)
(2.2)

Now,
〈α′, (hN)′〉 = 〈α′, h′N + hN′〉 = 〈α′, h′N〉+ 〈α′, hN′〉

Since α is parametrized by arc length, N is orthogonal to α′ and the first term in the
sum is zero. To calculate the second term, notice that for this same reason α′ and N
form a basis of the plane. Therefore, N′ can be expressed as a linear combination
of α′ and N. As 〈N, N〉 = 1, by differentiating we see that 〈N, N′〉 = 0, so N′ is
proportional to α′. Once again, using the fact that 〈α′, N〉 = 0 and differentiating
we arrive at 〈α′, N′〉 = −〈α′′, N〉 = −〈κN, N〉 = −κ〈N, N〉 = −κ. Thus, N′ = −κα′

and 〈α′, (hN)′〉 = −hκ.
Let’s calculate the second term at (2.2):

〈(hN)′, (hN)′〉 = 〈h′N, h′N〉+ 2〈h′N, hN′〉+ 〈hN′, hN′〉

We have seen that α′ and N′ are parallel so N and N′ are orthogonal and the
middle term of this summation is null. The first term is

〈h′N, h′N〉 = (h′)2〈N, N〉 = (h′)2

And the third term is

〈hN′, hN′〉 = h2‖N′‖2 = h2‖−κα′‖2 = h2|κ|2‖α′‖2 = h2|κ|2

Then 〈(hN)′, (hN)′〉 = (h′)2 + h2|κ|2.
Putting it all together we get

∂

∂δ
‖α′δ(t)‖ =

1
‖α′δ‖

(
〈α′, (hN)′〉+ δ〈(hN)′, (hN)′〉

)
=

1
‖α′δ‖

(
−hκ + δ

(
(h′)2 + h2|κ|2

))
Finally,

d
dδ

len(αδ, a, b) =
∫ b

a

−hκ + δ
(
(h′)2 + h2|κ|2

)
‖α′δ‖

dt
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Therefore, if α = αδ=0 is the shortest path between α(a), α(b) for all possible
choices of h satisfying (2.1), then, remembering ‖α′δ=0‖ = ‖α′‖ = 1 we have

d
dδ

len(αδ, a, b)
∣∣∣∣
δ=0

=
∫ b

a
−h(t)κ(t) dt = 0 (2.3)

for all such h. Intuitively we might think that since this integral is zero for all h
fulfilling (2.1), the curvature must be zero. The following lemma tells us this is
indeed the case.

Lemma 2.3. Let U ⊆ Rn be an open set and let f : U −→ R be a continuous function. If
for all differentiable functions h : U −→ R such that h = 0 on ∂U it is satisfied

∫
U f h = 0,

then f is zero everywhere on U.

Proof. We prove by contradiction that f is null on U. Assume
∫

U f h = 0 for all
differentiable functions h : U −→ R such that h = 0 on ∂U and suppose there exists
x ∈ U such that f (x) 6= 0. Suppose also f (x) > 0, the case f (x) < 0 is proved
analogously. Since f is continuous, there exists ε > 0 such that f (x) > 0 for all
x ∈ Bε(x) and since U is open, x is not isolated and Bε(x) has nonzero measure.
Consider a function h : U −→ R such that h(x) > 0 for all x ∈ Bε(x) and h = 0
elsewhere. Then, ∫

U
f h =

∫
Bε(x)

f h > 0

because f and h are strictly positive on Bε(x), which is a contradiction.

Hence, we have shown that if α is the curve with minimum length for all of its
normal variations, then its curvature κ must be zero everywhere.

Now, if κ is identically zero, (2.3) implies δ = 0 is a critical point of length
independently of the choice of h. Therefore α is not necessarily a minimum of
length for a given normal variation. However, α having zero curvature everywhere
means it is contained in a straight line, so all normal variations of α are longer than
it is and α is the curve with minimum length.

2.1.2 Regularity

While the techniques we have just presented are very powerful, they have some
limitations. One such limitation is that when working with normal variations of
a given curve, we are only considering a subset of the set of all possible curves;
namely, the set of curves that can be obtained by varying the given curve in the
way we have described. An example of this is the proof we have given of the
fact that the shortest path between two points is a curve with null curvature ev-
erywhere. It is not hard to come up with a proof that the shortest path between
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two points is a straight line which does not make use of variations and is a more
general proof. This proof can include curves which are not necessarily twice con-
tinuously differentiable, curves which are self intersecting and others.

Also, the hypotheses we are considering are quite restrictive and do not allow
us to work with more general but still easy to deal with objects like curves which
are not 1-regular. For instance, consider the problem of finding the following
infimum

inf
{ ∫ 1

0

(
1−

(
f ′(x)

)2
)2

dx : f (0) = f (1) = 0, f ∈ C 1 ([0, 1])
}

(2.4)

That is, we want to find a continuously differentiable function f : [0, 1] −→ R

satisfying f (0) = f (1) = 0 which minimizes the integral∫ 1

0

(
1−

(
f ′(x)

)2
)2

dx (2.5)

Thinking of the graph of f as the curve α : [0, 1] −→ R2, α(x) := (x, f (x)), we
could be tempted of applying the techiques presented in the previous sections to
find such f . However, this approach results unsatisfactory as there does not exist
any function f such that α is 1-regular and f is a minimizer of the integral above.
We can convince ourselves of the truth of this statement by looking at Figure 2.1.
For details see [7] p.51.

However, if we allow ourselves to consider piecewise continuously differen-
tiable functions, the function f : [0, 1] −→ R defined as

f (x) :=
1
2
−
∣∣∣∣x− 1

2

∣∣∣∣ =
{

x if x ≤ 1
2

1− x if x ≥ 1
2

satisfies ( f ′(x))2 = 1 for all x ∈ [0, 1] \ { 1
2}. Therefore integral (2.5) evaluates to 0

and, since the integrand is nonnegative, the infimum at (2.4) is 0. Nevertheless, f
is not a minimizer because it is not C 1 ([0, 1]).

In conclusion, the variational techniques introduced in this section are quite
powerful and allow us to tackle many problems. However, they come with certain
limitations, some of which can be surmounted by general and more advanced
techniques like those presented in [1].

2.2 Minimal surfaces

In this section we are going to define minimal surface and present some results
as they appear in [9]. Then, we will present related theorems and results that can
be found in [6], [17] and [19].
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Figure 2.1: In black, f , a solution to the problem of minimizing integral (2.5). In
other colours, various 1-regular curves which are not solutions of that problem.
We can see at x = 0, 5 f is not differentiable and therefore its graph is not 1-regular.

Definition 2.4. [Minimal surface] A regular parametrized surface ϕ : Ω −→ R3 is
called minimal if its mean curvature is null everywhere.

Definition 2.5. Let S ⊆ R3 be a regular surface. We say S is a minimal surface if
for every point p in S and every local regular parametrization of S ϕ : Ω −→ S such
that p ∈ ϕ(Ω), ϕ is a minimal surface.

Example 2.6. [Catenoid] A classic example of a minimal surface is the catenoid,
the surface of revolution generated by rotating a catenary around a fixed axis.
Let a be a positive real number. The catenary with equation x2 = a cosh x3

a when
rotated around the x3 axis generates the catenoid given by

ϕ(x1, x2) = (a cosh x2 cos x1, a cosh x2 sin x1, ax2)

where 0 < x1 < 2π, −∞ < x2 < ∞. Let’s calculate its mean curvature and see it
vanishes everywhere.

