
www.small-methods.com

2100279 (1 of 12) © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

ReseaRch aRticle

Fast Label-Free Nanoscale Composition Mapping of 
Eukaryotic Cells Via Scanning Dielectric Force Volume 
Microscopy and Machine Learning

Martí Checa, Ruben Millan-Solsona, Adrianna Glinkowska Mares, Silvia Pujals,  
and Gabriel Gomila*

Dr. M. Checa,[+] R. Millan-Solsona, Prof. G. Gomila
Nanoscale Bioelectrical Characterization Group
Institute for Bioengineering of Catalonia (IBEC)
The Barcelona Institute of Science and Technology (BIST)
Carrer Baldiri i Reixac 11-15, Barcelona 08028, Spain
E-mail: ggomila@ibecbarcelona.eu
R. Millan-Solsona, Dr. S. Pujals, Prof. G. Gomila
Departament d’Enginyeria Electrònica i Biomèdica
Universitat de Barcelona
Carrer Martí i Franquès 1, Barcelona 08028, Spain
A. G. Mares, Dr. S. Pujals
Nanoscopy for Nanomedicine Group
Institute for Bioengineering of Catalonia (IBEC)
The Barcelona Institute of Science and Technology (BIST)
Carrer Baldiri i Reixac 11–15, Barcelona 08028, Spain

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/smtd.202100279.

[+]Present Address: ICN2-Institut Català de Nanociència i 
Nanotecnologia (CERCA-BIST-CSIC), Campus Universitat Autònoma de 
Barcelona, Bellaterra, Barcelona 08193, Spain

DOI: 10.1002/smtd.202100279

copy. By means of this technique, the spatial 
distribution of the biochemical composition 
of eukaryotic cells can be obtained from 
the micro- to the nanoscale.[1–4] Neverthe-
less, fluorescence microscopy is invariably 
linked to the use of exogenous fluorescence 
probes, which can be complex to incorpo-
rate (e.g., in vivo applications), not desir-
able (e.g., toxicity assays) or may perturb the 
local properties of the cell under study. To 
overcome this limitation, label-free optical 
microscopy techniques have been also 
developed, with a considerable boost expe-
rienced in recent years with the incorpora-
tion of multiphonon and multiharmonic 
optics.[5,6] Examples include two-phonon 
optical microscopy to detect autofluores-
cence in cellular components,[7] second and 
third-harmonic generation methods[8] to 

detect fibrillar and lipid structures, Raman microscopy to detect 
specific chemical bonds,[9] including coherent antistokes Raman 
scattering for improved performance,[10] or digital holographic 
microscopy with quantitative refractive index mapping.[11,12]

Nonoptical label-free biochemical composition mapping 
methods are also possible, by probing, for instance, the local 
(complex) permittivity of eukaryotic cells.[13,14] Composition 
maps can be obtained by relating the local permittivity values 
measured in a cell to the permittivity of the pure biochemical 
components such as lipids, proteins, and nucleic acids.[15] 
This approach has been implemented for small-scale systems 
showing relatively simple geometries, like nanoparticles,[16] bac-
terial cells,[17,18,19] bacterial endospores,[20] virus particles,[16] pro-
tein macromolecular structures like virus tails and capsids[21] 
or bacterial flagella.[22] But for the case of eukaryotic cells not 
much progress has been reported to date due to the highly 
nonplanar and heterogeneous nature of the cells, which com-
plicates the quantitative analysis of the experimental data to 
extract the nanoscale permittivity maps. Therefore, despite sev-
eral works have reported nanoscale dielectric images of eukary-
otic cells[13,23–28] only in few cases quantitative permittivity (or 
dielectric constant) maps have been provided.[25,26] But in these 
latter cases, the dielectric constant maps were obtained by 
making use of oversimplified theoretical cell models that gave 
rise to nonrealistic values for the local dielectric constants, and 
hence, could not be used for nanoscale composition mapping.

To overcome this drawback, we developed recently scan-
ning dielectric force volume microscopy (SDFVM).[19] SDFVM  

Mapping the biochemical composition of eukaryotic cells without the use 
of exogenous labels is a long-sought objective in cell biology. Recently, it 
has been shown that composition maps on dry single bacterial cells with 
nanoscale spatial resolution can be inferred from quantitative nanoscale 
dielectric constant maps obtained with the scanning dielectric microscope. 
Here, it is shown that this approach can also be applied to the much more 
challenging case of fixed and dry eukaryotic cells, which are highly heteroge-
neous and show micrometric topographic variations. More importantly, it is 
demonstrated that the main bottleneck of the technique (the long computa-
tion times required to extract the nanoscale dielectric constant maps) can be 
shortcut by using supervised neural networks, decreasing them from weeks 
to seconds in a wokstation computer. This easy-to-use data-driven approach 
opens the door for in situ and on-the-fly label free nanoscale composition 
mapping of eukaryotic cells with scanning dielectric microscopy.

1. Introduction

The current gold standard technique to assess the local biochem-
ical composition of eukaryotic cells is fluorescence optical micros-
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overcomes the limitations of existing nanoscale dielectric 
imaging methods concerning both data acquisition and quan-
titative theoretical analysis for its application to highly het-
erogeneous and nonplanar systems. SDFVM combines the 
acquisition of local electric force approach curves at each pixel 
of the image with its quantitative analysis by using finite ele-
ment numerical calculations applied to realistic tip-sample geo-
metrical models extracted directly from the measured sample 
topography.[19] The dielectric constant maps obtained in this way 
are fully realistic independently of the complexity of the sample 
topography, and hence adequate for its use for nanoscale com-
position mapping in cells, as it has been demonstrated for the 
case of bacterial cells.[19] Nevertheless, the main bottleneck of 
such an approach is the complex and time-consuming quan-
tification procedure to extract the dielectric constant maps by 
means of finite element numerical calculations, which can take 
even weeks in large scale samples like eukaryotic cells.