Its partial derivatives are:

∂x1 ϕ(x1, x2) = (−a cosh x2 sin x1, a cosh x2 cos x1, 0)

∂x2 ϕ(x1, x2) = (a sinh x2 cos x1, a sinh x2 sin x1, a)
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Figure 2.2: Catenoid from [21]

Then the matrix coefficients of the first fundamental form evaluated at
ϕ (x1, x2) are easily calculated using (1.1):

g11 = a2 cosh (x2)
2

g21 = g12 = 0

g22 = a2
(

1 + sinh (x2)
2
)
= a2 cosh (x2)

2

Now to calculate the coefficients of the second fundamental form matrix at
ϕ (x1, x2) we first find

∂x1x1 ϕ = (−a cosh x2 cos x1, −a cosh x2 sin x1, 0)

∂x1x2 ϕ = (−a sinh x2 sin x1, a sinh x2 cos x1, 0)

∂x2x2 ϕ = (a cosh x2 cos x1, a cosh x2 sin x1, 0)

∂x1 ϕ× ∂x2 ϕ = a2 (cosh x2 cos x1, cosh x2 sin x1, − cosh x2 sinh x2)

‖∂x1 ϕ× ∂x2 ϕ‖ = a2 cosh (x2)
2

and then,

〈∂x1 ϕ× ∂x2 ϕ, ∂x1x1 ϕ〉 = −a3 cosh (x2)
2

〈∂x1 ϕ× ∂x2 ϕ, ∂x1x2 ϕ〉 = 0

〈∂x1 ϕ× ∂x2 ϕ, ∂x2x2 ϕ〉 = a3 cosh (x2)
2
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where all derivatives are evaluated at (x1, x2).
Finally, using (1.2), at ϕ (x1, x2) we find:

h11 = −a

h12 = h21= 0

h22 = a

According to (1.6) the mean curvature at every point is then

H =
1
2

h11g22 − h12g12 + h22g11

g11g22 − g2
12

=
1
2
−a · a2 cosh (x2)

2 + a · a2 cosh (x2)
2

(a2 cosh (x2))
2 = 0

so the catenoid is a minimal surface.

Definition 2.7. [Normal variation of a surface] Let ϕ : Ω −→ R3 be a regular
parametrized surface and let D ⊆ Ω be a bounded domain. Let h : D −→ R be
a differentiable function and N : Ω −→ S2 be a unit normal map to ϕ(Ω). The
normal variation of ϕ

(
D
)

determined by h is defined as the function

ϕ : D× (−ε, ε) −→ R3

(x1, x2, t) 7−→ ϕ(x1, x2, t) := ϕ(x1, x2) + th(x1, x2)N(x1, x2)

Proposition 2.8. Let ϕ : Ω −→ R3 be a regular parametrized surface, D ⊆ D ⊆ Ω a
bounded domain, h : D −→ R differentiable and N a unit normal map to ϕ(Ω). Consider
the function ϕt : D −→ R3, ϕt(x1, x2) := ϕ(x1, x2, t) and denote

(
gt

ij

)
, i, j = 1, 2 the

matrix of the first fundamental form of ϕt. Then,

gt
11gt

22 −
(

gt
12
)2

=
(

g11g22 − g2
12
)
(1− 4thH + R(t)) (2.6)

for a function R = R(t) = O(t2).

Proof. From the definition of ϕ we have

∂x1 ϕt(q) = ∂x1 ϕ + t ∂x1 hN + th ∂x1 N (2.7)

∂x2 ϕt(q) = ∂x2 ϕ + t ∂x2 hN + th ∂x2 N

A simple calculation shows that (1.1) is in this case:

gt
11 = g11 + 2th〈∂x1 ϕ, ∂x1 N〉+ t2h2〈∂x1 N, ∂x1 N〉+ t2(∂x1 h)2

gt
12 = g12 + th (〈∂x1 ϕ, ∂x2 N〉+ 〈∂x2 ϕ, ∂x1 N〉) + t2h2〈∂x1 N, ∂x2 N〉+ t2 ∂x1 h ∂x2 h

gt
22 = g22 + 2th〈∂x2 ϕ, ∂x2 N〉+ t2h2〈∂x2 N, ∂x2 N〉+ t2(∂x2 h)2
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Therefore, using (1.3) we have

gt
11gt

22 = g11g22 − 2thg11h22 − 2thg22h11 + R1(t)(
gt

12
)2

= g2
12 − 4thg12h12 + R2(t)

where R1 and R2 are functions such that R1(t) = O(t2) and R2(t) = O(t2).
Since ϕ is regular, g11g22 − g2

12 is nonzero. Hence, we can write
R(t) := (R1(t)− R2(t)) /

(
g11g22 − g2

12

)
. We have R(t) = O(t2) and

gt
11gt

22 −
(

gt
12
)2

= g11g22 − g2
12 − 2th (g11h22 − 2h12g12 + g22h11) + R1(t)− R2(t)

=
(

g11g22 − g2
12
) (

1− 2th
g11h22 − 2h12g12 + g22h11

g11g22 − g2
12

+ R(t)
)

(2.8)

=
(

g11g22 − g2
12
)
(1− 4thH + R(t))

where in the last equality we have used (1.6):

H =
1
2

h11g22 − h12g12 + h22g11

g11g22 − g2
12

Corollary 2.9. Assume the same hypothesis than the previous proposition. Then, for ε > 0
small enough, for every t ∈ (−ε, ε), the function ϕt : D −→ R3 is a regular parametrized
surface.

Proof. Clearly from (2.6), for t small enough gt
11gt

22 −
(

gt
12

)2 6= 0. So, by choosing
an appropriate ε, Corollary 1.49 implies ϕt is regular.

Remark 2.10. This can also be proven more easily in the following manner: note
that at equation (2.7) for t = 0

∂x1 ϕt=0(q) = ∂x1 ϕ(q)

∂x2 ϕt=0(q) = ∂x2 ϕ(q)

which are linearly independent because ϕ is regular. Therefore, since both ∂x1 ϕt(q)
and ∂x2 ϕt(q) are continuous with respect to t, there exists a neighbourhood of t = 0
in which they are linearly independent.

Let’s see why surfaces with null mean curvature are called minimal. Consider
a regular parametrized surface ϕ : Ω −→ R3 and let D ⊆ D ⊆ Ω be a bounded
domain, h : D −→ R be differentiable and N be a unit normal map to ϕ(Ω). Using
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(2.8) and choosing an adequate ε we can write the area of each ϕt
(

D
)

defined by
the normal variation of ϕ determined by h as

A(t) := area
(

ϕt
(

D
))

=
∫

D

√
gt

11gt
22 −

(
gt

12

)2 dx1dx2

=
∫

D

√
g11g22 − g2

12

√
1− 4thH + R(t) dx1dx2

Differentiating this expression yields

A′(t) = −
∫

D

√
g11g22 − g2

12
2hH − R′(t)/2√
1− 4thH + R(t)

dx1dx2

and therefore
A′(0) = −

∫
D

2hH
√

g11g22 − g2
12 dx1dx2

Thus, if H = 0 everywhere, A′(0) = 0 and ϕ = ϕt=0 is the surface among all
normal variations of ϕ for which the area of ϕt

(
D
)

is a critical point. This critical
point might not be a minimum, however, due to historical reasons, we say the
surface is minimal. The following theorem states what we have seen in a more
precise manner and also shows that the reciprocal is true as well.

Theorem 2.11. Let ϕ : Ω −→ R3 be a regular parametrized surface and let D ⊆ D ⊆ Ω
be a bounded domain. Then, ϕ is minimal if, and only if, A′(0) = 0 for all sets D and all
normal variations of ϕ.

Proof. We have already proved that if ϕ is minimal then A′(0) = 0. Let’s now
prove the reciprocal. Assume for all normal variations h of ϕ it is satisfied

A′(0) = −
∫

D
2hH

√
g11g22 − g2

12 dx1dx2 = 0

Since this is satisfied for all h, in particular it is also satisfied for those h such

that h = 0 on ∂D. Thus, from Lemma 2.3 with f = 2H
√

g11g22 − g2
12 and h = h

restricted on D, it follows that 2H
√

g11g22 − g2
12 is identically zero on D. Since ϕ

is regular,
√

g11g22 − g2
12 6= 0 and therefore H must be zero everywhere on D.

Remark 2.12. All surfaces which minimize area are also minimal and they are
called minimizing minimal surfaces.