In this work, we overcome the limitations of SDFVM applied 
to eukaryotic cells for nanoscale and label-free composition 
mapping. We first demonstrate that SDFVM, as developed 
earlier, can provide realistic nanoscale dielectric constant and 
composition maps of dry eukaryotic cells, despite their inherent 
complex nature. On the large scale, we show that the dielec-
tric constant maps obtained are consistent with the biochemical 
composition of the cells. On the small scale, they enable identi-
fying the composition of nanoscale biostructures present in the 
cells. We then demonstrate that the quantitative analysis of the 
experimental data can be implemented also through supervised 
learning algorithms using neural networks. We show that this 
approach reduces drastically the computation time as compared 
with the use of finite element numerical calculations (from 
months to seconds in a workstation computer), preserving the 
accuracy in the extracted dielectric constant maps. Both results 
together, open the possibility for on-the-fly label-free nanoscale 
dielectric and composition mapping of eukaryotic cells with 
scanning dielectric microscopy.

2. Results

SDFVM[19] is a scanning dielectric microscopy method[16,29–32] 
based on the acquisition of electric force–distance curves 
(normal deflection and 2ω-oscillation amplitude) at each pixel 
of a sample by using a fast force volume imaging scheme,[33] 
followed by its quantitative analysis employing theoretical tip-
sample models with realistic geometries, usually solved using 
finite element numerical calculations.[16,17–20,22,29–32] In the case 
of simple samples, the geometrical models consist of geomet-
rical figures such as spheres,[16] ellipsoids,[17,18] cylinders,[22] etc. 
However, for samples with complex geometries, like eukaryotic 
cells, this approach is no longer possible and the geometrical 
model needs to be built directly from the measured cell topog-
raphy,[19] and then solved by using finite element numerical cal-
culations. This fact, together with the large number of pixels 
per image to be processed, implies a huge computational effort, 
which can take even months in a workstation computer. Here, 
we have applied this procedure to show that SDFVM can, 
indeed, provide dielectric constant maps of dry eukaryotic cells 
consistent with their biochemical composition. Later on, we 

show that an alternative procedure based on the use of neural 
networks can also be applied in the quantitative analysis of 
the data, which drastically reduces the computing time to just 
a small fraction of the time required to compute the dielectric 
constant map by using finite element numerical calculations. 
A schematic representation of the SDFVM method, including 
both possible quantitative analysis approaches, is shown 
in Figure  1 (for further details see[19] and the Experimental 
Section).

As test sample, we consider fixed HeLa cells seeded on top 
of a gold-coated silicon substrate in dry air environment (see 
the Experimental Section). Figure 2a shows an optical micros-
copy image taken during the acquisition of the SDFVM data of 
one of the samples analyzed. Figure 2b,c shows the calibrated 
vertical Deflection [D(X,Y;Z)] and Capacitance Gradient [dC/
dz (X,Y;Z)] data cubes built up from the ensemble of normal 
deflection and 2ω-oscillation amplitude electric force–distance 
curves acquired at each pixel of the image (see[19] for further 
details and Video S1, Supporting Information). Figure 2d shows 
the topographic image of the two HeLa cells located within the 
yellow rectangle in Figure 2a. The topographic image has been 
generated from the Deflection data cube in Figure 2b. Figure 2e 
shows the derivative of the topographic image (sometimes 
referred to as error or amplitude image), which better high-
lights the edges of the different cell structures. The maximum 
height of the cells is ≈1 µm, significantly smaller than for living 
cells due to the liquid loss during the drying and fixation pro-
cess, which nevertheless is expected to preserve the structure 
and composition of the cell. In addition to the cell bodies, some 
cell membrane nanoelongations joining the two cells and some 
nanostructures in the cell bodies are also observed. On the 
cell nucleus, we observe the presence of some protuberances, 
which probably correspond to cell nucleoli.[34]

Figure  2f shows a lift-mode capacitance gradient, dC/dz, 
image obtained from the Capacitance gradient data cube in 
Figure  2c for a tip-sample distance Zlift  = 50 nm. This image 
shows a high contrast between different cell regions, which 
is mainly due to the presence of strong topographic crosstalk 
effects, as we discussed elsewhere.[35] We show it here for com-
pleteness since lift-mode is one of the most common electric 
force microscopy imaging modes.

Figure  2g–i shows three constant height dC/dz images 
obtained also from the Capacitance gradient data cube in 
Figure 2c at tip-substrate distances ZCH = 130, 280, and 1080 nm, 
respectively. These images are free from topographic crosstalk 
effects and report the actual variations of the local polarization 
of the cell. However, the local polarization of a cell depends on 
the local geometrical features of the cell (e.g., thickness and 
radius of curvature) and tip-sample distance, and hence the con-
stant height dC/dz images do not constitute nanoscale dielectric 
constant maps either. Further dC/dz images can be generated 
from the SDFVM data sets, including images along the XZ and 
YZ planes (see Supporting Information S1) but in none of the 
cases the dielectric images obtained from the experimental data-
sets directly represent dielectric constant maps.

To build the dielectric constant maps, a quantitative theoret-
ical analysis based on a realistic tip-sample geometrical model is 
necessary as we mentioned above. To reduce the computational 
time, instead of building a global tip-cell geometrical model, 
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we build local tip-cell geometrical models that include only a 
region of the cell around the pixel of interest.[19] An example of 
a local geometrical model corresponding to the topography of 
the dashed red square area highlighted in Figure 2k is shown 
in Figure  2j, with a calculated electrical potential overlaid on 
it. The local geometrical model includes 9 × 9 pixels around 
the pixel of interest, which ensures that local cell geometrical 
effects on the local polarization are correctly accounted for. At 
every pixel a different local cell geometrical model is built fol-
lowing the topographic image (see[19] and Video S2, Supporting 
Information).