Chapter 3

Bernstein’s theorem

An interesting kind of surfaces are those which are the graph of a differentiable
function f : R2 −→ R. This chapter is devoted to studying some of the properties
of these surfaces and to proving an important result concerning them which is
Bernstein’s theorem. We are going to follow [17] in the first part. The second part
is focused on Bernstein’s theorem and has [19] as its reference.

3.1 Graph surfaces

Definition 3.1. Let f : Ω −→ R be a differentiable function. The graph of f is
defined as: graph f := {(x1, x2, f (x1, x2)) : (x1, x2) ∈ Ω}

Definition 3.2. Let f : Ω −→ R be a differentiable function. The set {(x1, x2, f (x1, x2)) :
(x1, x2) ∈ Ω} ⊆ R3 is a surface. Surfaces defined in this way are called graph sur-
faces.

The function ϕ : Ω −→ R3 defined by ϕ(x1, x2) := (x1, x2, f (x1, x2)) is a
parametrized surface fulfilling ϕ(Ω) = graph f .

Proposition 3.3. The surface defined by the graph of a differentiable function f : Ω −→ R

is regular.

Proof. Consider the surface ϕ : Ω −→ R3 , ϕ(x1, x2) := (x1, x2, f (x1, x2)). Differen-
tiating at (x1, x2) we get

∂x1 ϕ = (1, 0, fx1)

∂x2 ϕ = (0, 1, fx2)

Clearly these two vectors are independent and ϕ is regular.

23
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We now recall the inverse function theorem as it is used to prove the proposi-
tion following it.

Theorem 3.4 (Inverse function theorem). Let A ⊆ Rn be an open set and T : A −→ Rn

be a C k (A) function for some integer k ≥ 1. If at some point a ∈ A det DaT 6= 0 then
there exists an open set U ⊆ A such that

• V := T(U) is an open set in Rn

• T : U −→ V is bijective

• The inverse function T−1 is C k (V) and DT(a)(T−1) = (DaT)−1

Proposition 3.5. Let S ⊆ R3 be a surface regular at a point p ∈ S. Then, there exists a
neighbourhood Σ ⊆ S of p such that Σ is a graph surface.

Proof. Let ϕ : Ω −→ R3 be a local regular parametrization of S such that p = ϕ(q)
for some q ∈ Ω. Write ϕ(q) = (ϕ1(q), ϕ2(q), ϕ3(q)). Since ∂x1 ϕ(q), ∂x2 ϕ(q) are
linearly independent, by Proposition 1.25 there exist i, j ∈ {1, 2, 3}, i 6= j, such that

∂(ϕi, ϕj)

∂(x1, x2)
(q) 6= 0

Using the inverse function theorem, there exist a neighbourhood ∆ ⊆ Ω of q and a
neighbourhood A ⊆ {

(
ϕi(r), ϕj(r)

)
: r ∈ Ω} of (ϕi, ϕj)(q) such that the function

g := (ϕi, ϕj) : ∆ −→ A is a diffeomorphism. Therefore, if k ∈ {1, 2, 3}, k 6= i, j, the
composition of functions f := ϕk ◦ g−1 : A −→ R is a differentiable function such
that its graph is a graph surface containing p. Finally, Σ = ϕ

(
g−1(A)

)
.

Remark 3.6. This proposition tells us that regular surfaces can be seen locally as
graphs of functions.

In what follows, to simplify the notation we write fxi = ∂xi f , fxixj = ∂2
xixj

f .

Lemma 3.7. Let f : Ω −→ R be a differentiable function and ϕ : Ω −→ R3 , ϕ(x1, x2) =

(x1, x2, f (x1, x2)) be the associated graph surface. Then,

g11 = 1 + ( fx1)
2

g12 = fx1 fx2

g22 = 1 + ( fx2)
2
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Proof. For (x1, x2) ∈ Ω, ϕ(x1, x2) = (x1, x2, f (x1, x2)). Then ∂x1 ϕ = (1, 0, fx1) and
∂x2 ϕ = (0, 1, fx2). A simple calculation then shows

g11 = 〈∂x1 ϕ, ∂x1 ϕ〉 = 1 + ( fx1)
2

g21 = g12 = 〈∂x1 ϕ, ∂x2 ϕ〉 = 〈∂x2 ϕ, ∂x1 ϕ〉 = fx1 fx2

g22 = 〈∂x2 ϕ, ∂x2 ϕ〉 = 1 + ( fx2)
2

Lemma 3.8. Let f : Ω −→ R be a differentiable function and ϕ : Ω −→ R3 , ϕ(x1, x2) =

(x1, x2, f (x1, x2)) be the associated graph surface. Then,

h11 =
fx1x1√

1 + ( fx1)
2 + ( fx2)

2

h12 =
fx1x2√

1 + ( fx1)
2 + ( fx2)

2

h22 =
fx2x2√

1 + ( fx1)
2 + ( fx2)

2

Proof. For (x1, x2) ∈ Ω, ϕ(x1, x2) = (x1, x2, f (x1, x2)). Then

∂x1 ϕ = (1, 0, fx1)

∂x2 ϕ = (0, 1, fx2)

∂x1x1 ϕ = (0, 0, fx1x1)

∂x1x2 ϕ = (0, 0, fx1x2)

∂x2x2 ϕ = (0, 0, fx2x2)

Therefore,

〈∂x1 ϕ× ∂x2 ϕ, ∂x1x1 ϕ〉 =

∣∣∣∣∣∣∣
1 0 fx1

0 1 fx2

0 0 fx1x1

∣∣∣∣∣∣∣ = fx1x1

〈∂x1 ϕ× ∂x2 ϕ, ∂x1x2 ϕ〉 =

∣∣∣∣∣∣∣
1 0 fx1

0 1 fx2

0 0 fx1x2

∣∣∣∣∣∣∣ = fx1x2

〈∂x1 ϕ× ∂x2 ϕ, ∂x2x2 ϕ〉 =

∣∣∣∣∣∣∣
1 0 fx1

0 1 fx2

0 0 fx2x2

∣∣∣∣∣∣∣ = fx2x2
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Using Lemma 3.7 and Proposition 1.48 we get

‖∂x1 ϕ× ∂x2 ϕ‖ =
√

g11g22 − (g12)
2 =

√
1 + ( fx1)

2 + ( fx2)
2

Substituting at (1.2) we get the expressions stated.

Proposition 3.9. Let f : Ω −→ R be a differentiable function and ϕ : Ω −→ R3 be the
associated graph surface. Then,

H =
1
2

(
1 + ( fx1)

2) fx2x2 − 2 fx1 fx2 fx1x2 +
(
1 + ( fx2)

2) fx1x1

(1 + ( fx1)
2 + ( fx2)

2)3/2 (3.1)

Proof. For (x1, x2) ∈ Ω, ϕ(x1, x2) = (x1, x2, f (x1, x2)). Substituting Lemmas 3.7
and 3.8 at (1.6) we readily arrive at the expression shown.

Proposition 3.10. Let f : Ω −→ R be a differentiable function and ϕ : Ω −→ R3 be the
associated graph surface. Then, the mean curvature of ϕ is

H =
1
2

div

 ~∇ f√
1 +

(
~∇ f
)2

 (3.2)

Proof. We have
~∇ f = ( fx1 , fx2)

and (
~∇ f
)2

= ( fx1)
2 + ( fx2)

2

Therefore

div

 ~∇ f√
1 +

(
~∇ f
)2

 =
∂

∂x1

 fx1√
1 +

(
~∇ f
)2

+
∂

∂x2

 fx2√
1 +

(
~∇ f
)2


The first term in this expression is

∂

∂x1

 fx1√
1 +

(
~∇ f
)2

 =
1

1 +
(
~∇ f
)2

 fx1x1

√
1 +

(
~∇ f
)2
− ( fx1)

2 fx1x1 + fx1 fx2 fx1x2√
1 +

(
~∇ f
)2


=

fx1x1√
1 +

(
~∇ f
)2
− ( fx1)

2 fx1x1 + fx1 fx2 fx1x2(
1 +

(
~∇ f
)2
)3/2
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Similarly, the second term is

∂

∂x2

 fx2√
1 +

(
~∇ f
)2

 =
1

1 +
(
~∇ f
)2

 fx2x2

√
1 +

(
~∇ f
)2
− ( fx2)

2 fx2x2 + fx1 fx2 fx1x2√
1 +

(
~∇ f
)2


=

fx2x2√
1 +

(
~∇ f
)2
− ( fx2)

2 fx2x2 + fx1 fx2 fx1x2(
1 +

(
~∇ f
)2
)3/2

Therefore,

div

 ~∇ f√
1 +

(
~∇ f
)2

 =
fx1x1 + fx2x2√
1 +

(
~∇ f
)2
− ( fx1)

2 fx1x1 + ( fx2)
2 fx2x2 + 2 fx1 fx2 fx1x2(

1 +
(
~∇ f
)2
)3/2

=
( fx1x1 + fx2x2)

(
1 + ( fx1)

2 + ( fx2)
2)− ( fx1)

2 fx1x1 − ( fx2)
2 fx2x2 − 2 fx1 fx2 fx1x2(

1 +
(
~∇ f
)2
)3/2

=

(
1 + ( fx1)

2) fx2x2 − 2 fx1 fx2 fx1x2 +
(
1 + ( fx2)

2) fx1x1

(1 + ( fx1)
2 + ( fx2)

2)3/2

= 2H

Proposition 3.11 (Minimal surface equation). Let f : Ω −→ R be a differentiable
function and ϕ : Ω −→ R3 be the associated graph surface. Then, ϕ is minimal if, and only
if, at all points it satisfies(

1 + ( fx1)
2) fx2x2 − 2 fx1 fx2 fx1x2 +

(
1 + ( fx2)

2) fx1x1 = 0

Proof. A surface is minimal if, and only if, its mean curvature H vanishes every-
where. Therefore, Proposition 3.9 implies this result.

Corollary 3.12. Let f : Ω −→ R be a differentiable function and ϕ : Ω −→ R3 be the
associated graph surface. Then, ϕ is minimal if, and only if, at all points it satisfies

div

 ~∇ f√
1 +

(
~∇ f
)2

 = 0

Proof. Immediate from (3.2) and Proposition 3.11.
For an alternative proof, see [12].
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3.2 Jörgen’s theorem

In this section our goal is to prove Jörgen’s theorem, a result we will use in the
next section to prove Bernstein’s theorem.

First we introduce some definitions and results which will prove useful later.

Definition 3.13. Let T : A ⊆ R2 −→ R2 be a function. We say T is distance-
increasing if for all a, b ∈ A

d (a, b) ≤ d (T(a), T(b))

Proposition 3.14. Let T : A ⊆ R2 −→ R2 be a function. If T is distance-increasing then
it is injective.

Proof. Suppose there exist a, b ∈ A such that T(a) = T(b). Then,

d(a, b) ≤ d (T(a), T(b)) = 0

Therefore a = b which concludes the proof.

Lemma 3.15. Let T : A ⊆ R2 −→ R2 be a continuous function. If T is distance-increasing
then the image of T is a closed set.

Proof. Consider a convergent sequence of points in the image of T {T(xi, yi)} ⊆
T(A) with limit α ∈ R2. This sequence is also a Cauchy sequence and therefore
{(xi, yi)} ⊆ R2 is a Cauchy sequence because T is distance increasing. Since R2 is
a complete space, {(xi, yi)} is convergent with limit β ∈ R2. As T is continuous,
T(β) = α so α belongs to the image of T and it is closed.

We now recall the following well known theorems that will be instrumental in
proving Jörgen’s theorem.

Theorem 3.16 (Invariance of domain, [15]). Let T : U ⊆ Rn −→ Rn be a continuous
function on an open set U. If T is injective, then T is a homeomorphism between U and
T(U).

Definition 3.17. [Cauchy-Riemann equations] Let F = (u, v) : A ⊆ R2 −→ R2 be a
differentiable function on an open set A. If F fulfills the following equations

ux1 = vx2

ux2 = −vx1

we say F fulfills the Cauchy-Riemann equations.
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Proposition 3.18. Let F = (u, v) : A ⊆ R2 −→ R2 be a differentiable function on an
open set A. Consider the complex function F : A ⊆ C −→ C given by F(x1 + ix2) =

u(x1, x2) + iv(x1, x2). If, and only if, F satisfies the Cauchy-Riemann equations at a point
a ∈ A, then F is complex-differentiable at a.

Theorem 3.19 (Liouville). Let F : C −→ C be a function complex-differentiable on the
whole complex plane. If F is bounded, then it is constant.

Theorem 3.20 (Jörgen’s theorem). Let Ξ : R2 −→ R be a C 2 function on the whole
plane satisfying

det D2Ξ = Ξx1x1 Ξx2x2 − Ξ2
x1x2

= 1 (3.3)

Then Ξ is a quadratic polynomial in x1, x2.

This theorem is very simple to state and, at first glance, its hypothesis does
not seem restrictive enough to imply the conclusion. If one tries to find counterex-
amples (obviously none will be found), one realizes quickly this hypothesis puts
stricter limits on Ξ than were apparent initially.

Example 3.21. For instance, if we replace 1 by −1 in (3.3) so that it reads

det D2Ξ = Ξx1x1 Ξx2x2 − Ξ2
x1x2

= −1 (3.4)

Jörgen’s theorem is not true anymore. To see this, consider functions g = (g1, g2) :
R2 −→ R2 defined by g(x1, x2) := (x2, x1 + G(x2)) for some differentiable function
G : R −→ R. If g = DΞ, (3.4) becomes

∂x1 g1 ∂x2 g2 − ∂x2 g1
2 = −1 (3.5)

Since ∂x1 g1 = 0 and ∂x2 g1 = 1, this equation is satisfied. It is easy now to find
examples of functions G such that DΞ = g, Ξ is defined on the whole plane but
Ξ is not a polynomial. For instance, taking G(x) = sin x we have g(x1, x2) =

(x2, x1 + sin x2) and Ξ(x1, x2) = x1x2 − cos x2.

Example 3.22. Another natural attempt would be trying ∂x2 g1 = 0 so (3.3) becomes

∂x1 g1 ∂x2 g2 − ∂x2 g1
2 = ∂x1 g1 ∂x2 g2 = 1 (3.6)

From ∂x2 g1 = 0, g1(x1, x2) = c(x1) for some differentiable function c : R −→ R.
Therefore, ∂x2 g2 = 1/ ∂x1 g1 = 1/c′(x1) and consequently

g2(x1, x2) =
x2

c′(x1)
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On the other hand, since g = DΞ, Ξx1(x1, x2) = g1(x1, x2) = c(x1) and thus

Ξ(x1, x2) = C(x1) + M(x2)

where C′(x1) = c(x1) and M : R −→ R is some differentiable function. It also has
to be fulfilled that g2(x1, x2) = Ξx2(x1, x2) so, writing m(x2) = Mx2(x2), we arrive
at

g2(x1, x2) = m(x2)

Comparing the two expressions for g2 we see it has to be satisfied that c′(x1) is
a nonzero constant α and m(x2) = x2. Therefore, C(x1) =

α
2 x2

1 and M(x2) =
β
2 x2

2.
Finally,

Ξ(x1, x2) =
α

2
x2

1 +
β

2
x2

2

So in this case it is inevitable that Ξ is a polynomial of degree 2 on x1, x2, as in the
general case stated on the theorem.

Note we have omitted some constants for the sake of simplicity but the argu-
ment remains valid.

Let’s now prove Jörgen’s theorem.