For the tip we used the same model as in previous SDM 
works[16,31,32,36] and which consists of a cone ended with a tan-
gent sphere and caped with a disc cantilever. The dimensions 
of the tip are calibrated using a set of SDFVM approach curves 
measured on a bare part of the metallic substrate[16,29] (white 
dashed square region in Figure  2d) giving R  = 235  ±  14 nm 
by assuming a fixed half cone angle θ  = 20°. The error is the 
standard deviation of the values corresponding to the N = 1634 
curves analyzed (see the Supporting Information S2).

Figure  2k shows the dielectric constant map for the HeLa 
cells in Figure  2d obtained by following this procedure. The 

spatial distribution of the dielectric constants is highly hetero-
geneous, as expected for a system like a eukaryotic cell. We first 
note that all the relative dielectric constant values satisfy εcell < 8. 
This result is in agreement with the fact that, on dry cells, the 
largest expected dielectric constant corresponds to nucleic acids 
for which εDNA ≈ 8,[16,21] while for lipids one has εlip ≈ 2,[30,37] 
and for proteins, εprot ≈ 3–4.[22,37] This result is a first indica-
tion that topographic effects are correctly accounted for in the 
dielectric constant mapping procedure despite the complex cell 
topography. If topographic effects were not correctly accounted 
for, e.g., by using analytic or simple thin film tip-cell models, 
the extracted dielectric constants would be less realistic, as we 
show explicitly in the Supporting Information S3.

On the large scale, and according to the dielectric constant 
values displayed in Figure  2k, three regions can be identified 
in the HeLa cells, namely, a region with low dielectric constant 
values ε1 ≈ 2 (blue color in Figure  2k), another with interme-
diate values ε2 ≈ 3–4 (green color) and, finally, one with high 
values ε3 ≈ 5–6 (yellow color) (see also pixel histogram analysis 
in Figure  2l). The cell region with the low dielectric constant  
(ε1 ≈ 2) corresponds to the thinnest and more extended part of  
the cell (≈40 nm thick), which conforms the cell membrane, 

Figure 1. Schematic representation of Scanning Dielectric Force Volume Microscopy applied to the dielectric constant mapping of eukaryotic cells. 
Deflection and 2ω-oscillation amplitude electric force-distance curves are acquired at each pixel of the image by using a fast force volume imaging 
scheme. Deflection and capacitance gradient data cubes are generated from the acquired data from where topographic and electric force microscopy 
images are obtained, respectively. From the topographic images, local geometrical models are built and used to compute numerically theoretical electric 
force curves. Quantitative dielectric constant maps are obtained by fitting the theoretical electric force curves to the experimental ones at each pixel, 
with the local dielectric constant as single fitting parameter. A drastic reduction of the computational effort required to implement this approach can 
be achieved by using supervised learning, such as neural networks.
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Figure 2. a) Optical image of two HeLa cells with the probe scanning on top of them. The yellow rectangle highlights the region on which the SDFVM 
data have been acquired. b) and c) Deflection and capacitance gradient data cubes, respectively. The data cubes have been built from 128 × 128 
deflection and 2ω-oscillation amplitude approach curves acquired in the 70 × 70 µm2 area highlighted by the yellow square in a). d) Topographic 
image extracted from the Deflection cube in (b). The white dashed rectangle indicates the region of the bare substrate used for the tip radius cali-
bration (see Supporting Information S2). e) Derivative of the topographic image in (d) to better highlight the edges of the different cell regions and 
nanostructures. f ) dC/dz lift-mode image at a distance ZLift = 50 nm obtained from the dC/dz data cube in (c). g)-i) dC/dz constant height-mode 
images at distances ZCH = 130 nm, 280 nm and 1080 nm, respectively. The capacitance gradient is plotted in relative values with respect to the 
substrate. j) 9 × 9 pixel local cell geometric model corresponding to the pixel centered at (24,50), and calculated electric potential overlaid on its 
surface for εr = 2. k) Local dielectric constant map corresponding to the HeLa cells. The region highlighted with a red dashed square is the region 
whose topography is reconstructed in (j). The yellow dashed square highlights the region imaged in Figures 3a. l) Pixel histogram of the dielectric 
constant values of the map in (k).
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rich in lipids. In fact, the dielectric constant value obtained for  
this region (ε1 ≈ 2) is remarkably close to the value corresponding 
to pure dry lipids, εlip ≈ 2.[30,37] Moreover, the cell region with 
intermediate dielectric constant values (ε2 ≈ 3–4) is located in 
between the extended cell membrane region and the nucleus 
and has a thickness in the hundreds of nanometers range. 
This region corresponds to the cytoplasmatic region, which is 
especially rich in proteins. Again, the dielectric constant value 
measured ε2 ≈ 3–4 is within the range of values reported for 
dry proteins, εprot ≈ 3–4.[22,37] Finally, the cell region with high 
dielectric constant values (ε3 ≈ 5–6) corresponds to the nucleus 
of the cell, which is rich in nucleic acids and proteins. Precisely, 
the dielectric constant obtained in this region represents well 
the value of a mixture of dry nucleic acids (εDNA ≈ 8[21,16]) and 
proteins (εprot ≈ 3–4[22,37]). These results show that, on the large 
scale, the dielectric constant map derived by means of SDFVM 
reflects the local biochemical composition of eukaryotic cells, in 
a similar way as it happened for the case of prokaryotic cells.[19]

More interestingly, we can also investigate the biochem-
ical composition of small-scale nanostructures present in 
the eukaryotic cells. In Figure  2k, we identified two of such 
nanostructures, namely, nanoelongations joining the two cells 
and nanofilaments present in the cell body (both highlighted 
by arrows in Figure  2k). To analyze the biochemical composi-
tion of these nanostructures, we have acquired higher spatial 

resolution SDFVM data in the region highlighted with the 
large yellow dashed square in Figure  2k. Figure 3a shows the 
topographic image of the region analyzed. In it, we can iden-
tify even more clearly both the cell membrane nanoelongations 
and the nanofilaments (both highlighted again by arrows). The 
nanoelongations are ≈500 nm wide, ≈200 nm high and several 
micrometers long. The nanofilaments are also micrometers 
long, and show a small diameter, difficult to determine in a pre-
cise way from the image since they are buried below the sur-
face of the cell, but surely below a hundred of nanometers.