Proof. The hypothesis
Ξx1x1 Ξx2x2 − Ξ2

x1x2
= 1

implies that Ξx1x1 Ξx2x2 > 0 so Ξx1x1 and Ξx2x2 have the same sign. Without loss of
generality, we can assume

Ξx1x1 > 0 and Ξx2x2 > 0 (3.7)

everywhere because if it it not the case, we can replace Ξ with −Ξ. Take two points
on R2 (x0, y0) and (x1, y1) and define the function h : R −→ R2 as

h(t) = Ξ (x0 + t(x1 − x0), y0 + t(y1 − y0))

Differentiating with respect to t yields

h′(t) = (x1 − x0)Ξx1 + (y1 − y0)Ξx2

h′′(t) = (x1 − x0)
2Ξx1x1 + 2(x1 − x0)(y1 − y0)Ξx1x2 + (y1 − y0)

2Ξx2x2

where all derivatives of Ξ are evaluated at (x0 + t(x1 − x0), y0 + t(y1 − y0)). If
x1 = x0, h′′(t) = (y1 − y0)

2Ξx2x2 ≥ 0. If x1 6= x0, then

h′′(t) = (x1 − x0)
2

(
Ξx1x1 − 2Ξx1x2

(
y1 − y0
x1 − x0

)
+ Ξx2x2

(
y1 − y0
x1 − x0

)2
)
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The second factor is a quadratic polynomial in (y1 − y0)/(x1 − x0) with discrimi-
nant

4Ξ2
x1x2
− 4Ξx1x1 Ξx2x2 = 4Ξ2

x1x2
− 4(1 + Ξ2

x1x2
) = −4 < 0

by (3.3), so it never vanishes. We note now that this polynomial evaluated at
(y1 − y0)/(x1 − x0) = 0 equals Ξx1x1 > 0 which is always strictly positive by (3.7).
Hence, since the polynomial is never zero and at a point it is strictly positive, it is
strictly positive everywhere. Therefore, in any case h′′(t) ≥ 0 and consequently

h′(1) ≥ h′(0)

Writing pi = Ξx1(xi, yi) and qi = Ξx2(xi, yi) for i = 0, 1, this is equivalent to

(x1 − x0)p1 + (y1 − y0)q1 ≥ (x1 − x0)p0 + (y1 − y0)q0

which implies
(x1 − x0)(p1 − p0) + (y1 − y0)(q1 − q0) ≥ 0 (3.8)

Consider the so called transformation of Lewy T = (ξ, η) : R2 −→ R2:

T(x1, x2) := (ξ(x1, x2), η(x1, x2))

:= (x1 + Ξx1(x1, x2), x2 + Ξx2(x1, x2))

Write now ξi = ξ(xi, yi) and ηi = η(xi, yi) for i = 0, 1. From equation (3.8) we
deduce the following:

d (T(x0, y0), T(x1, y1))
2 = (ξ1 − ξ0)

2 + (η1 − η0)
2

= (x1 − x0 + p1 − p0)
2 + (y1 − y0 + q1 − q0)

2

= (x1 − x0)
2 + (p1 − p0)

2 + 2(x1 − x0)(p1 − p0)

+ (y1 − y0)
2 + (q1 − q0)

2 + 2(y1 − y0)(q1 − q0)

≥ (x1 − x0)
2 + (y1 − y0)

2

= d ((x0, y0), (x1, y1))
2

Thus, T is distance-increasing and, in particular, injective by Proposition 3.14.
The Jacobian of T is(

ξx1 ξx2

ηx1 ηx2

)
=

(
1 + Ξx1x1 Ξx1x2

Ξx1x2 1 + Ξx2x2

)

and has determinant

(1 + Ξx1x1)(1 + Ξx2x2)− Ξ2
x1x2

= 1 + Ξx1x1 + Ξx2x2 + Ξx1x1 Ξx2x2 − Ξ2
x1x2

= 2 + Ξx1x1 + Ξx2x2 ≥ 2
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where we have used (3.3) in the last equality and (3.7) in the inequality. Therefore
the differential of T is injective everywhere. Also, since T is injective and contin-
uous, by the invariance of domain theorem (Theorem 3.16) its image is open. At
the same time, however, according to Lemma 3.15 the image of T is closed. Hence,
the image of T is the whole R2 and the inverse function theorem (Theorem 3.4)
implies T is a diffeomorphism of R2 onto itself. Abusing of notation we write the
inverse of T as T−1(ξ, η) = (x1(ξ, η), x2(ξ, η)). It has Jacobian(

∂x1
∂ξ

∂x1
∂η

∂x2
∂ξ

∂x2
∂η

)
=

(
1 + Ξx1x1 Ξx1x2

Ξx1x2 1 + Ξx2x2

)−1

=
1

2 + Ξx1x1 + Ξx2x2

(
1 + Ξx2x2 −Ξx1x2

−Ξx1x2 1 + Ξx1x1

)

Define now a function F = (U, V) : R2 −→ R2 by

F(ξ, η) = (U(ξ, η), V(ξ, η))

:= (x1(ξ, η)− Ξx1 (x1(ξ, η), x2(ξ, η)) ,−x2(ξ, η) + Ξx2 (x1(ξ, η), x2(ξ, η)))

= (x1 − Ξx1 ,−x2 + Ξx2)

Using the Jacobian of T−1 we have calculated and remembering (3.3) it is easy
to see that

∂U
∂ξ

=
∂x1

∂ξ
− ∂Ξx1

x1

∂x1

∂ξ
− ∂Ξx1

∂x2

∂x2

∂ξ

=
(1 + Ξx2x2 − Ξx1x1(1 + Ξx2x2)− Ξx1x2(−Ξx1x2))

2 + Ξx1x1 + Ξx2x2

=
Ξx2x2 − Ξx1x1

2 + Ξx1x1 + Ξx2x2

=
∂V
∂η

and
∂U
∂η

= − 2Ξx1x2

2 + Ξx1x1 + Ξx2x2

= −∂V
∂ξ

Therefore U and V satisfy the Cauchy-Riemann equations so the function F : C −→
C defined by

F(ξ + iη) = U(ξ, η) + iV(ξ, η)

= x1 − Ξx1 + i(−x2 + Ξx2)

is complex-differentiable on the whole complex plane. Its complex derivative F′ is

F′(ξ + iη) =
∂U
∂ξ

+ i
∂V
∂ξ

=
Ξx2x2 − Ξx1x1 + i2Ξx1x2

2 + Ξx1x1 + Ξx2x2

(3.9)
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with modulus

|F′(ξ + iη)|2 =
(Ξx2x2 − Ξx1x1)

2 + 4Ξ2
x1x2

(2 + Ξx1x1 + Ξx2x2)
2

=
(Ξx2x2 − Ξx1x1)

2 + 4Ξx1x1 Ξx2x2 − 4
(2 + Ξx1x1 + Ξx2x2)

2

=
(Ξx1x1 + Ξx2x2)

2 − 4
(2 + Ξx1x1 + Ξx2x2)

2

=
Ξx1x1 + Ξx2x2 − 2
Ξx1x1 + Ξx2x2 + 2

=
Ξx1x1 + Ξx2x2 + 2
Ξx1x1 + Ξx2x2 + 2

− 4
Ξx1x1 + Ξx2x2 + 2

= 1− 4
Ξx1x1 + Ξx2x2 + 2

(3.10)

where we have used the hypothesis (3.3) at the second equality. From (3.7),
4/ (Ξx1x1 + Ξx2x2 + 2) > 0, so

|F′(ξ + iη)|2 < 1

Hence F′ is bounded and, by Liouville’s theorem (Theorem 3.19), it is constant.
Rearranging (3.10) we get

2 + Ξx1x1 + Ξx2x2 =
4

1− |F′|2 (3.11)

Writing Re and Im to represent the real and imaginary parts of a complex quantity,
respectively, we can now solve for Ξx1x2 . From (3.9) we get

ReF′ =
Ξx2x2 − Ξx1x1

2 + Ξx1x1 + Ξx2x2

(3.12)

ImF′ =
2Ξx1x2

2 + Ξx1x1 + Ξx2x2

(3.13)

From this and using (3.11)

Ξx1x2 =
2 + Ξx1x1 + Ξx2x2

2
ImF′ =

2ImF′

1− |F′|2 (3.14)

To solve for Ξx2x2 − Ξx1x1 we use (3.12) and (3.11) to get

Ξx2x2 − Ξx1x1 =
4ReF′

1− |F′|2

We can solve for Ξx2x2 + Ξx1x1 using (3.14) and we find

Ξx2x2 + Ξx1x1 =
4

1− |F′|2 − 2
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Adding and subtracting the last two expressions we finally obtain

Ξx1x1 =
1
2

(
4

1− |F′|2 −
4ReF′

1− |F′|2 − 2
)

Ξx2x2 =
1
2

(
4ReF′

1− |F′|2 +
4

1− |F′|2 − 2
)

To conclude, since F′ is constant, Ξx1x1 , Ξx1x2 and Ξx2x2 are constants as well so
Ξ is a quadratic polynomial in x1, x2.