Figure  3b shows the corresponding dielectric constant map 
obtained by means of finite element numerical calculations (see 
the Supporting Information S4 for additional data). The dielectric 
constant map is quantitatively consistent with the map obtained 
for the larger scale image in Figure 2k, showing the quantitative 
reproducibility of the methodology used. The nanoelongations 
show a dielectric constant ε 1 ≈ 2, what would imply a lipidic com-
position, while the nanofilaments show ε2 ≈ 3–4, what would imply  
a proteinic composition. No pixels with dielectric constant values 
larger than ε2 ≈ 3–4 are observed, indicating that nucleic acids 
are not present in the region imaged, what is consistent with 
the fact that the nucleus has not been included in the zoomed-in 
region analyzed. We highlight that the nanofilaments are located 
below the cell membrane, reflecting the subsurface sensitivity of 
SDFVM, as it has been shown earlier in other systems.[16,21,38]

Figure 3. a) Topographic image of the region in Figure 2d containing the cell membrane elongations joining the two HeLa cells. The image has been 
obtained from a set of SDFVM data acquired on the dashed yellow square region in Figure 2k. The arrows indicate the nanoelongations and the nano-
filaments. b) Dielectric constant map of the region shown in (a) obtained after analyzing quantitatively the SDFVM data. Experimental parameters:  
20 × 20 mm2, 128 × 128 pixels. c) Topographic image of one of the nanoelongation joining the two HeLa cells obtained from a set of SDFVM data 
acquired on the dashed yellow square in Figure  3a. d) Dielectric constant map corresponding to (c) obtained after analyzing quantitatively the 
corresponding set of SDFVM data. Experimental parameters: 1.5 × 1.5 mm2, 96 × 96 pixels.
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Figure  3c shows a further zoom-in topographic image of 
one of the cell membrane nanoelongations obtained from a set 
of SDFVM data acquired in the yellow dashed square region 
in Figure  3a. The detailed topographic image reveals that the 
nanoelongations have a nonuniform height and width, with 
values varying in the ranges ≈100–200 and ≈400–700 nm, 
respectively. Despite these topographic variations, the dielectric 
constant map obtained (Figure 3d) is very uniform, with a value 
ε1 ≈ 2, confirming the result obtained from the larger scale 
image (Figure 3b), and, hence, confirming the lipidic composi-
tion of the nanoelongations.

As we have mentioned before, the main drawback of the 
approach used until here (and developed in Ref. [19]) is the very 
long computation times required to simulate by means of finite 
element numerical calculations the theoretical dC/dz approach 
curves at each pixel using realistic geometrical models and to 
extract the dielectric constant map by fitting them to the experi-
mental SDFVM data. For a single pixel, this time is relatively 
short (≈1 h), but it can become very long (≈weeks or months) 
when all the pixels in the image are considered. In the case of 
whole eukaryotic cells, images contain at least 128 × 128 pixels, 
so that the number of pixels to be analyzed is Npixels > 104, from 
where the very long times required for the analysis. To over-
come this limitation, we propose here to use supervised neural 

networks (NN) to perform the analysis, in line with earlier pro-
posals to study the dielectric properties of thin films from elec-
trostatic force microscopy measurements[39,40,41,42] and with the 
current trend of exploiting the big data analysis in functional 
scanning probe microscopy studies.[43,44] Here, we use a built-in 
NN from the Scikit-learn python library.[45] The input data con-
sist of three values of the capacitance gradient at three distances 
from the sample surface (dC/dz1, dC/dz2, dC/dz2), the local 
volume below the tip (defined on a 4 × 4 pixel region around 
the pixel of interest), and the local roughness (defined as the 
standard deviation of the heights in the same 4 × 4 pixel region). 
Further details are given in the Experimental Section and in the 
Supporting Information S5. Like any other supervised learning 
algorithm, the NN needs to be trained with some previously 
labeled data. To perform the training, we used the dielectric con-
stant values computed by using finite element numerical calcu-
lations for a small fraction of the total number of pixels. The 
accuracy of the predictions of the NN depends on the number 
of pixels used to train the network, as expected. Figure 4 anal-
yses the accuracy of the model predictions as a function of the 
percentage of data used in the training. Figure 4a,d,g shows the 
pixels randomly selected to train the NN in the case of 1%, 5%, 
and 10% training set sizes, respectively. Figure 4b,e,h shows the 
corresponding full dielectric constant maps calculated by the 

Figure 4. a) Dielectric constant map containing 1% of the pixels of Figure 2k used to train the NN. b) Dielectric constant map predicted by the NN 
trained with the pixels in (a). The predicted image has an accuracy R2 = 0.79. c) Histogram of the NN predicted dielectric constant values in (b). The 
continuous line represents the histogram corresponding to the dielectric constant values calculated by means of finite element numerical calculations. 
The pixels used in the NN training are not included in the histogram. d)-f) and g)-i) same as (a)–(c) but for 5% and 10% of the pixels of Figure 2k used 
to train the NN, respectively. In this case the prediction accuracies in (e) and (h) are R2 = 0.86 and 0.90, respectively.
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NN. Finally, Figure 4c,f,i shows the histogram representation of 
the dielectric constant values predicted by the NN in each case 
(red bars) and compare them with the histogram of the data 
obtained from the finite element numerical calculations (black 
line). As expected, when the number of pixels used to train 
the network is larger, the accuracy in the predicted dielectric 
constant map by the NN increases. We highlight that by only 
considering a 1% of the pixels to train the NN, the predicted 
dielectric constant map already shows a high accuracy (R2  = 
0.79) and presents the main features of the dielectric constant 
map calculated by means of finite element numerical calcula-
tions (compare Figures 4b with 2k). The accuracy of the predic-
tions of the NN as a function of the size of the training dataset 
saturates quickly to R2 ≈ 0.90 with only ≈10% of the data used 
in the training. This means that in practice, the time to calcu-
late the dielectric constant map of a given eukaryotic cell can be 

reduced to just a 1–10% of the time required to compute it by 
using finite element numerical calculations.