3.3 Bernstein’s theorem

Minimal surfaces can be characterised by a partial differential equation. This
kind of equations are notoriously hard to solve and oftentimes the solution is only
defined in a subset of Rn. A somewhat natural question one might ask then is
what shape does a minimal surface defined on the whole plane have. We are now
ready to prove Bernstein’s theorem which gives the answer to this question when
this minimal surface is a graph.

Lemma 3.23 (Poincaré’s lemma, [14]). Let h = (h1, ..., hn) : A ⊆ Rn −→ Rn be a
continuously differentiable function defined on a open star-shaped set A. If h is closed,
meaning

∂hi

∂xj
=

∂hj

∂xi
∀i, j ∈ {1, ..., n}

then h is conservative, that is, there exists a function U : A −→ R such that U ∈ C 2 (A)

and h = ~∇U.

Proof. Without loss of generality, assume 0 ∈ A. As A is star-shaped, we can also
suppose 0 is its center and then we can define the function U for every x ∈ A as

U(x) :=
∫ 1

0
〈h(tx), x〉 dt

Taking the partial derivative of U with respect to any of its variables xj we obtain

∂U
∂xj

=
∫ 1

0

∂

∂xj
〈h(tx), x〉 dt

Calculating the integrand yields

∂

∂xj
〈h(tx), x〉 = ∂

∂xj

n

∑
i=1

hi(tx)xi = hj(tx) +
n

∑
i=1

∂hi

∂xj
(tx)txi

= hj(tx) +
n

∑
i=1

∂hj

∂xi
(tx)txi =

d
dt
[
thj(tx)

]
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where in the second to last equality we have used that h is closed.
Therefore,

∂U
∂xj

=
∫ 1

0

d
dt
[
thj(tx)

]
dt = [thj(tx)]t=1

t=0 = hj(tx)

Since this is true for all variables xj of U, we finally arrive at h = ~∇U.

Remark 3.24. The converse of this lemma is easily proved: let U : A −→ R such
that U ∈ C 2 (A) and h = ~∇U. Then, using Schwarz’s theorem we have

∂hi

∂xj
=

∂2U
∂xj∂xi

=
∂2U

∂xi∂xj
=

∂hj

∂xi

Theorem 3.25 (Bernstein’s theorem). Planes are the only minimal surfaces in R3 which
are the graph of a function f : R2 −→ R.

Proof. Let f : R2 −→ R be a differentiable function and ϕ : Ω −→ R3 be the
associated graph surface. If ϕ is minimal, according to Proposition 3.11 it satisfies:(

1 + ( fx1)
2) fx2x2 − 2 fx1 fx2 fx1x2 +

(
1 + ( fx2)

2) fx1x1 = 0 (3.15)

Let W =
√

1 + ( fx1)
2 + ( fx2)

2. The following equations hold:

∂

∂x1

(
1 + ( fx2)

2

W

)
− ∂

∂x2

(
fx1 fx2

W

)
= 0 (3.16)

∂

∂x1

(
fx1 fx2

W

)
− ∂

∂x2

(
1 + ( fx1)

2

W

)
= 0 (3.17)

Let’s prove the first one, the second one is done analogously. First observe that

∂W
∂x1

=
fx1 fx1x1 + fx2 fx1x2

W
∂W
∂x2

=
fx1 fx1x2 + fx2 fx2x2

W

Therefore,

∂

∂x1

(
1 + ( fx2)

2

W

)
=

2 fx2 fx1x2W − (1 + ( fx2)
2)( fx1 fx1x1 + fx2 fx1x2)/W

W2

=
1

W3

(
2 fx2 fx1x2W2 − (1 + ( fx2)

2)( fx1 fx1x1 + fx2 fx1x2)

)
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and

∂

∂x2

(
fx1 fx2

W

)
=

( fx1x2 fx2 + fx1 fx2x2)W − fx1 fx2( fx1 fx1x2 + fx2 fx2x2)/W
W2

=
1

W3

(
( fx1x2 fx2 + fx1 fx2x2)W

2 − fx1 fx2( fx1 fx1x2 + fx2 fx2x2)

)

Hence,

∂

∂x1

(
1 + ( fx2)

2

W

)
− ∂

∂x2

(
fx1 fx2

W

)
=

=
1

W3

(
2 fx2 fx1x2W2 − (1 + ( fx2)

2)( fx1 fx1x1 + fx2 fx1x2)

)
− 1

W3

(
( fx1x2 fx2 + fx1 fx2x2)W

2 − fx1 fx2( fx1 fx1x2 + fx2 fx2x2)

)
=

1
W3

(
2 fx2 fx1x2(1 + ( fx1)

2 + ( fx2)
2)

− (1 + ( fx2)
2)( fx1 fx1x1 + fx2 fx1x2)

− ( fx1x2 fx2 + fx1 fx2x2)(1 + ( fx1)
2 + ( fx2)

2)

+ fx1 fx2( fx1 fx1x2 + fx2 fx2x2)

)
=

1
W3

(
2 fx2 fx1x2 + 2( fx1)

2 fx2 fx1x2 + 2( fx2)
3 fx1x2 − fx1 fx1x1 − fx2 fx1x2

− fx1( fx2)
2 fx1x1 − ( fx2)

3 fx1x2 − fx2 fx1x2 − ( fx1)
2 fx2 fx1x2 − ( fx2)

3 fx1x2

− fx1 fx2x2 − ( fx1)
3 fx2x2 − fx1( fx2)

2 fx2x2 + ( fx1)
2 fx2 fx1x2 + fx1( fx2)

2 fx2x2

)
=

1
W3

(
2( fx1)

2 fx2 fx1x2 − fx1 fx1x1 − fx1( fx2)
2 fx1x1 − fx1 fx2x2 − ( fx1)

3 fx2x2

)
= − fx1

W3

(
− 2 fx1 fx2 fx1x2 + fx1x1 + ( fx2)

2 fx1x1 + fx2x2 + ( fx1)
2 fx2x2

)

= − fx1

W3

(
(1 + ( fx1)

2) fx2x2 − 2 fx1 fx2 fx1x2 + (1 + ( fx2)
2) fx1x1

)
= 0

where the last expression equals zero because of (3.15)

Now, defining h : R2 −→ R2 as h :=
(

1+( fx1 )
2

W ,
fx1 fx2

W

)
, since h satisfies (3.17)

and R2 is convex, Poincaré’s lemma implies there exists a function α : R2 −→ R,
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α ∈ C 2 (A) such that

αx1 =
1 + ( fx1)

2

W
(3.18)

αx2 =
fx1 fx2

W
(3.19)

Similarly, using (3.16) we see there exists β : R2 −→ R, β ∈ C 2 (A) such that

βx1 =
fx1 fx2

W
(3.20)

βx2 =
1 + ( fx2)

2

W
(3.21)

Repeating this argument once more but now taking the function h in Poincaré’s
lemma as h = (α, β) and considering equations (3.19) and (3.20), this lemma im-
plies there exists a function Ξ : R2 −→ R satisfying

Ξx1 = α

Ξx2 = β

Thus, from equations (3.18) and (3.21) we get

Ξx1x1 = αx1 =
1 + ( fx1)

2

W
(3.22)

Ξx1x2 = αx2 = βx1 =
fx1 fx2

W
(3.23)

Ξx2x2 = βx2 =
1 + ( fx2)

2

W
(3.24)

which implies that

Ξx1x1 Ξx2x2 − Ξ2
x1x2

=

(
1 + ( fx1)

2) (1 + ( fx2)
2)

W2 − ( fx1 fx2)
2

W2

=
1 + ( fx1)

2 + ( fx2)
2 + ( fx1 fx2)

2 − ( fx1 fx2)
2

1 + ( fx1)
2 + ( fx2)

2

= 1

Finally, Jörgen’s theorem implies that Ξx1x1 , Ξx1x2 , Ξx2x2 are constants.
Our goal now is to prove that fx1 , fx2 are constants.
First, since (3.22) and (3.24) are constant, their addition is also constant for

some constant we call c ∈ R. Therefore

c =
1 + ( fx1)

2

W
+

1 + ( fx2)
2

W
=

1 + ( fx1)
2 + 1 + ( fx2)

2

W
=

W2 + 1
W

= W +
1

W



38 Bernstein’s theorem

From this, W2− cW + 1 = 0, therefore W =
(

c±
√

c2 − 4
)

/2 is constant (W exists
by definition so we do not have to worry about the existence of real solutions to
the square root in this last expression).

Second, since W =
√

1 + ( fx1)
2 + ( fx2)

2 = c, then W2 = 1+( fx1)
2 +( fx2)

2 = c2

so
( fx2)

2 = c2 − 1− ( fx1)
2 (3.25)

Now, (3.23) and W being constant, imply ( fx1)
2( fx2)

2 = A is constant for some
number A ∈ R. Therefore, using (3.25) we get

A =( fx1)
2( fx2)

2 = ( fx1)
2(c2 − 1− ( fx1)

2) = −( fx1)
4 +

(
c2 − 1

)
( fx1)

2

=⇒ ( fx1)
4 +

(
1− c2) ( fx1)

2 + A = 0

=⇒ ( fx1)
2 =
−(1− c2)±

√
(1− c2)2 − 4A

2

Consequently, ( fx1)
2 is constant and so is fx1 . From (3.25) we deduce fx2 is con-

stant.
Lastly, fx1 and fx2 being constant implies f (x1, x2) = C1x1 +C2x2 +C3 for some

C1, C2, C3 ∈ R so the graph of f , the surface ϕ, is a plane.



Chapter 4

Higher dimensions

In this chapter we are going to discuss how one can generalize the concepts
introduced to higher dimensions. We are also going to show an important example
of Minimal Surface in higher dimensions, namely the cone.

4.1 Basic concepts

Let’s begin by extending some of the concepts reviewed in the first chapter to
arbitrary dimensions. Now we denote by Ω an open set in Rn−1.

Definition 4.1. A parametrized surface is defined as a differentiable function
ϕ : Ω −→ Rn.

Definition 4.2. A parametrized surface ϕ : Ω −→ Rn is called regular at a point
q = (x1, ..., xn−1) ∈ Ω if vectors {∂xi ϕ(q) : i = 1, ..., n− 1} are linearly independent.
We say that ϕ is regular if it is regular at every point q ∈ Ω.

Remark 4.3. [Graph surfaces] Given a differentiable function f : Ω −→ R, we can
define a parametrized surface as ϕ : Ω −→ Rn,

ϕ(x1, .., xn−1) := (x1, ..., xn−1, f (x1, ..., xn−1))

This surface is regular because ∀q ∈ Ω and ∀i = 1, ..., n− 1, vectors
∂xi ϕ(q) = (0, ..., 0 , 1 , 0, ..., 0, ∂xi f (q)), where the 1 is at position i, are linearly
independent. Such parametrized surfaces are called graph surfaces.

Definition 4.4. Let S ⊆ Rn. A local regular parametrization of S is defined as a
differentiable function ϕ : Ω −→ S such that:

• ϕ is a regular parametrized surface.

39
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• ϕ(Ω) ⊆ S is an open set in S.

• ϕ : Ω −→ ϕ(Ω) is a homeomorfism.

Definition 4.5. A set S ⊆ Rn is called a regular surface at a point p ∈ S if there
exist a local regular parametrization of S ϕ : Ω −→ S and a point q ∈ Ω such that
ϕ(q) = p. S is said to be regular if it is regular at every point p ∈ S.

Definition 4.6. Let S ⊆ Rn be a regular surface and let p be a point in S. Let
ϕ : Ω −→ S be a local regular parametrization of S such that for some q ∈ Ω,
p = ϕ(q). The tangent space to S at p is defined as:

TpS := { λ1 ∂x1 ϕ(q) + ... + λn−1 ∂xn-1 ϕ(q) : λ1, ..., λn−1 ∈ R }

Definition 4.7. Let S ⊆ Rn be a regular surface and p ∈ S a point in S. We define
the normal space to S at p as the orthogonal complement of TpS in Rn and denote
it by TpS⊥.

A unit vector N ∈ TpS⊥ is called a normal vector to S at p.

Definition 4.8. [Gauss map] Let S ⊆ Rn be a regular surface. A Gauss map on S
is defined as a continuous function N : S −→ Sn−1 such that at every point p ∈ S,
N(p)⊥ = TpS. Equivalently, N(p) is a normal vector to S at every point p in S.

Remark 4.9. The differential of the Gauss map N on a point p on a surface S,
dpN : TpS −→ TpS, is defined analogously to the case n = 3.

Definition 4.10. [First fundamental form] Let S ⊆ Rn be a regular surface, p ∈ S a
point in S and denote the usual dot product in Rn as 〈·, ·〉. The first fundamental
form of the surface S at p is defined as:

Ip : TpS× TpS −→ R

(w1, w2) 7−→ Ip(w1, w2) := 〈w1, w2〉

Remark 4.11. Similarly to Remark 1.47, the first fundamental form at a point p
on a surface S is a positive-definite bilinear symmetric function. Therefore, we
can express it as a matrix g(p) :=

(
gij(p)

)
, where 1 ≤ i, j ≤ n − 1, in the basis

{∂xi ϕ(q) : i = 1, ..., n− 1} where ϕ : Ω −→ S is a local regular parametrization of S
such that ϕ(q) = p for some q ∈ Ω.

Definition 4.12. [Second fundamental form] Let S ⊆ Rn be a regular surface, p ∈ S
a point in S and let N : S −→ Sn−1 be a Gauss map on S. The second fundamental
form of the surface S at p is defined as:

I Ip : TpS× TpS −→ R

(w1, w2) 7−→ I Ip(w1, w2) := −Ip(dpN(w1), w2)
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Remark 4.13. Since the first fundamental form and dpN are linear, the second
fundamental form is bilinear. Therefore, we can express the second fundamental
form as a matrix h(p) :=

(
hij(p)

)
, where 1 ≤ i, j ≤ n − 1, in the basis of S

{∂xi ϕ(q) : i = 1, ..., n− 1} where ϕ : Ω −→ S is a local regular parametrization of S
such that p = ϕ(q) for some q ∈ Ω.

Proposition 4.14. Let S ⊆ Rn be a regular surface, p ∈ S a point in S and let N : S −→
Sn−1 be a Gauss map on S. The differential of the Gauss map dpN is a self-adjoint linear
map for all p in S. That is ∀w1, w2 ∈ TpS, 〈dpN(w1), w2〉 = 〈w1, dpN(w2)〉.

Remark 4.15. This implies that there exist n − 1 real eigenvalues of dpN, each
with a corresponding eigenvector. This eigenvectors are orthogonal and are called
principal directions of curvature of S at p.