More importantly, once sufficiently trained, the NN can be 
used to produce almost instantaneously dielectric constant 
maps corresponding to other cells with similar morphologies 
measured with the same probe. We illustrate it in Figure  5, 
where Figure  5a shows the topographic image of a HeLa cell 
different from the one used to train the NN. Figure 5b shows 
the dielectric constant map predicted by the trained NN applied 
to the corresponding SDFVM measurements performed on 
the cell.

The dielectric constant maps predicted by the trained NN 
(Figure 5b) shows similar features to the image fully calculated 
by means of finite element numerical calculations (Figure 2k), 
supporting the use of NN to generate fast dielectric constant 
maps of eukaryotic cells by using trained NN. Since the die-
lectric constant image is similar, the conclusions regarding 
the local biochemical composition of the cell are also similar. 
These results not only show the reliability of using supervised 
learning to produce accurate dielectric constant maps of eukar-
yotic cells from SDFVM measurements, but also open the door 
for in situ and on-the-fly label free nanoscale dielectric constant 
imaging via machine learning, as it unblocks the main bottle-
neck of the technique, namely, its complex, nonautomated, and 
time-consuming quantification process based on finite element 
numerical calculations (Figure 1).

3. Discussion

We have derived high spatial resolution local dielectric constant 
maps of fixed dry HeLa cells by means of SDFVM. From the 
dielectric constant maps, local biochemical composition infor-
mation of the cells has been obtained in a label-free way, by 
matching up the measured dielectric constants to the known 
values of the dielectric constants of the main cell components 
in dry conditions (εlip ≈ 2 for lipids,[30,37] εprot ≈ 3–4 for pro-
teins,[22,37] and εDNA ≈ 8 for nucleic acids[16,21]).

Due to the long-range nature of the electric forces, the local 
dielectric constant values obtained by means of this approach, 
and hence the biochemical composition information, reflects 
the dominant component present in a nanometric small 
volume probed by the tip (see Figure 6). The size of the volume 
probed by the tip depends on the tip radius and half cone angle, 
the dielectric constants of the components contained in it and 
the thickness and local shape of the cell at the given position, 
so that it is difficult to estimate it, in general. As reference, we 
can use the estimation made for planar thick dielectric films,[36] 
where it was shown that the major contribution to the electric 
force (≈50%) came from a volume of radius of the order of the 
tip radius ≈R. The high locality of the measurement is due to 
the sharp geometry of the tip, which makes the electric field 
intensity to be much higher below the tip apex than at distant 
regions. For the same reason, also a high lateral spatial resolu-
tion can be achieved, as we showed with the detection of the 
protein nanofilaments present in the cell body or the imaging 
of the cell membrane nanoelongations.

The actual lateral spatial resolution achievable in the dielec-
tric constant maps is difficult to predict theoretically since it 

Figure 5. a) Topographic image of a fixed HeLa cells on a gold-coated sil-
icon substrate different from those in Figure 2 used to train the NN. The 
measurements have been done with the same probe. b) Corresponding 
dielectric constant map obtained by using the already trained NN. The 
calculation of this image is almost instantaneous. Experimental param-
eters: same as in Figure 2.

Small Methods 2021, 2100279



www.advancedsciencenews.com www.small-methods.com

2100279 (8 of 12) © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

depends on several factors including the actual cell topography 
and dielectric heterogeneity. In the large-scale images (e.g., 
70 × 70 µm2) the spatial resolution is limited by the pixel size, 
specially for images with relatively low number of pixels (e.g., 
128 × 128 pixels). In this case, the pixel size is in the range of 
hundreds of nanometers (≈500 nm for a 70 × 70 µm2 image 
with 128 × 128 pixels). For smaller scale images, the pixel size 
is not the limiting factor anymore, even at low pixel resolu-
tions (≈16 nm for a 1.5 × 1.5 µm2 image with 96 × 96 pixels). In 
this latter case, the spatial resolution is expected to be limited 
mostly by the tip radius and half cone angle, although to deter-
mine it in a precise way would require of a specific theoretical 
analysis.

From the technical side, some comments are needed. We 
emphasize that to obtain realistic dielectric constant maps useful 
for biochemical composition mapping, realistic cell geometries 
need to be considered in the derivation of the dielectric con-
stant values. If this is not done (e.g., by resorting to simpler cell 
models valid for planar thin films as done in earlier works[25,26]) 
less realistic dielectric constant values are obtained, as we 
showed in the Supporting Information S3 and S6. This fact has 
been highlighted in previous works devoted to the dielectric 
characterization of nanoscale objects, such as nanoparticles,[16] 
bacterial cells,[17,18,19] bacterial endospores,[20] virus particles,[16] 
or protein macromolecular structures like virus tails[21] or bac-
terial flagella.[22] We also highlight that the use of full experi-
mental and theoretical electric force approach curves at each 
pixel, instead of just one or few values obtained from electric 
force images acquired at different heights, largely improves the 
accuracy and reliability of the extracted local dielectric constant 
values. The use of full curves provides a more robust approach 
less prone to artefacts. Concerning environmental conditions, 
the relative humidity (RH) is one of the parameters that must be 
controlled during the measurements, since moisture is known 
to highly alter the dielectric measurements on biological sam-
ples, due to the high dielectric constant of water, εwater ≈ 80. 
This fact has been shown explicitly, for instance, for the case 
of dielectric measurements on bacterial cells[17] and bacterial 
endospores.[20] Environmental humidity effects are usually rele-
vant when the relative humidity is RH > 40%.[17] The experiments 

of the present work were done in a room with low humidity  
RH ≈ 30% controlled by an air conditioner, so the effects of 
moisture are expected to be neglectable in the results reported. 
In this respect, since the measurements are done under low 
humidity conditions, the composition identification is done by 
using the dielectric constant values of pure components meas-
ured in dry conditions.