Definition 4.16. [Mean curvature] Let S ⊆ Rn be a regular surface, p ∈ S a point
in S and let N : S −→ Sn−1 be a Gauss map on S. The mean curvature of S at p is
defined as

H(p, N) :=
1

n− 1
tr dpN (4.1)

Proposition 4.17 (See for instance [5]). Let f : Ω −→ R be a differentiable function and
ϕ : Ω −→ Rn be the associated graph surface. Then, the mean curvature of ϕ is

H =
1

n− 1
div

 ~∇ f√
1 +

(
~∇ f
)2

 (4.2)

Definition 4.18. [Area] Let ϕ : Ω −→ Rn be a parametrized surface, D ⊆ Ω be a
bounded set with closure D ⊆ Ω and write p = ϕ(x1, ..., xn−1). The area of ϕ(D)

is defined as

area(ϕ(D)) :=
∫

D

√
det (g(p)) dx1...dxn−1

where g(p) is the matrix of the first fundamental form of ϕ(Ω) at p in the basis
{∂xi ϕ(x1, ..., xn−1) : i = 1, ..., n− 1}

Remark 4.19. The definition of area does not depend on the parametrization ϕ.

Plateau’s problem of finding the surface of smallest area among the surfaces
having a certain curve as its perimeter can be extended to n dimensional space
with the following definition:
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Definition 4.20. [Area minimizing surface] Let S ⊆ Rn be a regular surface. We
say S is area minimizing if for all open bounded sets U ⊆ Rn and for all regular
surfaces R ⊆ Rn such that S = R in Rn \U, then

area (R ∩U) ≥ area (S ∩U)

Remark 4.21. As in the three dimensional case, surfaces in Rn which are area
minimizing are minimal (i.e. H = 0 everywhere). The converse is not true, exactly
as in three dimensions.

4.2 The cone

Figure 4.1: Upper half of a cone in 3 dimensions

Example 4.22. Let’s calculate the mean curvature of a cone in three dimensional
space. The cone is a surface given by {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = x2

3} \ {(0, 0, 0)}.
We have removed the point (0, 0, 0) so that this surface is regular. Define f :

R2 \ {(0, 0)} −→ R as f (x1, x2) :=
√

x2
1 + x2

2. The graph of f is a graph surface
corresponding to the upper half of the cone. To calculate the mean curvature of
the cone we use Proposition 3.10:

H =
1
2

div

 ~∇ f√
1 +

(
~∇ f
)2


Writing S = x2

1 + x2
2 = f (x1, x2)2 we have

~∇ f =

(
x1√

S
,

x2√
S

)



4.2 The cone 43

and (
~∇ f
)2

=
x2

1
S

+
x2

2
S

= 1

Therefore div

(
~∇ f√

1+(~∇ f)
2

)
= div

(
~∇ f√

2

)
= 1√

2
div

(
~∇ f
)

and

div
(
~∇ f
)
=

∂

∂x1

(
x1√

S

)
+

∂

∂x2

(
x2√

S

)
=

1
S

(√
S− x1

x1√
S

)
+

1
S

(√
S− x2

x2√
S

)
=

S− x2
1

S3/2 +
S− x2

2
S3/2 =

x2
1 + x2

2

(x2
1 + x2

2)
3/2

=
1√

x2
1 + x2

2

6= 0

Hence H 6= 0 and the cone in three dimensions is not a minimal surface.
For the lower half of the cone the calculations are done analogously picking

f (x1, x2) := −
√

x2
1 + x2

2.

Example 4.23. Similarly to the previous example, consider now a cone in four
dimensional space {(x1, x2, x3, x4) ∈ R4 : x2

1 + x2
2 = x2

3 + x2
4} \ {(0, 0, 0, 0)}. Define

f : R3 \ {(0, 0, 0)} −→ R as f (x1, x2, x3) :=
√

x2
1 + x2

2 − x2
3. Again, the graph of f is

a parametrization of a portion of the cone and its mean curvature is given by (4.2).
Writing S = x2

1 + x2
2 − x2

3 = f (x1, x2, x3)2 and W = x2
1 + x2

2 + x2
3, we have

~∇ f =

(
x1√

S
,

x2√
S

,
−x3√

S

)
and (

~∇ f
)2

=
x2

1
S

+
x2

2
S

+
x2

3
S

=
W
S

Therefore √
1 +

(
~∇ f
)2

=

√
1 +

W
S

=
1√
S

√
S + W =

1√
S

√
2
√

x2
1 + x2

2

Consequently

div

 ~∇ f√
1 +

(
~∇ f
)2

 = div

 1
1√
S

√
2
√

x2
1 + x2

2

(
x1√

S
,

x2√
S

,
−x3√

S

) (4.3)

=
1√
2

 ∂

∂x1

 x1√
x2

1 + x2
2

+
∂

∂x2

 x2√
x2

1 + x2
2

− ∂

∂x3

 x3√
x2

1 + x2
2
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We have

∂

∂x1

 x1√
x2

1 + x2
2

 =
x2

2(
x2

1 + x2
2

)3/2

∂

∂x2

 x2√
x2

1 + x2
2

 =
x2

1(
x2

1 + x2
2

)3/2

∂

∂x3

 x3√
x2

1 + x2
2

 =
1√

x2
1 + x2

2

So (4.3) becomes

div

 ~∇ f√
1 +

(
~∇ f
)2

 =
1√
2

 x2
2(

x2
1 + x2

2

)3/2 +
x2

1(
x2

1 + x2
2

)3/2 −
1√

x2
1 + x2

2


=

1√
2

(
x2

1 + x2
2(

x2
1 + x2

2

)3/2 −
x2

1 + x2
2(

x2
1 + x2

2

)3/2

)
= 0

Thus, from (4.2), H = 0 everywhere and the cone in four dimensions is a
minimal surface.

Remark 4.24. This is an interesting example because while the cone in R3 is nei-
ther minimal nor area minimizing, the cone in R4 is minimal but it is not area
minimizing either (this is much harder to prove and it is beyond the scope of this
project, see [2] for a proof).

4.3 Bernstein’s theorem in higher dimensions

A natural question is whether Bernstein’s theorem still holds for a number
of dimensions other than 3, that is, if a graph surface defined by a function f :
Rn−1 −→ R is minimal in Rn, is f a linear function? In this section we will give
a brief account on the history of Bernstein’s theorem according mainly to [4], [8]
and [22] and in the end we will answer this question.

In [3] (1910) Bernstein aims to generalise Liouville’s lemma (Lemma 3.19) to
the case of minimal graph surfaces in R3 defined on the whole plane and he proves
the theorem named after him we presented in Theorem 3.25. Note, nevertheless,
that the proof we have given is not the original one, it is based on [16] and [19].
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Some years later, in 1965, extending Fleming’s results presented in [10], De
Giorgi in [8] proved that if Bernstein’s theorem is false for surfaces in Rn, then
there exists an area minimizing cone in Rn−1. Since the cone in R3 is not area
minimizing, De Giorgi’s result implies Bernstein’s theorem holds for surfaces in
R4.

The case n = 5 was solved by Almgren in [2] (1966). In that paper he showed
some results about three dimensional surfaces in R4 and he proved that area min-
imizing cones in R4 do not exist. From this it is deduced that Bernstein’s theorem
also is true in R5.

Simons in 1968 in [18] made a remarkable leap in the study of Bernstein’s
problem by generalising Almgren’s result to Rk for any k ≤ 7. As a consequence,
it is deduced that Bernstein’s theorem is true for all n ≤ 8. He noted as well the
existence of a special class of cones in R2m for every m ≥ 4, but he did not prove
whether this cones are globally area minimizing.

Finally, just one year later, Bombieri, De Giorgi and Giusti in [4] showed that
Simons’ cones are indeed area minimizing. Starting from this fact, they also de-
duced that for all n ≥ 9 there exist graph surfaces defined everywhere which
are minimal yet are not the graph of a linear function in Rn. Thus, they showed
Bernstein’s theorem does not hold for n ≥ 9.

In summary, a complete solution to Bernstein’s problem is given by Simons’
proof of its veracity for n ≤ 8 and by Bombieri, de Giorgi and Giusti’s proof of its
falseness for n ≥ 9.
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