The effect of the fixation agent on the measured local die-
lectric constants of the cells can also be an element of some 
concern. Based on the results reported here, its effects seem 
to be neglectable, since the values obtained for the dielectric 
constants measured in the cells can be consistently interpreted 
in terms of the values corresponding to pure components 
obtained without the use of any fixation agent. Here, we have 
used glutaraldehyde which is a crosslinking fixative that causes 
the deformation of proteins α-helices inducing mechanical 
hardening of the cells and preserving, as much as, possible the 
cell structure and composition.

Finally, we comment on the dielectric constant values 
obtained on isolated nanostructures, like the cell membrane 
nanoelongation in Figure 3c. For these nanostructures the rel-
evance of tip convolution and finite size effects should be ana-
lyzed, as discussed elsewhere.[46,47] The nanoelongations have 
heights in the range ≈100–200 nm, and widths in the range 
≈500–700 nm. For these dimensions, finite size effects can 
be relevant,[46] and hence the dielectric constant value extracted 
can depend on the actual size of the nanostructure, as we dem-
onstrated for the case of nanoparticles and virus particles,[47] 
bacterial cells,[17,18,20] square slab thin films[46] and bacterial 
flagella.[19] While the height of the nanostructure can be accu-
rately determined from the topographic image, its width is 
affected by tip convolution effects, which tend to increase it. For 
this reason, the geometrical model used to extract the dielec-
tric constant is, in general, wider than the actual geometry of 
the nanostructure. This fact can produce dielectric constant 
values systematically lower than the actual values.[47] How-
ever, applying tip-convolution analysis to nanostructures with 
nonregular geometries, like the cell membrane nanoelonga-
tions, is very complex, and in general, it cannot be done in an 
unambiguous way. The fact that the nanoelongations show an 
almost uniform dielectric constant value (ε1 ≈ 2 ±  0.4) despite 
its relatively irregular shape and size constitutes an indication 
that finite size and tip convolution effects are probably not very 
relevant in the present case.

There is still some room for improvement in the nanoscale 
dielectric and composition mapping of eukaryotic cells by 
SDFVM. Tip convolution effects could be minimized by using 
either sharper tips (although the signal will be also reduced) 
or applying a tip-deconvolution filter to the topographic image 
(although tip deconvolution is not always a well posed inverse 
problem for irregular geometries). The spatial resolution could 
be reduced by using also sharper tips, but also by considering 
more complex cell dielectric theoretical models to account for 
the lateral and vertical spatial variability of the dielectric con-
stants in the volume probed by the tip. This would require 
assigning different dielectric constants to each voxel of the local 
geometric model and to use advanced tomographic reconstruc-
tion algorithms, not available yet, despite the progress made 
recently.[48]

Figure 6. Schematic representation of the volume probed by the tip in 
SDFVM measurements on the different cell regions. The relation between 
the extracted local dielectric constant and the dielectric constants of the 
different cell components in the volume probed by the tip is highlighted 
in the three main cell regions, corresponding to the cell membrane, cyto-
plasm and nucleus.
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The dielectric and composition mapping could be in prin-
ciple extended to fixed cells in water environment and to living 
cells. Scanning dielectric microscopy has been already demon-
strated in the water environment,[49,50,51] and it has been applied 
to probe the dielectric properties of systems like supported lipid 
bilayers,[52,53] self-assembled monolayers (SAMs),[54] and elec-
trolyte gated field effect transistors.[55] The presence of water 
can make ionic conductivity effects relevant what imposes 
the realization of the measurements at frequencies above the 
relaxation frequency of the water solution, usually in the 10’s 
MHz range, to prevent ionic screening effects.[49,50,51] The use 
of high frequencies requires of specific measuring set-ups and 
methods, as detailed elsewhere.[49,54] The presence of water 
introduces also a medium of high polarizability (εwater ≈ 80) in  
the volume probed by the tip. Therefore, the local equivalent 
homogeneous dielectric constant of the cell, εeq, will reflect 
both the local composition of the cell and the water content 
of the volume probed. This effect should be included in the 
modeling and taken into account in the interpretation of the 
dielectric constant maps obtained. In addition, the presence 
of water can make the dielectric constant values of reference 
for the pure components to vary with respect to those in dry 
conditions. At present, dielectric constant values of reference in 
fully hydrated conditions measured by SDM are only available 
for lipids[52] and lipid/cholesterol mixtures.[53] The presence of 
water can introduce also a softening of the cells even if fixed. 
This fact can make more difficult to determine the “true” topog-
raphy of the cells, specially when imaged with probes adequate 
for SDM measurements, thus complicating the quantitative 
analysis and the derivation of the dielectric constant maps. 
Finally, fully hydrated cells, even if fixed, can be considerably 
taller than dried cells (roughly a factor three to five taller), 
reaching heights in the range 5–10 µm in the nuclear regions 
and some hundreds of nanometers in the cell extended parts. 
Since, electrostatic forces decrease with tip substrate distance, 
a much lower sensitivity to the dielectric properties is expected 
on the highest parts of the cell for this reason.

Extending the measurements to living cells, involves addi-
tional challenges with respect to those found in performing the 
measurements on fixed cells in water solutions. Living cells are, 
first, mobile, so that fast imaging will be a prerequisite. The 
time required to acquire the experimental SDFVM data could 
be improved by using high resonance frequency cantilevers 
(like the ones developed for high-speed AFM), as discussed 
elsewhere.[19] Currently, the speed at which the ac electric force 
curves are acquired is limited by the frequency of the ac elec-
tric voltage applied, which in turn is limited by the mechanical 
resonance frequency of the cantilever (since the electrical fre-
quency is set in the flat zone of the mechanical spectrum of 
the cantilever to avoid spurious mechanical contribution to the 
acquired signal). Considering higher resonance frequency can-
tilevers could allow increasing the speed of the acquired force 
curves and hence reduce the experimental acquisition times.[19] 
In addition, ionic conductivity effects in living cell imaging 
can become much more relevant. Physiological buffer solu-
tions have usually high ionic strengths (at least 100 ×  10−3 m), 
what would imply the realization of the SDM measuremts in 
the range of 100’s MHz frequencies, making the set-up adapta-
tions more delicate and exigent. Furthermore, the conductivity 

of the extracellular solution can be smaller than the conduc-
tivity of the intracellular medium, what can make the dielec-
tric response frequency dependent, what has to be taken into 
account in the modeling. Finally, the issue related to the soft 
nature of the cells is much more relevant in the case of living 
cells, since nonfixed cells present a Young’s modulus orders of 
magnitude smaller than that of fixed cells.[56]

Regarding the dielectric maps quantified by means of super-
vised learning, the accuracy of the presented machine learning 
methodology (R2 = 0.90) has also some room for improvement. 
Both the NN architecture (number of hidden layers, activation 
function, convolutional/nonconvolutional structure) and the 
input feature selection can be further optimized by performing 
a deeper analysis, which lies beyond the scope of the present 
work. The procedure presented here still requires the use 
of finite element numerical calculations to derive the labeled 
dataset to train the neural network. We have shown that, once 
trained, the neural network can predict the dielectric constant 
map of cells imaged with the same probes if the cells show sim-
ilar features to the ones of the image used to train the neural 
network. We envision that by using labeled training datasets 
obtained in a large number of cells and with different probes, 
it should be possible to train a neural network that will be able 
to predict accurately the dielectric constant maps of a wide 
range of cells irrespectively of the probe used and with no fur-
ther training required. In this case, there would be no need of 
finite element numerical calculations at all. The prospects for 
the implementation of the machine learning strategy presented 
in this work to a scanning probe microscopy controller system 
are exciting. A well trained NN would make on-the-fly in- situ 
label-free nanoscale dielectric constant imaging a reality regard-
less the complexity of the system under study, what extends the 
interest of this perspective to other research fields, but specially 
to material science, where the study of dielectric properties of 
complex systems is of great interest.

4. Conclusion

We have shown that quantitative nanoscale dielectric constant 
maps of dry eukaryotic cells that reflect their local biochemical 
composition can be obtained in a label-free way by means of 
scanning dielectric microscopy measurements in force volume 
detection mode. We have validated the methodology by recov-
ering well known facts, such as the lipidic nature of the cell 
membrane, the protein rich nature of the cytoplasm region, 
and the nucleic acid rich nature of the nucleus. In addition, 
we have shown the full potential of the method by analyzing 
the dielectric properties and biochemical composition of nano-
structures present in the cell, such as cell membrane nanoelon-
gations and nanofilaments present in the cell body close to its 
surface. A striking boost in the time needed to obtain the die-
lectric constant maps is found when the labor-intensive finite 
element numerical quantification methods are substituted by 
modern and easy-to-use supervised machine learning algo-
rithms, preserving a great accuracy in the dielectric constant 
resolution. These results open interesting applications in Cell 
and Molecular Biology, as well as, in fields such as Material Sci-
ence, Nanotoxicity, or Drug Delivery.
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5. Experimental Section
HeLa Cell Growth and Sample Preparation: HeLa cells from a lab cell 

line were used in the present study. The protocol to prepare the sample 
was optimized from the different options shown elsewhere.[57] The 
cells were seeded at 50 k cells mL−1 onto gold coated silicon substrates 
(Arrandee) placed in a petri dish with Dulbecco’s modified eagle medium 
(DMEM, as received with L-Glutamine, 4.5 g L−1 D-glucose and pyruvate, 
Gibco) supplemented with FBS 10% (Gibco) and penicillin/streptomycin 
1% (Biowest). After 24 h of incubation in 5% CO2 and 37 °C, the cells 
were observed and seemed completely attached and spread on the gold 
substrate. Then, cells were fixed. The medium was washed with PBS, and 
the cells were incubated with 2.5% glutaraldehyde in PBS for 10 min. 
After fixation, the cells were rinsed with PBS and then dried. The cells 
were washed consecutively with different solutions: 75%, 50%, and 25% 
PBS and ultrapure MiliQ water, and 25%, 50%, 75%, 85%, 95%, and 
100% ethanol for 5 min each. Finally, the cells were immersed for 5 min 
in Hexamethyldisilazane and let dry in the desiccator before imaging.

Scanning Dielectric Force Volume Microscopy Measurements: SDFVM 
measurements were carried out by following the method described 
earlier,[19] which was based on previous developments of the SDM 
technique.[16,29–32] In a nutshell, an ac electric voltage of frequency ω 
was applied between the conductive probe of an AFM system and the 
conductive substrate. The applied potential induces a static bending of 
the cantilever and its oscillation at double of the excitation frequency. 
The static deflection and the 2ω-oscillation amplitude were recorded 
with a Nanowizard 4 AFM system (JPK) mounted on a T-1 Eclipse optical 
microscope (Nikon) and connected to an external lock-in amplifier 
(eLockin 204/2, Anfatec). The data acquisition was carried by using the 
Advanced Quantitative Imaging mode (JPK) in ambient conditions at 
room temperature and environmental humidity ≈30% RH controlled by 
a room air conditioner. Each set of SDFVM data consisted of 128 × 128 
deflection and 2ω-oscillation amplitude approach curves, each one with 
900 data points and spanning a length of 1800 nm. The acquisition 
time per pixel was 200 ms, and the lock-in integration time was set to 
1 ms, with a gain Glock-in = 200. The ac applied voltage amplitude was  
vac = 3 V and the frequency of the applied voltage fel = 4 kHz, much smaller 
than half the resonance frequency of the cantilevers (f0  = 19 kHz). We 
used diamond coated conductive probes (CDT-CONTR) with nominal 
equivalent spring constants in the range k = 0.5 N m−1(nominal), which 
was calibrated with the thermal noise method giving k = 0.72 N m−1. Raw 
deflection and 2ω-oscillation amplitude approach curves were converted 
into calibrated deflection and capacitance gradient data as detailed 
earlier[16] by using the relationships
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Here, m is the photodiode sensitivity (i.e., the slope of the contact 
part of the vertical deflection approach curve), k is the equivalent spring 
constant, and A2ω,offset the lock-in offset. The photodiode sensitivity, m, 
was taken as the average value of the values obtained on a bare part 
of the substrate (see the Supporting Information S7). The noise of the 
measurements in the present conditions was ≈2 zF nm−1. The SDFVM 
data cubes and topographic and electric images were obtained as 
explained in detail elsewhere.[19]

Finite Element Numerically Calculated Dielectric Constant Maps: The 
quantification of the SDFVM data sets to derive the local equivalent 
homogeneous dielectric constant images was done by following the 
methods of SDM[16,29–32] implemented for force volume data as detailed 
in.[19] In a nutshell, finite element numerical calculations, using realistic 
sample and tip models were used to calculate capacitance gradient dC/
dz approach curves at each pixel of the image. The capacitance gradient 

values, dC/dz, were calculated from the electric force acting on the tip 
(F2ω  = 1/4 dC/dz v0

2) obtained by solving the Poisson’s equation for 
the tip-sample system and integrating the Maxwell stress tensor over 
the tip surface. The theoretical dC/dz approach curves were fitted to 
the experimental ones at each pixel with the equivalent homogeneous 
dielectric constant as single fitting parameter. The dielectric constant value 
obtained is assigned to the given pixel, generating the so called dielectric 
constant map (see Supporting Information S8 for the full analysis of one 
pixel). To avoid too long computational times, the sample geometry does 
not include the full cell, but only a grid of nxn pixels around the calculated 
pixel, where n is adjusted for each specific image, depending on the pixel 
size, to guarantee that the region effectively probed by the tip is included 
in the modelling. For Figure 2k we took n = 9 (which corresponds to an 
area 5 × 5 µm2), for Figure  3b we also took n = 9 (which in this case 
corresponds to an area of 1.7 × 1.7 µm2) and for Figure 3d we took n = 41 
(which corresponds to an area of 0.65 × 0.65 µm2). With these choices, 
and the appropriate meshing conditions (see Supporting Information 
S9), we ensured that the geometric effects on the local polarization 
of the sample were correctly accounted for. Note that a set of local 
sample geometries equal to the number of pixels analyzed need to be 
built. An example of how local computations were made is illustrated 
in Supporting Information Video S2. The tip geometry was modeled as 
usual in SDM[16,31,32,36] as a cone with a tangent sphere and caped with 
a disc cantilever at the top. The tip radius, R, and half cone angle, θ, 
were calibrated from approach curves taken on a bare part of the metallic 
substrate, as detailed elsewhere.[16,31,32,36] The microscopic tip parameters 
were set to their nominal values in the calibration procedure: cone height 
H = 12.5 µm, cantilever thickness W = 3 µm, disc cantilever radius 
H·tan(θ)+L, with L = 3 µm. Calculations and fittings were done by using 
COMSOL Multiphysics 5.3a linked to a custom software code written in 
MATLAB (MathWorks).

Neural Network Calculated Dielectric Constant Maps: The supervised 
learning approach implemented in this work to calculated the 
dielectric constant maps uses a built in Multi-layer Perceptron (MPL) 
regressor from the scikit-learn python library.[45] The MPL is fed with 
six input features per sample (pixel) in its input layer, which pretend 
to account for all the needed information to reconstruct the hidden 
function that correlates SDFVM data with local dielectric constants. 
The input features are the images of the experimentally measured dC/
dz for three different tip-sample distances (dC/dz1, dC/dz2, dC/dz3), 
the topography image, the volume under the tip image, and the local 
surface roughness image (see Supporting Information S5). The input 
features are normalized using a scaling function, which removes the 
mean and scales the data to unit variance. The solver uses a stochastic 
gradient-based optimizer to train the NN. The choice of input features 
has some room for improvement if feature selection algorithms are 
considered and cleverer input features are tested, but as the NN maps 
obtained here were precise enough with this choice, we did not consider 
it for the present work. The main hyperparameters of the MPL are the 
following: one hidden layer consisting of 100 neurons and a rectified 
linear unit function (f(x) = max(0,x)) as activation function. There is 
also room for improvement in terms of finding the optimal structure of 
the NN hyperparameters to further increase the model accuracy (which 
saturates to around R2 ≈ 0.90 in the present case), but we consider it out 
of the scope of the present work. Finally, the output layer consists only 
of 1 neuron which is the dielectric constant of the pixel itself.

The procedure to obtain the machine learning calculated dielectric 
constant maps is the following. First, the MPL is trained with labeled 
samples (pixels whose local dielectric constant had been calculated with 
the realistic finite element numerical calculations). Once the network 
is trained, new unlabeled samples (pixels where the local dielectric 
constant is unknown) are input to the network and its output consist 
of the local dielectric constant of that pixel. By repeating the procedure 
for all the pixels of the image, full dielectric constant images from the 
MPL regressor outputs can be obtained. The training of the NN can be 
carried by considering a small fraction of the pixels of the image (1-10% 
depending on the accuracy required). Once the NN is properly trained 
it can be applied directly to other cells not used in its training. The time 
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consumption of this approach is remarkably better than that based 
on the use of finite element numerical calculations, as full dielectric 
constant maps can be calculated in seconds, improving by several 
orders of magnitude the aforementioned state-of-the art quantification 
process which needed normally several weeks to calculate large scale 
images.
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